
YDB Quick Start
In this guide, you will install a single-node local YDB cluster and execute simple queries against your database.

Normally, YDB stores data on multiple SSD/NVMe or HDD raw disk devices without any filesystem. However, for simplicity, this guide emulates
disks in RAM or using a file in a regular filesystem. Thus, this setup is unsuitable for any production usage or even benchmarks. See the
documentation for DevOps Engineers to learn how to run YDB in a production environment.

Install and start YDB

Linux x86_64

Note

The recommended environment to run YDB is x86_64 Linux. If you don't have access to one, feel free to switch to the instructions on
the "Docker" tab.

1. Create a directory for YDB and use it as the current working directory:

2. Download and run the installation script:

This will download and unpack the archive containing the ydbd executable, libraries, configuration files, and scripts needed to start and stop
the local cluster.

The script is executed entirely with the current user privileges (notice the lack of sudo). Therefore, it can't do much on the system. You can
check which exactly commands it runs by opening the same URL in your browser.

3. Start the cluster in one of the following storage modes:

In-memory data:

In this case, all data is stored only in RAM, it will be lost when the cluster is stopped.

Data on disk:

When you run this command an 80GB ydb.data file will be created in the working directory if it weren't there before. Make sure there's
enough disk space available to create it. This file will be used to emulate a raw disk device, which would have been used in production
environments.

Data on a real disk drive:

Replace /dev/$DRIVE_NAME with an actual device name that is not used for anything else, for example /dev/sdb . The first time you
run this command, the specified disk drive will be fully wiped and then used for YDB data storage. It is recommended to use a NVMe or
SSD drive with at least 800Gb data volume. Such setup can be used for single-node performance testing or other environments that do
not have any fault-tolerance requirements.

Result:

mkdir ~/ydbd && cd ~/ydbd

curl https://install.ydb.tech | bash

./start.sh ram

./start.sh disk

./start.sh drive "/dev/$DRIVE_NAME"

Starting storage process...
Initializing storage ...
Registering database ...
Starting database process...

Database started. Connection options for YDB CLI:

-e grpc://localhost:2136 -d /Root/test

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_quickstart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_quickstart_install
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_cluster
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_index

Docker x86_64

1. Create a directory for YDB and use it as the current working directory:

2. Run the Docker container:

If the container starts successfully, you'll see the container ID. The container might take a few seconds to initialize. The database will not be
available until container initialization is complete.

Note

If you are using a Mac with an Apple Silicon processor, emulate the x86_64 CPU instruction set with Rosetta:

colima with the colima start --arch aarch64 --vm-type=vz --vz-rosetta options.

Docker Desktop with installed and enabled Rosetta 2.

mkdir ~/ydbd && cd ~/ydbd
mkdir ydb_data
mkdir ydb_certs

docker run -d --rm --name ydb-local -h localhost \
 --platform linux/amd64 \
 -p 2135:2135 -p 2136:2136 -p 8765:8765 -p 9092:9092 \
 -v $(pwd)/ydb_certs:/ydb_certs -v $(pwd)/ydb_data:/ydb_data \
 -e GRPC_TLS_PORT=2135 -e GRPC_PORT=2136 -e MON_PORT=8765 \
 -e YDB_KAFKA_PROXY_PORT=9092 \
 ydbplatform/local-ydb:latest

Minikube

1. Install the Kubernetes CLI kubectl and Helm 3 package manager.

2. Install and run Minikube.

3. Clone the repository with YDB Kubernetes Operator:

4. Install the YDB controller in the cluster:

5. Apply the manifest for creating a YDB cluster:

6. Wait for kubectl get storages.ydb.tech to become Ready .

7. Apply the manifest for creating a database:

8. Wait for kubectl get databases.ydb.tech to become Ready .

9. After processing the manifest, a StatefulSet object that describes a set of dynamic nodes is created. The created database will be accessible
from inside the Kubernetes cluster by the database-minikube-sample DNS name on port 2135.

10. To continue, get access to port 8765 from outside Kubernetes using kubectl port-forward database-minikube-sample-0 8765 .

git clone https://github.com/ydb-platform/ydb-kubernetes-operator && cd ydb-kubernetes-operator

helm upgrade --install ydb-operator deploy/ydb-operator --set metrics.enabled=false

kubectl apply -f samples/minikube/storage.yaml

kubectl apply -f samples/minikube/database.yaml

Kind

1. Install the Kubernetes CLI kubectl and Helm 3 package manager.

2. Install Kind.

3. Clone the repository with YDB Kubernetes Operator:

4. Create a Kind cluster and wait until it is ready:

git clone https://github.com/ydb-platform/ydb-kubernetes-operator && cd ydb-kubernetes-operator

kind create cluster --config=samples/kind/kind-config.yaml --wait 5m

https://support.apple.com/en-us/102527
https://github.com/abiosoft/colima
https://docs.docker.com/desktop/setup/install/mac-install/
https://kubernetes.io/docs/tasks/tools/install-kubectl
https://helm.sh/docs/intro/install/
https://kubernetes.io/ru/docs/tasks/tools/install-minikube/
https://github.com/ydb-platform/ydb-kubernetes-operator
https://kubernetes.io/docs/tasks/tools/install-kubectl
https://helm.sh/docs/intro/install/
https://kind.sigs.k8s.io/docs/user/quick-start/
https://github.com/ydb-platform/ydb-kubernetes-operator

Run your first "Hello, world!" query

The simplest way to launch your first YDB query is via the built-in web interface. It is launched by default on port 8765 of the YDB server. If you
have launched it locally, open localhost:8765 in your web browser. If not, replace localhost with your server's hostname in this URL or use ssh
-L 8765:localhost:8765 my-server-hostname-or-ip.example.com to set up port forwarding and still open localhost:8765. You'll see a page like
this:

YDB is designed to be a multi-tenant system, with potentially thousands of users working with the same cluster simultaneously. Hence, most logical
entities inside a YDB cluster reside in a flexible hierarchical structure more akin to Unix's virtual filesystem rather than a fixed-depth schema you
might be familiar with from other database management systems. As you can see, the first level of hierarchy consists of databases running inside a
single YDB process that might belong to different tenants. /Root is for system purposes, while /Root/test or /local (depending on the
chosen installation method) is a playground created during installation in the previous step. Click on either /Root/test or /local , enter your first
query, and hit the "Run" button:

The query returns the greeting, as it is supposed to:

5. Install the YDB controller in the cluster:

6. Apply the manifest for creating a storage:

7. Wait for kubectl get storages.ydb.tech to become Ready .

8. Apply the manifest for creating a database:

9. Wait for kubectl get databases.ydb.tech to become Ready .

10. After processing the manifest, a StatefulSet object that describes a set of dynamic nodes is created. The created database will be accessible
from inside the Kubernetes cluster by the database-kind-sample DNS name on port 2135.

11. To continue, get access to port 8765 from outside Kubernetes using kubectl port-forward database-kind-sample-0 8765 .

helm upgrade --install ydb-operator deploy/ydb-operator --set metrics.enabled=false

kubectl apply -f samples/kind/storage.yaml

kubectl apply -f samples/kind/database.yaml

SELECT "Hello, world!"u;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_quickstart_run-your-first-hello,-world-query
http://localhost:8765/
http://localhost:8765/

Note

Did you notice the odd u suffix? YDB and its query language, YQL, are strongly typed. Regular strings in YDB can contain any binary
data, while this suffix indicates that this string literal is of the Utf8 data type, which can only contain valid UTF-8 sequences. Learn
more about YDB's type system.

The second simplest way to run a SQL query with YDB is the command line interface (CLI), while most real-world applications will likely
communicate with YDB via one of the available software development kits (SDK). Feel free to follow the rest of the guide using either the CLI or one
of the SDKs instead of the web UI if you feel comfortable doing so.

Create your first table

The main purpose of database management systems is to store data for later retrieval. As an SQL-based system, YDB's primary abstraction for
data storage is a table. To create our first one, run the following query:

As you can see, it is a simple key-value table. Let's walk through the query step-by-step:

Each SQL statement kind like CREATE TABLE has more detailed explanation in YQL reference.

example is the table name identifier, while key and value are column name identifiers. It is recommended to use simple names for
identifiers like these, but if you need one that contains non-trivial symbols, wrap the name in backticks.

UInt64 and String are data type names. String represents a binary string, and UInt64 is a 64-bit unsigned integer. Thus, our example
table stores string values identified by unsigned integer keys. More details about data types.

PRIMARY KEY is one of the fundamental concepts of SQL that has a significant impact on both application logic and performance. Following
the SQL standard, the primary key also implies an unique constraint, meaning the table cannot have multiple rows with equal primary keys. In
this example table, it's quite straightforward which column should be chosen as the primary key, which we specify as (key) in round brackets
after the respective keyword. In real-world scenarios, tables often have dozens of columns, and primary keys can be compound (consisting of
multiple columns in a specified order), making choosing the right primary key more of an art. If you are interested in this topic, there's a guide
on choosing the primary key for maximizing performance. YDB tables are required to have a primary key.

Add sample data

Now let's fill our table with some data. The simplest way is to just use literals:

Step-by-step walkthrough:

INSERT INTO is the classic SQL statement for adding new rows to a table. However, it is not the most performant, as according to the SQL
standard, it has to check whether the table already has rows with the given primary key values, and raise an error if they exist. Thus, if you run
this query multiple times, all attempts except the first will return an error. If your application logic doesn't require this behavior, it is better to use
UPSERT INTO instead of INSERT INTO . Upsert (which stands for "update or insert") will blindly write the provided values, overwriting existing

rows if there were any. The rest of the syntax will be the same.

(key, value) specifies the names of the columns we're inserting and their order. The values provided next need to match this specification,
both in the number of columns and their data types.

After the VALUES keyword, there's a list of tuples, each representing a table row. In this example, we have two rows identified by 123 and 321
in the key column, and "hello" and "world" values in the value column, respectively.

To double-check that the rows were indeed added to the table, there's a common query that should return 2 in this case:

A few notable details in this one:

The FROM clause specifies a table to retrieve data from.

COUNT is an aggregate function that counts the number of values. By default, when there are no other special clauses around, the presence
of any aggregate function collapses the result to one row containing aggregates over the whole input data (the example table in this case).

Asterisk * is a placeholder that normally means "all columns"; thus, COUNT will return the overall row count.

Another common way to fill a table with data is by combining INSERT INTO (or UPSERT INTO) and SELECT . In this case, values to be stored are
calculated inside the database instead of being provided by the client as literals. We'll use a slightly more realistic query to demonstrate this:

CREATE TABLE example
(
 key UInt64,
 value String,
 PRIMARY KEY (key)
);

INSERT INTO example (key, value)
VALUES (123, "hello"),
 (321, "world");

SELECT COUNT(*) FROM example;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_quickstart_create-your-first-table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_quickstart_add-sample-data
https://en.wikipedia.org/wiki/UTF-8
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_primary-key_row-oriented

There's quite a lot going on in this query; let's dig into it:

$subquery is a named expression. This syntax is YQL's extension to the SQL standard that allows making complex queries more readable. It
behaves the same as if you wrote that first SELECT inline where $subquery is later used on the last row, but it allows comprehending what's
going on piece by piece, like variables in regular programming languages.

ListFromRange is a function that produces a list of consecutive integers, starting from the value provided in the first argument and ending
with the value provided in the second argument. There's also a third optional argument that can allow skipping integers with a specified step,
but we omit it in our example, which defaults to returning all integers in the given range. List is one of the most common container data
types.

AS is a keyword used to give a name to the value we're returning from SELECT ; in this example, keys .

FROM ... FLATTEN LIST BY ... AS ... has a few notable things happening:

Another SELECT used in the FROM clause is called a subquery. That's why we chose this name for our $subquery named expression,
but we could have chosen something more meaningful to explain what it is. Subqueries normally aren't materialized; they just pass the
output of one SELECT to the input of another on the fly. They can be used as a means to produce arbitrarily complex execution graphs,
especially if used in conjunction with other YQL features.

FLATTEN LIST BY clause modifies input passed via FROM in the following way: for each row in the input data, it takes a column of list
data type and produces multiple rows according to the number of elements in that list. Normally, that list column is replaced by the column
with the current single element, but the AS keyword in this context allows access to both the whole list (under the original name) and the
current element (under the name specified after AS), or just to make it more clear what is what, like in this example.

RandomUuid is a function that returns a pseudorandom UUID version 4. Unlike most other functions, it doesn't actually use what is passed as
an argument (the key column); instead, it indicates that we need to call the function on each row. See the reference for more examples of
how this works.

CAST(... AS ...) is a common function for converting values to a specified data type. In this context, the type specification is expected after
AS (in this case, String), not an arbitrary name.

UPSERT INTO will blindly write the values to the specified tables, as we discussed previously. Note that it didn't require (key, value)
column names specification when used in conjunction with SELECT , as now columns can just be matched by names returned from SELECT .

Quick question!

What will the SELECT COUNT(*) FROM example; query return now?

Stop the cluster

Stop the local YDB cluster after you have finished experimenting:

$subquery = SELECT ListFromRange(1000, 10000) AS keys;

UPSERT INTO example
SELECT
 key,
 CAST(RandomUuid(key) AS String) AS value
FROM $subquery
FLATTEN LIST BY keys AS key

Linux x86_64

To stop the local cluster, run the following command:

Optionally, you can then clean up your filesystem by removing your working directory with the rm -rf ~/ydbd command. All data inside the local
YDB cluster will be lost.

~/ydbd/stop.sh

Docker

To stop the Docker container with the local cluster, run the following command:

Optionally, you can then clean up your filesystem by removing your working directory with the rm -rf ~/ydbd command. All data inside the local
YDB cluster will be lost.

docker kill ydb-local

Minikube

To delete the YDB database, it is enough to delete the Database resource associated with it:

To delete the YDB cluster, execute the following commands (all data will be lost):

kubectl delete database.ydb.tech database-minikube-sample

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_quickstart_stop
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_containers
https://datatracker.ietf.org/doc/html/rfc4122#section-4.4
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_random

Done! What's next?

After getting a hold of some basics demonstrated in this guide, you should be ready to jump into more advanced topics. Choose what looks the
most relevant depending on your use case and role:

Walk through a more detailed YQL tutorial that focuses on writing queries.

Try to build your first app storing data in YDB using one of the SDKs.

Learn how to set up a production-ready deployment of YDB.

Read about YDB concepts.

To remove the YDB controller from the Kubernetes cluster, delete the release created by Helm:

kubectl delete storage.ydb.tech storage-minikube-sample

helm delete ydb-operator

Kind

To delete the YDB database, it is enough to delete the Database resource associated with it:

To delete the YDB cluster, execute the following commands (all data will be lost):

To remove the YDB controller from the Kubernetes cluster, delete the release created by Helm:

To delete kind cluster, run the following command:

kubectl delete database.ydb.tech database-kind-sample

kubectl delete storage.ydb.tech storage-kind-sample

helm delete ydb-operator

kind delete cluster

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_quickstart_done-whats-next
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_index

YDB Overview
YDB is a horizontally scalable, distributed, fault-tolerant DBMS. It is designed for high performance, with a typical server capable of handling tens of
thousands of queries per second. The system is designed to handle hundreds of petabytes of data. YDB can operate in both single data center and
geo-distributed (cross data center) modes on a cluster of thousands of servers.

YDB provides:

Strict consistency, which can be relaxed to increase performance.

Support for queries written in YQL, an SQL dialect for working with big data.

Automatic data replication.

High availability with automatic failover if a server, rack, or availability zone goes offline.

Automatic data partitioning as data or load grows.

To interact with YDB, you can use the YDB CLI and SDK for C++, C#, Go, Java, Node.js, PHP, Python, and Rust.

YDB supports a relational data model and manages row-oriented and column-oriented tables with a predefined schema. Directories can be created
like in a file system to organize tables. In addition to tables, YDB supports topics for storing unstructured messages and delivering them to multiple
subscribers.

Database commands are mainly written in YQL, an SQL dialect, providing a powerful and familiar way to interact with the database.

YDB supports high-performance distributed ACID transactions that may affect multiple records in different tables. It provides the serializable
isolation level, the strictest transaction isolation, with the option to reduce the isolation level to enhance performance.

YDB natively supports different processing options, such as OLTP and OLAP. The current version offers limited analytical query support, which is
why YDB is currently considered an OLTP database.

YDB is an open-source system. The source code is available under the Apache License 2.0. Client applications interact with YDB based on gRPC,
which has an open specification, allowing for SDK implementation in any programming language.

Use Cases

YDB can be used as an alternative solution in the following cases:

When using NoSQL systems, if strong data consistency is required.

When using NoSQL systems, if you need to make transactional updates to data stored in different rows of one or more tables.

In systems that need to process and store large amounts of data and allow for virtually unlimited horizontal scalability (using industrial clusters
of 5000+ nodes, processing millions of RPS, and storing petabytes of data).
In low-load systems, when supporting a separate DB instance would be a waste of money (consider using YDB in serverless mode instead).

In systems with unpredictable or seasonally fluctuating load (you can add/reduce computing resources on request and/or in serverless mode).

In high-load systems that shard load across relational DB instances.

When developing a new product with no reliable load forecast or with an expected high load beyond the capabilities of conventional relational
databases.

In projects where the simultaneous handling of transactional and analytical workloads is required.

How It Works?

Fully explaining how YDB works in detail takes quite a while. Below you can review several key highlights and then continue exploring the
documentation to learn more.

YDB Architecture

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_index_use-cases
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_index_how-it-works
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_index_ydb-architecture
https://en.wikipedia.org/wiki/Consistency_model#Strict_Consistency
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_yql_reference_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_reference_ydb-cli_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_reference_ydb-sdk_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_concepts_datamodel_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#topic
https://en.wikipedia.org/wiki/ACID_(computer_science)
https://en.wikipedia.org/wiki/Online_transaction_processing
https://en.wikipedia.org/wiki/Online_analytical_processing
https://www.apache.org/licenses/LICENSE-2.0
https://grpc.io/

YDB clusters typically run on commodity hardware with a shared-nothing architecture. From a bird's eye view, YDB exhibits a layered architecture.
The compute and storage layers are disaggregated; they can either run on separate sets of nodes or be co-located.

One of the key building blocks of YDB's compute layer is called a tablet. Tablets are stateful logical components implementing various aspects of
YDB.

The next level of detail of the overall YDB architecture is explained in the General YDB schema article.

Hierarchy

From the user's perspective, everything inside YDB is organized in a hierarchical structure using directories. It can have arbitrary depth depending
on how you choose to organize your data and projects. Even though YDB does not have a fixed hierarchy depth like in other SQL implementations,
it will still feel familiar as this is exactly how any virtual filesystem looks.

Table

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_index_ydb-hierarchy
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_index_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_contributor_general-schema

YDB provides users with a well-known abstraction — tables. In YDB, there are two main types of tables:

Row-oriented tables are designed for OLTP workloads.

Column-oriented tables are designed for OLAP workloads.

Logically, from the user's perspective, both types of tables look the same. The main difference between row-oriented and column-oriented tables
lies in how the data is physically stored. In row-oriented tables, the values of all columns in each row are stored together. In contrast, in column-
oriented tables, each column is stored separately, meaning that cells from different rows are stored next to each other within the same column.

Regardless of the type, each table must have a primary key. Column-oriented tables can only have NOT NULL columns in primary keys. Table data
is physically sorted by the primary key.

Partitioning works differently in row-oriented and column-oriented tables:

Row-oriented tables are automatically partitioned by primary key ranges, depending on the data volume.

Column-oriented tables are partitioned by the hash of the partitioning columns.

Each partition of a table is processed by a specific tablet, called a data shard for row-oriented tables and a column shard for column-oriented tables.

Split by Load

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_index_split-by-load
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#datamodel_table_row-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#datamodel_table_column-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#glossary_tablets
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#glossary_datashard
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#glossary_columnshard

Data shards will automatically split into more as the load increases. They automatically merge back to the appropriate number when the peak load
subsides.

Split by Size

Data shards will also automatically split when the data size increases. They automatically merge back if enough data is deleted.

Automatic Balancing

YDB evenly distributes tablets among available nodes. It moves heavily loaded tablets from overloaded nodes. CPU, memory, and network metrics
are tracked to facilitate this.

Distributed Storage Internals

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_index_split-by-size
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_index_automatic-balancing
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_index_ds-internals

YDB doesn't rely on any third-party filesystem. It stores data by directly working with disk drives as block devices. All major disk kinds are
supported: NVMe, SSD, or HDD. The PDisk component is responsible for working with a specific block device. The abstraction layer above PDisk is
called VDisk. There is a special component called DSProxy between a tablet and VDisk. DSProxy analyzes disk availability and characteristics and
chooses which disks will handle a request and which won't.

Distributed Storage Proxy (DSProxy)

A common fault-tolerant setup of YDB spans three datacenters or availability zones (AZ). When YDB writes data to three AZs, it doesn't send
requests to obviously bad disks and continues to operate without interruption even if one AZ and a disk in another AZ are lost.

What's Next?

If you are interested in more specifics about various aspects of YDB, check out neighboring articles in this documentation section. If you are ready
to jump into more practical content, you can continue to the quick start or YQL tutorials.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_index_ds-proxy
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_index_whats-next
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_quickstart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_yql-tutorial_index

YDB for DevOps Engineers
This section of YDB documentation covers everything you need to know to run a production-grade YDB cluster. It is subdivided based on what's
your preferred approach to managing infrastructure:

Ansible: for deployments on bare metal and virtual machines.

Kubernetes: for containerized deployments.

Manual: generic instructions.

Regardless of the chosen infrastructure management method, it is recommended to familiarize yourself with YDB system requirements first.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_kubernetes_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_system-requirements

YDB for Application Developers / Software Engineers
This section of YDB documentation covers everything you need to know to develop applications interacting with YDB.

Main resources:

Getting started with YDB as an Application Developer / Software Engineer

Example applications working with YDB

YQL Tutorial - Overview

Choosing a primary key for:

Row-oriented tables

Column-oriented tables

Secondary indexes
Uploading data to YDB

Paginated output

Using timeouts

Database system views

Change Data Capture

Custom attributes in tables

Reference:

YQL - Overview

YDB SDK reference

YDB CLI

YDB compatibility with PostgreSQL

Kafka API

If you're interested in developing YDB core or satellite projects, refer to the documentation for contributors.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_getting-started
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_yql-tutorial_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_primary-key_row-oriented
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_primary-key_column-oriented
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_secondary-indexes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_batch-upload
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_paging
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_timeouts
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_system-views
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_cdc
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_custom-attributes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_intro
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_kafka-api_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_index

YDB for Security Engineers
This section of YDB documentation covers security-related aspects of working with YDB. It'll be useful for compliance purposes too.

YDB security elements and concepts

Security model in YDB introduces the following concepts:

Access subjects:

Users. YDB supports both internal users and external users from third-party directory services, such as LDAP and IAM systems.

Groups. YDB allows grouping users into named collections. The list of users in a group can be modified later. A group can be empty.

Access objects in YDB are scheme objects (tables, views, etc) for which access rights are configured.

Access rights in YDB are used to determine the list of permitted operations with access objects for a given user or group.

Access rights represent permission for an access subject to perform a specific set of operations (create, drop, select, update, etc) in a cluster
or database on a specific access object.

Access rights can be granted to a user or a group. When a user is added to a group, the user gets the access rights that were granted to the
group. When a user is removed from a group, the user loses the access rights of the group.

For more information about access rights, see Right.

Access levels in YDB are used to determine the list of additional cluster management operations permitted for a given user or group. YDB
uses three access levels:

Viewer allows viewing the cluster state, which is not publicly accessible.
Operator grants additional privileges to monitor and modify the cluster state.

Administrator grants privileges to administer the YDB cluster and its databases.

Similarly to access rights, one or more access levels can be granted to a user or a group. An access subject that does not have any access
levels can view only publicly available information about the cluster. Each access level adds privileges to the access subject. For the maximum
level of privileges, an access subject must have all three access levels.

For more information about access levels, see Configuring administrative and other privileges.

Authentication and authorization. The access control system in YDB provides data protection in a YDB cluster. Due to the access system,
only authorized access subjects (users and groups) can work with data. Access to data can be restricted.

Authentication. When a user connects to a YDB cluster, YDB first identifies the user's account. This process is called authentication.
YDB supports various authentication modes. For more information, see Authentication.

Regardless of an authentication mode, after passing authentication, a user gets a SID and an authentication token.

YDB cluster uses a SID for user identification. For example, a SID for a local user is the user login. SIDs for external users also
include information about the system where they were created. User SIDs can also be found in system views describing the security
configuration.

The authentication token is used by YDB nodes to authorize user access before processing user requests.

The user can then use the received authentication token repeatedly when making requests to the YDB cluster. For more information
about the authentication token and related configuration parameters, see `auth_config` configuration section.

Authorization. Based on the authentication data, a user then goes through authorization — a process that verifies whether a user has
sufficient access rights and access levels to perform user operations.

Audit logs. YDB provides audit logs that include data about all operations that attempted to change the YDB objects, such as changing
access rights, creating or deleting scheme objects, whether successful or not. Audit logs are intended for people responsible for information
security.

Encryption. YDB is a distributed system typically running on a cluster, often spanning multiple datacenters. To protect user data, YDB
provides the following technologies:

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_index_ydb-security-elements-and-concepts
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authorization_user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authorization_right
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_security_config_security-access-levels
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authorization
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-subject
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authorization_sid
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authorization_sid
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_system-views_auth
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_auth_config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authorization
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-right
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-level
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_audit-log

encryption in transit to secure data transmitted between a client and YDB, and between nodes of the YDB cluster.

data encryption at rest.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_encryption_data-in-transit
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_encryption_data-at-rest

YDB Development
This section contains guidelines for YDB developers and contributors.

Working on a change

Build and test using Ya Make build system

Releases

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_suggest-change
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_build-ya
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_manage-releases

YDB reference
This documentation section contains reference information about various aspects of YDB, including:

YQL - Overview

YDB compatibility with PostgreSQL

Using the embedded web UI

Integrations YDB

YDB CLI

YDB SDK reference

Languages and APIs
Kafka API

YDB cluster configuration

Reference on YDB observability

YDB DSTool overview

ydbops utility overview

YDB Docker container reference

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_intro
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_kafka-api_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-dstool_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_docker_index

Recipes for working with YDB
This section of YDB documentation contains ready-to-use recipes for various aspects of interacting with YDB. They are grouped into the following
categories:

YDB SDK code recipes

YDB CLI recipes

YQL recipes

For Analysts

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-cli_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_recipes_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_index

Troubleshooting
This section of the YDB documentation provides guidance on troubleshooting issues related to YDB databases and the applications that interact
with them.

Troubleshooting performance issues

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_index

Questions and answers about YDB
General

SDK

Errors

YQL

Analytics

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_common
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_sdk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_errors
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_analytics

YDB Downloads
This section provides instructions for downloading various YDB builds and related tools:

YDB server (ydbd):

YDB Open-Source Database

Yandex Enterprise Database

Command-line client utility (ydb)

Disk substem management utility (ydb-dstool)

Cluster management utility (ydbops)

Ansible playbooks

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_ydb-open-source-database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_yandex-enterprise-database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_ydb-cli
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_ydb-dstool
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_ydb-ops
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_ydb-ansible

YDB glossary
This article is an overview of terms and definitions used in YDB and its documentation. It starts with key terms that will be useful to get acquainted
with early when you start working with YDB, while the rest of it is more advanced and might be helpful later on.

Key terminology

This section explains terms that are useful to any person working with YDB regardless of their role and use case.

Cluster

A YDB cluster is a set of interconnected YDB nodes that communicate with each other to serve user queries and reliably store user data. These
nodes form one of the supported cluster topologies, which directly affects the cluster's reliability and performance characteristics.

YDB clusters are multitenant and can contain multiple isolated databases.

Database

Like in most database management systems, a database in YDB is a logical container for other entities like tables. However, in YDB, the
namespace inside databases is hierarchical like in virtual file systems, and thus folders allow for further organization of entities.

Another essential characteristic of YDB databases is that they typically have dedicated compute resources allocated to them. Hence, creating a
database requires additional operations from DevOps engineers.

Node

A YDB node is a server process running an executable called ydbd . A physical server or virtual machine can run multiple YDB nodes, which is
common. Thus, in the context of YDB, nodes are not synonymous with hosts.

Given YDB follows the approach of separated storage and compute layers, ydbd has multiple operation modes that determine the node type. The
available node types are explained below.

Database node

Database nodes (also known as tenant nodes or compute nodes) serve user queries addressed to a specific logical database. Their state is only
in memory and can be recovered from the Distributed Storage. All database nodes of a given YDB cluster can be considered its compute layer.
Thus, adding database nodes and allocating extra CPU and RAM to them are the main ways to increase the database's compute resources.

The main role of database nodes is to run various tablets and actors, as well as accept incoming requests via various endpoints.

Storage node

Storage nodes are stateful and responsible for long-term persisting pieces of data. All storage nodes of a given YDB cluster are called Distributed
Storage and can be considered the cluster's storage layer. Thus, adding extra storage nodes and their disks are the main ways to increase the
cluster's storage capacity and input/output throughput.

Hybrid node

A hybrid node is a process that simultaneously serves both roles of a database and storage node. Hybrid nodes are often used for development
purposes. For instance, you can run a container with a full-featured YDB containing only one process, ydbd , in hybrid mode. They are rarely used
in production environments.

Static node

Static nodes are manually configured during the initial cluster initialization or re-configuration. Typically, they play the role of storage nodes, but
technically, it is possible to configure them to be database nodes as well.

Dynamic node

Dynamic nodes are added and removed from the cluster on the fly. They can only play the role of database nodes.

Distributed storage

Distributed storage, Blob storage, or BlobStorage is a distributed fault-tolerant data persistence layer of YDB. It has a specialized API designed
for storing immutable pieces of tablet's data.

Multiple terms related to the distributed storage implementation are covered below.

Storage group

A storage group, Distributed storage group, or Blob storage group is a location for reliable data storage similar to RAID, but using disks of
multiple servers. Depending on the chosen cluster topology, storage groups use different algorithms to ensure high availability, similar to standard
RAID levels.

Distributed storage typically manages a large number of relatively small storage groups. Each group can be assigned to a specific database to
increase disk capacity and input/output throughput available to this database.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_key-terminology
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_cluster
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_database-node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_storage-node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_hybrid-mode
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_static-node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_dynamic-node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_distributed-storage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_storage-group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_key-terminology
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_advanced-terminology
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_topology
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_table
https://en.wikipedia.org/wiki/Virtual_file_system
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_folder
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_distributed-storage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topology
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_actor
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_cluster
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_distributed-storage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_database-node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_storage-node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_storage-node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_database-node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_database-node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_distributed-storage-implementation
https://en.wikipedia.org/wiki/RAID
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_topology
https://en.wikipedia.org/wiki/Standard_RAID_levels
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_distributed-storage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_database

Static group

A static group is a special storage group created during the initial cluster deployment. Its primary role is to store system tablet's data, which can be
considered cluster-wide metadata.

A static group might require special attention during major maintenance, such as decommissioning an availability zone.

Dynamic group

Regular storage groups that are not static are called dynamic groups. They are called dynamic because they can be created and decommissioned
on the fly during cluster operation.

Storage pool

Storage pool is a collection of data storage devices with similar characteristics. Each storage pool is assigned a unique name within a YDB cluster.
Technically, each storage pool consists of multiple PDisks. Each storage group is created in a particular storage pool, which determines the
performance characteristics of the storage group through the selection of appropriate storage devices. It is typical to have separate storage pools
for NVMe, SSD, and HDD devices or particular models of those devices with different capacities and speeds.

Actor

The actor model is one of the main approaches for concurrent programming, which is employed by YDB. In this model, actors are lightweight user-
space processes that may have and modify their private state but can only affect each other indirectly through message passing. YDB has its own
implementation of this model, which is covered below.

In YDB, actors with the reliably persisted state are called tablets.

Tablet

A tablet is one of YDB's primary building blocks and abstractions. It is an entity responsible for a relatively small segment of user or system data.
Typically, a tablet manages up to single-digit gigabytes of data, but some kinds of tablets can handle more.

For example, a row-oriented user table is managed by one or more DataShard tablets, with each tablet responsible for a continuous range of
primary keys and the corresponding data.

End users sending queries to a YDB cluster aren't expected to know much about tablets, their kinds, or how they work, but it might still be helpful,
for example, for performance optimizations.

Technically, tablets are actors with a persistent state reliably saved in Distributed Storage. This state allows the tablet to continue operating on a
different database node if the previous one is down or overloaded.

Tablet implementation details and related terms, as well as main tablet types, are covered below in the advanced section.

Transactions

YDB implements transactions on two main levels:

Local database and the rest of tablet infrastructure allow tablets to manipulate their state using local transactions with serializable isolation
level. Technically, they aren't really local to a single node as such a state persists remotely in Distributed Storage.

In the context of YDB, the term distributed transactions usually refers to transactions involving multiple tablets. For example, cross-table or
even cross-row transactions are often distributed.

Single-shard transactions span a single tablet and are faster to complete. For example, transactions between rows in the same table partition
are often single-shard.

Together, these mechanisms allow YDB to provide strict consistency.

The implementation of distributed transactions is covered in a separate article DataShard: distributed transactions, while below there's a list of
several related terms.

Interactive transactions

The term interactive transactions refers to transactions that are split into multiple queries and involve data processing by an application between
these queries. For example:

1. Select some data.

2. Process the selected data in the application.

3. Update some data in the database.

4. Commit the transaction in a separate query.

Multi-version concurrency control

Multi-version concurrency control or MVCC is a method YDB used to allow multiple concurrent transactions to access the database
simultaneously without interfering with each other. It is described in more detail in a separate article Multi-Version Concurrency Control (MVCC).

Topology

YDB supports several cluster topologies, described in more detail in a separate article YDB Cluster Topology. A few related terms are explained
below.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_static-group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_dynamic-group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_storage-pool
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_actor
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_transactions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_interactive-transaction
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_mvcc
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_topology
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_storage-group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_regions-az
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_static-group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_cluster
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_pdisk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_storage-group
https://en.wikipedia.org/wiki/Actor_model
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_actor-implementation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_row-oriented-table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_data-shard
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_primary-key
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_actor
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_distributed-storage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_database-node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet-implementation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet-types
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_local-database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet-implementation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet
https://en.wikipedia.org/wiki/Isolation_%28database_systems%29#Serializable
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_distributed-storage
https://en.wikipedia.org/wiki/Consistency_model#Strict_consistency
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_datashard-distributed-txs
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_deterministic-transactions
https://en.wikipedia.org/wiki/Multiversion_concurrency_control
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_mvcc
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_cluster
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topology

Availability zones and regions

An availability zone is a data center or an isolated segment thereof with minimal physical distance between nodes and minimal risk of failure at the
same time as other availability zones. Thus, availability zones are expected not to share any infrastructure like power, cooling, or external network
connections.

A region is a large geographic area containing multiple availability zones. The distance between availability zones in the same region is expected to
be around 500 km or less. YDB performs synchronous data writes to each availability zone in a region, ensuring reasonable latencies and
uninterrupted performance if an availability zone fails.

Rack

A rack or server rack is a piece of equipment used to mount multiple servers in an organized manner. Servers in the same rack are more likely to
become unavailable simultaneously due to rack-wide issues related to electricity, cooling, etc. Thus, YDB can consider information about which
server is located in which rack when placing each piece of data in bare-metal environments.

Table

A table is a structured piece of information arranged in rows and columns. Each row represents a single record or entry, while each column
represents a specific attribute or field with a particular data type.

There are two main approaches to representing tabular data in RAM or on disk drives: row-oriented (row-by-row) and column-oriented (column-by-
column). The chosen approach greatly impacts the performance characteristics of operations with this data, with the former more suitable for
transaction workloads (OLTP) and the latter for analytical (OLAP). YDB supports both.

Row-oriented table

Row-oriented tables store data for all or most columns of a given row physically close to each other. They are explained in more detail in Row-
Oriented Tables.

Column-oriented table

Column-oriented tables or columnar tables store data for each column independently. They are optimized for building aggregates over a small
number of columns but are less suitable for accessing particular rows, as rows need to be reconstructed from their cells on the fly. They are
explained in more detail in Column-Oriented Tables.

Primary key

A primary key is an ordered list of columns, the values of which uniquely identify rows. It is used to build the table's primary index. It is provided by
the YDB user during table creation and dramatically impacts the performance of workloads interacting with that table.

The guidelines on choosing primary keys are provided in Choosing a primary key.

Primary index

A primary index or primary key index is the main data structure used to locate rows in a table. It is built based on the chosen primary key and
determines the physical order of rows in a table; thus, each table can have only one primary index. The primary index is unique.

Secondary index

A secondary index is an additional data structure used to locate rows in a table, typically when it can't be done efficiently using the primary index.
Unlike the primary index, secondary indexes are managed independently from the main table data. Thus, a table might have multiple secondary
indexes for different use cases. YDB's capabilities in terms of secondary indexes are covered in a separate article Secondary Indexes. Secondary
indexes can be either unique or non-unique.

A special type of secondary index is singled out separately - [vector index] (#vector-index).

Vector Index

Vector index is an additional data structure used to speed up the vector search when there is a large amount of data, and the exact vector search
without an index does not perform satisfactorily. The capabilities of YDB regarding vector indexes are described in a separate article Vector
Indexes.

Vector index is distinct from a secondary index as it solves other tasks.

Column family

A column family or column group is a feature that allows storing a subset of row-oriented table columns separately in a distinct family or group.
The primary use case is to store some columns on different kinds of disk drives (offload less important columns to HDD) or with various
compression settings. If the workload requires many column families, consider using column-oriented tables instead.

Time to live

Time to live or TTL is a mechanism for automatically removing old rows from a table asynchronously in the background. It is explained in a
separate article Time to Live (TTL) and Eviction to External Storage.

View

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_regions-az
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_rack
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_row-oriented-table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_column-oriented-table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_primary-key
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_primary-index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_secondary-index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_vector-index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_column-family
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_ttl
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_view
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_row-oriented-table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_column-oriented-table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_primary-index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_primary-key_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_primary-key
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_primary-index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_secondary_indexes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_vector_search
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_knn
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_vector-indexes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_secondary-index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_row-oriented-table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_column-oriented-table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_ttl

A view logically represents a table formed by a given query. The view itself contains no data. The content of a view is generated every time you
SELECT from it. Thus, any changes in the underlying tables are reflected immediately in the view.

There are user-defined and system-defined views.

User-defined view

A user-defined view is created by a user with the CREATE VIEW statement. For more information, see View.

System view

A system view is for monitoring the DB status. System views are located in the .sys directory in the root of the database tree. It is explained in a
separate article Database system views.

Topic

A topic is a persistent queue that can be used for reliable asynchronous communications between various systems via message passing. YDB
provides the infrastructure to ensure "exactly once" semantics in such communications, which ensures that there are both no lost messages and no
accidental duplicates.

Several terms related to topics are listed below. How YDB topics work is explained in more detail in a separate article Topic.

Partition

For horizontal scaling purposes, topics are divided into separate elements called partitions. Thus, a partition is a unit of parallelism within a topic.
Messages inside each partition are ordered.

However, subsets of data managed by a single data shard or column shards can also be called partitions.

Offset

An offset is a sequence number that identifies a message inside a partition.

Producer

A producer is an entity that writes new messages to a topic.

Consumer

A consumer is an entity that reads messages from a topic.

Change data capture

Change data capture or CDC is a mechanism that allows subscribing to a stream of changes to a given table. Technically, it is implemented on
top of topics. It is described in more detail in a separate article Change Data Capture (CDC).

Changefeed

Changefeed or stream of changes is an ordered list of changes in a given table published via a topic.

Asynchronous replication instance

Asynchronous replication instance is a named entity that stores asynchronous replication settings (connection properties, a list of replicated
objects, etc.) It can also be used to retrieve the status of asynchronous replication, such as the initial synchronization process, replication lag,
errors, and more.

Replicated object

Replicated object is an object, for example, a table, that is asynchronously replicated to the target database.

Replica object

Replica object is a mirror copy of the replicated object, automatically created by an asynchronous replication instance. Replica objects are typically
read-only.

Coordination node

A coordination node is a schema object that allows client applications to create semaphores for coordinating their actions. Learn more about
coordination nodes.

Semaphore

A semaphore is an object within a coordination node that provides a synchronization mechanism for distributed applications. Semaphores can be
persistent or ephemeral and support operations like creation, acquisition, release, and monitoring. Learn more about semaphores in YDB.

YQL

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_user-view
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_system-view
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_partition
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_offset
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_producer
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_consumer
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_cdc
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_changefeed
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_async-replication-instance
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_replicated-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_replica-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_coordination-node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_semaphore
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_yql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-view
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_view
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_system-views
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_data-shard
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_column-shard
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_partition
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_async-replication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_async-replication_initial-scan
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_async-replication_replication-of-changes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_async-replication_error-handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_async-replication-instance
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_coordination-node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_coordination-node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_coordination-node_semaphore

YQL (YDB Query Language) is a high-level language for working with the system. It is a dialect of ANSI SQL. There's a lot of content covering
YQL, including a tutorial, reference, and recipes.

Federated queries

Federated queries is a feature that allows querying data stored in systems external to the YDB cluster.

A few terms related to federated queries are listed below. How YDB federated queries work is explained in more detail in a separate article
Federated Queries.

External data source

An external data source or external connection is a piece of metadata that describes how to connect to a supported external system for
federated query execution.

External table

An external table is a piece of metadata that describes a particular dataset that can be retrieved from an external data source.

Secret

A secret is a sensitive piece of metadata that requires special handling. For example, secrets can be used in external data source definitions and
represent things like passwords and tokens.

Authentication token

An authentication token or auth token is a token that YDB uses for authentication.

YDB supports various authentication modes and token types.

Cluster scheme

A YDB cluster scheme is a hierarchical namespace of a YDB cluster. The top-level element of the namespace is the cluster scheme root that
contains databases as its children. Scheme objects inside databases can use nested directories to form a hierarchy.

Database scheme

A database scheme is a subset of the hierarchical namespace of a YDB cluster that belongs to a database.

Database root

A database root is a path to a database in a YDB cluster scheme.

Scheme root

A scheme root is a root element of a YDB cluster scheme. Children elements of the cluster scheme root can be databases or other scheme
objects.

Scheme object

A database schema consists of scheme objects, which can be databases, tables (including external tables), topics, folders, and so on.

For organizational convenience, scheme objects form a hierarchy using folders.

Folder

As in file systems, a folder or directory is a container for scheme objects.

Folders can contain subfolders, and this nesting can have arbitrary depth.

Access object

An access object in the context of authorization is an entity for which access rights and restrictions are configured. In YDB, access objects are
scheme objects.
Each access object has an owner and an access control list.

Access subject

An access subject is an entity that can interact with access objects or perform specific actions within the system. Access to these interactions and
actions depends on configured access control lists.

An access subject can be a user or a group.

Access right

An access right is an entity that represents permission for an access subject to perform a specific set of operations in a cluster or database on a
specific access object.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_federated-queries
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_external-data-source
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_external-table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_secret
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_auth-token
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_scheme
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_scheme-database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_scheme-database-root
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_scheme-root
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_scheme-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_folder
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-subject
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-right
https://en.wikipedia.org/wiki/SQL
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_yql-tutorial_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_recipes_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_federated-queries
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_external-data-source
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_external-data-source
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_scheme-root
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_index_cluster-scheme
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_scheme-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_external-table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_folder
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_folder
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_scheme-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authorization
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_scheme-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-owner
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-control-list
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-control-list
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authorization_right
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-subject
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-object

Access right inheritance

Access right inheritance refers to the mechanism by which access rights are automatically passed down from parent access objects to child
access objects within a database structure. This ensures that permissions granted at a higher level in the hierarchy are applied to all sub-levels
beneath it, unless explicitly overridden.

Access control list

An access control list or ACL is a list of all rights granted to access subjects (users and groups) for a specific access object.

Access level

An access level determines additional privileges of an access subject for scheme objects as well as privileges that are not related to scheme
objects.

YDB uses three access levels:

viewer

operator

administrator

An access level is granted by adding an access subject to an access level list.

Access level list

An access level list is a list of SIDs that grants a certain access level to the associated access subjects.

YDB provides several access level lists that collectively determine access levels in the system.

Owner

An owner is an access subject (user or group) having full rights over a specific access object.

User

A user is an individual utilizing YDB to perform a specific function.

YDB has the following types of users depending on their source:

local users in YDB databases

external users from third-party directory services

YDB users are identified by their SIDs.

Local user

A local user is an individual whose YDB account is created directly in YDB using the CREATE USER command or during the initial security
configuration.

External user

An external user is an individual whose YDB account is created in a third-party directory service, for example, in LDAP or IAM.

Group

A group or access group is a named collection of users with identical access rights to certain access objects.

Role

A role is a named collection of access rights that can be granted to users or groups.

Roles in YDB are implemented as groups that are created during the initial cluster deployment and granted a set of access rights on the root of the
cluster scheme.

SID

SID (Security Identifier) is a string in the format <login>[@<subsystem>] , identifying an access subject in access control lists.

Query optimizer

Query optimizer is a YDB component that takes a logical plan as input and produces the most efficient physical plan with the lowest estimated
resource consumption among the alternatives. The YDB query optimizer is described in the Query Optimization in YDB section.

Advanced terminology

This section explains terms that are useful to YDB contributors and users who want to get a deeper understanding of what's going on inside the
system.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-right-inheritance
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-control-list
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-level
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-level-list
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-owner
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_local-user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_external-user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-role
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-sid
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_optimizer
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_advanced-terminology
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-right
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_scheme-permissions_clear-inheritance
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-right
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-subject
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-subject
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_scheme-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_scheme-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-level-list
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-sid
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-level
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-subject
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_security_config_security-access-levels
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-level
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authorization_owner
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-subject
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authorization_user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-sid
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_builtin-security
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authorization_group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-right
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-right
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-right
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-subject
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-control-list
https://en.wikipedia.org/wiki/Query_optimization
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_optimizer
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_index

Actors implementation

Actor system

An actor system is a C++ library with YDB's implementation of the Actor model.

Actor service

An actor service is an actor that has a well-known name and is usually run in a single instance on a node.

ActorId

An ActorId is a unique identifier of the actor or tablet in the cluster.

Actor system interconnect

The actor system interconnect or interconnect is the [cluster's](#cluster internal network layer. All actors interact with each other within the
system via the interconnect.

Local

A Local is an actor service running on each node. It directly manages the tablets on its node and interacts with Hive. It registers with Hive and
receives commands to launch tablets.

Actor system pool

The actor system pool is a thread pool used to run actors. Each node operates multiple pools to coarsely separate resources between different
types of activities. A typical set of pools includes:

System: A pool that handles internal operations within YDB node. It serves system tablets, state storage, distributed storage I/O, and so on.

User: A pool dedicated to user-generated load, such as running non-system tablets or queries executed by the KQP.

Batch: A pool for tasks without strict execution deadlines, including heavy queries handled by the KQP background operations like backups,
data compaction, and garbage collection.

IO: A pool for tasks involving blocking operations, such as authentication or writing logs to files.

IC: A pool for interconnect, responsible for system calls related to data transfers across the network, data serialization, message splitting and
merging.

Tablet implementation

A tablet is an actor with a persistent state. It includes a set of data for which this tablet is responsible and a finite state machine through which the
tablet's data (or state) changes. The tablet is a fault-tolerant entity because tablet data is stored in a Distributed storage that survives disk and node
failures. The tablet is automatically restarted on another node if the previous one is down or overloaded. The data in the tablet changes in a
consistent manner because the system infrastructure ensures that there is no more than one tablet leader through which changes to the tablet data
are carried out.

The tablet solves the same problem as the Paxos and Raft algorithms in other systems, namely the distributed consensus task. From a technical
point of view, the tablet implementation can be described as a Replicated State Machine (RSM) over a shared log, as the tablet state is completely
described by an ordered command log stored in a distributed and fault-tolerant storage.

During execution, the tablet state machine is managed by three components:

1. The generic tabular part ensures the log's consistency and recovery in case of failures.

2. Executor is an abstraction of a local database, namely data structures and code that arrange work with the data stored by the tablet.

3. An actor with a custom code that implements the specific logic of a specific tablet type.

In YDB, there are multiple kinds of specialized tablets storing all kinds of data for all sorts of tasks. Many YDB features like tables and topics are
implemented as specific tablets. Thus, reusing tablet infrastructure is one of the key means of YDB extensibility as a platform.

Usually, there are orders of magnitude more tablets running in a YDB cluster compared to processes or threads that other systems would use for a
similarly sized cluster. There can easily be hundreds of thousands to millions of tablets working simultaneously in a YDB cluster.

Since the tablet stores its state in Distributed storage, it can be (re)started on any node of the cluster. Tablets are identified using TabletID, a 64-bit
number assigned when creating a tablet.

Tablet leader

A tablet leader is the current active leader of a given tablet. The tablet leader accepts commands, assigns them an order, and confirms them to the
outside world. It is guaranteed that there is no more than one leader for a given tablet at any moment.

Tablet candidate

A tablet candidate is one of the election participants who wants to become a leader for a given tablet. If a candidate wins the election, it assumes
the tablet leader role.

Tablet follower

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_actor-implementation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_actor-system
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_actor-service
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_actorid
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_actor-system-interconnect
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_local
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_actor-system-pool
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet-implementation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet-leader
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet-candidate
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet-follower
https://github.com/ydb-platform/ydb/tree/main/ydb/library/actors
https://en.wikipedia.org/wiki/Actor_model
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_actor
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_cluster
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_actor
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_actor-service
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_hive
https://en.wikipedia.org/wiki/Thread_pool
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_actor
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_state-storage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_distributed-storage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_kqp
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_kqp
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_actor-system-interconnect
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_actor
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_distributed-storage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet-leader
https://en.wikipedia.org/wiki/Paxos_(computer_science)
https://en.wikipedia.org/wiki/Raft_(algorithm)
https://en.wikipedia.org/wiki/Consensus_(computer_science)
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_actor
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_distributed-storage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tabletid
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet-leader

A tablet follower or hot standby is a copy of a tablet leader that applies the log of commands accepted by the leader (with some lag). A tablet can
have zero or more followers. Followers serve two primary purposes:

In case of the leader's termination or failure, followers are the preferred candidates to become the new leader because they can become the
leader much faster than other candidates since they have applied most of the log.

Followers can respond to read-only queries if a client explicitly chooses the optional relaxed transaction mode that allows for stale reads.

Tablet generation

A tablet generation is a number identifying the reincarnation of the tablet leader. It changes only when a new leader is chosen and always grows.

Tablet local database

A tablet local database or local database is a set of data structures and related code that manages the tablet's state and the data it stores.
Logically, the local database state is represented by a set of tables very similar to relational tables. Modification of the state of the local database is
performed by local tablet transactions generated by the tablet's user actor.

Each local database table is stored using the LSM tree data structure.

Log-structured merge-tree

A log-structured merge-tree or LSM tree, is a data structure designed to optimize write and read performance in storage systems. It is used in
YDB for storing local database tables and VDisks data.

MemTable

All data written to a local database tables is initially stored in an in-memory data structure called a MemTable. When the MemTable reaches a
predefined size, it is flushed to disk as an immutable SST.

Sorted string table

A sorted string table or SST is an immutable data structure that stores table rows sorted by key, facilitating efficient key lookups and range
queries. Each SST is composed of a contiguous series of small data pages, typically around 7 KiB in size each, which further optimizes the process
of reading data from disk. An SST typically represents a part of LSM tree.

Tablet pipe

A Tablet pipe or TabletPipe is a virtual connection that can be established with a tablet. It includes resolving the tablet leader by TabletID. It is the
recommended way to work with the tablet. The term open a pipe to a tablet describes the process of resolving (searching) a tablet in a cluster and
establishing a virtual communication channel with it.

TabletID

A TabletID is a cluster-wide unique tablet identifier.

Bootstrapper

The bootstrapper is the primary mechanism for launching tablets, used for service tablets (for example, for Hive, DS controller, root
SchemeShard). The Hive tablet initializes the rest of the tablets.

Shared cache

A shared cache is an actor that stores data pages recently accessed and read from distributed storage. Caching these pages reduces disk I/O
operations and accelerates data retrieval, enhancing overall system performance.

Memory controller

A memory controller is an actor that manages YDB memory limits.

Tablet types

Tablets can be considered a framework for building reliable components operating in a distributed system. YDB has multiple components
implemented using this framework, listed below.

Scheme shard

A Scheme shard or SchemeShard is a tablet that stores a database schema, including metadata of user tables, topics, etc.

Additionally, there is a root scheme shard, which stores information about databases created in a cluster.

Data shard

A data shard or DataShard is a tablet that manages a segment of a row-oriented user table. The logical user table is divided into segments by
continuous ranges of the primary key of the table. Each such range is managed by a separate DataShard tablet instance. Such ranges are also
called partitions. DataShard tablets store data row by row, which is efficient for OLTP workloads.

Column shard

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet-generation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_local-database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_lsm-tree
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_memtable
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_sst
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet-pipe
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tabletid
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_bootstrapper
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_shared-cache
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_memory-controller
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet-types
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_scheme-shard
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_data-shard
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_column-shard
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet-leader
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet-candidate
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_lsm-tree
https://en.wikipedia.org/wiki/Log-structured_merge-tree
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_local-database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_vdisk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_local-database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_sst
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_lsm-tree
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet-leader
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tabletid
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_hive
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_ds-controller
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_scheme-shard
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_hive
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_actor
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_distributed-storage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_actor
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_memory-controller
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_partition

A column shard or ColumnShard is a tablet that stores a data segment of a column-oriented user table.

KV Tablet

A KV Tablet or key-value tablet is a tablet that implements a simple key->value mapping, where keys and values are strings. It also has a number
of specific features, like locks.

PQ Tablet

A PQ Tablet or persistent queue tablet is a tablet that implements the concept of a topic. Each topic consists of one or more partitions, and each
partition is managed by a separate PQ tablet instance.

TxAllocator

A TxAllocator or transaction allocator is a system tablet that allocates unique transaction identifiers (TxID) within the cluster. Typically, a cluster
has several such tablets, from which transaction proxy pre-allocates and caches ranges for local issuance within a single process.

Coordinator

The Coordinator is a system tablet that ensures the global ordering of transactions. The coordinator's task is to assign a logical PlanStep time to
each transaction planned through this coordinator. Each transaction is assigned exactly one coordinator, chosen by hashing its TxId.

Mediator

The Mediator is a system tablet that distributes the transactions planned by coordinators to the transaction participants (usually, DataShards).
Mediators ensure the advancement of global time. Each transaction participant is associated with exactly one mediator. Mediators allow to avoid the
need for a full mesh of connections between all coordinators and all participants in all transactions.

Hive

A Hive is a system tablet responsible for launching and managing other tablets. It also moves tablets between nodes in case of node failures or
overload. You can learn more about Hive in a dedicated article.

Cluster management system

The cluster management system or CMS is a system tablet responsible for managing the information about the current YDB cluster state. This
information is used to perform cluster rolling restarts without affecting user workloads, maintenance, cluster re-configuration, etc.

Node Broker

The Node Broker is a system tablet that registers dynamic nodes in the cluster.

Slot

A slot in YDB can be used in two contexts:

Slot is a portion of a server's resources allocated to running a single YDB node. A common slot size is 10 CPU cores and 50 GB of RAM. Slots
are used if a YDB cluster is deployed on servers or virtual machines with sufficient resources to host multiple slots.

VDisk slot or VSlot is a fraction of PDisk that can be allocated to one of the VDisks.

State storage

A State storage or StateStorage is a distributed service that stores information about tablets, namely:

The current leader of the tablet or its absence.
Tablet followers.

Generation and step of the tablet (generation:step) .

State storage is used as a name service for resolving tablets, i.e., getting ActorId by TabletID. StateStorage is also used in the process of electing
the tablet leader.

Information in state storage is volatile. Thus, it is lost when the power is turned off, or the process is restarted. Despite the name, this service is not
persistent storage. It contains only information that is easily recoverable and does not have to be durable. However, state storage keeps information
on several nodes to minimize the impact of node failures. Through this service, it is possible to gather a quorum, which is used to elect tablet
leaders.

Due to its nature, the state storage service operates in a best-effort manner. For example, the absence of several tablet leaders is guaranteed
through the leader election protocol on distributed storage, not state storage.

Compaction

Compaction is the internal background process of rebuilding LSM tree data. The data in VDisks and local databases are organized in the form of
an LSM tree. Therefore, there is a distinction between VDisk compaction and Tablet compaction. The compaction process is usually quite
resource-intensive, so efforts are made to minimize the overhead associated with it, for example, by limiting the number of concurrent compactions.

gRPC proxy

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_kv-tablet
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_pq-tablet
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_txallocator
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_coordinator
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_mediator
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_hive
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_cms
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_node-broker
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_slot
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_state-storage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_compaction
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_grpc-proxy
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_txid
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_transaction-proxy
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_planstep
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_txid
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_coordinator
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_data-shard
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_hive
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_cluster
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_dynamic-node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_slot
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_pdisk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_vdisk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_actorid
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tabletid
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet-leader
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_distributed-storage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_lsm-tree
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_vdisk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_local-database

A gRPC Proxy is the client proxy system for external user requests. Client requests enter the system via the gRPC protocol, then the proxy
component translates them into internal calls for executing these requests, passed around via Interconnect. This proxy provides an interface for
both request-response and bidirectional streaming.

Distributed storage implementation

Distributed storage is a distributed fault-tolerant data storage layer that persists binary records called LogoBlob, addressed by a particular type of
identifier called LogoBlobID. Thus, distributed storage is a key-value store that maps LogoBlobID to a string up to 10MB in size. Distributed storage
consists of many storage groups, each being an independent data repository.

Distributed storage persists immutable data, with each immutable blob identified by a specific LogoBlobID key. The distributed storage API is very
specific, designed only for use by tablets to store their data and log changes, not for general-purpose data storage. Data in distributed storage is
deleted using special barrier commands. Due to the lack of mutations in its interface, distributed storage can be implemented without implementing
distributed consensus. Moreover, distributed storage is just a building block tablets use to implement distributed consensus.

LogoBlob

A LogoBlob is a piece of binary immutable data identified by LogoBlobID and stored in Distributed storage. The blob size is limited at the VDisk
level and higher on the stack. Currently, the maximum blob size VDisks are ready to process is 10 MB.

LogoBlobID

A LogoBlobID is the LogoBlob identifier in the Distributed storage. It has a structure of the form [TabletID, Generation, Step, Channel,
Cookie, BlobSize, PartID] . The key elements of LogoBlobID are:

TabletID is an ID of the tablet that the LogoBlob belongs to.

Generation is the generation of the tablet in which the blob was recorded.

Channel is the tablet channel where the LogoBlob is recorded.

Step is an incremental counter, usually within the tablet generation.

Cookie is a unique blob identifier within a single Step . A cookie is usually used when writing several blobs within a single Step .

BlobSize is the LogoBlob size.

PartID is the identifier of the blob part. It is crucial when the original LogoBlob is broken into parts using erasure coding, and the parts are
written to the corresponding VDisks and storage groups.

Replication

Replication is a process that ensures there are always enough copies (replicas) of data to maintain the desired availability characteristics of a YDB
cluster. Typically, it is used in geo-distributed YDB clusters.

Erasure Coding

Erasure coding is a method of data encoding in which the original data is supplemented with redundancy and divided into several fragments,
providing the ability to restore the original data if one or more fragments are lost. It is widely used in single-AZ YDB clusters as opposed to
replication with 3 replicas. For example, the most popular 4+2 scheme provides the same reliability as three replicas, with space redundancy of 1.5
versus 3.

PDisk

PDisk or Physical disk is a component that controls a physical disk drive (block device). In other words, PDisk is a subsystem that implements an
abstraction similar to a specialized file system on top of block devices (or files simulating a block device for testing purposes). PDisk provides data
integrity controls (including erasure encoding of sector groups for data recovery on single bad sectors, integrity control with checksums),
transparent data-at-rest encryption of all disk data, and transactional guarantees of disk operations (write confirmation strictly after fsync).

PDisk contains a scheduler that provides device bandwidth sharing between several clients (VDisks). PDisk divides a block device into chunks
called slots (about 128 megabytes in size; smaller chunks are allowed). No more than 1 VDisk can own each slot at a time. PDisk also supports a
recovery log shared between PDisk service records and all VDisks.

VDisk

VDisk or Virtual disk is a component that implements the persistence of distributed storage LogoBlobs on PDisks. VDisk stores all its data on
PDisks. One VDisk corresponds to one PDisk, but usually, several VDisks are linked to one PDisk. Unlike PDisk, which hides chunks and logs
behind it, VDisk provides an interface at the LogoBlob and LogoBlobID level, like writing LogoBlob, reading LogoBlobID data, and deleting a set of
LogoBlob using a special command. VDisk is a member of a storage group. VDisk itself is local, but many VDisks in a given group provide reliable
data storage. The VDisks in a group synchronize the data with each other and replicate the data in case of loss. A set of VDisks in a storage group
forms a distributed RAID.

Yard

Yard is the name of the PDisk API. It allows VDisk to read and write data to chunks and logs, reserve chunks, delete chunks, and transactionally
receive and return ownership of chunks. In some contexts, Yard can be considered to be a synonym for PDisk.

Skeleton

A Skeleton is an actor that provides an interface to a VDisk.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_distributed-storage-implementation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_logoblob
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_logoblobid
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_replication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_erasure-coding
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_pdisk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_vdisk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_yard
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_skeleton
https://grpc.io/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_actor-system-interconnect
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_logoblob
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_logoblobid
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_storage-group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet
https://en.wikipedia.org/wiki/Consensus_(computer_science)
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_logoblobid
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_distributed-storage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_vdisk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_logoblob
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_distributed-storage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tabletid
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_channel
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_erasure-coding
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_vdisk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_storage-group
https://en.wikipedia.org/wiki/Erasure_code
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_regions-az
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_replication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_erasure-coding
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_vdisk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_slot
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_distributed-storage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_logoblob
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_pdisk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_logoblobid
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_storage-group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_pdisk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_vdisk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_actor
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_vdisk

SkeletonFront

SkeletonFront is a proxy actor for Skeleton that controls the flow of messages coming to Skeleton.

Distributed storage controller

The distributed storage controller or DS controller manages the dynamic configuration of distributed storage, including information about
PDisks, VDisks, and storage groups. It interacts with node wardens to launch various distributed storage components. It interacts with Hive to
allocate channels to tablets.

Proxy

The distributed storage proxy, DS proxy, or BS proxy plays the role of a client library for performing operations with Distributed storage. DS
Proxy users are tablets that write to and read from Distributed storage. DS Proxy hides the distributed nature of Distributed storage from the user.
The task of DS Proxy is to write to the quorum of the VDisks, make retries if necessary, and control the write/read flow to avoid overloading VDisks.

Technically, DS Proxy is implemented as an actor service launched by the node warden on each node for each storage group, processing all
requests to the group (writing, reading, and deleting LogoBlobs, blocking the group). When writing data, DS proxy performs erasure encoding of
data by dividing LogoBlobs into parts, which are then sent to the corresponding VDisks. DS Proxy performs the reverse process when reading,
receiving parts from VDisks, and restoring LogoBlobs from them.

Node warden

Node warden or BS_NODE is an actor service on each node of the cluster, launching PDisks, VDisks, and DS proxies of static storage groups at
the node start. Also, it interacts with the DS controller to launch PDisk, VDisk, and DS proxies of dynamic groups. The DS proxy of dynamic groups
is launched on request: node warden processes "undelivered" messages to the DS proxy, launching the corresponding DS proxies and receiving
the group configuration from the DS controller.

Fail realm

A fail realm is a set of fail domains that are likely to fail simultaneously. The correlated failure of two VDisks within the same fail realm is more
probable than that of two VDisks from different fail realms.

An example of a fail realm is a set of hardware located in the same data center or availability zone that can all fail together due to a natural disaster,
major power outage, or similar event.

Fail domain

A fail domain is a set of hardware that may fail simultaneously. The correlated failure of two VDisks within the same fail domain is more probable
than the failure of two VDisks from different fail domains. In the case of different fail domains, this probability is also affected by whether these
domains belong to the same fail realm or not.

For example, a fail domain includes disks on the same server, as all server disks may become unavailable if the server's PSU or network controller
fails. A fail domain also typically includes servers located in the same server rack, as all the hardware in the rack may become unavailable if there is
a power outage or an issue with the network hardware in the same rack. Thus, the typical fail domain corresponds to a server rack if the cluster is
configured to be rack-aware, or to a server otherwise.

Domain failures are handled automatically by YDB without shutting down the cluster.

Distributed storage channel

A channel is a logical connection between a tablet and Distributed storage group. The tablet can write data to different channels, and each channel
is mapped to a specific storage group. Having multiple channels allows the tablet to:

Record more data than one storage group can contain.

Store different LogoBlobs on different storage groups, with different properties like erasure encoding or on different storage media (HDD, SSD,
NVMe).

Distributed transactions implementation

Terms related to the implementation of distributed transactions are explained below. The implementation itself is described in a separate article
DataShard: distributed transactions.

Deterministic transactions

YDB distributed transactions are inspired by the research paper Building Deterministic Transaction Processing Systems without Deterministic
Thread Scheduling by Alexander Thomson and Daniel J. Abadi from Yale University. The paper introduced the concept of deterministic
transaction processing, which allows for highly efficient distributed processing of transactions. The original paper imposed limitations on what kinds
of operations can be executed in this manner. As these limitations interfered with real-world user scenarios, YDB evolved its algorithms to overcome
them by using deterministic transactions as stages of executing user transactions with additional orchestration and locking.

Optimistic locking

As in many other database management systems, YDB queries can put locks on certain pieces of data, like table rows, to ensure that concurrent
access does not modify them into an inconsistent state. However, YDB checks these locks not at the beginning of transactions but during commit
attempts. The former is called pessimistic locking (used in PostgreSQL, for example), while the latter is called optimistic locking (used in YDB).

Prepare stage

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_skeletonfront
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_ds-controller
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_ds-proxy
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_node-warden
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_fail-realm
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_fail-domain
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_channel
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_distributed-transaction-implementation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_deterministic-transactions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_optimistic-locking
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_prepare-stage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_pdisk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_vdisk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_storage-group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_node-warden
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_hive
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_channel
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_distributed-storage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_vdisk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_actor-service
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_node-warden
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_logoblob
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_erasure-coding
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_actor-service
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_pdisk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_vdisk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_ds-proxy
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_static-group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_ds-controller
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_dynamic-group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_fail-domain
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_vdisk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_regions-az
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_vdisk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_fail-realm
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_cluster
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_distributed-storage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_storage-group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_logoblob
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_transactions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_datashard-distributed-txs
http://cs-www.cs.yale.edu/homes/dna/papers/transactions-wodet11.pdf

The prepare stage is a phase of distributed transaction execution, during which the transaction body is registered on all participating shards.

Execute stage

The execute stage is a phase of distributed query execution in which the scheduled transaction is executed and the response is generated.

In some cases, instead of prepare and execute, the transaction is immediately executed, and a response is generated. For example, this happens
for transactions involving only one shard or consistent reads from a snapshot.

Dirty operations

In the case of read-only transactions, similar to "read uncommitted" in other database management systems, it might be necessary to read data that
has not yet been committed to disk. This is called dirty operations.

Read-write set

The read-write set or RW set is a set of data that will participate in executing a distributed transaction. It combines the read set, the data that will
be read, and the write set, the data modifications to be carried out.

Read set

The read set or ReadSet data is what participating shards forward during the transaction execution. In the case of data transactions, it may contain
information about the state of optimistic locks, the readiness of the shard for commit, or the decision to cancel the transaction.

Transaction proxy

The transaction proxy or TX_PROXY is a service that orchestrates the execution of many distributed transactions: sequential phases, phase
execution, planning, and aggregation of results. In the case of direct orchestration by other actors (for example, KQP data transactions), it is used
for caching and allocation of unique TxIDs.

Transaction flags

Transaction flags or TxFlags is a bitmask of flags that modify the execution of a transaction in some way.

Transaction ID

Transaction ID or TxID is a unique identifier assigned to each transaction when it is accepted by YDB.

Transaction order ID

A transaction order ID is a unique identifier assigned to each transaction during planning. It consists of PlanStep and Transaction ID.

PlanStep

PlanStep or step is the logical time for which a set of transactions is planned to be executed.

Mediator time

During the distributed query execution, mediator time is the logical time before which (inclusive) the shard participant must know the entire
execution plan. It is used to advance the time in the absence of transactions on a particular shard, to determine whether it can read from a
snapshot.

MiniKQL

MiniKQL is a language that allows the expression of a single deterministic transaction in the system. It is a functional, strongly typed language.
Conceptually, the language describes a graph of reading from the database, performing calculations on the read data, and writing the results to the
database and/or to a special document representing the query result (shown to the user). The MiniKQL transaction must explicitly set its read set
(readable data) and assume a deterministic selection of execution branches (for example, there is no random).

MiniKQL is a low-level language. The system's end users only see queries in the YQL language, which relies on MiniKQL in its implementation.

KQP

KQP or Query Processor is a YDB component responsible for the orchestration of user query execution and generating the final response.

Global schema

Global Schema, Global Scheme, or Database Schema is a schema of all the data stored in a database. It consists of tables and other entities,
such as topics. The metadata about these entities is called a global schema. The term is used in contrast to Local Schema, which refers to the
data schema inside a tablet. YDB users never see the local schema and only work with the global schema.

KiKiMR

KiKiMR is the legacy name of YDB that was used long before it became an open-source product. It can still be occasionally found in the source
code, old articles and videos, etc.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_execute-stage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_dirty-operations
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_rw-set
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_read-set
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_transaction-proxy
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_txflags
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_txid
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_transaction-order-id
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_planstep
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_mediator-time
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_minikql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_kqp
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_global-schema
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_kikimr
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_prepare-stage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_transactions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_optimistic-locking
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_transactions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_txid
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_planstep
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_txid
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_deterministic-transactions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_yql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet
https://github.com/ydb-platform/ydb

Connecting to a Database
To connect to a YDB database from the YDB CLI or an app running the YDB SDK, specify your endpoint and database path.

Endpoint

An endpoint is a string structured as protocol://host:port and provided by a YDB cluster owner for proper routing of client queries to its
databases by way of a network infrastructure as well as for proper network connections. Cloud databases display the endpoint in the management
console on the requisite DB page and also normally send it via the cloud provider's CLI. In corporate environments, YDB endpoint names are
provided by the administration team or obtained in the internal cloud management console.

Examples:

grpc://localhost:7135 is an unencrypted data interchange protocol (gRPC) with the server running on port 7135 of the same host as the
client.

grpcs://ydb.example.com is an encrypted data interchange protocol (gRPCs) with the server running on the ydb.example.com host on an
isolated corporate network and listening for connections on YDB default port 2135.

grpcs://ydb.serverless.yandexcloud.net:2135 is an encrypted data interchange protocol (gRPCs), public Yandex.Cloud Serverless YDB
server at ydb.serverless.yandexcloud.net, port 2135.

Database Path

Database path (database) is a string that defines where the queried database is located in the YDB cluster. It has the format and uses the /
character as separator. It always starts with a / .

A YDB cluster may have multiple databases deployed, with their paths determined by the cluster configuration. Like the endpoint, database for
cloud databases is displayed in the management console on the desired database page, and can also be obtained via the CLI of the cloud provider.

For cloud solutions, databases are created and hosted on the YDB cluster in self-service mode without the involvement of the cluster owner or
administrators.

Warning

Applications should not in any way interpret the number and value of database directories, since they are set in the YDB cluster
configuration. When using YDB in Yandex.Cloud, database has the format region_name/cloud_id/database_id ; however, this
format may change going forward for new DBs.

Examples:

/ru-central1/b1g8skpblkos03malf3s/etn01q5ko6sh271beftr is a Yandex.Cloud database with etn01q3ko8sh271beftr as ID deployed
in the b1g8skpbljhs03malf3s cloud in the ru-central1 region.

/local is the default database for custom deployment using Docker.

Connection String

A connection string is a URL-formatted string that specifies the endpoint and path to a database using the following syntax:

<endpoint>?database=<database>

Examples:

grpc://localhost:7135?database=/local

grpcs://ydb.serverless.yandexcloud.net:2135?database=/ru-central1/b1g8skpblkos03malf3s/etn01q5ko6sh271beftr

Using a connection string is an alternative to specifying the endpoint and database path separately and can be used in tools that support this
method.

A Root Certificate for TLS

When using an encrypted protocol (gRPC over TLS, or gRPCS), a network connection can only be continued if the client is sure that it receives a
response from the genuine server that it is trying to connect to, rather than someone in-between intercepting its request on the network. This is
assured by verifications through a chain of trust, for which you need to install a root certificate on your client.

The OS that the client runs on already includes a set of root certificates from the world's major certification authorities. However, the YDB cluster
owner can use its own CA that is not associated with any of the global ones, which is often the case in corporate environments, and is almost
always used for self-deployment of clusters with connection encryption support. In this case, the cluster owner must somehow transfer its root
certificate for use on the client side. This certificate may be installed in the operating system's certificate store where the client runs (manually by a
user or by a corporate OS administration team) or built into the client itself (as is the case for Yandex.Cloud in YDB CLI and SDK).

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_connect
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_connect_endpoint
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_connect_database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_connect_connection_string
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_connect_tls-cert
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_connect_endpoint
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_connect_database
https://en.wikipedia.org/wiki/Path_(computing)
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_quickstart
https://grpc.io/docs/guides/auth/
https://en.wikipedia.org/wiki/Chain_of_trust

Cluster structure
This section describes the YDB cluster scheme entities.

YDB cluster scheme

YDB cluster scheme is a hierarchical namespace of a YDB cluster. The top-level element of the namespace is the cluster scheme root that
contains databases as its children. Scheme objects inside a database can use nested directories to form a hierarchy.

YDB scheme objects

Scheme objects in YDB databases:

Folder

Table

View

Topic

Secret

External Table

External Data Source

Scheme objects in YDB all follow the same naming rules described in the section below.

Database Object Naming Rules

Every scheme object in YDB has a name. In YQL statements, object names are specified by identifiers that can be enclosed in backticks or not. For
more information on identifiers, refer to Keywords and identifiers.

Scheme object names in YDB must meet the following requirements:

Object names can include the following characters:
Uppercase Latin characters

Lowercase Latin characters

Digits

Special characters: . , - , and _

Object name length must not exceed 255 characters.

Objects cannot be created in folders which names start with a dot, such as .sys , .metadata , and .sys_health .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_index_cluster-scheme
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_index_ydb-scheme-objects
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_index_object-naming-rules
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_dir
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_view
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_secrets
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_external_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_external_data_source
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_scheme-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_glossary_scheme-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#yql_reference_syntax_lexer_keywords-and-ids

Column Naming Rules

Column names in YDB must meet the following requirements:

Column names can include the following characters:

Uppercase Latin characters

Lowercase Latin characters

Digits

Special characters: - and _

Column names must not start with the system prefix __ydb_ .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_index_column-naming-rules

YDB Cluster Topology
A YDB cluster consists of storage and database nodes. As the data stored in YDB is available only via queries and API calls, both types of nodes
are essential for database availability. However, distributed storage consisting of storage nodes has the most impact on the cluster's fault tolerance
and ability to persist data reliably. During the initial cluster deployment, an appropriate distributed storage operating mode needs to be chosen
according to the expected workload and database availability requirements. The operation mode cannot be changed after the initial cluster setup,
making it one of the key decisions to consider when planning a new YDB deployment.

Cluster Operating Modes

Cluster topology is based on the chosen distributed storage operating mode, which needs to be determined according to the fault tolerance
requirements. YDB's failure model is based on the concepts of fail domain and fail realm.

The following YDB distributed storage operating modes are available:

mirror-3-dc . Data is replicated to 3 failure realms (usually availability zones or data centers) using 3 failure domains (usually racks) within
each realm. YDB cluster remains available even if one failure realm completely fails; additionally, one failure domain in the remaining zones
can fail at the same time. This mode is recommended for multi-datacenter clusters with high availability requirements.

block-4-2 . Erasure coding is applied with two blocks of redundancy added to the four blocks of source data. Storage nodes are placed in at
least 8 failure domains (usually racks). YDB cluster remains available if any two domains fail, continuing to record all 6 data parts in the
remaining domains. This mode is recommended for clusters deployed within a single availability zone or data center.

none . There is no redundancy. Any hardware failure causes data to become unavailable or permanently lost. This mode is only
recommended for development and functional testing.

Note

Server failure refers to both total and partial unavailability. For example, the failure of a single disk is also considered a server failure in
this context.

Fault-tolerant operation modes of distributed storage require a significant amount of hardware to provide the maximum level of high availability
guarantees supported by YDB. However, for some use cases, the investment into hardware might be too high upfront. Therefore, YDB offers
variations of these operation modes that require less hardware while still providing a reasonable level of fault tolerance. The requirements and
guarantees of all these operation modes and their variants are shown in the table below, while the implications of choosing a particular mode are
discussed further in the article.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topology
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topology_cluster-config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_storage-node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_database-node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topology_database-availability
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_distributed-storage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topology_cluster-config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topology_database-availability
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_fail-domain
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_fail-realm
https://en.wikipedia.org/wiki/Erasure_code

Note

The storage volume multiplier specified above only applies to the fault tolerance factor. Other influencing factors (for example, slot
fragmentation and granularity) must be taken into account for storage capacity planning.

For information about how to set the YDB cluster topology, see Blob Storage configuration.

Reduced Configurations

If it is impossible to use the recommended amount of hardware, you can divide servers within a single rack into two dummy fail domains. In this
configuration, the failure of one rack results in the failure of two domains instead of just one. In such reduced configurations, YDB will continue to
operate if two domains fail. The minimum number of racks in a cluster is five for block-4-2 mode and two per data center (e.g., six in total) for
mirror-3-dc mode.

The minimal fault-tolerant configuration of a YDB cluster uses the 3 nodes variant of mirror-3-dc operating mode, which requires only three
servers with three disks each. In this configuration, each server acts as both a fail domain and a fail realm, and the cluster can withstand the failure
of only a single server. Each server must be located in an independent data center to provide reasonable fault tolerance.

YDB clusters configured with one of these approaches can be used for production environments if they don't require stronger fault tolerance
guarantees.

Capacity and Performance Considerations

The system can function with fail domains of any size. However, if there are few domains with varying numbers of disks, the number of storage
groups that can be created will be limited. In such cases, hardware in overly large fail domains may be underutilized. If all hardware is fully utilized,
significant differences in domain sizes may prevent reconfiguration.

For example, consider a cluster in block-4-2 mode with 15 racks. The first rack contains 20 servers, while the other 14 racks each contain 10
servers. To fully utilize the 20 servers from the first rack, YDB will create groups that include 1 disk from this largest fail domain in each group.
Consequently, if any other fail domain's hardware fails, the load cannot be redistributed to the hardware in the first rack.

Mode Storage
volume
multiplier

Minimum
number
of nodes

Fail
domain

Fail
realm

Number
of
data
centers

Number of
server
racks

mirror-3-dc , can stand a failure of a
data center and 1 rack in one of the
remaining data centers

3 9 (12
recommended)

Rack Data
center

3 3 in each
data center

mirror-3-dc (reduced), can stand a
failure of a data center and 1 server in
one of the two other data centers

3 12 ½ a
rack

Data
center

3 6

mirror-3-dc (3 nodes), can stand a
failure of a single server, or a failure of a
data center

3 3 Server Data
center

3 Doesn't
matter

block-4-2 , can stand a failure of 2
racks

1.5 8 (10
recommended)

Rack Data
center

1 8

block-4-2 (reduced), can stand a
failure of 1 rack

1.5 10 ½ a
rack

Data
center

1 5

none , no fault tolerance 1 1 Node Node 1 1

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topology_reduced
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topology_capacity
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_slot
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_domains-blob
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topology_cluster-config

YDB can group disk drives of different vendors, capacities, and speeds. The resulting characteristics of a group depend on the set of the worst
characteristics of the hardware serving the group. Generally, the best results can be achieved by using homogeneous hardware.

Note

Hardware from the same batch is more likely to have similar defects and may fail simultaneously. It is essential to consider this when
building large-scale YDB clusters.

Therefore, the optimal initial hardware configurations for production YDB clusters are as follows:

A cluster hosted in one availability zone: This setup uses the block-4-2 mode and consists of nine or more racks, each with an identical
number of servers.

A cluster hosted in three availability zones: This setup uses the mirror-3-dc mode and is distributed across three data centers, with four
or more racks in each, all containing an identical number of servers.

Database Availability

A database within a YDB cluster is available if both its storage and compute resources are operational:

All storage groups allocated for the database must be operational, i.e., stay within the allowed level of failures.

The compute resources of the currently available database nodes (primarily the amount of main memory) must be sufficient to start all the
tablets managing objects like tables or topics within the database and to handle user sessions.

To survive an entire data center outage at the database level, assuming a cluster configured with the mirror-3-dc operating mode:

The storage nodes need to have at least double the I/O bandwidth and disk capacity compared to what is required for normal operation. In the
worst case, the load on the remaining nodes during the maximum allowed outage might triple, but that's only temporary until self-heal restores
failed disks in operating data centers.

The database nodes must be evenly distributed between all 3 data centers and include sufficient resources to handle the entire workload when
running in just 2 of the 3 data centers. To achieve this, database nodes in each datacenter need at least 35% extra spare CPU and RAM
resources when running normally without ongoing failures. If database nodes are typically utilized above this threshold, consider adding more
of them or moving them to servers with more resources.

See Also

Documentation for DevOps Engineers

Blob Storage configuration

Example Cluster Configuration Files

YDB distributed storage

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topology_database-availability
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topology_see-also
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_storage-group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_database-node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_storage-node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_database-node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_domains-blob
https://github.com/ydb-platform/ydb/tree/main/ydb/deploy/yaml_config_examples/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_distributed-storage

YDB Transactions and Queries
This section describes the specifics of YQL implementation for YDB transactions.

Query Language

The main tool for creating, modifying, and managing data in YDB is a declarative query language called YQL. YQL is an SQL dialect that can be
considered a database interaction standard. YDB also supports a set of special RPCs useful in managing a tree schema or a cluster, for instance.

Transaction Modes

By default, YDB transactions are executed in Serializable mode. It provides the strictest isolation level for custom transactions. This mode
guarantees that the result of successful parallel transactions is equivalent to their serial execution, and there are no read anomalies for successful
transactions.

If consistency or freshness requirement for data read by a transaction can be relaxed, a user can take advantage of execution modes with lower
guarantees:

Online Read-Only: Each read operation in the transaction is reading the data that is most recent at execution time. The consistency of
retrieved data depends on the allow_inconsistent_reads setting:

false (consistent reads): Each individual read operation returns consistent data, but no consistency is guaranteed between reads.
Reading the same table range twice may return different results.

true (inconsistent reads): Even the data fetched by a particular read operation may contain inconsistent results.

Stale Read-Only: Read operations within a transaction may return results that are slightly out-of-date (lagging by fractions of a second). Each
individual read returns consistent data, but no consistency between different reads is guaranteed.

Snapshot Read-Only: All the read operations within a transaction access the database snapshot. All the data reads are consistent. The
snapshot is taken when the transaction begins, meaning the transaction sees all changes committed before it began.

The transaction execution mode is specified in its settings when creating the transaction. See the examples for the YDB SDK in the Setting up the
transaction execution mode.

YQL Language

Statements implemented in YQL can be divided into two classes: Data Definition Language (DDL) and Data Manipulation Language (DML).

For more information about supported YQL constructs, see the YQL documentation.

Listed below are the features and limitations of YQL support in YDB, which might not be obvious at first glance and are worth noting:

Multi-statement transactions (transactions made up of a sequence of YQL statements) are supported. Transactions may interact with client
software, or in other words, client interactions with the database might look as follows: BEGIN; make a SELECT; analyze the SELECT
results on the client side; ...; make an UPDATE; COMMIT . We should note that if the transaction body is fully formed before accessing
the database, it will be processed more efficiently.

YDB does not support transactions that combine DDL and DML queries. The conventional ACID notion of a transaction is applicable
specifically to DML queries, that is, queries that change data. DDL queries must be idempotent, meaning repeatable if an error occurs. If you
need to manipulate a schema, each manipulation is transactional, while a set of manipulations is not.

YQL implementation used in YDB employs the Optimistic Concurrency Control mechanism. If an entity is affected during a transaction,
optimistic blocking is applied. When the transaction is complete, the mechanism verifies that the locks have not been invalidated. For the user,
locking optimism means that when transactions are competing with one another, the one that finishes first wins. Competing transactions fail
with the Transaction locks invalidated error.

All changes made during the transaction accumulate in the database server memory and are applied when the transaction completes. If the
locks are not invalidated, all the changes accumulated are committed atomically; if at least one lock is invalidated, none of the changes are
committed. The above model involves certain restrictions: changes made by a single transaction must fit inside the available memory.

For efficient execution, a transaction should be formed so that the first part of the transaction only reads data, while the second part of the
transaction only changes data. The query structure then looks as follows:

For more information about YQL support in YDB, see the YQL documentation.

Distributed Transactions

A database table in YDB can be sharded by the range of the primary key values. Different table shards can be served by different distributed
database servers (including ones in different locations). They can also move independently between servers to enable rebalancing or ensure shard
operability if servers or network equipment goes offline.

A topic in YDB can be sharded into several partitions. Different topic partitions, similar to table shards, can be served by different distributed
database servers.

YDB supports distributed transactions. Distributed transactions are transactions that affect more than one shard of one or more tables and topics.
They require more resources and take more time. While point reads and writes may take up to 10 ms in the 99th percentile, distributed transactions

 SELECT ...;

 SELECT ...;
 UPDATE/REPLACE/DELETE ...;
 COMMIT;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_transactions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_transactions_query-language
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_transactions_modes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_transactions_language-yql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_transactions_distributed-tx
https://en.wikipedia.org/wiki/Isolation_(database_systems)#Serializable
https://en.wikipedia.org/wiki/Isolation_(database_systems)#Read_phenomena
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#recipes_ydb-sdk_tx-control
https://en.wikipedia.org/wiki/Data_definition_language
https://en.wikipedia.org/wiki/Data_manipulation_language
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#yql_reference_index
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/Optimistic_concurrency_control
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#yql_reference_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_datamodel_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_topic

typically take from 20 to 500 ms.

Transactions with Topics and Tables

YDB supports transactions involving row-oriented tables and/or topics. This makes it possible to transactionally transfer data from tables to topics
and vice versa, as well as between topics. This ensures that data is neither lost nor duplicated in case of a network outage or other issues. This
enables the implementation of the transactional outbox pattern within YDB.

For more information about transactions with tables and topics in YDB, see Transactions with Topics and Working with topics.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_transactions_topic-table-transactions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_glossary_row-oriented-table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_glossary_topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_topic_topic-transactions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_ydb-sdk_topic

Secondary Indexes
YDB automatically creates a primary key index, which is why selection by primary key is always efficient, affecting only the rows needed. Selections
by criteria applied to one or more non-key columns typically result in a full table scan. To make these selections efficient, use secondary indexes.

The current version of YDB implements synchronous and asynchronous global secondary indexes. Each index is a hidden table that is updated:

For synchronous indexes: Transactionally when the main table changes.

For asynchronous indexes: In the background while getting the necessary changes from the main table.

When a user sends an SQL query to insert, modify, or delete data, the database transparently generates commands to modify the index table. A
table may have multiple secondary indexes. An index may include multiple columns, and the sequence of columns in an index matters. A single
column may be included in multiple indexes. In addition to the specified columns, every index implicitly stores the table primary key columns to
enable navigation from an index record to the table row.

Synchronous Secondary Index

A synchronous index is updated simultaneously with the table that it indexes. This index ensures strict consistency through distributed transactions.
While reads and blind writes to a table with no index can be performed without a planning stage, significantly reducing delays, such optimization is
impossible when writing data to a table with a synchronous index.

Asynchronous Secondary Index

Unlike a synchronous index, an asynchronous index doesn't use distributed transactions. Instead, it receives changes from an indexed table in the
background. Write transactions to a table using this index are performed with no planning overheads due to reduced guarantees: an asynchronous
index provides eventual consistency, but no strict consistency. You can only use asynchronous indexes in read transactions in Stale Read Only
mode.

Covering Secondary Index

You can copy the contents of columns into a covering index. This eliminates the need to read data from the main table when performing reads by
index and significantly reduces delays. At the same time, such denormalization leads to increased usage of disk space and may slow down inserts
and updates due to the need for additional data copying.

Unique Secondary Index

This type of index enforces unique constraint behavior and, like other indexes, allows efficient point lookup queries. YDB uses it to perform
additional checks, ensuring that each distinct value in the indexed column set appears in the table no more than once. If a modifying query violates
the constraint, it will be aborted with a PRECONDITION_FAILED status. Therefore, client code must be prepared to handle this status.

A unique secondary index is a synchronous index, so the update process is the same as in the Synchronous Secondary Index section described
above from a transaction perspective.

Limitations

Currently, a unique index cannot be added to an existing table.

Vector Index

Vector Index is a special type of secondary index.

Unlike secondary indexes, which optimize equality or range searches, vector indexes allow vector search based on distance or similarity functions.

Creating a Secondary Index Online

YDB lets you create new and delete existing secondary indexes without stopping the service. For a single table, you can only create one index at a
time.

Online index creation consists of the following steps:

1. Taking a snapshot of a data table and creating an index table marked that writes are available.

After this step, write transactions are distributed, writing to the main table and the index, respectively. The index is not yet available to the user.

2. Reading the snapshot of the main table and writing data to the index.

"Writes to the past" are implemented: situations where data updates in step 1 change the data written in step 2 are resolved.

3. Publishing the results and deleting the snapshot.

The index is ready to use.

Possible impact on user transactions:

There may be an increase in delays because transactions are now distributed (when creating a synchronous index).

There may be an enhanced background of OVERLOADED errors because index table automatic shard splitting is actively running during data
writes.

The rate of data writes is selected to minimize their impact on user transactions. To quickly complete the operation, we recommend running the
online creation of a secondary index when the user load is minimum.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_secondary_indexes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_secondary_indexes_sync
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_secondary_indexes_async
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_secondary_indexes_covering
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_secondary_indexes_unique
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_secondary_indexes_limitations
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_secondary_indexes_vector-index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_secondary_indexes_index-add
https://en.wikipedia.org/wiki/Consistency_model
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_transactions_distributed-tx
https://en.wikipedia.org/wiki/Eventual_consistency
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_transactions_modes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_secondary_indexes_sync
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#dev_vector-indexes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_vector_search

Creating an index is an asynchronous operation. If the client-server connection is interrupted after the operation has started, index building
continues. You can manage asynchronous operations using the YDB CLI.

Creating and Deleting Secondary Indexes

A secondary index can be:

Created when creating a table with the YQL CREATE TABLE statement.

Added to an existing table with the YQL ALTER TABLE statement or the YDB CLI table index add command.

Deleted from an existing table with the YQL ALTER TABLE statement or the YDB CLI table index drop command.

Deleted together with the table using the YQL DROP TABLE statement or the YDB CLI table drop command.

Using Secondary Indexes

For detailed information on using secondary indexes in applications, refer to the relevant article in the documentation section for developers.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_secondary_indexes_ddl
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_secondary_indexes_use
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#yql_reference_syntax_create_table_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#yql_reference_syntax_alter_table_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_ydb-cli_commands_secondary_index_add
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#yql_reference_syntax_alter_table_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_ydb-cli_commands_secondary_index_drop
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#yql_reference_syntax_drop_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#dev_secondary-indexes

Vector search

Concept of vector search

Vector search, also known as nearest neighbor search (NN), is an optimization problem where the goal is to find the nearest vector (or a set of
vectors) in a given dataset relative to a specified query vector. The proximity between vectors is determined using distance or similarity metrics.

Vector search is actively used in the following areas:

recommendation systems

semantic search

search for similar images

anomaly detection

classification systems

In addition, vector search in YDB is widely applied in machine learning (ML) and artificial intelligence (AI) tasks. It is particularly useful in Retrieval-
Augmented Generation (RAG) approaches, which utilize vector search to retrieve relevant information from large volumes of data, significantly
enhancing the quality of generative models.

Methods for solving vector search tasks can be divided into three major categories:

exact methods

approximate methods without index

approximate methods with index

The choice of a method depends on the number of vectors and the nature of the workload. Exact methods search slowly but update quickly,
whereas indexes do the opposite.

Exact vector search

The foundation of the exact method is the calculation of the distance from the query vector to all the vectors in the dataset. This algorithm, also
known as the naive approach or brute force method, has a runtime of O(dn) , where n is the number of vectors in the dataset, and d is their
dimensionality.

Exact vector search is best utilized if the complete enumeration of the vectors occurs within acceptable time limits. This includes cases where they
can be pre-filtered based on some condition, such as a user identifier. In such instances, the exact method may perform faster than the current
implementation of vector indexes.

Main advantages:

No need for additional data structures, such as specialized vector indexes.
Full support for transactions, including in strict consistency mode.

Instant execution of data modification operations: insertion, update, deletion.

Learn more about exact vector search.

Approximate vector search without index

Approximate methods do not perform a complete enumeration of the initial data. This allows significantly speeding up the search process, although
it might lead to some reduction in the quality of the results.

Scalar Quantization is a method of reducing vector dimensionality, where a set of coordinates is mapped into a space of smaller dimensions.

YDB supports vector searching for vector types Float , Int8 , Uint8 , and Bit . Consequently, it is possible to apply scalar quantization to
transform data from Float to any of these types.

Scalar quantization reduces the time required for reading and writing data by decreasing the number of bytes. For example, when quantizing from
Float to Bit , each vector is reduced by 32 times.

Approximate vector search without an index uses a very simple additional data structure - a set of vectors with other quantization. This allows the
use of a simple search algorithm: first, a rough preliminary search is performed on the compressed vectors, followed by refining the results on the
original vectors.

Main advantages:

Full support for transactions, including in strict consistency mode.

Instant application of data modification operations: insertion, update, deletion.

Learn more about approximate vector search without index.

Approximate vector search with index

When the data volume significantly increases, non-index approaches cease to work within acceptable time limits. In such cases, additional data
structures are necessary such as vector indexes, which accelerate the search process.

Main advantage:

ability to work with a large number of vectors

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_vector_search
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_vector_search_concept-of-vector-search
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_vector_search_vector-search-exact
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_vector_search_vector-search-approximate
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_vector_search_vector-search-index
https://en.wikipedia.org/wiki/Nearest_neighbor_search
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_vector_search_vector-search-exact
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_vector_search_vector-search-approximate
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_vector_search_vector-search-index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_udf_list_knn_exact-vector-search-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_dev_vector-indexes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_concepts_glossary_vector-index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_concepts_glossary_transactions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_knn_exact-vector-search-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_udf_list_knn_approximate-vector-search-scalar-quantization
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_udf_list_knn_approximate-vector-search-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_concepts_glossary_transactions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_knn_approximate-vector-search-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_vector-indexes

Disadvantages:

index construction may take considerable time

in the current version, data modification operations such as insertion, update, and deletion are not supported

Change Data Capture (CDC)

Warning

Supported only for row-oriented tables. Support for column-oriented tables is currently under development.

Change Data Capture (CDC) captures changes to YDB table rows, uses these changes to generate a changefeed, writes them to distributed
storage, and provides access to these records for further processing. It uses a topic as distributed storage to efficiently store the table change log.

When adding, updating, or deleting a table row, CDC generates a change record by specifying the primary key of the row and writes it to the topic
partition corresponding to this key.

Guarantees

Change records are sharded across topic partitions by primary key.

Each change is only delivered once (exactly-once delivery).

Changes by the same primary key are delivered to the same topic partition in the order they took place in the table.

Change records are delivered to the topic partition only after the corresponding transaction in the table has been committed.

Limitations

The number of topic partitions is fixed as of changefeed creation and remains unchanged (unlike tables, topics are not elastic).

Changefeeds support records of the following types of operations:

Updates

Erases

Adding rows is a special update case, and a record of adding a row in a changefeed will look similar to an update record.

Virtual Timestamps

All changes in YDB tables are arranged according to the order in which transactions are performed. Each change is marked with a virtual
timestamp which consists of two elements:

1. Global coordinator time.
2. Unique transaction ID.

Using these timestamps, you can arrange records from different partitions of the topic relative to each other or use them for filtering (for example, to
exclude old change records).

Note

By default, virtual timestamps are not uploaded to the changefeed. To enable them, use the appropriate parameter when creating a
changefeed.

Initial Table Scan

By default, a changefeed only includes records about those table rows that changed after the changefeed was created. Initial table scan enables
you to export, to the changefeed, the values of all the rows that existed at the time of changefeed creation.

The scan runs in the background mode on top of the table snapshot. The following situations are possible:

A non-scanned row changes in the table. The changefeed will receive, one after another: a record with the source value and a record about the
update. When the same record is changed again, only the update record is exported.

A changed row is found during scanning. Nothing is exported to the changefeed because the source value has already been exported at the
time of change (see the previous paragraph).

A scanned row changes in the table. Only an update record exports to the changefeed.

This ensures that, for the same row (the same primary key), the source value is exported first, and then the updated value is exported.

Note

The record with the source row value is labeled as an update record. When using virtual timestamps, records are marked by the
snapshot's timestamp.

During the scanning process, depending on the table update frequency, you might see too many OVERLOADED errors. This is because, besides the
update records, you also need to deliver records with the source row values. When the scan is complete, the changefeed switches to normal
operation.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc_guarantees
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc_restrictions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc_virtual-timestamps
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc_initial-scan
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_changefeed
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc_restrictions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc_virtual-timestamps

Warning

Automatic partitioning processes are suspended in the table during the initial scan.

Record Structure

Depending on the changefeed parameters, the structure of a record may differ.

JSON Format

A JSON record has the following structure:

key : An array of primary key component values. Always present.

update : Update flag. Present if a record matches the update operation. In UPDATES mode, it also contains the names and values of updated
columns.

erase : Erase flag. Present if a record matches the erase operation.

newImage : Row snapshot that results from its being changed. Present in NEW_IMAGE and NEW_AND_OLD_IMAGES modes. Contains column
names and values.

oldImage : Row snapshot before the change. Present in OLD_IMAGE and NEW_AND_OLD_IMAGES modes. Contains column names and
values.

ts : Virtual timestamp. Present if the VIRTUAL_TIMESTAMPS setting is enabled. Contains the value of the global coordinator time (step) and
the unique transaction ID (txId).

Sample record of an update in UPDATES mode:

Record of an erase:

Record with row snapshots:

Record with virtual timestamps:

{
 "key": [<key components>],
 "update": {<columns>},
 "erase": {},
 "newImage": {<columns>},
 "oldImage": {<columns>},
 "ts": [<step>, <txId>]
}

{
 "key": [1, "one"],
 "update": {
 "payload": "lorem ipsum",
 "date": "2022-02-22"
 }
}

{
 "key": [2, "two"],
 "erase": {}
}

{
 "key": [1, 2, 3],
 "update": {},
 "newImage": {
 "textColumn": "value1",
 "intColumn": 101,
 "boolColumn": true
 },
 "oldImage": {
 "textColumn": null,
 "intColumn": 100,
 "boolColumn": false
 }
}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc_record-structure
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc_json-record-structure
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_partitioning
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_changefeed
https://en.wikipedia.org/wiki/JSON
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc_virtual-timestamps

Note

The same record may not contain the update and erase fields simultaneously, since these fields are operation flags (you can't
update and erase a table row at the same time). However, each record contains one of these fields (any operation is either an
update or an erase).

In UPDATES mode, the update field for update operations is an operation flag (update) and contains the names and values of
updated columns.

JSON object fields containing column names and values (newImage , oldImage , and update in UPDATES mode), do not
include the columns that are primary key components.

If a record contains the erase field (indicating that the record matches the erase operation), this is always an empty JSON object
({}).

Debezium-Compatible JSON Format

A Debezium-compatible JSON record structure has the following format:

op : Operation that was performed on a row:

c — create. Applicable only in NEW_AND_OLD_IMAGES mode.

u — update.

d — delete.

r — read from snapshot.

before : Row snapshot before the change. Present in OLD_IMAGE and NEW_AND_OLD_IMAGES modes. Contains column names and values.

after : Row snapshot after the change. Present in NEW_IMAGE and NEW_AND_OLD_IMAGES modes. Contains column names and values.

source : Source metadata for the event.

connector : Connector name. Current name is ydb .

version : Connector version that was used to generate the record. Current version is 1.0.0 .

ts_ms : Approximate time when the change was applied, in milliseconds.

step : Global coordinator time. Part of the virtual timestamp.

txId : Unique transaction ID. Part of the virtual timestamp.

snapshot : Whether the event is part of a snapshot.

When reading using Kafka API, the Debezium-compatible primary key of the modified row is specified as the message key:

payload : Key of a row that was changed. Contains names and values of the columns that are components of the primary key.

Record Retention Period

{
 "key": [1],
 "update": {
 "created": "2022-12-12T00:00:00.000000Z",
 "customer": "Name123"
 },
 "ts": [1670792400890, 562949953607163]
}

{
 "payload": {
 "op": <op>,
 "before": {<columns>},
 "after": {<columns>},
 "source": {
 "connector": <connector>,
 "version": <version>,
 "ts_ms": <ts_ms>,
 "step": <step>,
 "txId": <txId>,
 "snapshot": <bool>
 }
 }
}

{
 "payload": {<columns>}
}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc_debezium-json-record-structure
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc_retention-period
https://debezium.io/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc_initial-scan
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc_virtual-timestamps
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc_virtual-timestamps

By default, records are stored in the changefeed for 24 hours from the time they are sent. Depending on usage scenarios, the retention period can
be reduced or increased up to 30 days.

Warning

Records whose retention time has expired are deleted, regardless of whether they were processed (read) or not.

Deleting records before they are processed by the client will cause offset skips, which means that the offsets of the last record read from the
partition and the earliest available record will differ by more than one.

To set up the record retention period, specify the RETENTION_PERIOD parameter when creating a changefeed.

Topic Partitions

By default, the initial number of topic partitions is equal to the number of table partitions. You can redefine the initial number of topic partitions by
specifying the TOPIC_MIN_ACTIVE_PARTITIONS parameter when creating a changefeed. To create a changefeed with a dynamically changing
number of partitions, set the TOPIC_AUTO_PARTITIONING parameter when creating the changefeed.

Note

Currently, the ability to explicitly specify the number of topic partitions is available only for tables whose first primary key component is
of type Uint64 or Uint32 .

Creating and Deleting a Changefeed

You can add a changefeed to an existing table or erase it using the ADD CHANGEFEED and DROP CHANGEFEED directives of the YQL ALTER
TABLE statement. When erasing a table, the changefeed added to it is also deleted.

Getting and Updating Topic Settings

You can get the settings using an SDK or the YDB CLI by passing the path to the changefeed in the arguments, which has the following format:

For example, if a table named table contains a changefeed named updates_feed in the my directory, its path looks as follows:

The topic settings can be updated using the expression ALTER TOPIC. Supported actions:

updating settings:

retention_period ;

retention_storage_mb ;

updating consumers.

CDC Purpose and Use

For information about using CDC when developing apps, see best practices.

path/to/table/changefeed_name

my/table/updates_feed

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc_topic-partitions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc_ddl
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc_topic-settings
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc_best_practices
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_offset
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_changefeed
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_partitioning
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_changefeed
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_changefeed
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_changefeed
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_describe-topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_scheme-describe
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-topic_updating-topic-settings
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-topic_updating-a-set-of-consumers
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_cdc

Time to Live (TTL) and Eviction to External Storage
This section describes how the TTL mechanism works and what its limits are.

How It Works

The table's TTL is a sequence of storage tiers. Each tier contains an expression (TTL expression) and an action. When the expression is triggered,
that tier is assigned to the row. When a tier is assigned to a row, the specified action is automatically performed: moving the row to external storage
or deleting it. External storage is represented by the external data source object.

YDB allows you to specify a column (TTL column) whose values are used in TTL expressions. The expression is triggered when the specified
number of seconds has passed since the time recorded in the TTL column. For rows with NULL value in TTL column, the expression is not
triggered.

The timestamp for deleting a table item is determined by the formula:

Note

TTL doesn't guarantee that the item will be deleted exactly at eviction_time , it might happen later. If it's important to exclude
logically obsolete but not yet physically deleted items from the selection, use query-level filtering.

Data is deleted by the Background Removal Operation (BRO), consisting of two stages:

1. Checking the values in the TTL column.

2. Deleting expired data.

The BRO has the following properties:

The concurrency unit is a table partition.

For tables with secondary indexes, the delete stage is a distributed transaction.

Guarantees

For the same partition BRO is run at the intervals set in the TTL settings. The default run interval is 1 hour, the minimum allowable value is 15
minutes.

Data consistency is guaranteed. The TTL column value is re-checked during the delete stage. This means that if the TTL column value is
updated between stages 1 and 2 (for example, with UPDATE) and ceases to meet the delete criteria, the row will not be deleted.

Limitations

The TTL column must be of one of the following types:

Date .

Datetime .

Timestamp .

Uint32 .

Uint64 .

DyNumber .

The value in the TTL column with a numeric type (Uint32 , Uint64 , or DyNumber) is interpreted as a Unix time value. The following units
are supported (set in the TTL settings):

Seconds.

Milliseconds.

Microseconds.

Nanoseconds.

You can't specify multiple TTL columns.

You can't delete the TTL column. However, if this is required, you should first disable TTL for the table.

Only Object Storage is supported as external storage.

The delete action can only be specified for the last tier.

Setup

Currently, you can manage TTL settings using:

YQL.

YDB console client.

YDB C++, Go and Python SDK.

eviction_time = valueof(ttl_column) + evict_after_seconds

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_ttl
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_ttl_how-it-works
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_ttl_guarantees
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_ttl_restrictions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_ttl_setting
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_datamodel_external_data_source
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_datamodel_table_partitioning
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_secondary_indexes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_transactions_distributed-tx
https://en.wikipedia.org/wiki/Unix_time
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#yql_reference_recipes_ttl_disable
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#yql_reference_recipes_ttl
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#recipes_ydb-cli_ttl
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#recipes_ydb-sdk_ttl

Scan Queries in YDB
Scan Queries is a separate data access interface designed primarily for running analytical ad hoc queries against a DB.

This method of executing queries has the following unique features:

Only Read-Only queries.

In SERIALIZABLE_RW mode, a data snapshot is taken and then used for all subsequent operations. As a result, the impact on OLTP
transactions is minimal (only taking a snapshot).

The output of a query is a data stream (gRPC stream). This means scan queries have no limit on the number of rows in the result.

Due to the high overhead, it is only suitable for ad hoc queries.

Note

From the Scan Queries interface, you can query system tables.

Scan queries cannot currently be considered an effective solution for running OLAP queries due to their technical limitations (which will be removed
in time):

The query duration is limited to 5 minutes.

Many operations (including sorting) are performed entirely in memory, which may lead to resource shortage errors when running complex
queries.

A single strategy is currently in use for joins: MapJoin (a.k.a. Broadcast Join) where the "right" table is converted to a map; and therefore, must
be no more than a few gigabytes in size.

Prepared form isn't supported, so for each call, a query is compiled.
There is no optimization for point reads or reading small ranges of data.

The SDK doesn't support automatic retry.

For handling OLAP workloads in YDB, there is a specialized type of table — column-oriented tables. These tables store the data of each column
separately from other columns. This allows only the columns directly involved in the query to be read during execution.

Despite the fact that Scan Queries obviously don't interfere with the execution of OLTP transactions, they still use common DB resources: CPU,
memory, disk, and network. Therefore, running complex queries may lead to resource hunger, which will affect the performance of the entire DB.

How Do I Use It?

Like other types of queries, Scan Queries are available via the CLI, and SDK.

C++ SDK

To run a query using Scan Queries, use two methods from the Ydb::TTableClient class:

class TTableClient {
 ...
 TAsyncScanQueryPartIterator StreamExecuteScanQuery(const TString& query,
 const TStreamExecScanQuerySettings& settings = TStreamExecScanQuerySettings());

 TAsyncScanQueryPartIterator StreamExecuteScanQuery(const TString& query, const TParams& params,
 const TStreamExecScanQuerySettings& settings = TStreamExecScanQuerySettings());
 ...
};

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_scan_query
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_scan_query_how-use
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_scan_query_cpp
https://grpc.io/docs/what-is-grpc/core-concepts/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#dev_system-views
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_ydb-cli_commands_scan-query
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_ydb-sdk_index

Database Limits
This section describes the parameters of limits set in YDB.

Schema Object Limits

The table below shows the limits that apply to schema objects: tables, databases, and columns. The "Object" column specifies the type of schema
object that the limit applies to.
The "Error type" column shows the status that the query ends with if an error occurs. For more information about statuses, see Error handling in the
API.

Size Limits for Stored Data

Analytical Table Limits

Limits on Query Execution

The table below lists the limits that apply to query execution.

In previous versions of YDB, queries were typically executed using an API called "Table Service". This API had the following limitations, which
have been addressed by replacing it with a new API called "Query Service".

Legacy Limits

Objects Limit Value Explanation
Internal
name

Error
type

Database Maximum
path
depth

32 Maximum
number of
nested path
elements
(directories,
tables).

MaxDepth SCHEME_ERROR

Database Maximum
number
of paths
(schema
objects)

10,000 Maximum
number of
path
elements
(directories,
tables) in a
database.

MaxPaths GENERIC_ERROR

Database Maximum
number
of tablets

200,000 Maximum
number of
tablets
(table
shards and
system
tablets) that
can run in
the
database.
An error is
returned if
a query to
create,
copy, or
update a
table
exceeds
this limit.
When a
database
reaches the
maximum
number of
tablets, no
automatic
table
sharding
takes
place.

MaxShards GENERIC_ERROR

Database Maximum
object
name
length

255 Limits the
number of
characters
in the name
of a
schema
object,
such as a
directory or
a table.

MaxPathElementLength SCHEME_ERROR

Parameter Value Error type

Maximum total size of all columns in a primary key 1 MB GENERIC_ERROR

Maximum size of a string column value 16 MB GENERIC_ERROR

Parameter Value

Maximum row size 8 MB

Maximum size of an inserted data block 8 MB

Parameter Default Explanation

Status
in case of
a violation
of the limit

Query duration 1800 seconds (30
minutes)

The maximum amount of time allowed for a single query
to execute.

TIMEOUT

Maximum number of sessions
per cluster node

1,000 The limit on the number of sessions that clients can
create with each YDB node.

OVERLOADED

Maximum query text length 10 KB The maximum allowable length of YQL query text. BAD_REQUEST

Maximum size of parameter
values

50 MB The maximum total size of parameters passed when
executing a previously prepared query.

BAD_REQUEST

Parameter Default Explanation

Status
in case of
a violation
of the limit

Maximum
number of rows
in query results

1,000 The complete results of some queries executed using the
ExecuteDataQuery method may contain more rows than allowed.

In such cases, the query will return the maximum number of rows
allowed, and the result will have the truncated flag set.

SUCCESS

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_limits-ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_limits-ydb_schema-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_limits-ydb_data-size
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_limits-ydb_analytical-table-limits
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_limits-ydb_query
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_ydb-sdk_error_handling

Topic Limits

Database Maximum
ACL size

10 KB Maximum
total size of
all access
control
rules that
can be
saved for
the schema
object in
question.

MaxAclBytesSize GENERIC_ERROR

Directory Maximum
number
of objects

100,000 Maximum
number of
tables and
child
directories
created in a
directory.

MaxChildrenInDir SCHEME_ERROR

Table Maximum
number
of table
shards

35,000 Maximum
number of
table
shards.

MaxShardsInPath GENERIC_ERROR

Table Maximum
number
of
columns

200 Limits the
total
number of
columns in
a table.

MaxTableColumns GENERIC_ERROR

Table Maximum
column
name
length

255 Limits the
number of
characters
in a column
name.

MaxTableColumnNameLength GENERIC_ERROR

Table Maximum
number
of
columns
in a
primary
key

20 Each table
must have
a primary
key. The
number of
columns in
the primary
key may
not exceed
this limit.

MaxTableKeyColumns GENERIC_ERROR

Table Maximum
number
of
indexes

20 Maximum
number of
indexes
other than
the primary
key index
that can be
created in a
table.

MaxTableIndices GENERIC_ERROR

Table Maximum
number
of
followers

3 Maximum
number of
read-only
replicas
that can be
specified
when
creating a
table with
followers.

MaxFollowersCount GENERIC_ERROR

Table Maximum
number
of tables
to copy

10,000 Limit on the
size of the
table list for
persistent
table copy
operations.

MaxConsistentCopyTargets GENERIC_ERROR

Maximum query
result size

50 MB The complete results of some queries may exceed the set limit. If
this occurs, the query will fail and return no data.

PRECONDITION_FAILED

Parameter Value

Maximum size of a transmitted message 12 MB

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_limits-ydb_topic

Multi-Version Concurrency Control (MVCC)
This article describes how YDB uses MVCC.

YDB Transactions

YDB transactions run at serializable isolation level by default, which in layman's terms means it's as if they executed in some serial order without
overlapping. While technically any order is allowed, in practice, YDB also guarantees non-stale reads (modifications committed before the
transaction started will be visible). With YDB you may run these transactions interactively (users may have client-side logic between queries), which
uses optimistic locks for conflict detection. When two transactions overlap in time and have conflicts (e.g., both transactions read the same key,
observe its current value, and then try to update it), one of them will commit successfully, but the other will abort and will need to be retried.

YDB is a distributed database that splits OLTP tables into DataShard tablets, partitioned using the table's primary key, and each storing up to ~2GB
of user data. Tablets are fault-tolerant replicated state machines over the shared log and shared storage, which may quickly migrate between
different compute nodes. DataShards tablets implement low-level APIs for accessing corresponding partition data and support distributed
transactions.

Distributed transactions in YDB are based on the ideas of Calvin, distributing deterministic transactions across multiple participants using a
predetermined order of transactions. Every participant receives a substream of the global transaction stream (that involves this participant). Since
each participant receives deterministic transactions in the same relative order, the database as a whole eventually reaches a consistent
deterministic state (where each participant reached the same decision to commit or abort), even when different participants execute their
substreams at different speeds. It's important to note that this does not make YDB eventually consistent and transactions always observe a
consistent state at their point in time. Deterministic distributed transactions have a limitation in that they need to know all participants ahead of time,
but YDB uses them as a building block, executing multiple deterministic transactions as phases of a larger user transaction. In practice, only the
final commit phase runs as a distributed transaction since YDB tries to transform other phases into simple single-shard operations as much as
possible while preserving serializable isolation guarantees.

Having a predetermined order of transactions becomes a concurrency bottleneck, as when you have a slow transaction that has to wait for
something, all transactions down the line have to wait as well. This necessitates a good out-of-order execution engine that is able to reorder
transactions that don't conflict while preserving externally visible guarantees. Out-of-order execution alone can't help when transactions actually
conflict, however. One example from the past is when a wide read was waiting for data from a disk, it blocked all writes that fell into the same range,
stalling the pipeline. Implementing MVCC reads lifted that restriction.

What Is MVCC

MVCC (Multi-Version Concurrency Control) is a way to improve database concurrency by storing multiple row versions as they have been at
different points in time. This allows readers to keep reading from a database snapshot without blocking writers. Databases don't overwrite rows but
make a modified copy of them instead, tagged with some version information, keeping older row versions intact. Older row versions are garbage
collected eventually, e.g., when there are no readers left that could possibly read them.

A simple and naive way of adding MVCC to a sorted KV store is to store multiple values for each key, e.g., using keys tagged with a version suffix
and skipping versions that are not visible to the current transaction/snapshot. Many databases go this route one way or another. Bear in mind that
such a naive approach leads to data bloat, as multiple copies of data need to be stored and older versions may be difficult to find and remove. It
also causes degraded range query performance, as the query execution engine needs to skip over many unnecessary versions until it finds the
right one or until it finds the next key.

Why YDB Needs MVCC

YDB table shards store data in a sorted KV store, implemented as a write-optimized LSM tree, and historically they did not use MVCC. Since the
order of transactions is predetermined externally (using Coordinators, somewhat similar to sequencers in the original Calvin paper), YDB heavily
relies on reordering transaction execution at each participant, which is correct as long as such reordering cannot be observed externally, and it
doesn't change the final outcome. Without MVCC, reordering is impeded by read-write conflicts, e.g., when a write cannot start execution until a
particularly wide read is complete. With MVCC, writes no longer need to wait for conflicting reads to complete, and reads only ever need to wait for
preceding conflicting writes to commit. This makes the out-of-order engine's job easier and improves the overall throughput.

YDB without MVCC also had to take additional steps to preserve data consistency. Interactive transactions may consist of multiple read operations,
where each read was performed at a different point in time, and YDB had to perform special checks to ensure conflicting transactions did not
perform writes between the read and commit time. This was not ideal for our users, as even pure read-only transactions were often failing with
serializability errors and had to be retried.

After implementing MVCC using global versions (shared with deterministic distributed transactions), it became possible to perform reads in a
transaction using a global snapshot. This means pure read-only transactions no longer fail with serializability errors and rarely need to be retried by

Timestamp Statement
Without
MVCC

With
MVCC

Description

v1000:123 UPSERT ☑️ ☑️ Executed

v1010:124 SELECT ⏳ ⏳ Reading from disk

v1020:126 UPSERT ❌ ☑️ UPSERT without MVCC has to wait for SELECT to finish

v1030:125 SELECT ❌ ⏳ SELECT needs to wait for UPSERT to finish before reading from
disk

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_mvcc
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_mvcc_ydb-transactions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_mvcc_what-is-mvcc
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_mvcc_why-ydb-needs-mvcc
https://cs.yale.edu/homes/thomson/publications/calvin-sigmod12.pdf
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_lsm-tree

the user, improving throughput in read-heavy use cases. Transactions also acquired a "repeatable read" property, which means if you perform
several selects from the same table, the transaction will not fail and will observe the same (globally consistent) result.

How YDB Stores MVCC Data

DataShard tablets currently store a single table partition in a write-optimized LSM tree, where for each primary key we store row operation with a
set of column updates. During searches, we merge updates from multiple levels and get the final row state. Compactions similarly merge updates
from multiple levels and write a resulting aggregate row update.

One of our design goals when adding MVCC was minimal degradation to existing workloads, and that meant queries, especially range queries, with
the most recent version needed to be fast. That meant using common approaches like adding a version suffix to keys was out of the question.
Instead, when a row in an SST (sorted string table, part of an LSM tree) has multiple versions, we only store the most recent version in the main
data page, marking it with a flag signaling "history" data is present. Older row versions are stored in a special "history" companion SST, where for
each marked row id we store row versions in descending order. When we read from a snapshot, we detect if the most recent row version is too
recent and perform a binary search in the history SST instead. Once we find a row version corresponding to a snapshot, we apply its updates to the
final row state. We also use the fact that LSM tree levels roughly correspond to their write time, allowing us to stop searching once the first
matching row is found for a given snapshot. For each level below that, we only need to apply the most recent row to the final row state, which limits
the number of merges to at most the number of levels, which is usually small.

Rows in SSTs are effectively deltas; nonetheless, they are stored as pre-merged from the viewpoint of a given SST, which helps with both search
and compaction complexity. Let's imagine a hypothetical situation where the user writes 1 million updates to some key K, each time modifying one
of a multitude of columns. As a write-optimized storage, we prefer blind writes and don't read the full row before updating and writing a new updated
row; instead, we write an update that says "update column C for key K". If we didn't store pre-merged state at each level, soon there would have
been 1 million deltas for the key K, each at a different version. Then each read would potentially need to consider applying all 1 million deltas to the
row. Instead, we merge updates at the same level into aggregate updates, starting with memtable (where the previous row state is always in
memory and we don't need to read from disk). When compacting several levels into a new SST, we only need to iterate over each update version
and merge it with the most recent version in the SSTs below; this limits either merge complexity at compaction (the number of merges for each
version is limited by the number of levels) and at read time, while still allowing us to perform blind writes.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_mvcc_how-ydb-stores-mvcc-data
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_sst

Eventually, we mark version ranges as deleted and no longer readable, after which compactions allow us to garbage collect unnecessary row
versions automatically (unreachable versions are skipped over and not emitted when writing new SSTs). We also store a small per-version
histogram for each SST, so we can detect when too much unnecessary data accumulates in the LSM tree and trigger additional compactions for
garbage collection.

How YDB Uses MVCC

MVCC allows DataShards to improve the reordering of transactions, but we can do even better by leveraging global snapshots, so we use global
timestamps as version tags, which correspond to global order already used by deterministic distributed transactions. This allows us to create global
snapshots by choosing a correct global timestamp. Using such snapshots to read from DataShards effectively allows the database to observe a
consistent snapshot at that point in logical time.

When we perform the first read in an interactive or multi-stage transaction, we choose a snapshot timestamp that is guaranteed to include all
previously committed transactions. Currently, this is just a timestamp that corresponds to the last timestamp sent out by Coordinators. This
timestamp may be slightly in the future (as some transactions in-flight from Coordinators to DataShards may not have started executing yet), but
usually not by much, and since transactions are inflight, they are expected to be executed soon. Most importantly, this timestamp is guaranteed to
be equal to or larger than any commit timestamp already observed by the client, so when this timestamp is generated for new reads, those reads
are guaranteed to include all previously finished writes.

We then use this snapshot for reads without any additional coordination between participants, as snapshots are already guaranteed to be globally
consistent across the database. To guarantee snapshots include all relevant changes and are not modified later, DataShards may need to wait until
they received all write transactions that must have happened before that snapshot, but only conflicting writes need to execute before the read may
start. DataShards also guarantee that any data observed by the snapshot is frozen and won't be modified later by concurrent transactions
(effectively guaranteeing repeatable read), but this only applies to observed changes. Anything not yet observed is in a state of flux and is free to be
modified until logical time advances well past the snapshot at every participant in the database. An interesting consequence of this is that some
later writes may be reordered before the snapshot, which is allowed under serializable snapshot isolation.

When interactive transactions perform writes, their changes are buffered and the final distributed commit transaction checks (using optimistic locks)
that the transaction did not have any conflicting changes between its read (snapshot) and commit time, which effectively simulates moving all reads
forward to the commit point in time, only committing when it's possible. Interactive transactions also detect when they read from "history" data and
mark such transactions as read-only, since we already know moving this read forward in time (to a future commit timestamp) would be impossible. If
a user attempts to perform writes in such a transaction, we return a serialization error without any additional buffering or communication. If it turns
out a transaction was read-only, there's no serialization violation (we have been reading from a consistent snapshot after all), and we only need to
perform some cleanup, returning success to the user. Before YDB introduced global MVCC snapshots, we had to always check locks at commit
time, which made it a struggle to perform wide reads under a heavy write load.

Keeping Fast KeyValue Performance

While YDB supports complicated distributed transactions between multiple shards and tables, it's important to also support fast single-shard
transactions. Internally such transactions are called "immediate" and they historically don't use any additional coordination. For example, when a
transaction only reads or writes a single key in a table, we only want to communicate with a single shard that the key belongs to and nothing else.
At first glance, it runs contrary to the use of global MVCC timestamps; however, we may use local uncoordinated timestamps (possibly different at
each DataShard), which are still correct global timestamps. Each distributed transaction is assigned a timestamp that consists of two numbers
(step, txId), where a step is a coordination tick, often configured to increase every 10ms, and txId is a globally unique transaction id. Immediate
transactions don't have a step, since they are not processed by coordinators, and while txId is unique, it is not guaranteed to always increase, so
we cannot use it for write timestamps without risking these timestamps going back in time. There's an important distinction, however, since
immediate transactions don't have to be repeatable, their read/write timestamp does not have to be unique. That's why we allow them to share a
timestamp with some next transaction in the queue (effectively executing "just before" that transaction). When the queue is empty, we use a
broadcasted coordinator time (the maximum step acknowledged by shards, so shard is guaranteed there will be no transactions up to that step's
end) and a maximum number as txId (effectively executing "just before" that step ends).

Assigning such non-unique timestamps to immediate transactions guarantees there's always some new non-decreasing timestamp that allows
them to execute without delay (subject to other out-of-order execution restrictions). It also helps with compactions, as we may have thousands of
these transactions executed at the same timestamp, and all of that history is compacted into a single final row version for that step. This allows us
to only keep versions in history that need to be consistent across multiple shards.

Prioritizing Reads

An interesting conundrum happened when we tried to enable MVCC snapshots for the first time: there was a severe degradation in read latency
under some workloads! This was because time in YDB usually "ticks" every 10ms (tuned to be similar to typical multi-datacenter commit time of
4ms), and single-shard writes use "current time" as part of their timestamp. This meant snapshot reads had to wait for the next tick until the read
timestamp is "closed" for new writes, as well as make sure it is actually safe. This added quite a bit of latency to reads, which in hindsight was
entirely expected.

We had to go back to the drawing board and find ways to prioritize reads without penalizing writes too much. What we ended up doing was to
"close" the read timestamp as soon as we perform a repeatable snapshot read, while choosing some "future" timestamp for new single-shard writes
that is guaranteed to not corrupt previously read snapshots (ensuring repeatable read). However, since that write timestamp is in the future, and we
must ensure any new snapshot includes committed data, we delay responses until that future timestamp matches the current timestamp, and
pretend this new data is not committed (e.g., when running concurrent single-shard reads) until timestamps finally match. Interestingly, since writes

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_mvcc_how-ydb-uses-mvcc
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_mvcc_keeping-fast-keyvalue-performance
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_mvcc_prioritizing-reads

are already in flight to storage and must be committed first in at least one other datacenter, this wait did not add much to average write latency even
with many snapshot reads, but it did wonders to read latency:

Asynchronous Replication
Asynchronous replication allows for synchronizing data between YDB databases in near real time. It can also be used for data migration between
databases with minimal downtime for applications interacting with these databases. Such databases can be located in the same YDB cluster as
well as in different clusters.

Overview

Asynchronous replication is based on Change Data Capture and operates on logical data. The following diagram illustrates the replication process:

As shown in the diagram above, asynchronous replication involves two databases:

1. Source. A database with replicated objects.

2. Target. A database where an asynchronous replication instance and replica objects will be created.

Asynchronous replication consists of the following stages:

Initialization

Initial table scan

Change data replication

Initialization

Initialization of asynchronous replication includes the following steps:

Creating an asynchronous replication instance on the target database using the CREATE ASYNC REPLICATION YQL expression.

Establishing a connection with the source database. The target database connects to the source using the connection parameters specified
during the creation of the asynchronous replication instance.

Note

The user account that is used to connect to the source database must have the following permissions:

Read permissions for schema objects and directory objects

Create, update, delete, and read permissions for changefeeds

The following objects are created for replicated objects on the source:

changefeeds on the source

replica objects on the target

Note

Replicas are created under the user account that was used to create the asynchronous replication instance.

Initial Table Scan

During the initial table scan the source data is exported to changefeeds. The target runs consumers that read the source data from the changefeeds
and write it to replicas.

You can get the progress of the initial table scan from the description of the asynchronous replication instance.

Change Data Replication

After the initial table scan is completed, the consumers read the change data and write it to replicas.

Each change data block has its creation time (). Consumers track the reception time of the change data (). Thus, you can use the following formula
to calculate the replication lag:

You can also get the replication lag from the description of the asynchronous replication instance.

Restrictions

The set of replicated objects is immutable and is generated when YDB creates an asynchronous replication instance.

YDB supports the following types of replicated objects:

row-based tables

directories

YDB will replicate all row-based tables that are located in the given directories and subdirectories at the time the asynchronous replication
instance is created.

During asynchronous replication, you cannot add or delete columns in the source tables.

During asynchronous replication, replicas are available only for reading.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_async-replication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_async-replication_how-it-works
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_async-replication_init
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_async-replication_initial-scan
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_async-replication_replication-of-changes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_async-replication_restrictions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_cluster
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_replicated-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_async-replication-instance
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_replica-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_async-replication_init
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_async-replication_initial-scan
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_async-replication_replication-of-changes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-async-replication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-async-replication_params
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_short-access-control-notation_access-rights
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_changefeed
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_replica-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc_initial-scan
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_consumer
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_scheme-describe
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_scheme-describe
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_dir
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_columns

Error Handling During Asynchronous Replication

Possible errors during asynchronous replication can be grouped into the following classes:

Temporary failures, such as transport errors, system overload, etc. Requests will be resent until they are processed successfully.

Critical errors, such as access violation errors, schema errors, etc. Replication will be aborted, and the description of the asynchronous
replication instance will include the text of the error.

Warning

Currently, asynchronous replication that is aborted due to a critical error cannot be resumed. In this case, you must drop and create a
new asynchronous replication instance.

For more information about error classes and how to address them, refer to Error Handling.

Asynchronous Replication Completion

Completion of asynchronous replication might be an end goal of data migration from one database to another. In this case the client stops writing
data to the source, waits for the zero replication lag, and completes replication. After the replication process is completed, replicas become
available both for reading and writing. Then you can switch the load from the source database to the target database and complete data migration.

Note

You cannot resume completed asynchronous replication.

Warning

YDB currently supports only forced completion of asynchronous replication, when no additional checks are performed for data
consistency, replication lag, etc.

To complete asynchronous replication, use the ALTER ASYNC REPLICATION YQL expression.

Dropping an Asynchronous Replication Instance

When you drop an asynchronous replication instance:

Changefeeds are deleted in the source tables.

The source tables are unlocked, and you can add and delete columns again.

Optionally, all replicas are deleted.

Asynchronous replication instance is deleted.

To drop an asynchronous replication instance, use the DROP ASYNC REPLICATION YQL expression.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_async-replication_error-handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_async-replication_done
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_async-replication_drop
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_scheme-describe
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_drop-async-replication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-async-replication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-async-replication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_drop-async-replication

Query Optimization in YDB
YDB uses two types of query optimizers: a rule-based optimizer and a cost-based optimizer. The cost-based optimizer is used for complex queries,
typically analytical (OLAP), while rule-based optimization works on all queries.

A query plan is a graph of operations, such as reading data from a source, filtering a data stream by a predicate, or performing more complex
operations such as JOIN and GROUP BY. Optimizers in YDB take an initial query plan as input and transform it into a more efficient plan that is
equivalent to the initial one in terms of the returned result.

Rule-Based Optimizer

A significant part of the optimizations in YDB applies to almost any query plan, eliminating the need to analyze alternative plans and their costs. The
rule-based optimizer consists of a set of heuristic rules that are applied whenever possible. For example, it is beneficial to filter out data as early as
possible in the execution plan for any query. Each optimizer rule comprises a condition that triggers the rule and a rewriting logic that is executed
when the plan is applied. Rules are applied iteratively as long as any rule conditions match.

Cost-Based Query Optimizer

The cost-based optimizer is used for more complex optimizations, such as choosing an optimal join order and join algorithms. The cost-based
optimizer considers a large number of alternative execution plans for each query and selects the best one based on the cost estimate for each
option. Currently, this optimizer only works with plans that contain JOIN operations. It chooses the best order for these operations and the most
efficient algorithm implementation for each join operation in the plan.

The cost-optimizer consists of three main components:

Plan enumerator

Cost estimation function

Statistics module, which is used to estimate statistics for the cost function

Plan Enumerator

The current Cost-based optimizer in YDB enumerates all useful join trees, for which the join conditions are defined. It first builds a join hypergraph,
where the nodes are tables and edges are join conditions. Depending on how the original query is written, the join hypergraph may have quite
different topologies, ranging from simple chain-like graphs to complex cliques. The resulting topology of the join graph determines how many
possible alternative plans need to be considered by the optimizer.

For example, a star is a common topology in analytical queries, where a main fact table is joined to multiple dimension tables:

In this query graph, all Dim... tables are joined to the Fact_Sales fact table:

SELECT
 P.Brand,
 S.Country AS Countries,
 SUM(F.Units_Sold)

FROM Fact_Sales F
INNER JOIN Dim_Date D ON (F.Date_Id = D.Id)
INNER JOIN Dim_Store S ON (F.Store_Id = S.Id)
INNER JOIN Dim_Product P ON (F.Product_Id = P.Id)

WHERE D.Year = 1997 AND P.Product_Category = 'tv'

GROUP BY
 P.Brand,
 S.Country

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_optimizer
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_optimizer_rule-based-optimizer
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_optimizer_cost-based-query-optimizer
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_optimizer_plan-enumerator
https://en.wikipedia.org/wiki/Online_analytical_processing
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_join
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_join

Common topologies also include chains and cliques. A "chain" is a topology where tables are connected to each other sequentially and each table
participates in no more than one join. A "clique" is a fully connected graph where each table is connected to every other table.

In practice, OLAP queries often have a topology that is a combination of "star" and "chain" topologies, while complex topologies like "cliques" are
very rare.

The topology significantly impacts the number of alternative plans that the optimizer needs to consider. Therefore, the cost-based optimizer limits
the number of joins that are compared by exhaustive search, depending on the topology of the original plan. The capabilities of exact optimization in
YDB are listed in the following table:

YDB uses a modification of the DPHyp algorithm to search for the best join order. DPHyp is a modern dynamic programming algorithm for query
optimization that avoids enumerating unnecessary alternatives and allows you to optimize plans with JOIN operators, complex predicates, and
even GROUP BY and ORDER BY operators.

Cost Estimation Function

To compare plans, the optimizer needs to estimate their costs. The cost function estimates the time and resources required to execute an operation
in YDB. The primary parameters of the cost function are estimates of the input data size for each operator and the size of its output. These
estimates are based on statistics collected from YDB tables, along with an analysis of the plan itself.

Statistics for the Cost-Based Optimizer

The cost-based optimizer relies on table statistics and individual column statistics. YDB collects and maintains these statistics in the background.
You can manually force statistics collection using the ANALYZE query.

The current set of table statistics includes:

Number of records

Table size in bytes

The current set of column statistics includes:

Count-min sketch

Cost Optimization Levels

In YDB, you can configure the cost optimization level via the CostBasedOptimizationLevel pragma.

Topology Number of supported joins

Chain 110

Star 18

Clique 15

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_optimizer_cost-estimation-function
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_optimizer_statistics
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_optimizer_cost-optimization-levels
https://www.researchgate.net/publication/47862092_Dynamic_Programming_Strikes_Back
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_analyze
https://en.wikipedia.org/wiki/Count%E2%80%93min_sketch
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_costbasedoptimizationlevel

Directory
For convenience, YDB supports creating directories similar to a filesystem, meaning the entire database consists of a directory tree, and scheme
objects, such as tables, are located in the leaves of this tree. A directory can host multiple subdirectories and several scheme objects. The names of
scheme objects within a single directory are unique.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_dir
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_glossary_folder
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_glossary_scheme-object

Table
A table is a relational table containing a set of related data, composed of rows and columns. Tables represent entities. For instance, a blog article
can be represented by a table named article with columns: id , date_create , title , author , body and so on.

Rows in the table hold the data, while columns define the data types. For example, the id column cannot be empty (NOT NULL) and should contain
only unique integer values. A record in YQL might look like this:

Please note that currently, the NOT NULL constraint can only be applied to columns that are part of the primary key.

YDB supports the creation of both row-oriented and column-oriented tables. The primary difference between them lies in their use cases and how
data is stored on the disk drive. In row-oriented tables, data is stored sequentially in the form of rows, while in column-oriented tables, data is stored
in the form of columns. Each table type has its own specific purpose.

Row-Oriented Tables

Row-oriented tables are well-suited for transactional queries generated by Online Transaction Processing (OLTP) systems, such as weather service
backends or online stores. Row-oriented tables offer efficient access to a large number of columns simultaneously. Lookups in row-oriented tables
are optimized due to the utilization of indexes.

An index is a data structure that improves the speed of data retrieval operations based on one or several columns. It's analogous to an index in a
book: instead of scanning every page of the book to find a specific chapter, you can refer to the index at the back of the book and quickly navigate
to the desired page.

Searching using an index allows you to swiftly locate the required rows without scanning through all the data. For instance, if you have an index on
the "author" column and you're looking for articles written by "Gray," the DBMS leverages this index to quickly identify all rows associated with that
surname.

You can create a row-oriented table through the YDB web interface, CLI, or SDK. Regardless of the method you choose to interact with YDB, it's
important to keep in mind the following rule: the table must have at least one primary key column, and it's permissible to create a table consisting
solely of primary key columns.

By default, when creating a row-oriented table, all columns are optional and can have NULL values. This behavior can be modified by setting the
NOT NULL conditions for key columns that are part of the primary key. Primary keys are unique, and row-oriented tables are always sorted by this

key. This means that point reads by the key, as well as range queries by key or key prefix, are efficiently executed (essentially using an index). It's
permissible to create a table consisting solely of key columns. When choosing a key, it's crucial to be careful, so we recommend reviewing the
article: "Choosing a Primary Key for Maximum Performance".

Partitioning Row-Oriented Tables

A row-oriented database table can be partitioned by primary key value ranges. Each partition of the table is responsible for a specific section of
primary keys. Key ranges served by different partitions do not overlap. Different table partitions can be served by different cluster nodes (including
ones in different locations). Partitions can also move independently between servers to enable rebalancing or ensure partition operability if servers
or network equipment goes offline.

If there is not a lot of data or load, the table may consist of a single shard. As the amount of data served by the shard or the load on the shard
grows, YDB automatically splits this shard into two shards. The data is split by the median value of the primary key if the shard size exceeds the
threshold. If partitioning by load is used, the shard first collects a sample of the requested keys (that can be read, written, and deleted) and, based
on this sample, selects a key for partitioning to evenly distribute the load across new shards. So in the case of load-based partitioning, the size of
new shards may significantly vary.

The size-based shard split threshold and automatic splitting can be configured (enabled/disabled) individually for each database table.

In addition to automatically splitting shards, you can create an empty table with a predefined number of shards. You can manually set the exact
shard key split range or evenly split it into a predefined number of shards. In this case, ranges are created based on the first component of the
primary key. You can set even splitting for tables that have a Uint64 or Uint32 integer as the first component of the primary key.

Partitioning parameters refer to the table itself rather than to secondary indexes built on its data. Each index is served by its own set of shards, and
decisions to split or merge its partitions are made independently based on the default settings. These settings may become available to users in the
future like the settings of the main table.

A split or a merge usually takes about 500 milliseconds. During this time, the data involved in the operation becomes temporarily unavailable for
reads and writes. Without raising it to the application level, special wrapper methods in the YDB SDK make automatic retries when they discover
that a shard is being split or merged. Please note that if the system is overloaded for some reason (for example, due to a general shortage of CPU
or insufficient DB disk throughput), split and merge operations may take longer.

The following table partitioning parameters are defined in the data schema:

CREATE TABLE article (
 id Int64 NOT NULL,
 date_create Date,
 author String,
 title String,
 body String,
 PRIMARY KEY (id)
)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_partitioning
https://en.wikipedia.org/wiki/Table_(database)
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#dev_primary-key_row-oriented

AUTO_PARTITIONING_BY_SIZE

Type: Enum (ENABLED , DISABLED).

Default value: ENABLED .

Automatic partitioning by partition size. If a partition size exceeds the value specified by the AUTO_PARTITIONING_PARTITION_SIZE_MB parameter,
it is enqueued for splitting. If the total size of two or more adjacent partitions is less than 50% of the AUTO_PARTITIONING_PARTITION_SIZE_MB
value, they are enqueued for merging.

AUTO_PARTITIONING_BY_LOAD

Type: Enum (ENABLED , DISABLED).

Default value: DISABLED .

Automatic partitioning by load. If a shard consumes more than 50% of the CPU for a few dozens of seconds, it is enqueued for splitting. If the total
load on two or more adjacent shards uses less than 35% of a single CPU core within an hour, they are enqueued for merging.

Performing split or merge operations uses the CPU and takes time. Therefore, when dealing with a variable load, we recommend both enabling this
mode and setting AUTO_PARTITIONING_MIN_PARTITIONS_COUNT to a value other than 1. This ensures that a decreased load does not cause the
number of partitions to drop below the required value, resulting in a need to split them again when the load increases.

When choosing the minimum number of partitions, it makes sense to consider that one table partition can only be hosted on one server and use no
more than 1 CPU core for data update operations. Hence, you can set the minimum number of partitions for a table on which a high load is
expected to at least the number of nodes (servers) or, preferably, to the number of CPU cores allocated to the database.

AUTO_PARTITIONING_PARTITION_SIZE_MB

Type: Uint64 .

Default value: 2000 MB (2 GB).

The desired partition size threshold in megabytes. Recommended values range from 10 MB to 2000 MB . If this threshold is exceeded, a shard
may split. This setting takes effect when the AUTO_PARTITIONING_BY_SIZE mode is enabled.

This value serves as a recommendation for partitioning. Partitioning may sometimes not occur even if the configured size is exceeded.

AUTO_PARTITIONING_MIN_PARTITIONS_COUNT

Type: Uint64 .

Default value: 1 .

Partitions are only merged if their actual number exceeds the value specified by this parameter. When using automatic partitioning by load, we
recommend that you set this parameter to a value other than 1, so that periodic load drops don't lead to a decrease in the number of partitions
below the required one.

AUTO_PARTITIONING_MAX_PARTITIONS_COUNT

Type: Uint64 .

Default value: 50 .

Partitions are only split if their number doesn't exceed the value specified by this parameter. With any automatic partitioning mode enabled, we
recommend that you set a meaningful value for this parameter and monitor when the actual number of partitions approaches this value; otherwise,
splitting of partitions will stop sooner or later under an increase in data or load, which will lead to a failure.

UNIFORM_PARTITIONS

Type: Uint64 .

Default value: Not applicable.

The number of partitions for uniform initial table partitioning. The primary key's first column must have type Uint64 or Uint32 . A created table is
immediately divided into the specified number of partitions.

When automatic partitioning is enabled, make sure to set the correct value for AUTO_PARTITIONING_MIN_PARTITIONS_COUNT to avoid
merging all partitions into one immediately after creating the table.

PARTITION_AT_KEYS

Type: Expression .

Default value: Not applicable.

Boundary values of keys for initial table partitioning. It's a list of boundary values separated by commas and surrounded with brackets. Each
boundary value can be either a set of values of key columns (also separated by commas and surrounded with brackets) or a single value if only the
values of the first key column are specified. Examples: (100, 1000) , ((100, "abc"), (1000, "cde")) .

When automatic partitioning is enabled, make sure to set the correct value for AUTO_PARTITIONING_MIN_PARTITIONS_COUNT to avoid
merging all partitions into one immediately after creating the table.

Reading Data from Replicas

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_auto_partitioning_by_size
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_auto_partitioning_by_load
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_auto_partitioning_partition_size_mb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_auto_partitioning_min_partitions_count
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_auto_partitioning_max_partitions_count
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_uniform_partitions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_partition_at_keys
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_read_only_replicas
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_auto_partitioning_partition_size_mb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_auto_partitioning_partition_size_mb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_auto_partitioning_min_partitions_count
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_auto_partitioning_by_size
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_auto_partitioning_min_partitions_count
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_auto_partitioning_min_partitions_count

When making queries in YDB, the actual execution of a query to each shard is performed at a single point serving the distributed transaction
protocol. By storing data in shared storage, you can run one or more shard followers without allocating additional storage space: the data is already
stored in replicated format, and you can serve more than one reader (but there is still only one writer at any given moment).

Reading data from followers allows you:

To serve clients demanding minimal delay, which is otherwise unachievable in a multi-DC cluster. This is accomplished by executing queries
soon after they are formulated, which eliminates the delay associated with inter-DC transfers. As a result, you can both preserve all the storage
reliability guarantees of a multi-DC cluster and respond to point read queries in milliseconds.

To handle read queries from followers without affecting modifying queries running on a shard. This can be useful both for isolating different
scenarios and for increasing the partition bandwidth.

To ensure continued service when moving a partition leader (both in a planned manner for load balancing and in an emergency). It lets the
processes in the cluster survive without affecting the reading clients.

To increase the overall shard read performance if many read queries access the same keys.

You can enable running read replicas for each shard of the table in the table data schema. The read replicas (followers) are typically accessed
without leaving the data center network, which ensures response delays in milliseconds.

The internal state of each of the followers is restored exactly and fully consistently from the leader state.

Besides the data state in storage, followers also receive a stream of updates from the leader. Updates are sent in real time, immediately after the
commit to the log. However, they are sent asynchronously, resulting in some delay (usually no more than dozens of milliseconds, but sometimes
longer in the event of cluster connectivity issues) in applying updates to followers relative to their commit on the leader. Therefore, reading data
from followers is only supported in the transaction mode StaleReadOnly() .
If there are multiple followers, their delay from the leader may vary: although each follower of each of the shards retains internal consistency,
artifacts may be observed from shard to shard. Please provide for this in your application code. For that same reason, it's currently impossible to
perform cross-shard transactions from followers.

Deleting Expired Data (TTL)

YDB supports automatic background deletion of expired data. A table data schema may define a column containing a Datetime or a Timestamp
value. A comparison of this value with the current time for all rows will be performed in the background. Rows for which the current time becomes
greater than the column value plus specified delay will be deleted.

Syntax of TTL value is described in the article Time to Live (TTL). For more information about deleting expired data, see Time to Live (TTL).

Renaming a Table

YDB lets you rename an existing table, move it to another directory of the same database, or replace one table with another, deleting the data in the
replaced table. Only the metadata of the table is changed by operations (for example, its path and name). The table data is neither moved nor
overwritten.

Operations are performed in isolation; the external process sees only two states of the table: before and after the operation. This is critical, for
example, for table replacement: the data of the replaced table is deleted by the same transaction that renames the replacing table. During the
replacement, there might be errors in queries to the replaced table that have retryable statuses.

The speed of renaming is determined by the type of data transactions currently running against the table and doesn't depend on the table size.

Renaming a table in YQL

Renaming a table via the CLI

Bloom Filter

Using a Bloom filter lets you more efficiently determine if some keys are missing in a table when making multiple point queries by primary key. This
reduces the number of required disk I/O operations but increases the amount of memory consumed.

Parameter name Description Type Acceptable values
Update
capability

Reset
capability

READ_REPLICAS_SETTINGS PER_AZ means using
the specified number of
replicas in each AZ and
ANY_AZ in all AZs in

total.

String "PER_AZ:<count>" ,
"ANY_AZ:<count>" , where
<count> is the number of

replicas

Yes No

Parameter
name

Type Acceptable values
Update
capability

Reset
capability

TTL Expression Interval("<literal>") ON <column> [AS <unit>] or
Interval("literal1") action1, ..., Interval("literal1") action1 ON <column> [AS <unit>]

Yes Yes

Parameter name Type Acceptable values Update capability Reset capability

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_ttl
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_rename
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_bloom-filter
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_transactions_modes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#yql_reference_syntax_create_table_with_time-to-live
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_ttl
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_ydb-sdk_error_handling_termination-statuses
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#yql_reference_syntax_alter_table_rename
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_ydb-cli_commands_tools_rename
https://en.wikipedia.org/wiki/Bloom_filter

Column Groups

YDB allows grouping columns in a table to optimize their storage and usage. The column group mechanism improves performance for partial row
reads by separating table columns into multiple storage groups. The most commonly used scenario is the organization of storing rarely used
attributes in a separate column group. Then you can enable data compression and/or store it on slower drives.

Each column group has its own name, unique within the table. Column group composition is set during table creation and can be modified later.
Removing column groups from an existing table is not supported.

A column group may contain any number of columns from its table. Each table column belongs to one and only one column group (column groups
don't overlap).

Every table has a primary column group named default containing all columns not explicitly assigned to another group. Primary key columns
always belong to the primary column group and cannot be moved to another group.

The following storage attributes are configured for column groups:

Storage device type (SSD or HDD, availability depends on YDB cluster configuration);

Data compression mode (no compression or LZ4 algorithm compression).

Column group attributes are set during table creation and can be modified later. Storage attribute changes aren't immediately applied to existing
data; instead, they take effect during subsequent background LSM compaction.

Accessing data in primary column group fields is faster and less resource-intensive than accessing the same table row's data stored in additional
column groups. Primary key lookups always occur in the primary column group. Accessing fields in other column groups requires additional search
operations to locate specific storage positions after the primary key lookup.

Thus, moving some columns into a separate group accelerates reads for critical, frequently used columns (in the primary group) while slightly
slowing access to other columns. Additionally, column groups enable storage parameter management - selecting device types and compression
modes.

Column-Oriented Tables

Warning

Column-oriented YDB tables are in the Preview mode.

YDB's column-oriented tables store data of each column separately (independently) from each other. This data storage principle is optimized for
handling Online Analytical Processing (OLAP) workloads, as only the columns directly involved in the query are read during its execution. One of
the key advantages of this approach is the high data compression ratios since columns often contain repetitive or similar data. A downside,
however, is that operations on whole rows become more resource-intensive.

At the moment, the main use case for YDB column-oriented tables is writing data with an increasing primary key (for example, event time),
analyzing this data, and deleting outdated data based on TTL. The optimal way to add data to YDB column-oriented tables is batch upload,
performed in MB-sized blocks. Data packet insertion is atomic: data will be written either to all partitions or none.

In most cases, working with YDB column-oriented tables is similar to working with row tables, but there are differences:

Only NOT NULL columns can be used as the primary key.

Data is partitioned not by the primary key, but by the hash of the partitioning columns, to evenly distribute the data across the hosts.

Column-oriented tables support a limited set of data types:

Available in both the primary key and other columns: Date , Datetime , Timestamp , Int32 , Int64 , Uint8 , Uint16 , Uint32 ,
Uint64 , Utf8 , String ;

Available only in columns not included in the primary key: Bool , Decimal , Double , Float , Int8 , Int16 , Interval ,
JsonDocument , Json , Uuid , Yson .

Column-oriented tables support column groups, but only for compression settings.

Let's recreate the "article" table, this time in column-oriented format, using the following YQL command:

At the moment, not all functionality of column-oriented tables is implemented. The following features are not currently supported:

Reading from replicas.

CREATE TABLE article_column_table (
 id Int64 NOT NULL,
 author String,
 title String,
 body String,
 PRIMARY KEY (id)
)
WITH (STORE = COLUMN);

KEY_BLOOM_FILTER Enum ENABLED , DISABLED Yes No

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_column-groups
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#yql_reference_syntax_create_table_family
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#yql_reference_syntax_alter_table_family
https://en.wikipedia.org/wiki/LZ4
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_glossary_compaction
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#dev_batch-upload

Secondary indexes.

Vector indexes.

Bloom filters.

Change Data Capture.

Table renaming.

Custom table attributes.

Modifying the list of columns.

Adding data to column-oriented tables using the SQL INSERT statement.

Deleting data from column-oriented tables using the SQL DELETE statement. In fact, deletion is only possible after the TTL data retention time
has expired.

Partitioning Column-Oriented Tables

Unlike row-oriented YDB tables, you cannot partition column-oriented tables by primary keys but only by specially designated partitioning keys.
Partitioning keys constitute a subset of the table's primary keys.

Example of column-oriented partitioning:

Unlike data partitioning in row-oriented YDB tables, key values are not used to partition data in column-oriented tables. This way, you can uniformly
distribute data across all your existing partitions. This kind of partitioning enables you to avoid hotspots at data insertion and speeds up analytical
queries that process (that is, read) large amounts of data.

How you select partitioning keys substantially affects the performance of queries to your column-oriented tables. Learn more in Choosing keys for
maximum column-oriented table performance.

To manage data partitioning, use the AUTO_PARTITIONING_MIN_PARTITIONS_COUNT additional parameter. The system ignores other partitioning
parameters for column-oriented tables.

AUTO_PARTITIONING_MIN_PARTITIONS_COUNT sets the minimum physical number of partitions used to store data.

Type: Uint64 .

The default value is 1 .

Because it ignores all the other partitioning parameters, the system uses the same value as the upper partition limit.

CREATE TABLE article_column_table (
 id Int64 NOT NULL,
 author String,
 title String,
 body String,
 PRIMARY KEY (id)
)
PARTITION BY HASH(id)
WITH (STORE = COLUMN);

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_olap-tables-partitioning
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#dev_primary-key_column-oriented

View
A view logically represents a table formed by a given query. The view itself contains no data. The content of a view is generated every time you
SELECT from it. Thus, any changes in the underlying tables are reflected immediately in the view.

Views are often used to:

Hide query complexity

Limit access to underlying data

Provide a backward-compatible interface to emulate a table that used to exist but whose schema has changed

Warning

The scenario of creating a view to grant other users partial SELECT privileges on a table that has sensitive data has not been
implemented yet. In YDB, the view's stored query can only be executed on behalf of the user querying the view. A user cannot access
data from a view that reads from a table that they don't have privileges to SELECT from. See the security_invoker option
description on the CREATE VIEW page for details.

View Invalidation

If you drop a table that a view references, the view will become invalid. Queries against it will fail with an error caused by referencing a table that
does not exist. To make the view valid again, you must provide a queryable entity with the same name (by creating or renaming a table or another
view). It needs to have a schema compatible with the deleted one. The dependencies of views on tables and other views are not tracked. A
SELECT from a view is executed like a SELECT from a subquery would, without any prior checks of validity. You would know that the view's query

became invalid only at the moment of its execution. This approach will change in future releases: YDB will start tracking the view's dependencies,
and the default behavior would be to forbid dropping a table if there's a view referencing it.

Performance

Queries are executed in two steps:

1. Compilation

2. Execution of the compiled code

The resulting compiled code contains no evidence that the query was made using views because all the references to views should have been
replaced during compilation by the queries that they represent. In practice, there must be no difference in the execution time of the compiled code
(step 2) for queries made using views versus queries directly reading from the underlying tables.

However, users might notice a slight increase in the compilation time of the queries made using views compared to the compilation time of the
same queries written directly. It happens because a statement reading from a view:

is compiled similarly to a statement reading from a subquery:

but with an additional overhead of loading data from the schema object a_view .

Please note that if you execute the same query over and over again, like:

compilation results will be cached on the YDB server side, and you will not notice any difference in the performance of queries using views and
direct queries.

View Redefinition Lag

Warning

Execution plans of queries containing views are currently cached. It might lead to the usage of an old query plan for a short while after
a given view has been redefined. This is going to be fixed in future releases. See below for a more detailed explanation.

Query Compilation Cache

YDB caches query compilation results on the server side for efficiency. For small queries like SELECT 1; compilation can take significantly more
time than the execution.

SELECT * FROM a_view;

SELECT * FROM (SELECT * FROM underlying_table);

-- execute multiple times
SELECT * FROM hot_view;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_view
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_view_view-invalidation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_view_performance
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_view_view-redefinition-lag
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_view_query-compilation-cache
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-view_security_invoker

The cache entry is searched by the text of the query and some additional information, such as a user SID.

The cache is automatically updated by YDB to stay on track with the changes made to the objects the query references. However, in the case of
views, the cache is not updated in the same transaction in which the object's definition changes. It happens with a slight delay.

Example of the Problem

Let's consider the following situation. Alice repeatedly executes the following query:

while Bob redefines the view's query like this:

The text of Alice's query does not change, which means that the compilation will happen only once, and the results are going to be taken from the
cache since then. Bob changes the definition of the view, and the cache entry for Alice's query should theoretically be evicted from the cache in the
same transaction in which the view was redefined. However, this is not the case. Alice's query will be recompiled with a slight delay, which means
that for a short period of time, Alice's query will produce results that are inconsistent with the updated definition of the view. This is going to be fixed
in future releases.

See Also

CREATE VIEW

ALTER VIEW
DROP VIEW

-- Alice's session
SELECT * FROM some_view_which_is_going_to_be_redefined;

-- Bob's session
DROP VIEW some_view_which_is_going_to_be_redefined;
CREATE VIEW some_view_which_is_going_to_be_redefined ...;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_view_example-of-the-problem
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_view_see-also
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-view
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-view
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_drop-view

Topic
A topic in YDB is an entity for storing unstructured messages and delivering them to multiple subscribers. Basically, a topic is a named set of
messages.

A producer app writes messages to a topic. Consumer apps are independent of each other, they receive and read messages from the topic in the
order they were written there. Topics implement the publish-subscribe architectural pattern.

YDB topics have the following properties:

At-least-once delivery guarantees when messages are read by subscribers.

Exactly-once delivery guarantees when publishing messages (to ensure there are no duplicate messages).

FIFO message processing guarantees for messages published with the same source ID.

Message delivery bandwidth scaling for messages published with different sequence IDs.

Messages

Data is transferred as message streams. A message is the minimum atomic unit of user information. A message consists of a body, attributes, and
additional system properties. The content of a message is an array of bytes which is not interpreted by YDB in any way.

Messages may contain user-defined attributes in "key-value" format. They are returned along with the message body when reading the message.
User-defined attributes let the consumer decide whether it should process the message without unpacking the message body. Message attributes
are set when initializing a write session. This means that all messages written within a single write session will have the same attributes when
reading them.

Partitioning

To enable horizontal scaling, a topic is divided into partitions that are units of parallelism. Each partition has a limited throughput. The
recommended write speed is 1 MBps.

Note

As of now, you can only reduce the number of partitions in a topic by deleting and recreating a topic with a smaller number of partitions.

Partitions can be:

Active. By default, all partitions are active. Both read and write operations are allowed on an active partition.

Inactive. An inactive partition is read-only. A partition becomes inactive after splitting for autopartitioning. It is automatically deleted once all
messages are removed due to the expiration of the retention period.

Offset

All messages within a partition have a unique sequence number called an offset . An offset monotonically increases as new messages are
written.

Autopartitioning

Total topic throughput is determined by the number of partitions in the topic and the throughput of each partition. The number of partitions and the
throughput of each partition are set at the time of topic creation. If the maximum required write speed for a topic is unknown at the creation time,
autopartitioning allows the topic to be scaled automatically. If autopartitioning is enabled for a topic, the number of partitions will increase
automatically as the write speed increases (see Autopartitioning Strategies).

Guarantees

1. The SDK and server provide an exactly-once guarantee in the case of writing during a partition split. This means that any message will be
written either to the parent partition or to one of the child partitions but never to both simultaneously. Additionally, a message cannot be written
to the same partition multiple times.

2. The SDK and server maintain the reading order. Data is read from the parent partition first, followed by the child partitions.

3. As a result, the exactly-once writing guarantee and the reading order guarantee are preserved for a specific producer identifier.

Autopartitioning Strategies

The following autopartitioning strategies are available for any topic:

DISABLED

Autopartitioning is disabled for this topic. The number of partitions remains constant, and there is no automatic scaling.

The initial number of partitions is set during topic creation. If the partition count is manually adjusted, new partitions are added. Both previously
existing and new partitions are active.

UP

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_message
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_partitioning
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_offset
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_autopartitioning
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_autopartitioning_guarantee
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_autopartitioning_strategies
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_disabled
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_up
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
https://en.wikipedia.org/wiki/Message_queue
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_producer-id
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_autopartitioning
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_autopartitioning_strategies
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_producer-id

Upwards autopartitioning is enabled for this topic. This means that if the write speed to the topic increases, the number of partitions will
automatically increase. However, if the write speed decreases, the number of partitions remains unchanged.

The partition count increase algorithm works as follows: if the write speed for a partition exceeds a defined threshold (as a percentage of the
maximum write speed for that partition) during a specified period, the partition is split into two child partitions. The original partition becomes
inactive, allowing only read operations. When the retention period expires, and all messages in the original partition are deleted, the partition itself is
also deleted. The two new child partitions become active, allowing both read and write operations.

PAUSED

Autopartitioning is paused for this topic, meaning that the number of partitions does not increase automatically. If needed, you can re-enable
autopartitioning for this topic.

Examples of YQL queries for switching between different autopartitioning strategies can be found here.

Autopartitioning Constraints

The following constraints apply when using autopartitioning:

1. Once autopartitioning is enabled for a topic, it cannot be stopped, only paused.

2. When autopartitioning is enabled for a topic, it is impossible to read from or write to it using the Kafka API.

3. Autopartitioning can only be enabled on topics that use the reserved capacity mode.

Message Sources and Groups

Messages are ordered using the producer_id and message_group_id . The order of written messages is maintained within pairs: <producer
ID, message group ID> .

When used for the first time, a pair of <producer ID, message group ID> is linked to a topic's partition using the round-robin algorithm and all
messages with this pair of IDs get into the same partition. The link is removed if there are no new messages using this producer ID for 14 days.

Warning

The recommended maximum number of <producer ID, message group ID> pairs is up to 100 thousand per partition in the last 14
days.

When the Message Processing Order Is Important

Let's consider a finance application that calculates the balance on a user's account and permits or prohibits debiting the funds.

For such tasks, you can use a message queue. When you top up your account, debit funds, or make a purchase, a message with the account
ID, amount, and transaction type is registered in the queue. The application processes incoming messages and calculates the balance.

To accurately calculate the balance, the message processing order is crucial. If a user first tops up their account and then makes a purchase,
messages with details about these transactions must be processed by the app in the same order. Otherwise, there may be an error in the
business logic and the app will reject the purchase as a result of insufficient funds. There are guaranteed delivery order mechanisms, but they
cannot ensure a message order within a single queue on an arbitrary data amount.

When several application instances read messages from a stream, a message about account top-ups can be received by one instance and a
message about debiting by another. In this case, there's no guaranteed instance with accurate balance information. To avoid this issue, you
can, for example, save data in the DBMS, share information between application instances, and implement a distributed cache.

YDB can write data so that messages from one source (for example, about transactions from one account) arrive at the same application
instance. The source of a message is identified by the source_id, while the sequence number of a message from the source is used to ensure
there are no duplicate messages. YDB arranges data streams so that messages from the same source arrive at the same partition. As a result,
transaction messages for a given account will always arrive at the same partition and be processed by the application instance linked to this
partition. Each of the instances processes its own subset of partitions and there's no need to synchronize the instances.

Below is an example when all transactions on accounts with even IDs are transferred to the first instance of the application, and with odd ones
— to the second.

Why and When the Message Processing Order Is Important

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_paused
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_autopartitioning_constraints
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_producer-id
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_when-the-message-processing-order-is-important
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-topic_autopartitioning
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_kafka-api_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_partitioning
https://en.wikipedia.org/wiki/Message_queue

When the Processing Order Is Not Important

For some tasks, the message processing order is not critical. For example, it's sometimes important to simply deliver data that will then be
ordered by the storage system.

For such tasks, the 'no-deduplication' mode can be used. In this scenario, neither producer_id nor source_id are specified in write session
setup and sequence numbers are also not used for messages. The no-deduplication mode offers better performance and requires fewer
server resources, but there is no message ordering or deduplication on the server side, which means that a message sent to the server
multiple times (for example, due to network instability or writer process crash) may also be written to the topic multiple times.

Warning

We strongly recommend that you don't use random or pseudo-random source IDs. We recommend using a maximum of 100
thousand different source IDs per partition.

Source ID

A source ID is an arbitrary string up to 2048 characters long. This is usually the ID of a file server or some other ID.

Sample Source IDs

Message Group ID

A message group ID is an arbitrary string up to 2048 characters long. This is usually a file name or user ID.

Sample Message Group IDs

Type ID Description

File Server ID Files are used to store application logs. In this case, it's convenient to use the
server ID as a source ID.

User
actions

ID of the class of user actions, such
as "viewing a page", "making a
purchase", and so on.

It's important to handle user actions in the order they were performed by the user.
At the same time, there is no need to handle every single user action in one
application. In this case, it's convenient to group user actions by class.

Type ID Description

File Full file
path

All data from the server and the file it hosts will be sent to the same partition.

User
actions

User ID It's important to handle user actions in the order they were performed. In this case, it's convenient to use
the user ID as a source ID.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_no-dedup
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_source-id
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_source-id-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_group-id
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_group-id-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_producer-id
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_source-id
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_seqno

Message Sequence Numbers

All messages from the same source have a sequence number used for their deduplication. A message sequence number should monotonically
increase within a topic , source pair. If the server receives a message whose sequence number is less than or equal to the maximum number
written for the topic , source pair, the message will be skipped as a duplicate. Some sequence numbers in the sequence may be skipped.
Message sequence numbers must be unique within the topic , source pair.

Sequence numbers are not used if no-deduplication mode is enabled.

Sample Message Sequence Numbers

Message Retention Period

The message retention period is set for each topic. After it expires, messages are automatically deleted. An exception is data that hasn't been read
by an important consumer: this data will be stored until it's read.

Data Compression

When transferring data, the producer app indicates that a message can be compressed using one of the supported codecs. The codec name is
passed while writing a message, saved along with it, and returned when reading the message. Compression applies to each individual message, no
batch message compression is supported. Data is compressed and decompressed on the producer and consumer apps' end.

Supported codecs are explicitly listed in each topic. When making an attempt to write data to a topic with a codec that is not supported, a write error
occurs.

Consumer

A consumer is a named entity that reads data from a topic. A consumer contains committed consumer offsets for each topic read on their behalf.

Consumer Offset

A consumer offset is a saved offset of a consumer by each topic partition. It's saved by a consumer after sending commits of the data read. When a
new read session is established, messages are delivered to the consumer starting with the saved consumer offset. This lets users avoid saving the
consumer offset on their end.

Important Consumer

A consumer may be flagged as "important". This flag indicates that messages in a topic won't be removed until the consumer reads and confirms
them. You can set this flag for most critical consumers that need to handle all data even if there's a long idle time.

Warning

As a long timeout of an important consumer may result in full use of all available free space by unread messages, be sure to monitor
important consumers' data read lags.

Topic Protocols

To work with topics, the YDB SDK is used (see also Reference).

Kafka API version 3.4.0 is also supported with some restrictions (see Work with Kafka API).

Transactions with Topics

Type Example Description

File Offset of transferred data from the
beginning of a file

You can't delete lines from the beginning of a file, since this will lead to skipping
some data as duplicates or losing some data.

DB
table

Auto-increment record ID

Codec Description

raw No compression.

gzip Gzip compression.

lzop lzop compression.

zstd zstd compression.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_seqno
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_seqno-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_retention-time
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_message-codec
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_consumer
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_consumer-offset
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_important-consumer
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_topic-protocols
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_topic-transactions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_seqno
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_no-dedup
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_important-consumer
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_offset
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_kafka-api_index
https://en.wikipedia.org/wiki/Gzip
https://en.wikipedia.org/wiki/Lzop
https://en.wikipedia.org/wiki/Zstd

YDB supports working with topics within transactions.

Read from a Topic Within a Transaction

Topic data does not change during a read operation. Therefore, within transactional reads from a topic, only the offset commit is a true transactional
operation. The postponed offset commit occurs automatically at the transaction commit, and the SDK handles this transparently for the user.

Write into a Topic Within a Transaction

During transactional writes to a topic, data is stored outside the partition until the transaction is committed. At the transaction commit, the data is
published to the partition and appended to the end of the partition with sequential offsets. Changes made within the transaction are not visible in
transactions with topics in YDB.

Topic Transaction Constraints

There are no additional constraints when working with topics within a transaction. It is possible to write large amounts of data to a topic, write to
multiple partitions, and read with multiple consumers.

However, it is recommended to consider that data is published only at transaction commit. Therefore, if a transaction is long-running, the data will
become visible only after a significant delay.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_topic-transactions-read
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_topic-transactions-write
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_topic-transactions-constraints
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_transactions

Coordination Node
A coordination node is an object in YDB that allows client applications to coordinate their actions in a distributed manner. Typical use cases for
coordination nodes include:

Distributed semaphores and mutexes.

Service discovery.

Leader election.

Task queues.

Publishing small amounts of data with the ability to receive change notifications.

Ephemeral locking of arbitrary entities not known in advance.

Semaphores

Coordination nodes allow you to create and manage semaphores within them. Typical operations with semaphores include:

Create.

Acquire.
Release.

Describe.

Subscribe.

Delete.

A semaphore can have a counter that limits the number of simultaneous acquisitions, as well as a small amount of arbitrary data attached to it.

YDB supports two types of semaphores: persistent and ephemeral. A persistent semaphore must be created before acquisition and will exist either
until it is explicitly deleted or until the coordination node in which it was created is deleted. Ephemeral semaphores are automatically created at the
moment of their first acquisition and deleted at the last release, which is convenient to use, for example, in distributed locking scenarios.

Note

Semaphores in YDB are not recursive. Thus, semaphore acquisition and release are idempotent operations.

Usage

Working with coordination nodes and semaphores is done through dedicated methods in YDB SDK.

Similar Systems

YDB coordination nodes can solve tasks that are traditionally performed using systems such as Apache Zookeeper, etcd, Consul, and others. If a
project uses YDB for data storage along with one of these third-party systems for coordination, switching to YDB coordination nodes can reduce the
number of systems that need to be operated and maintained.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_coordination-node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_coordination-node_semaphore
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_coordination-node_usage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_coordination-node_similar-systems
https://en.wikipedia.org/wiki/Semaphore_(programming)
https://en.wikipedia.org/wiki/Mutual_exclusion
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_coordination
https://zookeeper.apache.org/
https://etcd.io/
https://www.consul.io/

Secrets

Warning

This functionality is in "Preview" mode.

To work with external data sources in YDB, federated queries are used. Federated queries utilize various access credentials for authentication in
external systems. These credentials are stored in separate objects called secrets. Secrets are only available for writing and updating; their values
cannot be retrieved.

Warning

The current syntax for working with secrets is temporary and will be changed in future releases of YDB.

Creating Secrets

Secrets are created using an SQL query:

Access Management

All rights to use the secret belong to its creator. The creator can grant another user read access to the secret through access management for
secrets.

Special objects called SECRET_ACCESS are used to manage access to secrets. To grant permission to use the secret MySecretName to the user
another_user , a SECRET_ACCESS object named MySecretName:another_user must be created:

CREATE OBJECT `MySecretName` (TYPE SECRET) WITH value=`MySecretData`;

CREATE OBJECT `MySecretName:another_user` (TYPE SECRET_ACCESS)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_secrets
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_secrets_create_secret
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_secrets_secret_access
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_secrets_secret_access

External Tables
Some external data sources, such as database management systems, store data in a structured format, while others, like S3 (Yandex Object
Storage), store data as individual files. To work with file-based data sources, you need to understand both the file placement rules and the formats
of the stored data.

A special entity, EXTERNAL TABLE , describes the stored data in such sources. External tables allow you to define the schema of the stored files and
the schema of file placement within the source.

A record in YQL might look like this:

Data can be inserted into external tables just like regular tables. For example, to write data to an external table, you need to execute the following
query:

More details on working with external tables describing S3 buckets (Object Storage) can be found in section Reading Data from an External Table
Pointing to S3 (Object Storage).

CREATE EXTERNAL TABLE s3_test_data (
 key Utf8 NOT NULL,
 value Utf8 NOT NULL
) WITH (
 DATA_SOURCE="bucket",
 LOCATION="folder",
 FORMAT="csv_with_names",
 COMPRESSION="gzip"
);

INSERT INTO s3_test_data
SELECT * FROM Table

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_external_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_external_data_source
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_external_table

External Data Sources
An external data source is an object in YDB that describes the connection parameters to an external data source. For example, in the case of
ClickHouse, the external data source describes the network address, login, and password for authentication in the ClickHouse cluster. In the case
of S3 (Object Storage), it describes the access credentials and the path to the bucket.

The following example demonstrates creating an external data source pointing to a ClickHouse cluster:

After creating an external data source, you can read data from the created EXTERNAL DATA SOURCE object. The example below illustrates reading
data from the test_table table in the default database in the ClickHouse cluster:

External data sources allow execution of federated queries for cross-system data analytics tasks.

The following data sources can be used:

ClickHouse

PostgreSQL

Connections to S3 (Object Storage)

CREATE EXTERNAL DATA SOURCE test_data_source WITH (
 SOURCE_TYPE="ClickHouse",
 LOCATION="192.168.1.1:8123",
 DATABASE_NAME="default",
 AUTH_METHOD="BASIC",
 USE_TLS="TRUE",
 LOGIN="login",
 PASSWORD_SECRET_NAME="test_password_name",
 PROTOCOL="NATIVE"
);

SELECT * FROM test_data_source.test_table;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_external_data_source
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_clickhouse
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_postgresql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_external_data_source

Federated Queries
Federated queries allow retrieving information from various data sources without needing to transfer the data from these sources into YDB storage.
Currently, federated queries support interaction with ClickHouse, PostgreSQL, and S3-compatible data stores. Using YQL queries, you can access
these databases without the need to duplicate data between systems.

To work with data stored in external DBMSs, it is sufficient to create an external data source. To work with unstructured data stored in S3 buckets,
you additionally need to create an external table. In both cases, it is necessary to create secrets objects first that store confidential data required for
authentication in external systems.

You can learn about the internals of the federated query processing system in the architecture section. Detailed information on working with various
data sources is provided in the corresponding sections:

ClickHouse

Greenplum

MySQL

PostgreSQL

S3

YDB

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_external_data_source
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_external_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_secrets
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_architecture
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_clickhouse
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_greenplum
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_mysql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_postgresql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_external_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_ydb

Federated Query Processing System Architecture

External Data Sources and External Tables

A key element of the federated query processing system in YDB is the concept of an external data source. Such sources can include relational
DBMS, object storage, and other data storage systems. When processing a federated query, YDB streams data from external systems and allows
performing the same range of operations on them as on local data.

To work with data located in external systems, YDB must have information about the internal structure of this data (e.g., the number, names, and
types of columns in tables). Some sources provide such metadata along with the data itself, whereas for other unschematized sources, this
metadata must be provided externally. This latter purpose is served by external tables.

Once external data sources and (if necessary) external tables are registered in YDB, the client can proceed to describe federated queries.

Connectors

While executing federated queries, YDB needs to access external data storage systems over the network, for which it uses their client libraries.
Including such dependencies negatively affects the codebase size, compilation time, and binary file size of YDB, as well as the product's overall
stability.

The list of supported data sources for federated queries is constantly expanding. The most popular sources, such as S3, are natively supported by
YDB. However, not all users require support for all sources simultaneously. Support can be optionally enabled using connectors - special
microservices implementing a unified interface for accessing external data sources.

The functions of connectors include:

Translating YQL queries into queries in the language specific to the external source (e.g., into another SQL dialect or HTTP API calls).

Establishing network connections with data sources.

Converting data retrieved from external sources into a columnar format in Arrow IPC Stream format, supported by YDB.

Thus, connectors form an abstraction layer that hides the specifics of external data sources from YDB. The concise connector interface makes it
easy to expand the list of supported sources with minimal changes to YDB's code.

Users can deploy one of the ready-made connectors or write their own implementation in any programming language according to the gRPC
specification.

List of Supported External Data Sources

Source Support

ClickHouse Via connector fq-connector-go

Greenplum Via connector fq-connector-go

Microsoft SQL Server Via connector fq-connector-go

MySQL Via connector fq-connector-go

PostgreSQL Via connector fq-connector-go

S3 Built into ydbd

YDB Via connector fq-connector-go

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_architecture
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_architecture_external-data-sources-and-external-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_architecture_connectors
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_architecture_supported-datasources
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_external_data_source
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_external_table
https://arrow.apache.org/docs/format/Columnar.html#serialization-and-interprocess-communication-ipc
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_federated-queries_connector-deployment
https://github.com/ydb-platform/ydb/tree/main/ydb/library/yql/providers/generic/connector/api
https://clickhouse.com/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_federated-queries_connector-deployment_fq-connector-go
https://www.greenplum.org/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_federated-queries_connector-deployment_fq-connector-go
https://learn.microsoft.com/en-us/sql/?view=sql-server-ver16
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_federated-queries_connector-deployment_fq-connector-go
https://www.mysql.com/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_federated-queries_connector-deployment_fq-connector-go
https://www.postgresql.org/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_federated-queries_connector-deployment_fq-connector-go
https://aws.amazon.com/s3/
https://ydb.tech/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_federated-queries_connector-deployment_fq-connector-go

Working with ClickHouse Databases
This section describes the basic information about working with the external ClickHouse database ClickHouse.

To work with the external ClickHouse database, the following steps must be completed:

1. Create a secret containing the password to connect to the database.

2. Create an external data source describing the target database inside the ClickHouse cluster. To connect to ClickHouse, you can use either the
native TCP protocol (PROTOCOL="NATIVE") or the HTTP protocol (PROTOCOL="HTTP"). To enable encryption for connections to the external
database, use the USE_TLS="TRUE" parameter.

3. Deploy the connector and configure the YDB dynamic nodes to interact with it. Additionally, ensure network access from the YDB dynamic
nodes to the external data source (at the address specified in the LOCATION parameter of the CREATE EXTERNAL DATA SOURCE request). If
network connection encryption to the external source was enabled in the previous step, the connector will use the system's root certificates.
More details on TLS configuration can be found in the guide on deploying the connector.

4. Execute a query to the database.

Query Syntax

To work with ClickHouse, use the following SQL query form:

Where:

clickhouse_datasource is the identifier of the external data source;

<table_name> is the table's name within the external data source.

Limitations

There are several limitations when working with ClickHouse clusters:

1. External sources are available only for reading data through SELECT queries. The federated query processing engine currently does not
support queries that modify tables in external sources.

2. If the date value stored in the external data source is outside the allowed range for YDB (all dates used must be later than 1970-01-01 but
earlier than 2105-12-31), such a value in YDB will be converted to NULL .

3. The YDB federated query processing system is capable of delegating the execution of certain parts of a query to the system acting as the data
source. Query fragments are passed through YDB directly to the external system and processed within it. This optimization, known as
"predicate pushdown", significantly reduces the volume of data transferred from the source to the federated query processing engine. This
reduces network load and saves computational resources for YDB.

A specific case of predicate pushdown, where filtering expressions specified after the WHERE keyword are passed down, is called "filter
pushdown". Filter pushdown is possible when using:

Supported data types for filter pushdown:

CREATE OBJECT clickhouse_datasource_user_password (TYPE SECRET) WITH (value = "<password>");

CREATE EXTERNAL DATA SOURCE clickhouse_datasource WITH (
 SOURCE_TYPE="ClickHouse",
 LOCATION="<host>:<port>",
 DATABASE_NAME="<database>",
 AUTH_METHOD="BASIC",
 LOGIN="<login>",
 PASSWORD_SECRET_NAME="clickhouse_datasource_user_password",
 PROTOCOL="NATIVE",
 USE_TLS="TRUE"
);

SELECT * FROM clickhouse_datasource.<table_name>

Description Example

Filters like IS NULL / IS NOT NULL WHERE column1 IS NULL or
WHERE column1 IS NOT NULL

Logical conditions OR , NOT , AND WHERE column IS NULL OR column2 IS NOT NULL

Comparison conditions = , <> , < , <= , > , >= with other columns
or constants

WHERE column3 > column4 OR column5 <= 10

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_clickhouse
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_clickhouse_query
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_clickhouse_limitations
https://clickhouse.com/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_secrets
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_external_data_source
https://clickhouse.com/docs/en/interfaces/tcp
https://clickhouse.com/docs/en/interfaces/http
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#devops_manual_federated-queries_connector-deployment
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_clickhouse_query

Supported Data Types

By default, ClickHouse columns cannot physically contain NULL values. However, users can create tables with columns of optional or nullable
types. The column types displayed in YDB when extracting data from the external ClickHouse database will depend on whether primitive or optional
types are used in the ClickHouse table. Due to the previously discussed limitations of YDB types used to store dates and times, all similar
ClickHouse types are displayed in YDB as optional.

Below are the mapping tables for ClickHouse and YDB types. All other data types, except those listed, are not supported.

Primitive Data Types

YDB Data Type

Bool

Int8

Uint8

Int16

Uint16

Int32

Uint32

Int64

Uint64

Float

Double

ClickHouse data
type

YDB data type Notes

Bool Bool

Int8 Int8

UInt8 Uint8

Int16 Int16

UInt16 Uint16

Int32 Int32

UInt32 Uint32

Int64 Int64

UInt64 Uint64

Float32 Float

Float64 Double

Date Date

Date32 Optional<Date> Valid date range from 1970-01-01 to 2105-12-31. Values outside this range return
NULL .

DateTime Optional<DateTime> Valid time range from 1970-01-01 00:00:00 to 2105-12-31 23:59:59. Values outside
this range return NULL .

DateTime64 Optional<Timestamp> Valid time range from 1970-01-01 00:00:00 to 2105-12-31 23:59:59. Values outside
this range return NULL .

String String

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_clickhouse_supported-data-types
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_clickhouse_primitive-data-types
https://clickhouse.com/docs/en/sql-reference/data-types/nullable
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_optional

Optional Data Types

FixedString String Null bytes in FixedString are transferred to String unchanged.

ClickHouse data type YDB data type Notes

Nullable(Bool) Optional<Bool>

Nullable(Int8) Optional<Int8>

Nullable(UInt8) Optional<Uint8>

Nullable(Int16) Optional<Int16>

Nullable(UInt16) Optional<Uint16>

Nullable(Int32) Optional<Int32>

Nullable(UInt32) Optional<Uint32>

Nullable(Int64) Optional<Int64>

Nullable(UInt64) Optional<Uint64>

Nullable(Float32) Optional<Float>

Nullable(Float64) Optional<Double>

Nullable(Date) Optional<Date>

Nullable(Date32) Optional<Date> Valid date range from 1970-01-01 to 2105-12-31. Values outside this range
return NULL .

Nullable(DateTime) Optional<DateTime> Valid time range from 1970-01-01 00:00:00 to 2105-12-31 23:59:59. Values
outside this range return NULL .

Nullable(DateTime64) Optional<Timestamp> Valid time range from 1970-01-01 00:00:00 to 2105-12-31 23:59:59. Values
outside this range return NULL .

Nullable(String) Optional<String>

Nullable(FixedString) Optional<String> Null bytes in FixedString are transferred to String unchanged.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_clickhouse_optional-data-types

Working with Greenplum Databases
This section provides basic information on working with external Greenplum databases. Since Greenplum is based on PostgreSQL, integrations
with them are similar, and some links below may lead to PostgreSQL documentation.

Follow these steps to work with an external Greenplum database:

1. Create a secret containing the password for connecting to the database.

2. Create an external data source that describes a specific database within the Greenplum cluster. In the LOCATION parameter, pass the network
address of the master node of Greenplum. By default, the namespace public is used for reading, but this value can be changed using the
optional SCHEMA parameter. The network connection is made using the standard Frontend/Backend Protocol over TCP transport
(PROTOCOL="NATIVE"). You can enable encryption of connections to the external database using the USE_TLS="TRUE" parameter.

3. Deploy the connector and configure the YDB dynamic nodes to interact with it. Additionally, ensure network access from the YDB dynamic
nodes to the external data source (at the address specified in the LOCATION parameter of the CREATE EXTERNAL DATA SOURCE request). If
network connection encryption to the external source was enabled in the previous step, the connector will use the system's root certificates.
More details on TLS configuration can be found in the guide on deploying the connector.

4. Execute a query to the database.

Query Syntax

The following SQL query format is used to work with Greenplum:

where:

greenplum_datasource - identifier of the external data source;

<table_name> - table name within the external data source.

Limitations

When working with Greenplum clusters, there are a number of limitations:

1. External sources are available only for reading data through SELECT queries. The federated query processing engine currently does not
support queries that modify tables in external sources.

2. If the date value stored in the external data source is outside the allowed range for YDB (all dates used must be later than 1970-01-01 but
earlier than 2105-12-31), such a value in YDB will be converted to NULL .

3. The YDB federated query processing system is capable of delegating the execution of certain parts of a query to the system acting as the data
source. Query fragments are passed through YDB directly to the external system and processed within it. This optimization, known as
"predicate pushdown", significantly reduces the volume of data transferred from the source to the federated query processing engine. This
reduces network load and saves computational resources for YDB.

A specific case of predicate pushdown, where filtering expressions specified after the WHERE keyword are passed down, is called "filter
pushdown". Filter pushdown is possible when using:

CREATE OBJECT greenplum_datasource_user_password (TYPE SECRET) WITH (value = "<password>");

CREATE EXTERNAL DATA SOURCE greenplum_datasource WITH (
 SOURCE_TYPE="Greenplum",
 LOCATION="<host>:<port>",
 DATABASE_NAME="<database>",
 AUTH_METHOD="BASIC",
 LOGIN="user",
 PASSWORD_SECRET_NAME="greenplum_datasource_user_password",
 PROTOCOL="NATIVE",
 USE_TLS="TRUE",
 SCHEMA="<schema>"
);

SELECT * FROM greenplum_datasource.<table_name>

Description Example

Filters like IS NULL / IS NOT NULL WHERE column1 IS NULL or
WHERE column1 IS NOT NULL

Logical conditions OR , NOT , AND WHERE column IS NULL OR column2 IS NOT NULL

Comparison conditions = , <> , < , <= , > , >= with other columns
or constants

WHERE column3 > column4 OR column5 <= 10

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_greenplum
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_greenplum_query
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_greenplum_limitations
https://greenplum.org/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_postgresql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_secrets
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_external_data_source
https://greenplum.org/introduction-to-greenplum-architecture/
https://docs.vmware.com/en/VMware-Greenplum/6/greenplum-database/ref_guide-system_catalogs-pg_namespace.html
https://www.postgresql.org/docs/current/protocol.html
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#devops_manual_federated-queries_connector-deployment
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_greenplum_query

Supported data types for filter pushdown:

Supported Data Types

In the Greenplum database, the optionality of column values (whether a column can contain NULL values) is not part of the data type system. The
NOT NULL constraint for each column is implemented as the attnotnull attribute in the system catalog pg_attribute, i.e., at the metadata level of

the table. Therefore, all basic Greenplum types can contain NULL values by default, and in the YDB type system, they should be mapped to
optional types.

Below is a correspondence table between Greenplum and YDB types. All other data types, except those listed, are not supported.

YDB Data Type

Bool

Int8

Int16

Int32

Int64

Float

Double

Greenplum Data
Type

YDB Data Type Notes

boolean Optional<Bool>

smallint Optional<Int16>

int2 Optional<Int16>

integer Optional<Int32>

int Optional<Int32>

int4 Optional<Int32>

serial Optional<Int32>

serial4 Optional<Int32>

bigint Optional<Int64>

int8 Optional<Int64>

bigserial Optional<Int64>

serial8 Optional<Int64>

real Optional<Float>

float4 Optional<Float>

double precision Optional<Double>

float8 Optional<Double>

json Optional<Json>

date Optional<Date> Valid date range from 1970-01-01 to 2105-12-31. Values outside this range return
NULL .

timestamp Optional<Timestamp> Valid time range from 1970-01-01 00:00:00 to 2105-12-31 23:59:59. Values
outside this range return NULL .

bytea Optional<String>

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_greenplum_supported-data-types
https://www.postgresql.org/docs/current/catalog-pg-attribute.html
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_optional

character Optional<Utf8> Default collation rules, string padded with spaces to the required length.

character varying Optional<Utf8> Default collation rules.

text Optional<Utf8> Default collation rules.

https://www.postgresql.org/docs/current/collation.html
https://www.postgresql.org/docs/current/collation.html
https://www.postgresql.org/docs/current/collation.html

Working with Microsoft SQL Server Databases
This section provides basic information about working with external Microsoft SQL Server databases.

To work with an external Microsoft SQL Server database, you need to follow these steps:

1. Create a secret containing the password for connecting to the database.

2. Create an external data source that describes a specific Microsoft SQL Server database. The LOCATION parameter contains the network
address of the Microsoft SQL Server instance to connect to. The DATABASE_NAME specifies the database name (for example, master). The
LOGIN and PASSWORD_SECRET_NAME parameters are used for authentication to the external database. You can enable encryption for

connections to the external database using the USE_TLS="TRUE" parameter.

3. Deploy the connector and configure the YDB dynamic nodes to interact with it. Additionally, ensure network access from the YDB dynamic
nodes to the external data source (at the address specified in the LOCATION parameter of the CREATE EXTERNAL DATA SOURCE request). If
network connection encryption to the external source was enabled in the previous step, the connector will use the system's root certificates.
More details on TLS configuration can be found in the guide on deploying the connector.

4. Execute a query to the database.

Query Syntax

The following SQL query format is used to work with Microsoft SQL Server:

where:

ms_sql_server_datasource - the external data source identifier;

<table_name> - the table name within the external data source.

Limitations

When working with Microsoft SQL Server clusters, there are a number of limitations:

1. External sources are available only for reading data through SELECT queries. The federated query processing engine currently does not
support queries that modify tables in external sources.

2. If the date value stored in the external data source is outside the allowed range for YDB (all dates used must be later than 1970-01-01 but
earlier than 2105-12-31), such a value in YDB will be converted to NULL .

3. The YDB federated query processing system is capable of delegating the execution of certain parts of a query to the system acting as the data
source. Query fragments are passed through YDB directly to the external system and processed within it. This optimization, known as
"predicate pushdown", significantly reduces the volume of data transferred from the source to the federated query processing engine. This
reduces network load and saves computational resources for YDB.

A specific case of predicate pushdown, where filtering expressions specified after the WHERE keyword are passed down, is called "filter
pushdown". Filter pushdown is possible when using:

Supported data types for filter pushdown:

CREATE OBJECT ms_sql_server_datasource_user_password (TYPE SECRET) WITH (value = "<password>");

CREATE EXTERNAL DATA SOURCE ms_sql_server_datasource WITH (
 SOURCE_TYPE="Microsoft SQL Server",
 LOCATION="<host>:<port>",
 DATABASE_NAME="<database>",
 AUTH_METHOD="BASIC",
 LOGIN="user",
 PASSWORD_SECRET_NAME="ms_sql_server_datasource_user_password",
 USE_TLS="TRUE"
);

SELECT * FROM ms_sql_server_datasource.<table_name>

Description Example

Filters like IS NULL / IS NOT NULL WHERE column1 IS NULL or
WHERE column1 IS NOT NULL

Logical conditions OR , NOT , AND WHERE column IS NULL OR column2 IS NOT NULL

Comparison conditions = , <> , < , <= , > , >= with other columns
or constants

WHERE column3 > column4 OR column5 <= 10

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_ms_sql_server
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_ms_sql_server_query
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_ms_sql_server_limitations
https://learn.microsoft.com/en-us/sql/?view=sql-server-ver16
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_secrets
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_external_data_source
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#devops_manual_federated-queries_connector-deployment
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_ms_sql_server_query

Supported Data Types

In the Microsoft SQL Server database, the optionality of column values (whether the column can contain NULL values or not) is not a part of the
data type system. The NOT NULL constraint for any column of any table is stored within the IS_NULLABLE column in the
INFORMATION_SCHEMA.COLUMNS system table, i.e., at the table metadata level. Therefore, all basic Microsoft SQL Server types can contain
NULL values by default, and in the YDB type system, they should be mapped to optional.

Below is a correspondence table between Microsoft SQL Server types and YDB types. All other data types, except those listed, are not supported.

YDB Data Type

Bool

Int8

Int16

Int32

Int64

Float

Double

Microsoft SQL Server Data
Type

YDB Data Type Notes

bit Optional<Bool>

tinyint Optional<Int8>

smallint Optional<Int16>

int Optional<Int32>

bigint Optional<Int64>

real Optional<Float>

float Optional<Double>

date Optional<Date> Valid date range from 1970-01-01 to 2105-12-31. Values outside this range
return NULL .

smalldatetime Optional<Datetime> Valid time range from 1970-01-01 00:00:00 to 2105-12-31 23:59:59. Values
outside this range return NULL .

datetime Optional<Timestamp> Valid time range from 1970-01-01 00:00:00 to 2105-12-31 23:59:59. Values
outside this range return NULL .

datetime2 Optional<Timestamp> Valid time range from 1970-01-01 00:00:00 to 2105-12-31 23:59:59. Values
outside this range return NULL .

binary Optional<String>

varbinary Optional<String>

image Optional<String>

char Optional<Utf8>

varchar Optional<Utf8>

text Optional<Utf8>

nchar Optional<Utf8>

nvarchar Optional<Utf8>

ntext Optional<Utf8>

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_ms_sql_server_supported-data-types
https://learn.microsoft.com/en-us/sql/relational-databases/system-information-schema-views/columns-transact-sql?view=sql-server-ver16
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_optional

Working with MySQL Databases
This section provides basic information about working with external MySQL databases.

To work with an external MySQL database, you need to follow these steps:

1. Create a secret containing the password for connecting to the database.

2. Create an external data source that describes a specific MySQL database. The LOCATION parameter contains the network address of the
MySQL instance to connect to. The DATABASE_NAME specifies the database name (for example, mysql). The LOGIN and
PASSWORD_SECRET_NAME parameters are used for authentication to the external database. You can enable encryption for connections to the

external database using the USE_TLS="TRUE" parameter.

3. Deploy the connector and configure the YDB dynamic nodes to interact with it. Additionally, ensure network access from the YDB dynamic
nodes to the external data source (at the address specified in the LOCATION parameter of the CREATE EXTERNAL DATA SOURCE request). If
network connection encryption to the external source was enabled in the previous step, the connector will use the system's root certificates.
More details on TLS configuration can be found in the guide on deploying the connector.

4. Execute a query to the database.

Query Syntax

The following SQL query format is used to work with MySQL:

where:

mysql_datasource - the external data source identifier;

<table_name> - the table name within the external data source.

Limitations

When working with MySQL clusters, there are a number of limitations:

1. External sources are available only for reading data through SELECT queries. The federated query processing engine currently does not
support queries that modify tables in external sources.

2. If the date value stored in the external data source is outside the allowed range for YDB (all dates used must be later than 1970-01-01 but
earlier than 2105-12-31), such a value in YDB will be converted to NULL .

3. The YDB federated query processing system is capable of delegating the execution of certain parts of a query to the system acting as the data
source. Query fragments are passed through YDB directly to the external system and processed within it. This optimization, known as
"predicate pushdown", significantly reduces the volume of data transferred from the source to the federated query processing engine. This
reduces network load and saves computational resources for YDB.

A specific case of predicate pushdown, where filtering expressions specified after the WHERE keyword are passed down, is called "filter
pushdown". Filter pushdown is possible when using:

Supported data types for filter pushdown:

CREATE OBJECT mysql_datasource_user_password (TYPE SECRET) WITH (value = "<password>");

CREATE EXTERNAL DATA SOURCE mysql_datasource WITH (
 SOURCE_TYPE="MySQL",
 LOCATION="<host>:<port>",
 DATABASE_NAME="<database>",
 AUTH_METHOD="BASIC",
 LOGIN="user",
 PASSWORD_SECRET_NAME="mysql_datasource_user_password",
 USE_TLS="TRUE"
);

SELECT * FROM mysql_datasource.<table_name>

Description Example

Filters like IS NULL / IS NOT NULL WHERE column1 IS NULL or
WHERE column1 IS NOT NULL

Logical conditions OR , NOT , AND WHERE column IS NULL OR column2 IS NOT NULL

Comparison conditions = , <> , < , <= , > , >= with other columns
or constants

WHERE column3 > column4 OR column5 <= 10

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_mysql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_mysql_query
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_mysql_limitations
https://www.mysql.com/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_secrets
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_external_data_source
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#devops_manual_federated-queries_connector-deployment
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_mysql_query

Supported Data Types

In the MySQL database, the optionality of column values (whether the column can contain NULL values or not) is not a part of the data type
system. The NOT NULL constraint for any column of any table is stored within the IS_NULLABLE column in the
INFORMATION_SCHEMA.COLUMNS system table, i.e., at the table metadata level. Therefore, all basic MySQL types can contain NULL values
by default, and in the YDB type system they should be mapped to optional.

Below is a correspondence table between MySQL types and YDB types. All other data types, except those listed, are not supported.

YDB Data Type

Bool

Int8

Uint8

Int16

Uint16

Int32

Uint32

Int64

Uint64

Float

Double

MySQL Data Type YDB Data Type Notes

bool Optional<Bool>

tinyint Optional<Int8>

tinyint unsigned Optional<Uint8>

smallint Optional<Int16>

smallint unsigned Optional<Uint16>

mediumint Optional<Int32>

mediumint unsigned Optional<Uint32>

int Optional<Int32>

int unsigned Optional<Uint32>

bigint Optional<Int64>

bigint unsigned Optional<Uint64>

float Optional<Float>

real Optional<Float>

double Optional<Double>

date Optional<Date> Valid date range from 1970-01-01 to 2105-12-31. Values outside this range return
NULL .

datetime Optional<Timestamp> Valid time range from 1970-01-01 00:00:00 to 2105-12-31 23:59:59. Values
outside this range return NULL .

timestamp Optional<Timestamp> Valid time range from 1970-01-01 00:00:00 to 2105-12-31 23:59:59. Values
outside this range return NULL .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_mysql_supported-data-types
https://dev.mysql.com/doc/refman/8.4/en/information-schema-columns-table.html
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_optional

tinyblob Optional<String>

blob Optional<String>

mediumblob Optional<String>

longblob Optional<String>

tinytext Optional<String>

text Optional<String>

mediumtext Optional<String>

longtext Optional<String>

char Optional<Utf8>

varchar Optional<Utf8>

binary Optional<String>

varbinary Optional<String>

json Optional<Json>

Working with PostgreSQL Databases
This section provides basic information on working with external PostgreSQL databases.

To work with an external PostgreSQL database, you need to follow these steps:

1. Create a secret containing the password for connecting to the database.

2. Create an external data source that describes a specific database within the PostgreSQL cluster. By default, the namespace public is used
for reading, but this value can be changed using the optional SCHEMA parameter. The network connection is made using the standard
(Frontend/Backend Protocol) over TCP transport (PROTOCOL="NATIVE"). You can enable encryption of connections to the external database
using the USE_TLS="TRUE" parameter.

3. Deploy the connector and configure the YDB dynamic nodes to interact with it. Additionally, ensure network access from the YDB dynamic
nodes to the external data source (at the address specified in the LOCATION parameter of the CREATE EXTERNAL DATA SOURCE request). If
network connection encryption to the external source was enabled in the previous step, the connector will use the system's root certificates.
More details on TLS configuration can be found in the guide on deploying the connector.

4. Execute a query to the database.

Query Syntax

The following SQL query format is used to work with PostgreSQL:

where:

postgresql_datasource - identifier of the external data source;

<table_name> - table name within the external data source.

Limitations

When working with PostgreSQL clusters, there are a number of limitations:

1. External sources are available only for reading data through SELECT queries. The federated query processing engine currently does not
support queries that modify tables in external sources.

2. If the date value stored in the external data source is outside the allowed range for YDB (all dates used must be later than 1970-01-01 but
earlier than 2105-12-31), such a value in YDB will be converted to NULL .

3. The YDB federated query processing system is capable of delegating the execution of certain parts of a query to the system acting as the data
source. Query fragments are passed through YDB directly to the external system and processed within it. This optimization, known as
"predicate pushdown", significantly reduces the volume of data transferred from the source to the federated query processing engine. This
reduces network load and saves computational resources for YDB.

A specific case of predicate pushdown, where filtering expressions specified after the WHERE keyword are passed down, is called "filter
pushdown". Filter pushdown is possible when using:

CREATE OBJECT postgresql_datasource_user_password (TYPE SECRET) WITH (value = "<password>");

CREATE EXTERNAL DATA SOURCE postgresql_datasource WITH (
 SOURCE_TYPE="PostgreSQL",
 LOCATION="<host>:<port>",
 DATABASE_NAME="<database>",
 AUTH_METHOD="BASIC",
 LOGIN="user",
 PASSWORD_SECRET_NAME="postgresql_datasource_user_password",
 PROTOCOL="NATIVE",
 USE_TLS="TRUE",
 SCHEMA="<schema>"
);

SELECT * FROM postgresql_datasource.<table_name>

Description Example

Filters like IS NULL / IS NOT NULL WHERE column1 IS NULL or
WHERE column1 IS NOT NULL

Logical conditions OR , NOT , AND WHERE column IS NULL OR column2 IS NOT NULL

Comparison conditions = , <> , < , <= , > , >= with other columns
or constants

WHERE column3 > column4 OR column5 <= 10

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_postgresql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_postgresql_query
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_postgresql_limitations
http://postgresql.org/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_secrets
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_external_data_source
https://www.postgresql.org/docs/current/catalog-pg-namespace.html
https://www.postgresql.org/docs/current/protocol.html
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#devops_manual_federated-queries_connector-deployment
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_postgresql_query

Supported data types for filter pushdown:

Supported Data Types

In the PostgreSQL database, the optionality of column values (whether a column can contain NULL values) is not part of the data type system. The
NOT NULL constraint for each column is implemented as the attnotnull attribute in the system catalog pg_attribute, i.e., at the metadata level of

the table. Therefore, all basic PostgreSQL types can contain NULL values by default, and in the YDB type system, they should be mapped to
optional types.

Below is a correspondence table between PostgreSQL and YDB types. All other data types, except those listed, are not supported.

YDB Data Type

Bool

Int8

Int16

Int32

Int64

Float

Double

PostgreSQL Data
Type

YDB Data Type Notes

boolean Optional<Bool>

smallint Optional<Int16>

int2 Optional<Int16>

integer Optional<Int32>

int Optional<Int32>

int4 Optional<Int32>

serial Optional<Int32>

serial4 Optional<Int32>

bigint Optional<Int64>

int8 Optional<Int64>

bigserial Optional<Int64>

serial8 Optional<Int64>

real Optional<Float>

float4 Optional<Float>

double precision Optional<Double>

float8 Optional<Double>

date Optional<Date> Valid date range from 1970-01-01 to 2105-12-31. Values outside this range return
NULL .

timestamp Optional<Timestamp> Valid time range from 1970-01-01 00:00:00 to 2105-12-31 23:59:59. Values
outside this range return NULL .

bytea Optional<String>

character Optional<Utf8> Default collation rules, string padded with spaces to the required length.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_postgresql_supported-data-types
https://www.postgresql.org/docs/current/catalog-pg-attribute.html
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_optional
https://www.postgresql.org/docs/current/collation.html

character varying Optional<Utf8> Default collation rules.

text Optional<Utf8> Default collation rules.

json Optional<Json>

https://www.postgresql.org/docs/current/collation.html
https://www.postgresql.org/docs/current/collation.html

Working with YDB Databases
YDB can act as an external data source for another YDB database. This section discusses the organization of collaboration between two
independent YDB databases in federated query processing mode.

To connect to an external YDB database from another YDB database acting as the federated query engine, the following steps need to be
performed on the latter:

1. Prepare authentication data to access the remote YDB database. Currently, in federated queries to YDB, the only available authentication
method is login and password (other methods are not supported). The password to the external database is stored as a secret:

2. Create an external data source describing the external YDB database. The LOCATION parameter contains the network address of the YDB
instance to which the network connection is made. The DATABASE_NAME specifies the name of the database (e.g., local). For authentication
to the external database, the LOGIN and PASSWORD_SECRET_NAME parameters are used. Encryption of connections to the external database
can be enabled using the USE_TLS="TRUE" parameter. If encryption is enabled, the <port> field in the LOCATION parameter should specify
the gRPCs port of the external YDB; otherwise, the gRPC port should be specified.

3. Deploy the connector and configure the YDB dynamic nodes to interact with it. Additionally, ensure network access from the YDB dynamic
nodes to the external data source (at the address specified in the LOCATION parameter of the CREATE EXTERNAL DATA SOURCE request). If
network connection encryption to the external source was enabled in the previous step, the connector will use the system's root certificates.
More details on TLS configuration can be found in the guide on deploying the connector.

4. Execute a query to the external data source.

Query Syntax

To retrieve data from tables of the external YDB database, the following form of SQL query is used:

Where:

ydb_datasource - identifier of the external data source;

<table_name> - full name of the table within the hierarchy of directories in the YDB database, e.g., table , dir1/table1 , or
dir1/dir2/table3 .

If the table is at the top level of the hierarchy (not belonging to any directories), it is permissible not to enclose the table name in backticks "`":

Limitations

There are several limitations when working with external YDB data sources:

1. External sources are available only for reading data through SELECT queries. The federated query processing engine currently does not
support queries that modify tables in external sources.

2. The YDB federated query processing system is capable of delegating the execution of certain parts of a query to the system acting as the data
source. Query fragments are passed through YDB directly to the external system and processed within it. This optimization, known as
"predicate pushdown", significantly reduces the volume of data transferred from the source to the federated query processing engine. This
reduces network load and saves computational resources for YDB.

A specific case of predicate pushdown, where filtering expressions specified after the WHERE keyword are passed down, is called "filter
pushdown". Filter pushdown is possible when using:

CREATE OBJECT ydb_datasource_user_password (TYPE SECRET) WITH (value = "<password>");

CREATE EXTERNAL DATA SOURCE ydb_datasource WITH (
 SOURCE_TYPE="Ydb",
 LOCATION="<host>:<port>",
 DATABASE_NAME="<database>",
 AUTH_METHOD="BASIC",
 LOGIN="user",
 PASSWORD_SECRET_NAME="ydb_datasource_user_password",
 USE_TLS="TRUE"
);

SELECT * FROM ydb_datasource.`<table_name>`

SELECT * FROM ydb_datasource.<table_name>

Description Example

Filters like IS NULL / IS NOT NULL WHERE column1 IS NULL or
WHERE column1 IS NOT NULL

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_ydb_query
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_ydb_limitations
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_static-credentials
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_secrets
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_external_data_source
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#devops_manual_federated-queries_connector-deployment
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_ydb_query
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_index_ydb-hierarchy

Supported data types for filter pushdown:

Supported Data Types

When working with tables located in the external YDB database, users have access to a limited set of data types. All other types, except for those
listed below, are not supported. In some cases the type conversion is performed, meaning that the columns of the table from the external YDB
database may change their type after being read by the YDB database processing the federated query.

Logical conditions OR , NOT , AND WHERE column IS NULL OR column2 IS NOT NULL

Comparison conditions = , <> , < , <= , > , >= with other columns
or constants

WHERE column3 > column4 OR column5 <= 10

YDB Data Type

Bool

Int8

Uint8

Int16

Uint16

Int32

Uint32

Int64

Uint64

Float

Double

String

Utf8

External YDB data type Federated YDB data type

Bool Bool

Int8 Int8

Int16 Int16

Int32 Int32

Int64 Int64

Uint8 Uint8

Uint16 Uint16

Uint32 Uint32

Uint64 Uint64

Float Float

Double Double

String String

Utf8 Utf8

Date Date

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_ydb_supported-data-types

Datetime Datetime

Timestamp Timestamp

Json Json

JsonDocument Json

Working with S3 Buckets (Yandex Object Storage)
To work with S3, you need to set up a data storage connection. There is a DDL for configuring such connections. Next, let's look at the SQL syntax
and the management of these settings.

There are two types of buckets in S3: public and private. To connect to a public bucket, use AUTH_METHOD="NONE" . To connect to a private bucket,
use AUTH_METHOD="AWS" . A detailed description of AWS can be found here. AUTH_METHOD="NONE" means that no authentication is used. If
AUTH_METHOD="AWS" is specified, several additional parameters are required:

AWS_ACCESS_KEY_ID_SECRET_NAME – reference to the name of the secret where AWS_ACCESS_KEY_ID is stored.

AWS_SECRET_ACCESS_KEY_SECRET_NAME – reference to the name of the secret where AWS_SECRET_ACCESS_KEY is stored.

AWS_REGION – region from which reading is performed, for example, ru-central-1 .

To set up a connection to a public bucket, execute the following SQL query. The query creates an external connection named object_storage ,
which points to a specific S3 bucket named bucket .

To set up a connection to a private bucket, you need to run a few SQL queries. First, create secrets containing AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY .

The next step is to create an external connection named object_storage , which points to a specific S3 bucket named bucket and uses
AUTH_METHOD="AWS" . The parameters AWS_ACCESS_KEY_ID_SECRET_NAME , AWS_SECRET_ACCESS_KEY_SECRET_NAME , and AWS_REGION are filled

in for AWS . The values of these parameters are described above.

Using an External Connection to an S3 Bucket

When working with Yandex Object Storage using external data sources, it is convenient to perform prototyping and initial data connection setup.

An example query to read data:

The list of supported formats and data compression algorithms for reading data in S3 (Yandex Object Storage) is provided in the section Data
Formats and Compression Algorithms.

Data Model

In Yandex Object Storage, data is stored in files. To read data, you need to specify the data format in the files, compression, and lists of fields. This
is done using the following SQL expression:

CREATE EXTERNAL DATA SOURCE object_storage WITH (
 SOURCE_TYPE="ObjectStorage",
 LOCATION="https://object_storage_domain/bucket/",
 AUTH_METHOD="NONE"
);

CREATE OBJECT aws_access_id (TYPE SECRET) WITH (value=`<id>`);
CREATE OBJECT aws_access_key (TYPE SECRET) WITH (value=`<key>`);

CREATE EXTERNAL DATA SOURCE object_storage WITH (
 SOURCE_TYPE="ObjectStorage",
 LOCATION="https://object_storage_domain/bucket/",
 AUTH_METHOD="AWS",
 AWS_ACCESS_KEY_ID_SECRET_NAME="aws_access_id",
 AWS_SECRET_ACCESS_KEY_SECRET_NAME="aws_access_key",
 AWS_REGION="ru-central-1"
);

SELECT
 *
FROM
 object_storage.`*.tsv`
WITH
(
 FORMAT = "tsv_with_names",
 SCHEMA =
 (
 ts Uint32,
 action Utf8
)
);

SELECT
 <expression>

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_external_data_source
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_external_data_source_external-data-source-settings
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_external_data_source_data_model
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv-authentication-methods.html
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_secrets
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_secrets
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_secrets
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_external_data_source
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_formats

Where:

object_storage_connection_name — the name of the external data source leading to the S3 bucket (Yandex Object Storage).

file_path — the path to the file or files inside the bucket. Wildcards * are supported; more details in the section.

file_format — the data format in the files.

compression — the compression format of the files.

schema_definition — the schema definition of the data stored in the files.

format_settings — optional format settings

Data Schema Description

The data schema description consists of a set of fields:

Field name.

Field type.

Required data flag.

For example, the data schema below describes a schema field named Year of type Int32 with the requirement that this field must be present in
the data:

If a data field is marked as required (NOT NULL) but is missing in the processed file, processing such a file will result in an error. If a field is marked
as optional (NULL), no error will occur if the field is absent in the processed file, but the field will take the value NULL . The keyword NULL is
optional in this context.

Schema Inference

YDB can determine the data schema of the files inside the bucket so that you do not have to specify these fields manually.

Note

Schema inference is available for all data formats except raw and json_as_string . For these formats you must describe the
schema manually.

To enable schema inference, use the WITH_INFER parameter:

Where:

object_storage_connection_name — the name of the external data source leading to the S3 bucket (Yandex Object Storage).

file_path — the path to the file or files inside the bucket. Wildcards * are supported. For more information, see Data Path Formats
Specified in `file_path`.

file_format — the data format in the files. All formats except raw and json_as_string are supported.

compression — the compression format of the files.

As a result of executing such a query, the names and types of fields will be inferred.

Data Path Formats Specified in file_path

FROM
 <object_storage_connection_name>.`<file_path>`
WITH(
 FORMAT = "<file_format>",
 COMPRESSION = "<compression>",
 SCHEMA = (<schema_definition>),
 <format_settings>)
WHERE
 <filter>;

Year Int32 NOT NULL

SELECT
 <expression>
FROM
 <object_storage_connection_name>.`<file_path>`
WITH(
 FORMAT = "<file_format>",
 COMPRESSION = "<compression>",
 WITH_INFER = "true")
WHERE
 <filter>;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_external_data_source_schema
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_external_data_source_inference
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_external_data_source_path_format
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_external_data_source_path_format
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_formats_formats
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_formats_compression_formats
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_external_data_source_schema
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_external_data_source_format_settings
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_formats_formats
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_external_data_source_schema
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_external_data_source_path_format
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_formats_formats
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_formats_compression_formats

In YDB, the followingdata paths are supported:

Format Settings

In YDB, the following format settings are supported:

You can only specify file_pattern setting if file_path is a path to a directory. Any conversion specifiers supported by strftime (C99)
function can be used in formatting strings. In YDB, the following Datetime and Timestamp formats are supported:

Path Format Description Example

Path ends with a / Path to a directory The path /a/ addresses all contents of the
directory:
/a/b/c/d/1.txt

/a/b/2.csv

Path contains a wildcard character * Any files nested in the
path

The path /a/*.csv addresses files in directories:
/a/b/c/1.csv

/a/2.csv

/a/b/c/d/e/f/g/2.csv

Path does not end with / and does not contain
wildcard characters

Path to a single file The path /a/b.csv addresses the specific file
/a/b.csv

Setting name Description Possible values

file_pattern File name template File name template string. Wildcards * are supported.

data.interval.unit Unit for parsing Interval type MICROSECONDS , MILLISECONDS , SECONDS , MINUTES ,
HOURS , DAYS , WEEKS

data.datetime.format_name Predefined format in which Datetime
data is stored

POSIX , ISO

data.datetime.format Strftime-like template which defines
how Datetime data is stored

Formatting string, for example: %Y-%m-%dT%H-%M

date.timestamp.format_name Predefined format in which
Timestamp data is stored

POSIX , ISO , UNIX_TIME_SECONDS ,
UNIX_TIME_MILLISECONDS , UNIX_TIME_MICROSECONDS

data.timestamp.format Strftime-like template which defines
how Timestamp data is stored

Formatting string, for example: %Y-%m-%dT%H-%M-%S

data.date.format The format in which Date data is
stored

Formatting string, for example: %Y-%m-%d

csv_delimiter Delimeter for csv_with_names format Any character (UTF-8)

Name Description Example

POSIX String in %Y-%m-%d %H:%M:%S format 2001-03-26 16:10:00

ISO Format, corresponding to the ISO 8601 standard 2001-03-26
16:10:00Z

UNIX_TIME_SECONDS Number of seconds that have elapsed since the 1st of january 1970 (00:00:00
UTC)

985623000

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_external_data_source_format_settings
https://en.cppreference.com/w/c/chrono/strftime
https://en.wikipedia.org/wiki/ISO_8601

Example

Example query to read data from S3 (Yandex Object Storage):

Where:

connection — the name of the external data source leading to the S3 bucket (Yandex Object Storage).

folder/filename.csv — the path to the directory in the S3 bucket (Yandex Object Storage).

SCHEMA — the data schema description in the file.

*.csv.gz — file name template.

%Y-%m-%d — format in which Date type is stored in S3.

SELECT
 *
FROM
 connection.`folder/`
WITH(
 FORMAT = "csv_with_names",
 COMPRESSION="gzip"
 SCHEMA =
 (
 Id Int32 NOT NULL,
 UserId Int32 NOT NULL,
 TripDate Date NOT NULL,
 TripDistance Double NOT NULL,
 UserComment Utf8
),
 FILE_PATTERN="*.csv.gz",
 `DATA.DATE.FORMAT`="%Y-%m-%d",
 CSV_DELIMITER='/'
);

UNIX_TIME_MILLISECONDS Number of milliseconds that have elapsed since the 1st of january 1970
(00:00:00 UTC)

985623000000

UNIX_TIME_MICROSECONDS Number of microseconds that have elapsed since the 1st of january 1970
(00:00:00 UTC)

985623000000000

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_external_data_source_read_example

Reading Data from an External Table Pointing to S3 (Object Storage)
Sometimes, the same data queries need to be executed regularly. To avoid specifying all the details of working with this data every time a query is
called, use the mode with external tables. In this case, the query looks like a regular query to YDB tables.

Example query for reading data:

Creating an External Table Pointing to an S3 Bucket (Object Storage)

To create an external table describing the S3 bucket (Object Storage), execute the following SQL query. The query creates an external table named
s3_test_data , containing files in the CSV format with string fields key and value , located inside the bucket at the path test_folder , using

the connection credentials specified by the external data source object bucket :

Where:

key, value - list of data columns and their types;

bucket - name of the external data source to S3 (Object Storage);

folder - path within the bucket containing the data;

csv_with_names - one of the permitted data storage formats;

gzip - one of the permitted compression algorithms.

You can also specify format settings.

Data Model

Reading data using external tables from S3 (Object Storage) is done with regular SQL queries as if querying a normal table.

Limitations

There are a number of limitations when working with S3 buckets (Object Storage).

Limitations:

1. Only data read requests - SELECT and INSERT are supported; other requests are not.

2. If the date value stored in the external data source is outside the allowed range for YDB (all dates used must be later than 1970-01-01 but
earlier than 2105-12-31), such a value in YDB will be converted to NULL .

SELECT
 *
FROM
 `s3_test_data`
WHERE
 version > 1

CREATE EXTERNAL TABLE `s3_test_data` (
 key Utf8 NOT NULL,
 value Utf8 NOT NULL
) WITH (
 DATA_SOURCE="bucket",
 LOCATION="folder",
 FORMAT="csv_with_names",
 COMPRESSION="gzip"
);

SELECT
 <expression>
FROM
 `s3_test_data`
WHERE
 <filter>;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_external_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_external_table_external-table-settings
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_external_table_data-model
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_external_table_limitations
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_external_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_external_data_source
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_external_data_source
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_formats
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_formats_compression
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_external_data_source_format_settings

Writing Data to S3 Buckets (Yandex Object Storage)
In YDB, you can use external connections or external tables to write data to the Yandex Object Storage bucket.

Writing Data via External Connection

Using connections for data writing is convenient for prototyping and initial setup. The SQL expression demonstrates writing data directly to an
external data source.

The data will be written to the specified path. In this mode, the resulting files will not be partitioned. If you need to partition the resulting files, use
writing via external tables. The files created during the writing process are assigned random names.

When working with external connections, only read (SELECT) and insert (INSERT) operations are possible; other types of operations are not
supported.

Writing Data via External Tables

If you need to write data regularly, doing this using external tables is convenient. In this case, there is no need to specify all the details of working
with this data in each query. To write data to the bucket, create an external table in S3 (Yandex Object Storage) and use the usual SQL INSERT
INTO statement:

INSERT INTO `connection`.`test/`
WITH
(
 FORMAT = "csv_with_names"
)
SELECT
 "value" AS value, "name" AS name

INSERT INTO `test`
SELECT
 "value" AS value, "name" AS name

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_write_data
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_write_data_connection-write
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_write_data_external-table-write
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_write_data_connection-write
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_write_data_external-table-write
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_write_data_external-table-write
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_external_table

Data Formats and Compression Algorithms
This section describes the data formats supported in YDB for storage in S3 and the supported compression algorithms.

Supported Data Formats

The table below lists the data formats supported in YDB.

Format csv_with_names

This format is based on the CSV format. Data is placed in columns separated by commas, with column names in the file's first row.

Example data:

Query result:

Format tsv_with_names

This format is based on the TSV format. Data is placed in columns separated by tab characters (code 0x9), with column names in the file's first
row.

Example data:

Year,Manufacturer,Model,Price
1997,Man_1,Model_1,3000.00
1999,Man_2,Model_2,4900.00

Example query

SELECT
 AVG(Price)
FROM `connection`.`path`
WITH
(
 FORMAT = "csv_with_names",
 SCHEMA =
 (
 Year Int32,
 Manufacturer Utf8,
 Model Utf8,
 Price Double
)
)

Year Manufacturer Model Price
1997 Man_1 Model_1 3000.00

Format Read Write

csv_with_names ✓ ✓

tsv_with_names ✓

json_list ✓

json_each_row ✓

json_as_string ✓

parquet ✓ ✓

raw ✓

Manufacturer Model Price Year

1 Man_1 Model_1 3000 1997

2 Man_2 Model_2 4900 1999

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_formats
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_formats_formats
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_formats_csv_with_names
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_formats_tsv_with_names
https://en.wikipedia.org/wiki/CSV
https://en.wikipedia.org/wiki/Tab-separated_values
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_formats_csv_with_names
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_formats_tsv_with_names
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_formats_json_list
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_formats_json_each_row
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_formats_json_as_string
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_formats_parquet
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_formats_raw

Query result:

Format json_list

This format is based on the JSON representation of data. Each file must contain an array of JSON objects.

Example of valid data (data presented as a list of JSON objects):

Example of INVALID data (each line contains a separate JSON object, but they are not combined into a list):

Format json_each_row

This format is based on the JSON representation of data. Each file must contain a JSON object on each line without combining them into a JSON
array. This format is used for data streaming systems like Apache Kafka or YDB Topics.

Example of valid data (each line contains a separate JSON object):

1999 Man_2 Model_2 4900.00

Example query

SELECT
 AVG(Price)
FROM `connection`.`path`
WITH
(
 FORMAT = "tsv_with_names",
 SCHEMA =
 (
 Year Int32,
 Manufacturer Utf8,
 Model Utf8,
 Price Double
)
)

[
 { "Year": 1997, "Manufacturer": "Man_1", "Model": "Model_1", "Price": 3000.0 },
 { "Year": 1999, "Manufacturer": "Man_2", "Model": "Model_2", "Price": 4900.00 }
]

{ "Year": 1997, "Manufacturer": "Man_1", "Model": "Model_1", "Price": 3000.0 }
{ "Year": 1999, "Manufacturer": "Man_2", "Model": "Model_2", "Price": 4900.00 }

{ "Year": 1997, "Manufacturer": "Man_1", "Model": "Model_1", "Price": 3000.0 }
{ "Year": 1999, "Manufacturer": "Man_2", "Model": "Model_2", "Price": 4900.00 }

Example query

SELECT
 AVG(Price)
FROM `connection`.`path`
WITH
(
 FORMAT = "json_each_row",
 SCHEMA =
 (
 Year Int32,
 Manufacturer Utf8,
 Model Utf8,
 Price Double
)
)

Manufacturer Model Price Year

1 Man_1 Model_1 3000 1997

2 Man_2 Model_2 4900 1999

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_formats_json_list
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_formats_json_each_row
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic

Query result:

Format json_as_string

This format is based on the JSON representation of data. The json_as_string format does not split the input JSON document into fields but
represents each file line as a single JSON object (or string). This format is helpful when the list of fields is not the same in all rows and may vary.

Each file must contain:

A JSON object on each line, or

JSON objects combined into an array.

Example of valid data (data presented as a list of JSON objects):

Query result:

Format parquet

This format allows reading the contents of files in Apache Parquet format.

Supported data compression algorithms for Parquet files:

Uncompressed

SNAPPY

GZIP

LZO

BROTLI
LZ4

ZSTD

LZ4_RAW

{ "Year": 1997, "Manufacturer": "Man_1", "Model": "Model_1", "Price": 3000.0 }
{ "Year": 1999, "Manufacturer": "Man_2", "Model": "Model_2", "Price": 4900.00 }

Example query

SELECT
 *
FROM `connection`.`path`
WITH
(
 FORMAT = "json_as_string",
 SCHEMA =
 (
 Data Json
)
)

Example query

SELECT
 AVG(Price)
FROM `connection`.`path`
WITH
(
 FORMAT = "parquet",
 SCHEMA =

Manufacturer Model Price Year

1 Man_1 Model_1 3000 1997

2 Man_2 Model_2 4900 1999

Data

1 {"Manufacturer": "Man_1", "Model": "Model_1", "Price": 3000, "Year": 1997}

2 {"Manufacturer": "Man_2", "Model": "Model_2", "Price": 4900, "Year": 1999}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_formats_json_as_string
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_formats_parquet
https://en.wikipedia.org/wiki/JSON
https://parquet.apache.org/

Query result:

Format raw

This format allows reading the contents of files as is, in raw form. The data read in this way can be processed using YQL tools, splitting into rows
and columns.

This format should be used if the built-in parsing capabilities in YDB are insufficient.

Query result:

Supported Compression Algorithms

The use of compression algorithms depends on the file formats. For all file formats except Parquet, the following compression algorithms can be
used:

For Parquet file format, the following internal compression algorithms are supported:

 (
 Year Int32,
 Manufacturer Utf8,
 Model Utf8,
 Price Double
)
)

Example query

SELECT
 *
FROM `connection`.`path`
WITH
(
 FORMAT = "raw",
 SCHEMA =
 (
 Data String
)
)

Year,Manufacturer,Model,Price
1997,Man_1,Model_1,3000.00
1999,Man_2,Model_2,4900.00

Manufacturer Model Price Year

1 Man_1 Model_1 3000 1997

2 Man_2 Model_2 4900 1999

Algorithm Name in YDB Read Write

Gzip gzip ✓ ✓

Zstd zstd ✓

LZ4 lz4 ✓ ✓

Brotli brotli ✓

Bzip2 bzip2 ✓

Xz xz ✓

Compression Format Name in YDB Read Write

Raw raw ✓

Snappy snappy ✓ ✓

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_formats_raw
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_formats_compression
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_string
https://en.wikipedia.org/wiki/Gzip
https://en.wikipedia.org/wiki/Zstandard
https://en.wikipedia.org/wiki/LZ4
https://en.wikipedia.org/wiki/Brotli
https://en.wikipedia.org/wiki/Bzip2
https://en.wikipedia.org/wiki/XZ
https://en.wikipedia.org/wiki/Gzip
https://en.wikipedia.org/wiki/Snappy_(compression)

YDB does not support working with externally compressed Parquet files, such as files named <myfile>.parquet.gz or similar. All files in Parquet
format must be without external compression.

Data Partitioning in S3 (Yandex Object Storage)
In S3 (Yandex Object Storage), it is possible to store very large volumes of data. At the same time, queries to this data may not need to touch all the
data but only a part of it. If you describe the rules for marking the storage structure of your data in YDB, then data that is not needed for the query
can even be skipped from being read from S3 (Yandex Object Storage). This mechanism significantly speeds up query execution without affecting
the result.

For example, data is stored in the following directory structure:

The query below explicitly implies that only the data for February 2021 needs to be processed, and other data is not needed.

If the data partitioning scheme is not specified, then all stored data will be read from S3 (Yandex Object Storage), but as a result of processing, data
for all other dates will be discarded.

If you explicitly describe the storage structure, specifying that the data in S3 (Yandex Object Storage) is placed in directories by years and months

then during the query execution, not all data will be read from S3 (Yandex Object Storage), but only the data for February 2021. This will
significantly reduce the volume of data processed and speed up processing, while the results of both queries will be identical.

Note

The example above shows working with data at the level of connections. This example is chosen for illustrative purposes only. We
strongly recommend using "data bindings" to work with data and not using direct work with connections.

Syntax

When working at the connection level, partitioning is set using the partitioned_by parameter, where the list of columns is specified in JSON
format.

year=2021
 month=01
 month=02
 month=03
year=2022
 month=01

SELECT
 *
FROM
 objectstorage.'/'
WITH
(
 SCHEMA =
 (
 data String,
 year Int32,
 month Int32
)
)
WHERE
 year=2021
 AND month=02

SELECT
 *
FROM
 objectstorage.'/'
WITH
(
 SCHEMA =
 (
 data String,
 year Int32,
 month Int32
),
 PARTITIONED_BY = "['year', 'month']"
)
WHERE
 year=2021
 AND month=02

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_partitioning
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_partitioning_syntax
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_external_data_source

In the partitioned_by parameter, the columns of the data schema by which the data stored in S3 (Yandex Object Storage) are partitioned are
listed. The order of specifying fields in the partitioned_by parameter determines the nesting of S3 (Yandex Object Storage) directories within
each other.

For example, PARTITIONED_BY=['year', 'month'] defines the directory structure

And partitioned_by=['month', 'year'] defines another directory structure

Supported Data Types

Partitioning is possible only with the following set of YQL data types:

Uint16, Uint32, Uint64

Int16, Int32, Int64

String, Utf8

When using other types for specifying partitioning, an error is returned.

Supported Storage Path Formats

The storage path format, where the name of each directory explicitly specifies the column name, is called the "Hive-Metastore format" or simply the
"Hive format."

This format looks as follows:

Warning

The basic partitioning mode in YDB supports only the Hive format.

Use the Extended Data Partitioning mode to specify arbitrary storage paths.

SELECT
 *
FROM
 <connection>.<path>
WITH
(
 SCHEMA=(<field1>, <field2>, <field3>),
 PARTITIONED_BY="['field2', 'field3']"
)

year=2021
 month=01
 month=02
 month=03
year=2022
 month=01

month=01
 year=2021
 year=2022
month=02
 year=2021
month=03
 year=2021

month=01
 year=2021
 year=2022
month=02
 year=2021
month=03
 year=2021

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_partitioning_supported-data-types
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_partitioning_supported-storage-path-formats
https://en.wikipedia.org/wiki/Apache_Hive
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_partition_projection

Eхtended Partitioning in S3 (Yandex Object Storage)
Partitioning allows you to specify rules for YDB data placement in S3 (Yandex Object Storage).

Assume the data in S3 (Yandex Object Storage) is stored in the following directory structure:

When executing the query below, YDB will perform the following actions:

1. Retrieve a full list of subdirectories within '/'.

2. Attempt to process the name of each subdirectory in the format year=<DIGITS> .

3. For each subdirectory year=<DIGITS> , retrieve a list of all subdirectories in the format month=<DIGITS> .

4. Process the read data.

When working with partitioned data, a complete listing of the contents of S3 (Yandex Object Storage) is performed, which can take a considerable
amount of time on large buckets.

To optimize performance on large data volumes, use "advanced partitioning". In this mode, S3 (Yandex Object Storage) directories are not
scanned; instead, all paths are calculated in advance, and access is made only to these paths.

To enable advanced partitioning, specify the working rules through a special parameter - "projection". This parameter describes all the rules for data
placement in the S3 (Yandex Object Storage) directories.

Syntax

Advanced partitioning is called "partition projection" and is specified through the projection parameter.

Example of specifying advanced partitioning:

year=2021
 month=01
 month=02
 month=03
year=2022
 month=01

SELECT
 *
FROM
 objectstorage.'/'
WITH
(
 SCHEMA =
 (
 data String,
 year Int32,
 month Int32
),
 PARTITIONED_BY = "['year', 'month']"
)
WHERE
 year=2021
 AND month=02

SELECT
 *
FROM
 <connection>.`/`
WITH
(
 SCHEMA =
 (
 data String,
 year Int32,
 month Int32
),
 PARTITIONED_BY = "['year', 'month']",
 `projection.enabled` : "true",

 `projection.year.type` : "integer",
 `projection.year.min` : "2010",
 `projection.year.max` : "2022",
 `projection.year.interval` : "1",

 `projection.month.type` : "integer",

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_partition_projection
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_partition_projection_syntax
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_partitioning

The example above specifies that data exists for each year and each month from 2010 to 2022, with data placed in directories like 2022/12 within
the bucket. If data for a certain period is absent within the bucket, this does not cause errors; the query will execute successfully, and the data will
be skipped in the calculations.

In general, the advanced partitioning setup looks as follows:

Field Descriptions

Integer Field Type

It is used for columns whose values can be represented as integers ranging from 2-63 to 263-1.

 `projection.month.min` : "1",
 `projection.month.max` : "12",
 `projection.month.interval` : "1",
 `projection.month.digits` : "2",

 `storage.location.template` : "${year}/${month}"
)

SELECT
 *
FROM
 <connection>.<path>
WITH
(
 SCHEMA = (<fields>, <field1>, <field2>),
 PARTITIONED_BY = "'['field1', 'field2']",
 `projection.enabled` : <"true"|"false">,

 `projection.<field1_name>.type` : "<type>",
 `projection.<field1_name>....` : "<extended_properties>",

 `projection.<field2_name>.type` : "<type>",
 `projection.<field2_name>....` : "<extended_properties>",

 `storage.location.template` : ".../${field2}/${field1}/..."
)

Field name Description Allowed values

projection.enabled Whether advanced partitioning is enabled or not true , false

projection.<field1_name>.type Data type of the field integer , enum , date

projection.<field1_name>.XXX Specific properties of the type

Field name Mandatory Description
Example
values

projection.<field_name>.type Yes Data type of the field integer

projection.<field_name>.min Yes Specifies the minimum allowable value as an integer -100
004

projection.<field_name>.max Yes Specifies the maximum allowable value as an integer -10
5000

projection.<field_name>.interval No, default
is 1

Specifies the step between elements within the value range.
For example, a step of 3 within the range 2 to 10 will result in
the values: 2, 5, 8

2
11

projection.<field_name>.digits No, default
is 0

Specifies the number of digits in the number. If the number of
significant digits in the number is less than the specified
value, the value is padded with leading zeros up to the
specified number of digits. For example, if .digits=3 is
specified and the number 2 is passed, it will be converted to
002

2
4

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_partition_projection_field_types
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_partition_projection_integer_type

Enum Field Type

It is used for columns whose values can be represented as a set of enumerated values.

Date Field Type

It is used for columns whose values can be represented as dates. The allowable date range is from 1970-01-01 to 2105-01-01.

Working with the NOW Macro Substitution

1. A number of arithmetic operations with the NOW macro substitution are supported: adding and subtracting time intervals. For example: NOW-
3DAYS , NOW+1MONTH , NOW-6YEARS , NOW+4HOURS , NOW-5MINUTES , NOW+6SECONDS . The possible usage options for the macro substitution
are described by the regular expression: ^\s*(NOW)\s*(([\+\-])\s*([0-9]+)\s*(YEARS?|MONTHS?|WEEKS?|DAYS?|HOURS?|MINUTES?
|SECONDS?)\s*)?$

2. Allowed interval dimensions: YEARS, MONTHS, WEEKS, DAYS, HOURS, MINUTES, SECONDS, MILLISECONDS.

3. Only one arithmetic operation is allowed in expressions; expressions like NOW-5MINUTES+6SECONDS are not supported.

4. Working with intervals always results in obtaining a valid date, but depending on the dimension, the final results may vary:

Field name Mandatory Description
Example
values

projection.<field_name>.type Yes Data type of the field enum

projection.<field_name>.values Yes Specifies the allowable values, separated by commas.
Spaces are not ignored

1, 2
A,B,C

Field name Mandatory Description Example values

projection.<field_name>.type Yes Data type of the field date

projection.<field_name>.min Yes Specifies the minimum allowable date. Allowed values
in the format YYYY-MM-DD or as an expression
containing the special macro substitution NOW

projection.<field_name>.max Yes Specifies the maximum allowable date. Allowed values
in the format YYYY-MM-DD or as an expression
containing the special macro substitution NOW

2020-01-01
NOW-5DAYS
NOW+3HOURS

projection.<field_name>.format Yes Date formatting string based on strptime %Y-%m-%d
%D

projection.<field_name>.unit No, default
is DAYS

Time interval units. Allowed values: YEARS , MONTHS ,
WEEKS , DAYS , HOURS , MINUTES , SECONDS ,
MILLISECONDS

SECONDS
YEARS

projection.<field_name>.interval No, default
is 1

Specifies the step between elements within the value
range with the specified dimension in
projection.<field_name>.unit . For example, for

the range 2021-02-02 to 2021-03-05 with a step of 15
and the dimension DAYS, the values will be: 2021-02-
17, 2021-03-04

2
6

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_partition_projection_enum_type
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_partition_projection_date_type
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_partition_projection_working-with-the-now-macro-substitution
https://cplusplus.com/reference/ctime/strftime/

Adding MONTHS to a date adds a calendar month, not a fixed number of days. For example, if the current date is 2023-01-31 , adding 1
MONTHS will result in the date 2023-02-28 .

Adding 30 DAYS to a date adds a fixed number of days. For example, if the current date is 2023-01-31 , adding 30 DAYS will result in
the date 2023-03-02 .

The earliest possible date is 1970-01-01 (time 0 in Unix time). If the result of calculations is a date earlier than the minimum, the entire
query fails with an error.

The latest possible date is 2105-12-31 (the maximum date in Unix time). If the result of calculations is a date later than the maximum,
the entire query fails with an error.

Path Templates

Data in S3 (Yandex Object Storage) buckets can be placed in directories with arbitrary names. The storage.location.template setting allows
you to specify the naming rules for the directories where the data is stored.

If the path contains the characters $, \ , or the characters {} , they must be escaped with the \ character. For example, to work with a directory
named my$folder , it needs to be specified as my\$folder .

Field name Description Example values

storage.location.template Path template for directory names. The path is specified as a
text string with parameter macro substitutions
...${<field_name>}...${<field_name>}...

root/a/${year}/b/${month}/d

${year}/${month}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_s3_partition_projection_storage_location_template
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time

YDB system requirements and recommendations
This section provides recommendations for deploying YDB clusters that are relevant regardless of the chosen deployment method (Ansible,
Kubernetes, or manual).

Hardware configuration

The fault-tolerance requirements determine the necessary number of servers and disks. For more information, see YDB Cluster Topology.

Processor (CPU)

A YDB server can only run on x86-64 processors with AVX2 instruction support: Intel Haswell (4th generation) and later, AMD EPYC and later.

The ARM architecture is currently not supported.

RAM

We recommend using error-correcting code (ECC) memory to protect against hardware failures.

Disk subsystem

A YDB server can run on servers with any disk type (HDD/SSD/NVMe). However, we recommend using SSD/NVMe disks for better performance.

For YDB to work efficiently, we recommend using physical (not virtual) disks larger than 800 GB as block devices.

The minimum disk size is 80 GB, otherwise the YDB node won't be able to use the device. Correct and uninterrupted operation with minimum-size
disks is not guaranteed. We recommend using such disks exclusively for informational purposes.

Warning

Configurations with disks less than 800 GB or any types of storage system virtualization cannot be used for production services or
system performance testing.

We don't recommend storing YDB data on disks shared with other processes (for example, the operating system).

YDB works with disk drives directly and does not use any filesystem to store data. Don't mount a file system or perform other operations with
partitions used by YDB. Also, avoid sharing the YDB's block device with the operating system and different processes, which can lead to significant
performance degradation.

Prefer to use physical local disk drives for YDB instead of virtual or network storage devices.

Remember that YDB uses some disk space for internal needs when planning disk capacity. For example, on a medium-sized cluster of 8 nodes,
you can expect approximately 100 GB to be consumed for a static group on the whole cluster. On a large cluster with more than 1500 nodes, this
will be about 200 GB. There are also 25.6 GB of logs on each Pdisk and a system area on each Pdisk. Its size depends on the size of the Pdisk but
is no less than 0.2 GB.

Software configuration

A YDB server can be run on servers with a Linux operating system, kernel 4.19 and higher, and libc 2.30. For example, Ubuntu 20.04, Debian 11,
Fedora 34, or newer releases. YDB uses the TCMalloc memory allocator. To make it efficient, enable Transparent Huge Pages and Memory
overcommitment.

If the server has more than 32 CPU cores, to increase YDB performance, run each dynamic node in a separate taskset/cpuset of 10 to 32 cores.
For example, in the case of 128 CPU cores a viable approach would be to run four 32-CPU dynamic nodes, each in a dedicated taskset.

MacOS and Windows operating systems are currently unsupported for running production YDB servers. However, running YDB in a Docker
container on them is acceptable for development and functional testing.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_system-requirements
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_system-requirements_hardware
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_system-requirements_processor-cpu
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_system-requirements_ram
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_system-requirements_disk-subsystem
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_system-requirements_software
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_kubernetes_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topology
https://google.github.io/tcmalloc
https://google.github.io/tcmalloc/tuning.html#system-level-optimizations
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_quickstart

Working with YDB using Ansible
This section of YDB documentation contains a collection of articles intended for DevOps engineers managing YDB clusters using Ansible. This is
the recommended approach to running production YDB clusters directly on virtual machines or bare metal. It is recommended to use Kubernetes
instead of Ansible for containerized environments.

The key articles to get started with this section:

Deploying YDB cluster with Ansible

Deploy infrastructure for YDB cluster using Terraform

Restarting YDB clusters deployed with Ansible

Observability:

Logging on clusters deployed with Ansible

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_index
https://www.ansible.com/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_kubernetes_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_initial-deployment
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_preparing-vms-with-terraform
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_restart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_observability_logging

Working with YDB using Kubernetes
This section of YDB documentation contains a collection of articles intended for SRE's deploying YDB clusters using Kubernetes. This is the
recommended approach to running production YDB clusters in containerized environments. For running YDB clusters on virtual machines or bare
metal, use Ansible instead.

The key articles to get started with this section:

Initial deployment

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_kubernetes_index
https://kubernetes.io/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_kubernetes_initial-deployment

Manual YDB cluster management overview
This section provides information about deploying, configuring, maintaining, monitoring, and performing diagnostics of multi-node YDB clusters.

Main resources:

Deploying YDB cluster manually

Overview of cluster disk subsystem management

Setting up monitoring for a YDB cluster

Logging in YDB

Backup and recovery

Using the embedded web UI

Cluster system views

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topology
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_initial-deployment
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_monitoring
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_logging
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_backup-and-recovery
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_system-views

Deploying YDB cluster with Ansible
This guide outlines the process of deploying a YDB cluster on a group of servers using Ansible. The recommended setup to get started is 3 servers
with 3 disk drives for user data each. For reliability purposes each server should have as independent infrastructure as possible: they'd better be
each in a separate datacenter or availability zone, or at least in different server racks.

For large-scale setups, it is recommended to use at least 9 servers for highly available clusters (mirror-3-dc) or 8 servers for single-datacenter
clusters (block-4-2). In these cases, servers can have only one disk drive for user data each, but they'd better have an additional small drive for
the operating system. You can learn about redundancy models available in YDB from the YDB Cluster Topology article. During operation, the cluster
can be expanded without suspending user access to the databases.

Note

Recommended server requirements:

16 CPUs (calculated based on the utilization of 8 CPUs by the storage node and 8 CPUs by the dynamic node).

16 GB RAM (recommended minimum RAM).

Additional SSD drives for data, at least 120 GB each.

SSH access.

Network connectivity between machines in the cluster.

OS: Ubuntu 18+, Debian 9+.

Internet access is needed to update repositories and download necessary packages.

Download the GitHub repository with examples for installing YDB cluster – git clone https://github.com/ydb-platform/ydb-ansible-
examples.git . This repository contains a few installation templates for deploying YDB clusters in subfolders, as well as scripts for generating TLS
certificates and requirement files for installing necessary Python packages. In this article, we'll use the 3-nodes-mirror-3-dc subfolder for the
most simple setup. Alternatively, you can similarly use 8-nodes-block-4-2 or 9-nodes-mirror-3-dc if you have the necessary number of
suitable servers.

To work with the project on a local (intermediate or installation) machine, you will need: Python 3 version 3.10+ and Ansible core version 2.15.2 or
higher. Ansible can be installed and run globally (installed in the system) or in a virtual environment. If Ansible is already installed – you can move
on to the step "Configuring the Ansible project"; if Ansible is not yet installed, install it using one of the following methods:

Repository Structure

├── 3-nodes-mirror-3-dc / 9-nodes-mirror-3-dc / 8-nodes-block-4-2
│ ├── ansible.cfg # An Ansible configuration file containing settings for connecting to servers and project
structure options. It is essential for customizing Ansible's behavior and specifying default settings.
│ ├── ansible_vault_password_file # A file containing the password for decrypting encrypted data with Ansible
Vault, such as sensitive variables or configuration details. This is crucial for securely managing secrets like the
root user password.
│ ├── creds # A directory for environment variables that specify the username and password for YDB, facilitating
secure access to the database.
│ ├── files
│ │ ├── config.yaml # A YDB configuration file, which contains settings for the database instances.
│ ├── inventory # A directory containing inventory files, which list and organize the servers Ansible will manage.
│ │ ├── 50-inventory.yaml # The main inventory file, specifying the hosts and groups for Ansible tasks.
│ │ └── 99-inventory-vault.yaml # An encrypted inventory file storing sensitive information, such as the root
user's password for YDB, using Ansible Vault.
├── README.md # A markdown file providing a description of the repository, including how to use it, prerequisites,
and any other relevant information.
├── requirements.txt # A file listing Python package dependencies required for the virtual environment, ensuring all
necessary tools and libraries are installed.
├── requirements.yaml # Specifies the Ansible collections needed, pointing to the latest versions or specific
versions required for the project.
├── TLS #A directory intended for storing TLS (Transport Layer Security) certificates and keys for secure
communication.
│ ├── ydb-ca-nodes.txt # Contains a list of Fully Qualified Domain Names (FQDNs) of the servers for which TLS
certificates will be generated, ensuring secure connections to each node.
│ └── ydb-ca-update.sh # A script for generating TLS certificates from the ydb-ca-nodes.txt list, automating the
process of securing communication within the cluster.

Installing Ansible globally (Ubuntu 22.04 LTS)

Update the apt package list with sudo apt-get update .

Upgrade packages with sudo apt-get upgrade .

Install the software-properties-common package to manage your distribution's software sources – sudo apt install software-
properties-common .

Add a new PPA to apt – sudo add-apt-repository --yes --update ppa:ansible/ansible .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_initial-deployment
https://www.ansible.com/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topology
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_cluster_expansion
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_initial-deployment_ansible-project-setup

Navigate to the root directory of the downloaded repository and execute the command ansible-galaxy install -r requirements.yaml – this
will download the Ansible collections ydb_platform.ydb and community.general , which contain roles and plugins for installing YDB.

Configure the Ansible project

Edit the inventory files

Regardless of the chosen cluster topology (3-nodes-mirror-3-dc , 9-nodes-mirror-3-dc , or 8-nodes-block-4-2), the main parameters for
installing and configuring YDB are contained in the inventory file 50-inventory.yaml , which is located in the inventory/ directory.

In the inventory file 50-inventory.yaml , you need to specify the current list of FQDNs of the servers where YDB will be installed. By default, the
list appears as follows:

Next, you need to make the following changes in the vars section of the inventory file:

ansible_user – specify the user for Ansible to connect via SSH.

ansible_ssh_common_args: "-o ProxyJump=<ansible_user>@<static-node-1-IP>" – option for connecting Ansible to a server by IP, from
which YDB will be installed (including ProxyJump server). It is used when installing YDB from a local machine not included in the private DNS
zone.

ansible_ssh_private_key_file – change the default private SSH-key path to the actual one: "../<ssh-private-key-name>" .

Choose one of the available options for deploying YDB executables:

ydb_version : automatically download one of the YDB official releases by version number. For example, 23.4.11 .

ydb_git_version : automatically compile the YDB executables from the source code, downloaded from the official GitHub repository.
The setting's value is a branch, tag, or commit name. For example, main .

ydb_archive : a local filesystem path for a YDB distribution archive downloaded or otherwise prepared in advance.

ydbd_binary and ydb_cli_binary : local filesystem paths for YDB server and client executables, downloaded or otherwise prepared in
advance.

Installing fq-connector-go

Installing a connector may be necessary for using federated queries. The playbook can deploy the fq-connector-go to the hosts with dynamic
nodes. Use the following settings:

ydb_install_fq_connector - set true for installing the the connector.

Choose one of the available options for deploying fq-connector-go executables:

ydb_fq_connector_version : automatically download one of the fq-connector-go official releases by version number. For example,
v0.7.1 .

ydb_fq_connector_git_version : automatically compile the fq-connector-go executable from the source code, downloaded from the
official GitHub repository. The setting's value is a branch, tag, or commit name. For example, main .

ydb_fq_connector_archive : a local filesystem path for a fq-connector-go distribution archive downloaded or otherwise prepared in
advance.

ydb_fq_connector_binary : local filesystem paths for fq-connector-go executable, downloaded or otherwise prepared in advance.

Optional changes in the inventory files

Feel free to change these settings if needed, but it is not necessary in straightforward cases:

Install Ansible – sudo apt-get install ansible-core (note that installing just ansible will lead to an unsuitable outdated version).

Check the Ansible core version – ansible --version

Installing Ansible in a Python virtual environment

Update the apt package list – sudo apt-get update .

Install the venv package for Python3 – sudo apt-get install python3-venv

Create a directory where the virtual environment will be created and where the playbooks will be downloaded. For example, mkdir venv-
ansible .

Create a Python virtual environment – python3 -m venv venv-ansible .

Activate the virtual environment – source venv-ansible/bin/activate . All further actions with Ansible are performed inside the virtual
environment. You can exit it with the command deactivate .

Install the recommended version of Ansible using the command pip3 install -r requirements.txt , while in the root directory of the
downloaded repository.

Check the Ansible core version – ansible --version

all:
 children:
 ydb:
 static-node-1.ydb-cluster.com:
 static-node-2.ydb-cluster.com:
 static-node-3.ydb-cluster.com:

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_initial-deployment_ansible-project-setup
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_initial-deployment_inventory-edit
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_initial-deployment_installing-fq-connector-go
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_initial-deployment_optional-changes-in-the-inventory-files
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_index_ydb-server
https://github.com/ydb-platform/ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_index_ydb-server
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_index_ydb-server
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_architecture_connectors
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_federated-queries_connector-deployment_fq-connector-go
https://github.com/ydb-platform/fq-connector-go/releases
https://github.com/ydb-platform/fq-connector-go
https://github.com/ydb-platform/fq-connector-go/releases
https://github.com/ydb-platform/fq-connector-go/releases

ydb_cores_static – set the number of CPU cores allocated to static nodes.

ydb_cores_dynamic – set the number of CPU cores allocated to dynamic nodes.

ydb_tls_dir – specify a local path to a folder with TLS certificates prepared in advance. It must contain the ca.crt file and subdirectories
with names matching node hostnames, containing certificates for a given node. If omitted, self-signed TLS certificates will be generated
automatically for the whole YDB cluster.

ydb_brokers – list the FQDNs of the broker nodes. For example:

The optimal value of the ydb_database_groups setting in the vars section depends on available disk drives. Assuming only one database in the
cluster, use the following logic:

For production-grade deployments, use disks with a capacity of over 800 GB and high IOPS, then choose the value for this setting based on
the cluster topology:

For block-4-2 , set ydb_database_groups to 95% of your total disk drive count, rounded down.

For mirror-3-dc , set ydb_database_groups to 84% of your total disk drive count, rounded down.

For testing YDB on small disks, set ydb_database_groups to 1 regardless of cluster topology.

The values of the system_timezone and system_ntp_servers variables depend on the infrastructure properties where the YDB cluster is being
deployed. By default, system_ntp_servers includes a set of NTP servers without considering the geographical location of the infrastructure on
which the YDB cluster will be deployed. We strongly recommend using a local NTP server for on-premise infrastructure and the following NTP
servers for cloud providers:

No changes to other sections of the 50-inventory.yaml configuration file are required.

Changing the root user password

Next, you can change the standard YDB root user password contained in the encrypted inventory file 99-inventory-vault.yaml and in the file
ansible_vault_password_file.txt . To change the password – specify the new password in the ansible_vault_password_file.txt file and

duplicate it in the 99-inventory-vault.yaml file in the format:

To encrypt 99-inventory-vault.yaml , execute the command ansible-vault encrypt inventory/99-inventory-vault.yaml .

After modifying the inventory files, you can proceed to prepare the YDB configuration file.

Prepare the YDB configuration file

The YDB configuration file contains the settings for YDB nodes and is located in the subdirectory /files/config.yaml . A detailed description of
the configuration file settings for YDB can be found in the article YDB cluster configuration.

The default YDB configuration file already includes almost all the necessary settings for deploying the cluster. You need to replace the standard
FQDNs of hosts with the current FQDNs in the hosts and blob_storage_config sections:

hosts section:

ydb_brokers:
 - static-node-1.ydb-cluster.com
 - static-node-2.ydb-cluster.com
 - static-node-3.ydb-cluster.com

AWS

system_timezone : USA/<region_name>

system_ntp_servers : [169.254.169.123, time.aws.com] Learn more about AWS NTP server settings.

Azure

You can read about how time synchronization is configured on Azure virtual machines in this article.

Alibaba

The specifics of connecting to NTP servers in Alibaba are described in this article.

Yandex Cloud

system_timezone : Europe/Moscow

system_ntp_servers : [0.ru.pool.ntp.org, 1.ru.pool.ntp.org, ntp0.NL.net, ntp2.vniiftri.ru, ntp.ix.ru, ntps1-1.cs.tu-berlin.de] Learn more about
Yandex Cloud NTP server settings.

all:
 children:
 ydb:
 vars:
 ydb_password: <new-password>

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_initial-deployment_change-password
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_initial-deployment_ydb-config-prepare
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/set-time.html#configure-time-sync
https://learn.microsoft.com/en-us/azure/virtual-machines/linux/time-sync
https://www.alibabacloud.com/help/en/ecs/user-guide/alibaba-cloud-ntp-server
https://yandex.cloud/en/docs/tutorials/infrastructure-management/ntp

blob_storage_config section:

The rest of the sections and settings in the configuration file can remain unchanged.

fq-connector-go configuration file

Configuration file for fq-connector-go located in the /files/fq-connector-go/config.yaml . In straightforward cases, it can remain unchanged.

Deploying the YDB cluster

Note

The minimum number of servers in a YDB cluster is eight servers for the block-4-2 redundancy model and nine servers for the
mirror-3-dc redundancy model.

In mirror-3-dc servers should be distributed across three availability zones or datacenters as evenly as possible.

The repository contains two ready sets of templates for deploying a YDB cluster of eight (redundancy model block-4-2) and nine servers
(mirror-3-dc). Both options can be scaled to any required number of servers, considering a number of technical requirements.

To prepare your template, you can follow the instructions below:

1. Create a copy of the directory with the ready example (3-nodes-mirror-3-dc , 9-nodes-mirror-3-dc , or 8-nodes-block-4-2).

2. Specify the FQDNs of the servers in the file TLS/ydb-ca-nodes.txt and execute the script ydb-ca-update.sh to generate sets of TLS
certificates.

3. Change the template's inventory files according to the instructions.

4. Make changes to the YDB configuration file according to the instructions.

5. In the directory of the cloned template, execute the command ansible-playbook ydb_platform.ydb.initial_setup .

Installation script execution plan for YDB

The sequence of role executions and their brief descriptions:

1. The packages role configures repositories, manages APT preferences and configurations, fixes unconfigured packages, and installs
necessary software packages depending on the distribution version.

2. The system role sets up system settings, including clock and timezone configuration, time synchronization via NTP with systemd-
timesyncd , configuring systemd-journald for log management, kernel module loading configuration, kernel parameter optimization through
sysctl , and CPU performance tuning using cpufrequtils .

3. The ydb role performs tasks related to checking necessary variables, installing base components and dependencies, setting up system users
and groups, deploying and configuring YDB, including managing TLS certificates and updating configuration files.

4. The ydb_fq_connector role (optional) performs tasks related to deploying and configuring fq-connector-go, including checking necessary
variables, installing binaries, configuration files, creating and launching systemd unit .

5. The ydb-static role prepares and launches static nodes of YDB, including checking necessary variables and secrets, formatting and
preparing disks, creating and launching systemd unit for the storage node, as well as initializing the storage and managing database
access.

6. The ydb-dynamic role configures and manages dynamic nodes of YDB, including checking necessary variables, creating configuration and
systemd unit files for each dynamic node, launching these nodes, obtaining a token for YDB access, and creating a database in YDB.

1. Role packages . Tasks:

...
hosts:
- host: static-node-1.ydb-cluster.com
 host_config_id: 1
 walle_location:
 body: 1
 data_center: 'zone-a'
 rack: '1'
...

...
- fail_domains:
 - vdisk_locations:
 - node_id: static-node-1.ydb-cluster.com
 pdisk_category: SSD
 path: /dev/disk/by-partlabel/ydb_disk_1
...

Detailed step-by-step installation process description

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_initial-deployment_fq-connector-go-configuration-file
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_initial-deployment_erasure-setup
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_initial-deployment_ydb-playbook-run
https://github.com/ydb-platform/ydb-ansible-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_initial-deployment_inventory-edit
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_initial-deployment_ydb-config-prepare
https://github.com/ydb-platform/ydb-ansible/blob/main/roles/packages/tasks/main.yaml

check dpkg audit – Verifies the dpkg state using the dpkg --audit command and saves the command results in the
dpkg_audit_result variable. The task will terminate with an error if the dpkg_audit_result.rc command returns a value other than 0

or 1.

run the equivalent of "apt-get clean" as a separate step – Cleans the apt cache, similarly to the apt-get clean command.

run the equivalent of "apt-get update" as a separate step – Updates the apt cache, akin to the apt-get update command.

fix unconfigured packages – Fixes packages that are not configured using the dpkg --configure --pending command.

set vars_for_distribution_version variables – Sets variables for a specific Linux distribution version.

setup apt repositories – Configures apt repositories from a specified list.

setup apt preferences – Configures apt preferences (variable contents are specified in
roles/packages/vars/distributions/<distributive name>/<version>/main.yaml).

setup apt configs – Configures apt settings.

flush handlers – Forcibly runs all accumulated handlers. In this context, it triggers a handler that updates the apt cache.

install packages – Installs apt packages considering specified parameters and cache validity.

Links to the lists of packages that will be installed for Ubuntu 22.04 or Astra Linux 1.7:

List of packages for Ubuntu 22.04;

List of packages for Astra Linux 1.7.

1. Role system . Tasks:

configure clock – A block of tasks for setting up system clocks:

assert required variables are defined – Checks for the existence of the system_timezone variable. This check ensures that
the necessary variable is available for the next task in the block.

set system timezone – Sets the system timezone. The timezone is determined by the value of the system_timezone variable,
and the hardware clock (hwclock) is set to UTC. After completing the task, a notification is sent to restart the cron service.

flush handlers – Forces the execution of accumulated handlers using the meta directive. This will restart the following
processes: timesyncd , journald , cron , cpufrequtils , and execute the sysctl -p command.

configure systemd-timesyncd – A task block for configuring systemd-timesyncd :

assert required variables are defined asserts that the number of NTP servers (system_ntp_servers) is more than one if
the variable system_ntp_servers is defined. If the variable system_ntp_servers is not defined, the execution of the configure
systemd-timesyncd task block will be skipped, including the check for the number of NTP servers and the configuration of
systemd-timesyncd .

create conf.d directory for timesyncd - Creates the /etc/systemd/timesyncd.conf.d directory if the
system_ntp_servers variable is defined.

configure systemd-timesyncd - Creates a configuration file /etc/systemd/timesyncd.conf.d/ydb.conf for the systemd-
timesyncd service with primary and backup NTP servers. The task is executed if the system_ntp_servers variable is defined.
After completing the task, a notification is sent to restart the timesyncd service.

flush handlers - Calls accumulated handlers. Executes the handler restart timesyncd , which restarts the systemd-
timesyncd.service .

start timesyncd - Starts and enables the systemd-timesyncd.service . Subsequently, the service will start automatically at
system boot.

configure systemd-journald – A block of tasks for configuring the systemd-journald service:

create conf.d directory for journald - Creates the /etc/systemd/journald.conf.d directory for storing systemd-
journald configuration files.

configure systemd-journald - Creates a configuration file /etc/systemd/journald.conf.d/ydb.conf for systemd-journald ,
specifying a Journal section with the option ForwardToWall=no . The ForwardToWall=no setting in the systemd-journald
configuration means that system log messages will not be forwarded as "wall" messages to all logged-in users. After completing the
task, a notification is sent to restart the journald service.

flush handlers - Calls accumulated handlers. Executes the handler restart journald , which restarts the systemd-journald
service.

start journald - Starts and enables the systemd-journald.service . Subsequently, the service will start automatically at
system boot.

configure kernel – A block of tasks for kernel configuration:

configure /etc/modules-load.d dir - Creates the /etc/modules-load.d directory with owner and group permissions for the
root user and 0755 permissions.

setup conntrack module - Copies the nf_conntrack line into the file /etc/modules-load.d/conntrack.conf to load the
nf_conntrack module at system start.

load conntrack module - Loads the nf_conntrack module in the current session.

setup sysctl files - Applies templates to create configuration files in /etc/sysctl.d/ for various system settings (such as
security, network, and filesystem settings). The list of files includes 10-console-messages.conf , 10-link-restrictions.conf ,
and others. After completing this task, a notification is sent to apply the kernel settings changes.

flush handlers - Calls accumulated handlers. Executes the handler apply kernel settings , which runs the sysctl -p
command to apply the kernel parameters specified in /etc/sysctl.conf or in other files in the /etc/sysctl.d/ directory.

configure cpu governor – A block of tasks for configuring the CPU frequency management mode:

https://en.wikipedia.org/wiki/Dpkg
https://github.com/ydb-platform/ydb-ansible/blob/main/roles/packages/vars/distributions/Ubuntu/22.04/main.yaml
https://github.com/ydb-platform/ydb-ansible/blob/main/roles/packages/vars/distributions/Astra%20Linux/1.7_x86-64/main.yaml
https://github.com/ydb-platform/ydb-ansible/blob/main/roles/system/tasks/main.yaml

install cpufrequtils - Installs the cpufrequtils package from apt. The task is set with cache check parameters and a task
timeout of 300 seconds to expedite task execution and avoid an infinite loop waiting for apt package updates.

use performance cpu governor - Creates the file /etc/default/cpufrequtils with content "GOVERNOR=performance", which
sets the CPU governor mode to "performance" (disabling power-saving mode when CPU cores are idle). After completing the task, a
notification is sent to restart the cpufrequtils service.

disable ondemand.service - Disables the ondemand.service if it is present in the system. The service is stopped, its automatic
start is disabled, and it is masked (preventing its start). After completing the task, a notification is sent to restart cpufrequtils.

flush handlers - Calls accumulated handlers. Executes the handler restart cpufrequtils , which restarts the cpufrequtils
service.

start cpufrequtils - Starts and enables the cpufrequtils.service . Subsequently, the service will start automatically at
system boot.

1. Role ydbd . Tasks:

check if required variables are defined – Checks that the variables ydb_archive , ydb_config , ydb_tls_dir are defined. If
any of these are undefined, Ansible will display an appropriate error message and stop the playbook execution.

set vars_for_distribution variables – Sets variables from the specified file in the vars_for_distribution_file variable during
playbook execution. This task manages a set of variables dependent on the specific Linux distribution.

ensure libaio is installed – Ensures that the libaio package is installed.

install custom libidn from archive – Installs a custom version of the libidn library from an archive.

create certs group – Creates a system group certs .

create ydb group – Creates a system group ydb .

create ydb user – Creates a system user ydb with a home directory.

install YDB server binary package from archive – Installs YDB from a downloaded archive.

create YDB audit directory – Creates an audit subdirectory in the YDB installation directory.

setup certificates – A block of tasks for setting up security certificates:

create YDB certs directory – Creates a certs subdirectory in the YDB installation directory.

copy the TLS ca.crt – Copies the root certificate ca.crt to the server.

copy the TLS node.crt – Copies the TLS certificate node.crt from the generated certificates directory.

copy the TLS node.key – Copies the TLS certificate node.key from the generated certificates directory.

copy the TLS web.pem – Copies the TLS pem key web.pem from the generated certificates directory.

copy configuration file – Copies the configuration file config.yaml to the server.

add configuration file updater script – Copies the update_config_file.sh script to the server.

1. Role ydbd_static . Tasks:

check if required variables are defined – Checks that the variables ydb_cores_static , ydb_disks , ydb_domain , ydb_user
are defined. If any of these variables are undefined, the task will fail and an appropriate error message will be displayed for each
undefined variable.

check if required secrets are defined – Verifies that the secret variable ydb_password is defined. If this variable is undefined, the
task will fail and an error message will be displayed.

create static node configuration file – Creates a static node configuration file by running the copied update_config_file.sh
script with ydbd-config.yaml and ydbd-config-static.yaml configurations.

create static node systemd unit – Creates a ydbd-storage.service file for the static node based on a template. After completing
the task, a notification is sent to restart the systemd service.

flush handlers – Executes accumulated handlers. Restarts all systemd services.

format drives confirmation block – A block of tasks for formatting disks and interrupting playbook execution in case the user
declines confirmation. A confirmation request to format the connected disk will be displayed in the terminal. Response options: yes – to
continue executing the playbook with disk formatting. Any other value will be interpreted as a refusal to format. By default, disks are
formatted automatically without asking the user for permission, as the variables ydb_allow_format_drives and
ydb_skip_data_loss_confirmation_prompt are set to true . If user confirmation is required, the value of the
ydb_skip_data_loss_confirmation_prompt variable should be changed to false in the inventory file 50-inventory.yaml .

prepare drives – A task for formatting connected disks. Calls the drive_prepare plugin – a specially developed Ansible module for
YDB installation, which is part of the YDB collection and is located in the directory
.../.ansible/collections/ansible_collections/ydb_platform/ydb/plugins/action/drive_prepare.py . The module will format

the connected disk specified in the ydb_disks variable if the ydb_allow_format_drives variable is set to true .

start storage node – Starts the storage node process using systemd . If any errors occur during service startup, playbook execution
will be interrupted.

get ydb token – Requests a YDB token to perform the storage initialization command. The token is stored in the ydb_credentials
variable. The task calls the get_token module from the directory
.../.ansible/collections/ansible_collections/ydb_platform/ydb/plugins/modules . If any errors occur at this step, playbook

execution will be interrupted.

wait for ydb discovery to start working locally – Calls the wait_discovery module, which performs a ListEndpoints
request to YDB to check the operability of the cluster's basic subsystems. If the subsystems are working properly, storage initialization
commands and database creation can be executed.

init YDB storage if not initialized – Initializes the storage if it has not already been created. The task calls the init_storage
plugin, which performs the storage initialization command using a grpcs request to the static node on port 2135. The command result is

https://github.com/ydb-platform/ydb-ansible/blob/main/roles/ydbd/tasks/main.yaml
https://github.com/ydb-platform/ydb-ansible/blob/main/roles/ydbd_static/tasks/main.yaml

stored in the init_storage variable.

wait for ydb healthcheck switch to "GOOD" status – Waits for the YDB healthcheck system to switch to a GOOD status. The task
calls the wait_healthcheck plugin, which performs a health check command on YDB.

set cluster root password – Sets the password for the YDB root user. The task is executed by the set_user_password plugin,
which performs a grpcs request to YDB and sets a pre-defined password for the YDB root user. The password is specified in the
ydb_password variable in the inventory file /examples/9-nodes-mirror-3-dc/inventory/99-inventory-vault.yaml in an encrypted

form.

1. Role ydbd_dynamic . Tasks:

check if required variables are defined – Verifies the presence of required variables (ydb_domain , ydb_pool_kind ,
ydb_cores_dynamic , ydb_brokers , ydb_dbname , ydb_dynnodes) and displays an error if any variable is missing.

create dynamic node configuration file – Creates a configuration file for dynamic nodes.

create dynamic node systemd unit – Creates a systemd service for dynamic nodes. After completing the task, a notification is sent to
restart the systemd service.

flush handlers – Executes accumulated handlers. This will restart systemd .

start dynamic nodes – Starts the process of dynamic nodes using systemd .

get ydb token – Obtains a token for creating a database.

create YDB database – Creates a database. The task is executed by the create_database plugin, which performs a request to 99-
inventory-vault.yaml to create the database.

wait for ydb discovery to start working locally – Calls the wait_discovery module again to check the operability of the
cluster's basic subsystems.

As a result of executing the playbook, a YDB cluster will be created, with a test database named database , a root user with maximum access
rights created, and Embedded UI running on port 8765. To connect to the Embedded UI, you can set up SSH tunneling. For this, execute the
command ssh -L 8765:localhost:8765 -i <ssh private key> <user>@<first-ydb-static-node-ip> on your local machine. After
successfully establishing the connection, you can navigate to the URL localhost:8765:

Monitoring the cluster state

After successfully creating the YDB cluster, you can check its state using the Embedded UI – http://localhost:8765/monitoring/cluster/tenants:

This section displays the following parameters of the YDB cluster, reflecting its state:

Tablets – a list of running tablets. All tablet state indicators should be green;

Nodes – the number and state of static and dynamic nodes launched in the cluster. The node state indicator should be green, and the ratio of
created to launched nodes should be equal. For example, 27/27 for a nine-node cluster.

The Load indicators (amount of RAM used) and Storage (amount of disk space used) should also be green.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_initial-deployment_troubleshooting
https://github.com/ydb-platform/ydb-ansible/blob/main/roles/ydbd_dynamic/tasks/main.yaml
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_index
http://localhost:8765/
http://localhost:8765/monitoring/cluster/tenants
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablets

You can check the state of the storage group in the storage section – http://localhost:8765/monitoring/cluster/storage:

The VDisks indicators should be green, and the state status (found in the tooltip when hovering over the Vdisk indicator) should be Ok . More
about the cluster state indicators and monitoring can be read in the article YDB Monitoring.

Cluster Testing

You can test the cluster using the built-in load tests in YDB CLI. To do this, download YDB CLI version 2.5.0 to the machine where Ansible is
installed. For example, using wget: wget https://storage.yandexcloud.net/yandexcloud-ydb/release/2.5.0/linux/amd64/ydb .

Make the downloaded binary file executable – chmod +x ydb and execute the connection check command:

Command parameters and their values:

config profile create – This command is used to create a connection profile. You specify the profile name. More detailed information on
how to create and modify profiles can be found in the article Creating and updating profiles.

-e – Endpoint, a string in the format protocol://host:port . You can specify the FQDN of any cluster node and omit the port. By default,
port 2135 is used.

--ca-file – Path to the root certificate for connections to the database using grpcs . The certificate is created by the ydb-ca-update.sh
script in the TLS directory and is located at the path TLS/CA/certs/ relative to the root of the ydb-ansible-examples repository.

--user – The user for connecting to the database. By default, the user root is created when executing the
ydb_platform.ydb.initial_setup playbook.

--password-file – Path to the password file. In each folder with a YDB cluster deployment template, there is an
ansible_vault_password_file that contains the password for the user root .

You can check if the profile has been created using the command ./ydb config profile list , which will display a list of profiles. After creating
a profile, you need to activate it with the command ./ydb config profile activate <profile name> . To verify that the profile has been
activated, you can rerun the command ./ydb config profile list – the active profile will have an (active) mark.

To execute a YQL query, you can use the command ./ydb sql -s 'select 1;' , which will return the result of the select 1 command in table
form to the terminal. After checking the connection, you can create a test table with the command:
./ydb workload kv init --init-upserts 1000 --cols 4 . This will create a test table kv_test consisting of 4 columns and 1000 rows. You

can verify that the kv_test table was created and filled with test data by using the command ./ydb sql -s 'select * from kv_test limit
10;' .

The terminal will display a table of 10 rows. Now, you can perform cluster performance testing. The article Key-Value load describes 5 types of
workloads (upsert , insert , select , read-rows , mixed) and the parameters for their execution. An example of executing the upsert test
workload with the parameter to print the execution time --print-timestamp and standard execution parameters is: ./ydb workload kv run
upsert --print-timestamp .

A report of the following type will be displayed in the terminal:

./ydb \
config profile create <profile name> \
-d /Root/database \
-e grpcs://< FQDN node >:2135 \
--ca-file <path to generated certs>/CA/certs/ca.crt \
--user root \
--password-file <path to vault password file>/ansible_vault_password_file

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_initial-deployment_testing
http://localhost:8765/monitoring/cluster/storage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.5.0/linux/amd64/ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_create
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv

After completing the tests, the kv_test table can be deleted with the command: ./ydb workload kv clean . More details on the options for
creating a test table and tests can be read in the article Key-Value load.

Window Txs/Sec Retries Errors p50(ms) p95(ms) p99(ms) pMax(ms) Timestamp
1 727 0 0 11 27 71 116 2024-02-14T12:56:39Z
2 882 0 0 10 21 29 38 2024-02-14T12:56:40Z
3 848 0 0 10 22 30 105 2024-02-14T12:56:41Z
...

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv

Deploy infrastructure for YDB cluster using Terraform
You can deploy a YDB cluster for production use in three recommended ways: using Ansible, Kubernetes or manually. While the Kubernetes option
is almost self-sufficient, the Ansible and manual options require SSH access to properly configured servers or virtual machines.

This article describes how to create and configure the necessary set of virtual machines in various cloud providers for a YDB cluster, using
Terraform.

Terraform is an open-source infrastructure management software based on the "Infrastructure as Code" model. The same approach is used in
Ansible, a configuration management system. Terraform and Ansible work at different levels: Terraform manages the infrastructure, and Ansible
configures the environments on virtual machines (VM).

The configuration for setting up the VM environment is described in YAML format, and the infrastructure code is written in HCL (Terraform
configuration language). The basic logical unit of recording in HCL is a "block". A block consists of a keyword identifying its type, name, and the
block's body inside curly brackets. For example, this is what a virtual server control block in AWS might look like:

Blocks can be independent, refer to each other, and thus be dependent, or they can also be nested inside each other.

Main block types:

resource – a block for initializing an infrastructure resource (VM, network, subnet, disk, DNS zone, etc.).

provider – a block for initializing the provider, API versions, and authentication data.

variable – a variable either with a default value or empty for storing data entered by the user or passed by other blocks.

output – outputs data to the terminal and saves it in a variable.

data – a variable for requesting data from external cloud resources not presented in the created infrastructure.

module – a logical grouping of resources that can be reused several times within the same or different projects.

terraform – a block for configuring the behavior of Terraform itself, including the version of Terraform and used providers, as well as the
backend settings, which are used for storing Terraform's state.

Blocks are written in files with the .tf extension and are logically grouped in directories, which in Terraform terminology are called modules. A
module usually consists of the following files:

main.tf – the main file where the infrastructure code is located. There can be several files containing infrastructure code.

variables.tf – local variables of the module, which receive data from other modules or have default values.

resource "aws_instance" "ydb-vm" {
 count = var.instance_count
 ami = "ami-008fe2fc65df48dac"
 instance_type = "t2.micro"
 key_name = var.req_key_pair
 vpc_security_group_ids = [var.input_security_group_id]
 subnet_id = element(var.input_subnet_ids, count.index % length(var.input_subnet_ids))

 tags = {
 Name = "ydb-node-${count.index +1}"
 Username = "ubuntu"
 }
}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_preparing-vms-with-terraform
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_initial-deployment
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_kubernetes_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_index
https://www.terraform.io/
https://github.com/hashicorp/hcl

outputs.tf – variables that contain the results of the resource's operation (VM IP addresses, network/subnet IDs, etc.).

Modules are connected to the project in the root file main.tf as follows:

In the example, the vpc module is connected (the module name is assigned when connecting). The required parameter is source , a path to the
directory where the module is located. subnets_count and subnets_availability_zones are variables inside the vpc module that take values
from the global level variables var.subnets_count , var.availability_zones .

Modules, just like blocks, are placed one after another in the root main.tf file of the project. The main advantage of the modular approach to
project organization is the ability to manage logically related sets of resources easily. Therefore, our repository with ready-made Terraform
scenarios is organized as follows:

The subdirectories contain readme files, a file variables.td with local module variables and a central file main.tf , which includes modules from
the modules subdirectory. The set of modules depends on the cloud provider. Basic modules, functionally the same for all providers, have the
same names:

vpc – cloud network and subnet management module.

dns – DNS zone and DNS records management module.

security – security group management module.

instance – VM control module.

To use ready-made Terraform scripts from the repository, you need to download the repository with the command git clone
https://github.com/ydb-platform/ydb-terraform.git , make changes to the Terraform configuration file ~/.terraformrc , set the current
values of global script variables and download the CLI of the cloud provider where the infrastructure will be created.

If you plan to use multiple providers, you can add the following code to ~/.terraformrc , which will set the download paths for all providers
described below:

If you already use Terraform providers provided in the official repository, they will continue to work.

module "vpc" {
 source = "./modules/vpc"
 subnets_count = var.subnets_count
 subnets_availability_zones = var.availability_zones
}

.
├── README.md
├── README_RU.md
├── aws
│ ├── README.md
│ ├── README_RU.md
│ ├── main.tf
│ ├── modules
│ │ ├── dns
│ │ ├── eip
│ │ ├── instance
│ │ ├── key_pair
│ │ ├── security
│ │ └── vpc
│ └── variables.tf
├── azure
│ ├── README.md
│ ├── README_RU.md
│ ├── main.tf
│ ├── modules
│ │ ├── dns
│ │ ├── resource_group
│ │ ├── security
│ │ ├── vm
│ │ └── vpc
│ └── variables.tf
├── ...

provider_installation {
 network_mirror {
 url = "https://terraform-mirror.yandexcloud.net/"
 include = ["registry.terraform.io/*/*"]
 }
 direct {
 exclude = ["registry.terraform.io/*/*"]
 exclude = ["terraform.storage.ydb.tech/*/*"]
 }

https://github.com/ydb-platform/ydb-terraform
https://registry.terraform.io/browse/providers

Deployment overview

The following are step-by-step instructions for creating infrastructure in AWS, Azure, GCP, or Yandex Cloud. By default, example Terraform
scenarios deploy the same type of infrastructure:

VMs in three availability zones.

Cloud network, public and private subnets (per subnet per availability zone).

Private DNS zone.

Security groups allowing ICMP and traffic on ports: 22, 65535, 19001, 8765, and 2135.

Most cluster parameters are adjustable (number of VMs, size and type of connected disks, number of networks, DNS zone domain name, etc.), but
please note that the defaults are minimum recommended values, so changing them downwards may cause issues.

Create infrastructure in AWS to deploy YDB cluster

Create an account in AWS and add enough balance to run 9 VMs. Using the calculator, you can estimate the approximate cost of maintaining
infrastructure depending on the region and other circumstances.

Create a user and connection key in AWS Cloud to run the AWS CLI:

1. The user is created in the Security credentials → Access management → Users → Create User section.

2. The next step is to assign rights to the user. Select AmazonEC2FullAccess .

3. After creating a user, go to its page, open the Security credentials tab, and click the Create access key button in the Access keys
section.

4. Select Command Line Interface from the proposed options.

5. Next, create a tag for the key and click the Create access key button.

6. Copy the values of the Access key and Secret access key fields.

Install AWS CLI and run the aws configure command. Enter the values of the Access key and Secret access key fields saved earlier. Edit
the ~/.aws/credentials and ~/.aws/config files as follows:

1. Add [AWS_def_reg] to ~/.aws/config before region =

2. Add [AWS] before the connection key secret information.

Go to the aws directory in the downloaded repository and edit the following variables in the variable.tf file:

1. aws_region – the region in which the infrastructure will be deployed.

2. aws_profile – security profile name from the file ~/.aws/credentials .

3. availability_zones – list of region availability zones. It is formed from the name of the region and the serial letter. For example, for the us-
west-2 region, the list of availability zones will look like this: ["us-west-2a", "us-west-2b", "us-west-2c"] .

Now, being in the aws subdirectory, you can run the following sequence of commands to install the provider, initialize modules, and create the
infrastructure:

1. terraform init – installing the provider and initializing modules.

2. terraform plan – creating a plan for future infrastructure.

3. terraform init – create resources in the cloud.

Next, use the commands terraform plan , terraform init , and terraform destroy (destruction of the created infrastructure) to apply
further changes as necessary.

Create infrastructure in Azure to deploy YDB cluster

Create an account in Azure and top up your account account with the amount, sufficient to operate 9 VMs. You can estimate the approximate cost
of maintaining infrastructure depending on the region and other circumstances using calculator.

Authentication to the Azure Provider for Terraform goes through the CLI:

1. You can download, install, and configure the Azure CLI by following these instructions.

2. Log in using the Azure CLI interactively with the az login command.

3. The easiest way to create a pair of SSH keys (Linux, macOS) is to use the ssh-keygen command.

After logging into Azure and generating SSH keys, you need to change the default value of the following variables in the root file variables.tf :

1. auth_location —the name of the region where the infrastructure will be deployed. The command az account list-locations | grep
"displayName" can obtain a list of available regions depending on the subscription.

2. ssh_key_path – path to the public part of the generated SSH key.

Now, being in the azure subdirectory, you can run the following sequence of commands to install the provider, initialize modules, and create the
infrastructure:

1. terraform init – installing the provider and initializing modules.

2. terraform plan – creating a plan for future infrastructure.

3. terraform init – create resources in the cloud.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_preparing-vms-with-terraform_deployment-overview
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_preparing-vms-with-terraform_aws-cluster
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_preparing-vms-with-terraform_azure-cluster
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_preparing-vms-with-terraform_aws-cluster
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_preparing-vms-with-terraform_aws-cluster
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_preparing-vms-with-terraform_gcp-cluster
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_preparing-vms-with-terraform_gcp-cluster
https://console.aws.amazon.com/
https://calculator.aws/#/createCalculator/ec2-enhancement
https://console.aws.amazon.com/iam/home#/users
https://aws.amazon.com/cli/
https://portal.azure.com/#home
https://portal.azure.com/#view/Microsoft_Azure_GTM/ModernBillingMenuBlade/~/BillingAccounts
https://azure.com/e/26977c150e854617a888fb3a7d1a399d
https://learn.microsoft.com/en-us/cli/azure/install-azure-cli

Next, use the commands terraform plan , terraform init , and terraform destroy (destruction of the created infrastructure) to apply
further changes as necessary.

Creating infrastructure in Google Cloud Platform to deploy YDB cluster

Register in the Google Cloud console and create a project. Activate your payment account and top it up with funds to launch nine VMs. You can
estimate the approximate cost in calculator.

Set up GCP CLI:

1. Activate Compute Engine API and Cloud DNS API.

2. Download and install GCP CLI by following these instructions.

3. Go to the .../google-cloud-sdk/bin subdirectory and run the ./gcloud compute regions list command to get a list of available
regions.

4. Run the command ./gcloud auth application-default login to configure the connection profile.

Go to the gcp subdirectory (located in the downloaded repository), and in the variables.tf file set the current values for the following variables:

1. project – the project's name that was set in the Google Cloud cloud console.

2. region – the region where the infrastructure will be deployed.

3. zones – list of availability zones in which subnets and VMs will be created.

Now, being in the gcp subdirectory, you can run the following sequence of commands to install the provider, initialize modules, and create the
infrastructure:

1. terraform init – installing the provider and initializing modules.

2. terraform plan – creating a plan for future infrastructure.

3. terraform init – create resources in the cloud.

Next, use the commands terraform plan , terraform init , and terraform destroy (destruction of the created infrastructure) to apply
further changes as necessary.

Creating an infrastructure in Yandex Cloud for deploying the YDB cluster

To create infrastructure in Yandex Cloud using Terraform, you need:

1. Prepare the cloud for work:

Register in Yandex Cloud.
Connect payment account.

Make sure that there are enough funds to create nine VMs.

2. Install and configure Yandex Cloud CLI:

Download Yandex Cloud CLI.

Create profile

3. Create service account using the CLI.

4. Generate Authorized key in JSON format for connecting Terraform to the cloud using the CLI: yc iam key create --service-account-name
<acc name> --output <file name> --folder-id <cloud folder id> . Information about the created key will be displayed in the terminal:

The authorized key will be created in the directory where the command was executed.

5. Configure Yandex Cloud Terraform provider.

6. Download this repository with the command git clone https://github.com/ydb-platform/ydb-terraform.git .

7. Go to the yandex_cloud directory in the downloaded repository and make changes to the following variables in the variables.tf file:

key_path – path to the SA key generated using the CLI.

cloud_id – cloud ID. You can get a list of available clouds with the command yc resource-manager cloud list .

folder_id – Cloud folder ID. Can be obtained with the command yc resource-manager folder list .

Now, being in the yandex_cloud subdirectory, you can run the following sequence of commands to install the provider, initialize modules, and
create the infrastructure:

1. terraform init – installing the provider and initializing modules.

2. terraform plan – creating a plan for future infrastructure.

3. terraform init – create resources in the cloud.

Next, use the commands terraform plan , terraform init , and terraform destroy (destruction of the created infrastructure) to apply
further changes as necessary.

id: ajenap572v8e1l...
service_account_id: aje90em65r69...
created_at: "2024-09-03T15:34:57.495126296Z"
key_algorithm: RSA_2048

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_preparing-vms-with-terraform_gcp-cluster
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_preparing-vms-with-terraform_yc-cluster
https://console.cloud.google.com/projectselector2/home
https://console.cloud.google.com/billing/manage
https://cloud.google.com/products/calculator
https://console.cloud.google.com/apis/api/compute.googleapis.com/metrics
https://console.cloud.google.com/apis/api/dns.googleapis.com/metrics
https://cloud.google.com/sdk/docs/install
https://console.yandex.cloud/
https://yandex.cloud/en/docs/billing/concepts/billing-account
https://billing.yandex.cloud/
https://yandex.cloud/en/docs/cli/quickstart
https://yandex.cloud/en/docs/cli/quickstart#initialize
https://yandex.cloud/en/docs/tutorials/infrastructure-management/terraform-quickstart#get-credentials
https://yandex.cloud/en/docs/cli/operations/authentication/service-account#auth-as-sa
https://yandex.cloud/en/docs/tutorials/infrastructure-management/terraform-quickstart#configure-provider

Restarting YDB clusters deployed with Ansible
YDB clusters provide strong availability guarantees; thus, the cluster's fault tolerance model needs to be considered during any maintenance,
including cluster restarts. There are two kinds of nodes that might need to be restarted:

Database nodes (also known as dynamic) are stateless; thus, the primary consideration is having enough of them running to handle each
database's load. A basic rolling restart with a little delay is usually sufficient for dynamic nodes.

Storage nodes (also known as static) are stateful and responsible for safely persisting data. Thus, they require special handling to ensure data
availability. Each YDB cluster has a dedicated component that keeps track of all outages and maintenance and can tell if it is currently safe to
stop or restart a particular node. Thus, asking for its permission for each operation is essential, and a complete restart of storage nodes often
takes a while.

Restart via Ansible playbook

ydb-ansible repository contains a playbook called ydb_platform.ydb.restart that can be used to restart a YDB cluster. Run it from the same
directory used for the initial deployment.

Restart all nodes

By default, the ydb_platform.ydb.restart restarts all cluster nodes. Static nodes go first, then dynamic nodes. The command to run it:

Filter by node type

Tasks in the ydb_platform.ydb.restart playbook are tagged with node types, so you can use Ansible's tags functionality to filter nodes by their
kind.

These two commands are equivalent and will restart all storage nodes:

These two commands are equivalent and will restart all database nodes:

Filter by hostname

To restart a specific host or subset of hosts, use the --limit argument:

It can be used together with tags, too:

Restart nodes manually

The ydbops tool properly implements various YDB cluster manipulations, including restarts. The ydb_platform.ydb.restart playbook explained
above uses it behind the scenes, but it can be used manually, too.

There are more guidelines and information on how this works in the Maintenance without downtime article.

ansible-playbook ydb_platform.ydb.restart

ansible-playbook ydb_platform.ydb.restart --tags storage
ansible-playbook ydb_platform.ydb.restart --tags static

ansible-playbook ydb_platform.ydb.restart --tags database
ansible-playbook ydb_platform.ydb.restart --tags dynamic

ansible-playbook ydb_platform.ydb.restart --limit='<hostname>'
ansible-playbook ydb_platform.ydb.restart --limit='<hostname-1,hostname-2>'

ansible-playbook ydb_platform.ydb.restart --tags database --limit='<hostname>'

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_restart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_restart_restart-via-ansible-playbook
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_restart_restart-all-nodes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_restart_filter-by-node-type
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_restart_filter-by-hostname
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_restart_restart-nodes-manually
https://github.com/ydb-platform/ydb-ansible
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_initial-deployment
https://github.com/ydb-platform/ydbops
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_maintenance-without-downtime

Updating configuration of YDB clusters deployed with Ansible
During initial deployment, the Ansible playbook used the provided config file to create the initial cluster configuration. Technically, it generates two
variants of the original config file and deploys them to all hosts via Ansible's mechanism for cross-server file copy. This article explains which
options are available to change the cluster's configuration after the initial deployment.

Update configuration via Ansible playbook

ydb-ansible repository contains a playbook called ydb_platform.ydb.update_config that can be used to update YDB cluster's configuration. Go
to the same directory used for the initial deployment, edit files/config.yaml as needed, and then run this playbook:

The playbook deploys the new version of the config files and then performs a rolling restart.

Filter by node type

Tasks in the ydb_platform.ydb.update_config playbook are tagged with node types, so you can use Ansible's tags functionality to filter nodes
by their kind.

These two commands are equivalent and will change the configuration of all storage nodes:

These two commands are equivalent and will change the configuration of all database nodes:

Skip restart

There's a no_restart tag to only deploy the config files and skip the cluster restart. This might be useful if the cluster will be restarted later
manually or as part of some other maintenance tasks. Example:

Dynamic configuration

YDB has its own configuration management mechanism called dynamic configuration. It is agnostic of the chosen cluster deployment method and
allows for flexible cluster configuration even in multitenant environments.

Consider switching to dynamic configuration if manually deploying config files and doing a complete rolling restart on any change is no longer
feasible.

ansible-playbook ydb_platform.ydb.update_config

ansible-playbook ydb_platform.ydb.update_config --tags storage
ansible-playbook ydb_platform.ydb.update_config --tags static

ansible-playbook ydb_platform.ydb.update_config --tags database
ansible-playbook ydb_platform.ydb.update_config --tags dynamic

ansible-playbook ydb_platform.ydb.update_config --tags no_restart

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_update-config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_update-config_update-configuration-via-ansible-playbook
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_update-config_filter-by-node-type
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_update-config_skip-restart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_update-config_dynamic-configuration
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_initial-deployment
https://github.com/ydb-platform/ydb-ansible
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_initial-deployment
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_restart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_storage-node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_database-node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_restart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config

Updating YDB version on clusters deployed with Ansible
During the initial deployment, the Ansible playbook provides several options for selecting the YDB server executable (ydbd). This article explains
the available options for changing the cluster's version after the initial deployment.

Warning

YDB has specific rules regarding version compatibility. It is essential to refer to the version compatibility guide and changelog to
correctly choose a new version to upgrade to and prepare for any nuances.

Update executables via Ansible playbook

The ydb-ansible repository contains a playbook called ydb_platform.ydb.update_executable that can be used to upgrade or downgrade a YDB
cluster to another version. Navigate to the same directory used for the initial deployment, edit inventory/50-inventory.yaml to specify the target
YDB version to install (typically, via the ydb_version or ydb_git_version variables), and then run this playbook:

The playbook obtains a new binary and then deploys it to the cluster via Ansible's cross-server copying. After that, it performs a rolling restart.

Filter by node type

Tasks in the ydb_platform.ydb.update_executable playbook are tagged with node types, so you can use Ansible's tags functionality to filter
nodes by their kind.

These two commands are equivalent and will change the configuration of all storage nodes:

These two commands are equivalent and will change the configuration of all database nodes:

Skip restart

There's a no_restart tag to only deploy the executable files and skip the cluster restart. This might be useful if the cluster will be restarted later
manually or as part of some other maintenance tasks. Example:

ansible-playbook ydb_platform.ydb.update_executable

ansible-playbook ydb_platform.ydb.update_executable --tags storage
ansible-playbook ydb_platform.ydb.update_executable --tags static

ansible-playbook ydb_platform.ydb.update_executable --tags database
ansible-playbook ydb_platform.ydb.update_executable --tags dynamic

ansible-playbook ydb_platform.ydb.update_executable --tags no_restart

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_update-executable
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_update-executable_update-executables-via-ansible-playbook
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_update-executable_filter-by-node-type
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_update-executable_skip-restart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_initial-deployment
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_upgrade_version-compatability
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server
https://github.com/ydb-platform/ydb-ansible
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_initial-deployment
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_restart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_storage-node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_database-node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_restart

Ensuring observability of a YDB cluster deployed with Ansible
This section of YDB documentation covers various observability-related topics specific to clusters deployed with Ansible.

Logging on clusters deployed with Ansible

Additionally, there's a separate section with Reference on YDB observability that contains articles that do not depend on a chosen cluster
deployment method.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_observability_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_initial-deployment
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_observability_logging
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_index

Logging on clusters deployed with Ansible
During initial deployment, the Ansible playbook sets up several systemd units that run YDB nodes. Typically, there are multiple YDB nodes per
physical server or virtual machine, each having its own log. There are two main ways to view logs of such cluster: via an Ansible playbook or via
ssh .

View logs via Ansible playbook

ydb-ansible repository contains a playbook called ydb_platform.ydb.logs that can be used to show logs of all YDB nodes in a cluster. The
playbook gathers logs from nodes and outputs them to stdout , which allows to pipe them for further processing, for example with commands like
grep or awk .

All logs of all nodes

By default, the ydb_platform.ydb.logs playbook fetches logs of all YDB nodes. The command to do it:

Filter by node type

There are two main node types in a YDB cluster:

Storage (also known as static)

Database (also known as dynamic)

Tasks in the ydb_platform.ydb.logs playbook are tagged with node types, so you can use Ansible's tags functionality to filter logs by node type.

These two commands are equivalent and will output the storage node logs:

These two commands are equivalent, too, and will output the database node logs:

Filter by hostname

To show logs of a specific host or subset of hosts, use the --limit argument:

It can be used together with tags, too:

View logs via ssh

To manually access YDB cluster logs via ssh , perform the following steps:

1. Construct a ssh command to access the server that runs a YDB node you need logs for. The basic version would look like ssh -i <path-
to-ssh-key> <username>@<hostname> . Take values for these placeholders from the inventory/50-inventory.yaml you used for
deployment:

<path-to-ssh-key> is children.ydb.ansible_ssh_private_key_file

<username> is children.ydb.ansible_user

<hostname> is one of children.ydb.hosts

2. Choose which systemd unit's logs you need. You can skip this step if you already know the unit name. After logging in to the server using the
ssh command constructed in the previous step, obtain the list of YDB-related systemd units using systemctl list-units | grep ydb .

There'll likely be one storage node and multiple database nodes.

ansible-playbook ydb_platform.ydb.logs

ansible-playbook ydb_platform.ydb.logs --tags storage
ansible-playbook ydb_platform.ydb.logs --tags static

ansible-playbook ydb_platform.ydb.logs --tags database
ansible-playbook ydb_platform.ydb.logs --tags dynamic

ansible-playbook ydb_platform.ydb.logs --limit='<hostname>'
ansible-playbook ydb_platform.ydb.logs --limit='<hostname-1,hosntname-2>'

ansible-playbook ydb_platform.ydb.logs --tags database --limit='<hostname>'

Example output

$ systemctl list-units | grep ydb
ydb-transparent-hugepages.service loaded active exited
Configure Transparent Huge Pages (THP)
ydbd-database-a.service loaded active running YDB

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_observability_logging
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_observability_logging_view-logs-via-ansible-playbook
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_observability_logging_all-logs-of-all-nodes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_observability_logging_filter-by-node-type
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_observability_logging_filter-by-hostname
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_observability_logging_view-logs-via-ssh
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_initial-deployment
https://systemd.io/
https://github.com/ydb-platform/ydb-ansible

3. Take the systemd unit name from the previous step and use it in the following command journalctl -u <systemd-unit> to actually show
logs. You can specify -u multiple times to show logs of multiple units or use any other arguments from man journalctl to adjust the output.

dynamic node / database / a
ydbd-database-b.service loaded active running YDB
dynamic node / database / b
ydbd-storage.service loaded active running YDB
storage node

Getting started with YDB in Kubernetes
Deploying YDB in Kubernetes is a simple way to set up and run a YDB cluster. Kubernetes allows to use an universal approach to managing your
application in any cloud service provider. This guide provides instructions on how to deploy YDB in AWS EKS or Yandex Managed Service for
Kubernetes.

Prerequisites

YDB is delivered as a Helm chart that is a package with templates of Kubernetes structures. For more information about Helm, see the
documentation. The YDB chart can be deployed in the following environment:

1. A Kubernetes cluster with version 1.20 or higher. It needs to support Dynamic Volume Provisioning. Follow the instructions below if you don't
have a suitable cluster yet.

2. The kubectl command line tool is installed and Kubernetes cluster access is configured.

3. The Helm package manager with a version higher than 3.1.0 is installed.

For YDB to work efficiently, we recommend using physical (not virtual) disks larger than 800 GB as block devices.

The minimum disk size is 80 GB, otherwise the YDB node won't be able to use the device. Correct and uninterrupted operation with minimum-size
disks is not guaranteed. We recommend using such disks exclusively for informational purposes.

Warning

Configurations with disks less than 800 GB or any types of storage system virtualization cannot be used for production services or
system performance testing.

We don't recommend storing YDB data on disks shared with other processes (for example, the operating system).

Creating a Kubernetes cluster

Skip this section if you have already configured a suitable Kubernetes cluster.

Overview of YDB Helm chart

The Helm chart installs YDB Kubernetes Operator to the Kubernetes cluster. It is a controller that follows the Operator design pattern. It implements
the logic required for deploying and managing YDB components.

A YDB cluster consists of two kinds of nodes:

Storage nodes (Storage resource) provide the data persistence layer.

Dynamic nodes (Database resource) implement data access and processing.

Create both resources with the desired parameters to deploy a YDB cluster in Kubernetes. We'll follow this process in more detail below. The
schema for these resources is hosted on GitHub.

After the chart data is processed by the controller, the following resources are created:

StatefulSet: A workload controller that assigns stable network IDs and disk resources to each container.
Service: An object that is used to access the created databases from applications.

ConfigMap: An object that is used to store the cluster configuration.

AWS EKS

1. Configure awscli and eksctl to work with AWS resources according to the documentation.

2. Configure kubectl to work with a Kubernetes cluster.

3. Run the following command:

This command will create a Kubernetes cluster named ydb . The --node-type flag indicates that the cluster is deployed using c5a.2xlarge
(8vCPUs, 16 GiB RAM) instances. This meets minimal guidelines for running YDB.

It takes 10 to 15 minutes on average to create a Kubernetes cluster. Wait for the process to complete before proceeding to the next step of YDB
deployment. The kubectl configuration will be automatically updated to work with the cluster after it is created.

 eksctl create cluster \
 --name ydb \
 --nodegroup-name standard-workers \
 --node-type c5a.2xlarge \
 --nodes 3 \
 --nodes-min 1 \
 --nodes-max 4

Yandex Managed Service for Kubernetes

Follow the instructions in the Yandex Managed Service for Kubernetes quick start guide.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_kubernetes_initial-deployment
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_kubernetes_initial-deployment_prerequisites
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_kubernetes_initial-deployment_creating-a-kubernetes-cluster
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_kubernetes_initial-deployment_overview-of-ydb-helm-chart
https://aws.amazon.com/eks/
https://yandex.cloud/services/managed-kubernetes
https://helm.sh/
https://helm.sh/docs/
https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/
https://kubernetes.io/docs/tasks/tools/install-kubectl
https://helm.sh/docs/intro/install/
https://github.com/ydb-platform/ydb-kubernetes-operator
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://github.com/ydb-platform/ydb-kubernetes-operator/tree/master/samples/storage-block-4-2.yaml
https://github.com/ydb-platform/ydb-kubernetes-operator/tree/master/samples/database.yaml
https://github.com/ydb-platform/ydb-kubernetes-operator/tree/master/deploy/ydb-operator/crds
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html
https://yandex.cloud/en/docs/managed-kubernetes/quickstart

See the operator's source code on GitHub. The Helm chart is in the deploy folder.
YDB containers are deployed using cr.yandex/yc/ydb images. Currently, they are only available as prebuilt artifacts.

Environment preparation

1. Add the YDB repository to Helm:

Run the command:

ydb : The repository alias.
https://charts.ydb.tech/ : The YDB repository URL.

Output:

2. Update the Helm chart index:

Run the command:

Output:

Deploying a YDB cluster

Install the YDB Kubernetes operator

Use helm to deploy the YDB Kubernetes operator to the cluster:

ydb-operator : The installation name.

ydb/ydb-operator : The name of the chart in the repository you have added earlier.

Result:

Deploy storage nodes

YDB supports a number of storage topologies. YDB Kubernetes operator comes with a few sample configuration files for the most common
topologies. This guide uses them as-is, but feel free to adjust them as needed or implement a new configuration file from scratch.

Apply the manifest for creating storage nodes:

helm repo add ydb https://charts.ydb.tech/

"ydb" has been added to your repositories

helm repo update

Hang tight while we grab the latest from your chart repositories...
...Successfully got an update from the "ydb" chart repository
Update Complete. ⎈Happy Helming!⎈

helm install ydb-operator ydb/ydb-operator

NAME: ydb-operator
LAST DEPLOYED: Thu Aug 12 19:32:28 2021
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None

block-4-2

This will create 8 YDB storage nodes that persist data using erasure coding. This takes only 50% of additional storage space to provide fault-
tolerance.

kubectl apply -f https://raw.githubusercontent.com/ydb-platform/ydb-kubernetes-operator/master/samples/storage-block-4-
2.yaml

mirror-3-dc

kubectl apply -f https://raw.githubusercontent.com/ydb-platform/ydb-kubernetes-operator/master/samples/storage-mirror-
3dc.yaml

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_kubernetes_initial-deployment_environment-preparation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_kubernetes_initial-deployment_deploying-a-ydb-cluster
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_kubernetes_initial-deployment_install-the-ydb-kubernetes-operator
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_kubernetes_initial-deployment_deploy-storage-nodes
https://github.com/ydb-platform/ydb-kubernetes-operator
https://github.com/ydb-platform/ydb-kubernetes-operator/tree/master/deploy
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topology

This command creates a StatefulSet object that describes a set of YDB containers with stable network IDs and disks assigned to them, as well
as Service and ConfigMap objects that are required for the cluster to work.

YDB storage nodes take a while to initialize. You can check the initialization progress with kubectl get storages.ydb.tech or kubectl
describe storages.ydb.tech . Wait until the status of the Storage resource changes to Ready .

Warning

The cluster configuration is static. The controller won't process any changes when the manifest is reapplied. You can only update
cluster parameters such as version or disk size by creating a new cluster.

Create a database and dynamic nodes

YDB database is a logical entity that is served by a set of dynamic nodes. A sample manifest that comes with YDB Kubernetes operator creates a
database named database-sample with 3 dynamic nodes. As with storage nodes, feel free to adjust the configuration as needed.

Apply the manifest for creating a database and dynamic nodes:

Note

The value referenced by .spec.storageClusterRef.name key must match the name of the Storage resource with storage nodes.

A StatefulSet object that describes a set of dynamic nodes is created after processing the manifest. The created database will be accessible
from inside the Kubernetes cluster by the database-sample hostname or the database-sample.<namespace>.svc.cluster.local FQDN,
where namespace indicates the namespace that was used for the installation. You can connect the database via port 2135.

View the status of the created resource:

Result:

State: Ready means that the database is ready to be used.

Test cluster operation

Check how YDB works:

1. Check that all nodes are in the Running status:

Result:

This will create 9 YDB storage nodes that store data with replication factor 3.

kubectl apply -f https://raw.githubusercontent.com/ydb-platform/ydb-kubernetes-operator/master/samples/database.yaml

kubectl describe database.ydb.tech

Name: database-sample
Namespace: default
Labels: <none>
Annotations: <none>
API Version: ydb.tech/v1alpha1
Kind: Database
...
Status:
 State: Ready
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Provisioning 8m10s ydb-operator Resource sync is in progress
 Normal Provisioning 8m9s ydb-operator Resource sync complete
 Normal TenantInitialized 8m9s ydb-operator Tenant /root/database-sample created

kubectl get pods

NAME READY STATUS RESTARTS AGE
database-sample-0 1/1 Running 0 1m
database-sample-1 1/1 Running 0 1m

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_kubernetes_initial-deployment_create-a-database-and-dynamic-nodes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_kubernetes_initial-deployment_test-cluster-operation

2. Start a new pod with YDB CLI:

3. Query the YDB database:

--endpoint : The database endpoint.

--database : The name of the created database.

--query : The query text.

Result:

Further steps

After you have tested that the created YDB cluster operates fine you can continue using it as you see fit. For example, if you just want to continue
experimenting, you can use it to follow the YQL tutorial.

Below are a few more things to consider.

Monitoring

YDB provides standard mechanisms for collecting logs and metrics. Logging is done to standard stdout and stderr streams and can be
redirected using popular solutions. For example, you can use a combination of Fluentd and Elastic Stack.

To collect metrics, ydb-controller provides resources like ServiceMonitor . They can be handled using kube-prometheus-stack.

Tuning allocated resources

You can limit resource consumption for each YDB pod. If you leave the limit values empty, a pod can use the entire CPU time and VM RAM. This
may cause undesirable effects. We recommend that you always specify the resource limits explicitly.

To learn more about resource allocation and limits, see the Kubernetes documentation.

Release the resources you don't use

If you no longer need the created YDB cluster, delete it by following these steps:

1. To delete a YDB database and its dynamic nodes, just delete the respective Database resource:

2. To delete YDB storage nodes, run the following commands:

3. To remove the YDB Kubernetes operator, delete it with Helm:

database-sample-2 1/1 Running 0 1m
database-sample-3 1/1 Running 0 1m
database-sample-4 1/1 Running 0 1m
database-sample-5 1/1 Running 0 1m
storage-sample-0 1/1 Running 0 1m
storage-sample-1 1/1 Running 0 1m
storage-sample-2 1/1 Running 0 1m
storage-sample-3 1/1 Running 0 1m
storage-sample-4 1/1 Running 0 1m
storage-sample-5 1/1 Running 0 1m
storage-sample-6 1/1 Running 0 1m
storage-sample-7 1/1 Running 0 1m
storage-sample-8 1/1 Running 0 1m

kubectl run -it --image=cr.yandex/crptqonuodf51kdj7a7d/ydb:22.4.44 --rm ydb-cli bash

ydb \
 --endpoint grpc://database-sample-grpc:2135 \
 --database /root/database-sample \
 sql -s 'SELECT 2 + 2;'

┌─────────┐
| column0 |
├─────────┤
| 4 |
└─────────┘

kubectl delete database.ydb.tech database-sample

kubectl delete storage.ydb.tech storage-sample
kubectl delete pvc -l app.kubernetes.io/name=ydb

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_kubernetes_initial-deployment_further-steps
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_kubernetes_initial-deployment_monitoring
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_kubernetes_initial-deployment_resource-allocation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_kubernetes_initial-deployment_cleanup
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_kubernetes_(_reference_ydb-cli_index.md)
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_yql-tutorial_index
https://www.fluentd.org/
https://www.elastic.co/elastic-stack/
https://github.com/prometheus-community/helm-charts/tree/main/charts/kube-prometheus-stack
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

ydb-operator : The name of the release that the controller was installed under.

helm delete ydb-operator

Deploying YDB cluster manually
This document describes how to deploy a multi-tenant YDB cluster on multiple bare-metal or virtual servers.

Getting started

Prerequisites

Review the system requirements and the cluster topology.

Make sure you have SSH access to all servers. This is required to install artifacts and run the YDB executable.

The network configuration must allow TCP connections on the following ports (these are defaults, but you can change them by settings):

22: SSH service
2135, 2136: GRPC for client-cluster interaction.

19001, 19002: Interconnect for intra-cluster node interaction

8765, 8766: HTTP interface of YDB Embedded UI.

Distinct ports are necessary for gRPC, Interconnect and HTTP interface of each dynamic node when hosting multiple dynamic nodes on a single
server.

Make sure that the system clocks running on all the cluster's servers are synced by ntpd or chrony . We recommend using the same time source
for all servers in the cluster to maintain consistent leap seconds processing.

If the Linux flavor run on the cluster servers uses syslogd for logging, set up log file rotation using logrotate or similar tools. YDB services can
generate substantial amounts of system logs, particularly when you elevate the logging level for diagnostic purposes. That's why it's important to
enable system log file rotation to prevent the /var file system overflow.

Select the servers and disks to be used for storing data:

Use the block-4-2 fault tolerance model for cluster deployment in one availability zone (AZ). Use at least eight servers to safely survive the
loss of two servers.

Use the mirror-3-dc fault tolerance model for cluster deployment in three availability zones (AZ). To survive the loss of one AZ and one
server in another AZ, use at least nine servers. Make sure that the number of servers running in each AZ is the same.

Note

Run each static node (data node) on a separate server. Both static and dynamic nodes can run together on the same server. A server
can also run multiple dynamic nodes if it has enough computing power.

For more information about hardware requirements, see YDB system requirements and recommendations.

Preparing TLS keys and certificates

The TLS protocol provides traffic protection and authentication for YDB server nodes. Before you install your cluster, determine which servers it will
host, establish the node naming convention, come up with node names, and prepare your TLS keys and certificates.

You can use existing certificates or generate new ones. Prepare the following files with TLS keys and certificates in the PEM format:

ca.crt : CA-issued certificate used to sign the other TLS certificates (these files are the same on all the cluster nodes).

node.key : Secret TLS keys for each cluster node (one key per cluster server).

node.crt : TLS certificates for each cluster node (each certificate corresponds to a key).

web.pem : Concatenation of the node secret key, node certificate, and the CA certificate needed for the monitoring HTTP interface (a separate
file is used for each server in the cluster).

Your organization should define the parameters required for certificate generation in its policy. The following parameters are commonly used for
generating certificates and keys for YDB:

2048-bit or 4096-bit RSA keys

Certificate signing algorithm: SHA-256 with RSA encryption

Validity period of node certificates: at least 1 year

CA certificate validity period: at least 3 years.

Make sure that the CA certificate is appropriately labeled, with the CA property enabled along with the "Digital Signature, Non Repudiation, Key
Encipherment, Certificate Sign" usage types.

For node certificates, it's key that the actual host name (or names) match the values in the "Subject Alternative Name" field. Enable both the regular
usage types ("Digital Signature, Key Encipherment") and advanced usage types ("TLS Web Server Authentication, TLS Web Client Authentication")
for the certificates. Node certificates must support both server authentication and client authentication (the extendedKeyUsage =
serverAuth,clientAuth option in the OpenSSL settings).

For batch generation or update of YDB cluster certificates by OpenSSL, you can use the sample script from the YDB GitHub repository. Using the
script, you can streamline preparation for installation, automatically generating all the key files and certificate files for all your cluster nodes in a

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_initial-deployment
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_initial-deployment_before-start
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_initial-deployment_requirements
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_initial-deployment_tls-certificates
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_system-requirements
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topology
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_system-requirements
https://github.com/ydb-platform/ydb/blob/main/ydb/deploy/tls_cert_gen/

single step.

Create a system user and a group to run YDB

On each server that will be running YDB, execute the command below:

To ensure that YDB can access block disks, add the user that will run YDB processes, to the disk group:

Install YDB software on each server

1. Download and unpack an archive with the ydbd executable and the libraries required for YDB to run:

1. Create directories for YDB software:

1. Copy the executable and libraries to the appropriate directories:

1. Set the owner of files and folders:

Prepare and clear disks on each server

For YDB to work efficiently, we recommend using physical (not virtual) disks larger than 800 GB as block devices.

The minimum disk size is 80 GB, otherwise the YDB node won't be able to use the device. Correct and uninterrupted operation with minimum-size
disks is not guaranteed. We recommend using such disks exclusively for informational purposes.

Warning

Configurations with disks less than 800 GB or any types of storage system virtualization cannot be used for production services or
system performance testing.

We don't recommend storing YDB data on disks shared with other processes (for example, the operating system).

To get a list of available block devices on the server, you can use the lsblk command. Example output:

The names of block devices depend on the operating system settings provided by the base image or manually configured. Typically, device names
consist of up to three parts:

A fixed prefix or a prefix indicating the device type

A device sequential identifier (which can be a letter or a number)

A partition sequential identifier on the given device (usually a number)

1. Create partitions on the selected disks:

sudo groupadd ydb
sudo useradd ydb -g ydb

sudo usermod -aG disk ydb

mkdir ydbd-stable-linux-amd64
curl -L https://binaries.ydb.tech/ydbd-stable-linux-amd64.tar.gz | tar -xz --strip-component=1 -C ydbd-stable-linux-
amd64

sudo mkdir -p /opt/ydb /opt/ydb/cfg

sudo cp -iR ydbd-stable-linux-amd64/bin /opt/ydb/
sudo cp -iR ydbd-stable-linux-amd64/lib /opt/ydb/

sudo chown -R root:bin /opt/ydb

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS
loop0 7:0 0 63.3M 1 loop /snap/core20/1822
...
vda 252:0 0 40G 0 disk
├─vda1 252:1 0 1M 0 part
└─vda2 252:2 0 40G 0 part /
vdb 252:16 0 186G 0 disk
└─vdb1 252:17 0 186G 0 part

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_initial-deployment_create-user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_initial-deployment_install-binaries
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_initial-deployment_prepare-disks

Alert

The next operation will delete all partitions on the specified disk. Make sure that you specified a disk that contains no external data.

Execute the command ls -l /dev/disk/by-partlabel/ to ensure that a disk with the label /dev/disk/by-partlabel/ydb_disk_ssd_01 has
appeared in the system.

If you plan to use more than one disk on each server, replace ydb_disk_ssd_01 with a unique label for each one. Disk labels should be unique
within each server. They are used in configuration files, see the following guides.

To streamline the next setup step, it makes sense to use the same disk labels on cluster servers having the same disk configuration.

2. Clear the disk by this command built-in the ydbd executable:

Warning

After executing this command, data on the disk will be erased.

Perform this operation for each disk to be used for YDB data storage.

Prepare configuration files

Prepare a configuration file for YDB:

1. Download a sample config for the appropriate failure model of your cluster:

block-4-2: For a single-data center cluster.

mirror-3dc: For a cross-data center cluster consisting of 9 nodes.

mirror-3dc-3nodes: For a cross-data center cluster consisting of 3 nodes.

2. In the host_configs section, specify all disks and their types on each cluster node. Possible disk types:

ROT: Rotational, HDD.

SSD: SSD or NVMe.

3. In the hosts section, specify the FQDN of each node, their configuration and location in a data_center or rack :

DISK=/dev/nvme0n1
sudo parted ${DISK} mklabel gpt -s
sudo parted -a optimal ${DISK} mkpart primary 0% 100%
sudo parted ${DISK} name 1 ydb_disk_ssd_01
sudo partx --u ${DISK}

sudo LD_LIBRARY_PATH=/opt/ydb/lib /opt/ydb/bin/ydbd admin bs disk obliterate /dev/disk/by-partlabel/ydb_disk_ssd_01

host_configs:
- drive:
 - path: /dev/disk/by-partlabel/ydb_disk_ssd_01
 type: SSD
 host_config_id: 1

hosts:
- host: node1.ydb.tech
 host_config_id: 1
 walle_location:
 body: 1
 data_center: 'zone-a'
 rack: '1'
- host: node2.ydb.tech
 host_config_id: 1
 walle_location:
 body: 2
 data_center: 'zone-b'
 rack: '1'
- host: node3.ydb.tech
 host_config_id: 1
 walle_location:
 body: 3
 data_center: 'zone-c'
 rack: '1'

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_initial-deployment_config
https://github.com/ydb-platform/ydb/blob/stable-23-3/ydb/deploy/yaml_config_examples/block-4-2.yaml
https://github.com/ydb-platform/ydb/blob/stable-23-3/ydb/deploy/yaml_config_examples/mirror-3dc-9-nodes.yaml
https://github.com/ydb-platform/ydb/blob/stable-23-3/ydb/deploy/yaml_config_examples/mirror-3dc-3-nodes.yaml

4. Under blob_storage_config , edit the FQDNs of all the nodes accommodating your static storage group:

For the mirror-3-dc scheme, specify FQDNs for nine nodes.

For the block-4-2 scheme, specify FQDNs for eight nodes.

5. Enable user authentication (optional).

If you plan to use authentication and user access differentiation features in the YDB cluster, add the following parameters to the
domains_config section:

In the traffic encryption mode, make sure that the YDB configuration file specifies paths to key files and certificate files under
interconnect_config and grpc_config :

Save the YDB configuration file as /opt/ydb/cfg/config.yaml on each cluster node.

For more detailed information about creating the configuration file, see YDB cluster configuration.

Copy the TLS keys and certificates to each server

Make sure to copy the generated TLS keys and certificates to a protected folder on each YDB cluster node. Below are sample commands that
create a protected folder and copy files with keys and certificates.

Start static nodes

domains_config:
 security_config:
 enforce_user_token_requirement: true
 monitoring_allowed_sids:
 - "root"
 - "ADMINS"
 - "DATABASE-ADMINS"
 administration_allowed_sids:
 - "root"
 - "ADMINS"
 - "DATABASE-ADMINS"
 viewer_allowed_sids:
 - "root"
 - "ADMINS"
 - "DATABASE-ADMINS"

interconnect_config:
 start_tcp: true
 encryption_mode: OPTIONAL
 path_to_certificate_file: "/opt/ydb/certs/node.crt"
 path_to_private_key_file: "/opt/ydb/certs/node.key"
 path_to_ca_file: "/opt/ydb/certs/ca.crt"
grpc_config:
 cert: "/opt/ydb/certs/node.crt"
 key: "/opt/ydb/certs/node.key"
 ca: "/opt/ydb/certs/ca.crt"
 services_enabled:
 - legacy

sudo mkdir -p /opt/ydb/certs
sudo cp -v ca.crt /opt/ydb/certs/
sudo cp -v node.crt /opt/ydb/certs/
sudo cp -v node.key /opt/ydb/certs/
sudo cp -v web.pem /opt/ydb/certs/
sudo chown -R ydb:ydb /opt/ydb/certs
sudo chmod 700 /opt/ydb/certs

Manually

Run a YDB data storage service on each static cluster node:

sudo su - ydb
cd /opt/ydb
export LD_LIBRARY_PATH=/opt/ydb/lib
/opt/ydb/bin/ydbd server --log-level 3 --syslog --tcp --yaml-config /opt/ydb/cfg/config.yaml \
 --grpcs-port 2135 --ic-port 19001 --mon-port 8765 --mon-cert /opt/ydb/certs/web.pem --node static

Using systemd

On each server that will host a static cluster node, create a systemd /etc/systemd/system/ydbd-storage.service configuration file by the
template below. You can also download the sample file from the repository.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_initial-deployment_tls-copy-cert
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_initial-deployment_start-storage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index
https://github.com/ydb-platform/ydb/blob/main/ydb/deploy/systemd_services/ydbd-storage.service

Initialize a cluster

The cluster initialization operation sets up static nodes listed in the cluster configuration file, for storing YDB data.

To initialize the cluster, you'll need the ca.crt file issued by the Certificate Authority. Use its path in the initialization commands. Before running
the commands, copy ca.crt to the server where you will run the commands.

Cluster initialization actions depend on whether the user authentication mode is enabled in the YDB configuration file.

Run the service on each static YDB node:

[Unit]
Description=YDB storage node
After=network-online.target rc-local.service
Wants=network-online.target
StartLimitInterval=10
StartLimitBurst=15

[Service]
Restart=always
RestartSec=1
User=ydb
PermissionsStartOnly=true
StandardOutput=syslog
StandardError=syslog
SyslogIdentifier=ydbd
SyslogFacility=daemon
SyslogLevel=err
Environment=LD_LIBRARY_PATH=/opt/ydb/lib
ExecStart=/opt/ydb/bin/ydbd server --log-level 3 --syslog --tcp \
 --yaml-config /opt/ydb/cfg/config.yaml \
 --grpcs-port 2135 --ic-port 19001 --mon-port 8765 \
 --mon-cert /opt/ydb/certs/web.pem --node static
LimitNOFILE=65536
LimitCORE=0
LimitMEMLOCK=3221225472

[Install]
WantedBy=multi-user.target

sudo systemctl start ydbd-storage

Authentication enabled

To execute administrative commands (including cluster initialization, database creation, disk management, and others) in a cluster with user
authentication mode enabled, you must first get an authentication token using the YDB CLI client version 2.0.0 or higher. You must install the YDB
CLI client on any computer with network access to the cluster nodes (for example, on one of the cluster nodes) by following the installation
instructions.

When the cluster is first installed, it has a single root account with a blank password, so the command to get the token is the following:

You can specify any storage server in the cluster as an endpoint (the -e or --endpoint parameter).

If the command above is executed successfully, the authentication token will be written to token-file . Copy the token file to one of the storage
servers in the cluster, then run the following commands on the server:

ydb -e grpcs://<node1.ydb.tech>:2135 -d /Root --ca-file ca.crt \
 --user root --no-password auth get-token --force >token-file

export LD_LIBRARY_PATH=/opt/ydb/lib
/opt/ydb/bin/ydbd -f token-file --ca-file ca.crt -s grpcs://`hostname -f`:2135 \
 admin blobstorage config init --yaml-file /opt/ydb/cfg/config.yaml
echo $?

Authentication disabled

On one of the storage servers in the cluster, run these commands:

export LD_LIBRARY_PATH=/opt/ydb/lib
/opt/ydb/bin/ydbd --ca-file ca.crt -s grpcs://`hostname -f`:2135 \
 admin blobstorage config init --yaml-file /opt/ydb/cfg/config.yaml
echo $?

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_initial-deployment_initialize-cluster
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_install

You will see that the cluster was initialized successfully when the cluster initialization command returns a zero code.

Create a database

To work with row-oriented and column-oriented tables, you need to create at least one database and run a process (or processes) to serve this
database (dynamic nodes):

To execute the administrative command for database creation, you will need the ca.crt certificate file issued by the Certificate Authority (see the
above description of cluster initialization).

When creating your database, you set an initial number of storage groups that determine the available input/output throughput and maximum
storage. For an existing database, you can increase the number of storage groups when needed.

The database creation procedure depends on whether you enabled user authentication in the YDB configuration file.

You will see that the database was created successfully when the command returns a zero code.

The command example above uses the following parameters:

/Root : Name of the root domain, must match the domains_config . domain . name setting in the cluster configuration file.

testdb : Name of the created database.

ssd:1 : Name of the storage pool and the number of storage groups allocated. The pool name usually means the type of data storage devices
and must match the storage_pool_types . kind setting inside the domains_config . domain element of the configuration file.

Run dynamic nodes

Authentication enabled

Get an authentication token. Use the authentication token file that you obtained when initializing the cluster or generate a new token.

Copy the token file to one of the storage servers in the cluster, then run the following commands on the server:

export LD_LIBRARY_PATH=/opt/ydb/lib
/opt/ydb/bin/ydbd -f token-file --ca-file ca.crt -s grpcs://`hostname -f`:2135 \
 admin database /Root/testdb create ssd:1
echo $?

Authentication disabled

On one of the storage servers in the cluster, run these commands:

export LD_LIBRARY_PATH=/opt/ydb/lib
/opt/ydb/bin/ydbd --ca-file ca.crt -s grpcs://$(hostname -f):2135 \
 admin database /Root/testdb create ssd:1
echo $?

Manually

Run the YDB dynamic node for the /Root/testdb database:

In the command example above, <ydbN> is replaced by FQDNs of any three servers running the cluster's static nodes.

sudo su - ydb
cd /opt/ydb
export LD_LIBRARY_PATH=/opt/ydb/lib
/opt/ydb/bin/ydbd server --grpcs-port 2136 --grpc-ca /opt/ydb/certs/ca.crt \
 --ic-port 19002 --ca /opt/ydb/certs/ca.crt \
 --mon-port 8766 --mon-cert /opt/ydb/certs/web.pem \
 --yaml-config /opt/ydb/cfg/config.yaml --tenant /Root/testdb \
 --node-broker grpcs://<ydb1>:2135 \
 --node-broker grpcs://<ydb2>:2135 \
 --node-broker grpcs://<ydb3>:2135

Using systemd

Create a systemd configuration file named /etc/systemd/system/ydbd-testdb.service by the following template: You can also download the
sample file from the repository.

[Unit]
Description=YDB testdb dynamic node
After=network-online.target rc-local.service
Wants=network-online.target
StartLimitInterval=10
StartLimitBurst=15

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_initial-deployment_create-db
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_initial-deployment_start-dynnode
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_initial-deployment_initialize-cluster
https://github.com/ydb-platform/ydb/blob/main/ydb/deploy/systemd_services/ydbd-testdb.service

Run additional dynamic nodes on other servers to ensure database scalability and fault tolerance.

Initial account setup

If authentication mode is enabled in the cluster configuration file, initial account setup must be done before working with the YDB cluster.

The initial installation of the YDB cluster automatically creates a root account with a blank password, as well as a standard set of user groups
described in the Built-in groups section.

To perform initial account setup in the created YDB cluster, run the following operations:

1. Install the YDB CLI as described in the documentation.

2. Set the password for the root account:

Replace the value passw0rd with the required password. Save the password in a separate file. Subsequent commands as the root user will be
executed using the password passed with the --password-file <path_to_user_password> option. Additionally, the password can be saved in
the connection profile, as described in the documentation for YDB CLI.

1. Create additional accounts:

1. Set the account rights by including them in the integrated groups:

In the command examples listed above, <node.ydb.tech> is the FQDN of the server where any dynamic node servicing the /Root/testdb
database is running. When connecting via SSH to a YDB node, it's convenient to use the grpcs://$(hostname -f):2136 command to use the
current server's FQDN.

Start using the created database

1. Install the YDB CLI as described in the documentation.

2. Create a test row (test_row_table) or column (test_column_table) oriented table:

In the file example above, <ydbN> is replaced by FQDNs of any three servers running the cluster's static nodes.

Run the YDB dynamic node for the /Root/testdb database:

[Service]
Restart=always
RestartSec=1
User=ydb
PermissionsStartOnly=true
StandardOutput=syslog
StandardError=syslog
SyslogIdentifier=ydbd
SyslogFacility=daemon
SyslogLevel=err
Environment=LD_LIBRARY_PATH=/opt/ydb/lib
ExecStart=/opt/ydb/bin/ydbd server \
 --grpcs-port 2136 --grpc-ca /opt/ydb/certs/ca.crt \
 --ic-port 19002 --ca /opt/ydb/certs/ca.crt \
 --mon-port 8766 --mon-cert /opt/ydb/certs/web.pem \
 --yaml-config /opt/ydb/cfg/config.yaml --tenant /Root/testdb \
 --node-broker grpcs://<ydb1>:2135 \
 --node-broker grpcs://<ydb2>:2135 \
 --node-broker grpcs://<ydb3>:2135
LimitNOFILE=65536
LimitCORE=0
LimitMEMLOCK=32212254720

[Install]
WantedBy=multi-user.target

sudo systemctl start ydbd-testdb

ydb --ca-file ca.crt -e grpcs://<node.ydb.tech>:2136 -d /Root/testdb --user root --no-password \
 yql -s 'ALTER USER root PASSWORD "passw0rd"'

ydb --ca-file ca.crt -e grpcs://<node.ydb.tech>:2136 -d /Root/testdb --user root --password-file
<path_to_root_pass_file> \
 yql -s 'CREATE USER user1 PASSWORD "passw0rd"'

ydb --ca-file ca.crt -e grpcs://<node.ydb.tech>:2136 -d /Root/testdb --user root --password-file
<path_to_root_pass_file> \
 yql -s 'ALTER GROUP `ADMINS` ADD USER user1'

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_initial-deployment_security-setup
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_initial-deployment_try-first-db
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-group_builtin
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_install
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_install

Here, <node.ydb.tech> is the FQDN of the server running the dynamic node that serves the /Root/testdb database.

Checking access to the built-in web interface

To check access to the YDB built-in web interface, open in the browser the https://<node.ydb.tech>:8765 URL, where <node.ydb.tech> is
the FQDN of the server running any static YDB node.

In the web browser, set as trusted the certificate authority that issued certificates for the YDB cluster. Otherwise, you will see a warning about an
untrusted certificate.

If authentication is enabled in the cluster, the web browser should prompt you for a login and password. Enter your credentials, and you'll see the
built-in interface welcome page. The user interface and its features are described in Using the embedded web UI.

Note

A common way to provide access to the YDB built-in web interface is to set up a fault-tolerant HTTP balancer running haproxy ,
nginx , or similar software. A detailed description of the HTTP balancer is beyond the scope of the standard YDB installation guide.

Installing YDB in the unprotected mode

Warning

We do not recommend using the unprotected YDB mode for development or production environments.

The above installation procedure assumes that YDB was deployed in the standard protected mode.

The unprotected YDB mode is primarily intended for test scenarios associated with YDB software development and testing. In the unprotected
mode:

Traffic between cluster nodes and between applications and the cluster runs over an unencrypted connection.

Users are not authenticated (it doesn't make sense to enable authentication when the traffic is unencrypted because the login and password in
such a configuration would be transparently transmitted across the network).

When installing YDB to run in the unprotected mode, follow the above procedure, with the following exceptions:

1. When preparing for the installation, you do not need to generate TLS certificates and keys and copy the certificates and keys to the cluster
nodes.

2. In the configuration files, remove the security_config subsection under domains_config . Remove the interconnect_config and
grpc_config sections entirely.

3. Use simplified commands to run static and dynamic cluster nodes: omit the options that specify file names for certificates and keys; use the
grpc protocol instead of grpcs when specifying the connection points.

4. Skip the step of obtaining an authentication token before cluster initialization and database creation because it's not needed in the unprotected
mode.

5. Cluster initialization command has the following format:

1. Database creation command has the following format:

1. When accessing your database from the YDB CLI and applications, use grpc instead of grpcs and skip authentication.

Creating a row-oriented table

ydb --ca-file ca.crt -e grpcs://<node.ydb.tech>:2136 -d /Root/testdb --user root \
 yql -s 'CREATE TABLE `testdir/test_row_table` (id Uint64, title Utf8, PRIMARY KEY (id));'

Creating a column-oriented table

ydb --ca-file ca.crt -e grpcs://<node.ydb.tech>:2136 -d /Root/testdb --user root \
 yql -s 'CREATE TABLE `testdir/test_column_table` (id Uint64, title Utf8, PRIMARY KEY (id)) WITH (STORE = COLUMN);'

export LD_LIBRARY_PATH=/opt/ydb/lib
/opt/ydb/bin/ydbd admin blobstorage config init --yaml-file /opt/ydb/cfg/config.yaml
echo $?

export LD_LIBRARY_PATH=/opt/ydb/lib
/opt/ydb/bin/ydbd admin database /Root/testdb create ssd:1

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_initial-deployment_checking-access-to-the-built-in-web-interface
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_initial-deployment_installing-ydb-in-the-unprotected-mode
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_index

Backup and recovery
Backups protect against data loss by letting you restore data.

YDB provides multiple solutions for backup and recovery:

Backing up data to files and restoring it using the YDB CLI.

Backing up data to S3-compatible storage and restoring it using the YDB CLI.

YDB CLI

Files

To back up data to a file, the following commands are used:

ydb admin cluster dump — to back up a cluster' metadata

ydb admin database dump — to back up a database

ydb tools dump — to back up individual schema objects or directories

To learn more about these commands, see Exporting data to the file system.

To restore data from a backup, the following commands are used:

ydb admin cluster restore — to restore a cluster' metadata from a backup

ydb admin database restore — to restore a database from a backup

ydb tools restore — to restore individual schema objects or directories from a backup

To learn more about these command, see Importing data from the file system.

S3-compatible storage

To back up data to S3-compatible storage (such as AWS S3), run the ydb export s3 command. To learn more about this command, follow the
link to the YDB CLI reference.

To restore data from a backup created in S3-compatible storage, run the ydb import s3 command. To learn more about this command, follow the
link to the YDB CLI reference.

< path="_includes/backup_and_recovery/others_overlay.md" keyword="undefined">

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_backup-and-recovery
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_backup-and-recovery_cli
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_backup-and-recovery_files
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_backup-and-recovery_s3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-dump
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-restore
https://docs.aws.amazon.com/AmazonS3/latest/dev/Introduction.html
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_export-s3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-s3

Setting up monitoring for a YDB cluster
This page provides instructions on how to set up monitoring for a YDB cluster.

YDB has multiple system health metrics. Instant metrics are available in the web interface:

<ydb-server-address> : YDB server address.

For a local YDB cluster that is deployed using Quick start use the localhost address.

<ydb-port> : YDB port. Default value: 8765.

Linked metrics are grouped into subgroups (such as counters auth). To only view metrics for a particular subgroup, follow a URL like:

<servicename> : metrics subgroup name.

For example, data about the utilization of server hardware resources is available at the URL:

You can collect metrics using Prometheus, a popular open-source observability tool, or any other system compatible with its format. YDB metrics in
Prometheus format are available at a URL in the following format:

<servicename> : metrics subgroup name.

To visualize data, use any system that supports Prometheus, such as Grafana, Zabbix, or AWS CloudWatch:

Setting up monitoring with Prometheus and Grafana

To set up monitoring for a YDB cluster using Prometheus and Grafana:

1. Install Prometheus.

2. Edit the Prometheus configuration file:

2.1. In the targets section specify addresses of all servers of the YDB cluster and ports for each storage and database node that runs on
the server.

http://<ydb-server-address>:<ydb-port>/counters/

http://<ydb-server-address>:<ydb-port>/counters/counters=<servicename>/

http://<ydb-server-address>:<ydb-port>/counters/counters=utils

http://<ydb-server-address>:<ydb-port>/counters/counters=<servicename>/prometheus

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_monitoring
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_monitoring_prometheus-grafana
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_quickstart
https://prometheus.io/
https://prometheus.io/docs/instrumenting/exposition_formats/
https://grafana.com/
https://www.zabbix.com/
https://aws.amazon.com/cloudwatch/
https://prometheus.io/
https://grafana.com/
https://prometheus.io/docs/prometheus/latest/getting_started
https://github.com/ydb-platform/ydb/tree/main/ydb/deploy/grafana_dashboards/local_ydb_prometheus.yml

For example, for the YDB cluster that contains three servers, each server running one storage node on port 8765 and two database
nodes on ports 8766 and 8767, specify nine addresses for all metrics subgroups except for the disk subgroups (for disk metrics
subgroups, specify only storage node addresses):

For a local single-node YDB cluster, specify one address in the targets section:

2.2. If necessary, in the tls_config section, specify the CA-issued certificate used to sign the other TLS certificates of the YDB cluster:

3. Run Prometheus using the edited configuration file.

4. Install and start Grafana.

5. Create a data source of the prometheus type in Grafana, and attach it to the running Prometheus instance.

6. Upload YDB dashboards to Grafana.

To upload dashboards, use the Grafana UI Import tool or run a script. Please note that the script uses basic authentication in Grafana. For other
cases, modify the script.

Review the dashboard metric reference.

static_configs:
- targets:
 - ydb-s1.example.com:8765
 - ydb-s1.example.com:8766
 - ydb-s1.example.com:8767
 - ydb-s2.example.com:8765
 - ydb-s2.example.com:8766
 - ydb-s2.example.com:8767
 - ydb-s3.example.com:8765
 - ydb-s3.example.com:8766
 - ydb-s3.example.com:8767

- targets: ["localhost:8765"]

tls_config:
 ca_file: '<ydb-ca-file>'

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_initial-deployment_tls-certificates
https://prometheus.io/docs/prometheus/latest/getting_started/#starting-prometheus
https://grafana.com/docs/grafana/latest/getting-started/getting-started/
https://prometheus.io/docs/visualization/grafana/#creating-a-prometheus-data-source
https://github.com/ydb-platform/ydb/tree/main/ydb/deploy/helm/ydb-prometheus/dashboards
https://grafana.com/docs/grafana/latest/dashboards/export-import/#import-dashboard
https://github.com/ydb-platform/ydb/tree/main/ydb/deploy/grafana_dashboards/local_upload_dashboards.sh
https://grafana.com/docs/grafana/latest/http_api/create-api-tokens-for-org/#authentication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_metrics_grafana-dashboards

Logging in YDB
Each YDB component writes messages to logs at different levels. They can be used to detect severe issues or identify the root causes.

Logging setup

You can configure logging for the various components of the YDB in the Embedded UI.

There are currently two options for running YDB logging: manually or using systemd.

Manually

YDB provides standard mechanisms for collecting logs and metrics.
Logging is done to standard stdout and stderr streams and can be redirected using popular solutions.

Using systemd

Default logs are written to journald and can be retrieved via journalctl -u ydbd .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_logging
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_logging_log_setup
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_logging_log_setup_manually
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_logging_log_setup_systemd
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_logs_change_log_level

YDB updating
YDB is a distributed system that supports rolling restart without downtime or performance degradation.

Update procedure

The basic scenario is updating the executable file and restarting each node one by one:

1. Updating and restarting storage nodes.

2. Updating and restarting dynamic nodes.

The shutdown and startup process is described on the Safe restart and shutdown of nodes page.
You must update YDB nodes one by one and monitor the cluster status after each step in YDB Monitoring: make sure the Storage tab has no
pools in the Degraded status (as shown in the example below). Otherwise, stop the update process.

Version compatibility

All minor versions within a major version are compatible for updates. Major versions are consecutively compatible. To update to the next major
version, you must first update to the latest minor release of the current major version. For example:

X.Y.* → X.Y.* : Update is possible, all minor versions within a single major version are compatible.

X.Y.Z (the latest available version in X.Y.*) → X.Y+1.* : Update is possible, major versions are consistent.

X.Y.* → X.Y+2.* : Update is impossible, major versions are inconsistent.

X.Y.* → X.Y-2.* : Update is impossible, major versions are inconsistent.

A list of available versions can be found on the download page. The YDB release policy is described in more details in the Release management
article of the YDB development documentation.

Warning

Also, in any case, you cannot roll back more than 2 major versions relative to the version that was deployed at least once. This is
because such an old version may not know how to work with data on the disks that the newer version persisted.

Examples of version compatibility

v.22.2.5 -> v.22.2.47: Update is possible.

v.22.2.47 -> v.22.3.21: Update is possible.

v.22.2.40 -> v.22.3.21: Update is impossible, first upgrade to the latest minor version (v.22.2.47).

v.22.2.47 -> v.22.4.5: Update is impossible, upgrade to the next major version first (v.22.3.*).

Checking update results

You can check the updated node versions on the Nodes page in Monitoring.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_upgrade
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_upgrade_upgrade-order
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_upgrade_version-compatability
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_upgrade_examples-of-version-compatibility
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_upgrade_upgrade_check
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_node_restarting
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_manage-releases

Database node authentication and authorization
Node authentication in the YDB cluster ensures that database nodes are authenticated when making service requests to other nodes via the gRPC
protocol. Node authorization ensures that the privileges required by the service requests are checked and granted during request processing.
These service calls include database node registration within the cluster and access to dynamic configuration information. The use of node
authorization is recommended for all YDB clusters, as it helps prevent unauthorized access to data by adding nodes controlled by an attacker to the
cluster.

Database node authentication and authorization are performed in the following order:

1. The database node being started opens a gRPC connection to one of the cluster storage nodes specified in the --node-broker command-
line option. The connection uses the TLS protocol, and the certificate of the running node is used as the client certificate for the connection.

2. The storage node and the database node perform mutual authentication checks using the TLS protocol: the certificate trust chain is checked,
and the hostname is matched against the value of the "Subject Name" field of the certificate.

3. The storage node checks the "Subject" field of the certificate for compliance with the requirements set up through settings in the static
configuration.

4. If the above checks are successful, the connection from the database node is considered authenticated, and it is assigned a security identifier
- SID, which is determined by the settings.

5. The database node uses the established gRPC connection to register with the cluster through the corresponding service request. When
registering, the database node sends its network address intended to be used for communication with other cluster nodes.

6. The storage node checks whether the SID assigned to the gRPC connection is in the list of acceptable ones. If this check is successful, the
storage node registers the database node within the cluster, saving the association between the network address of the registered node and
its identifier.

7. The database node joins the cluster by connecting via its network address and providing the node ID it received during registration. Attempts
to join the cluster by nodes with unknown network addresses or IDs are blocked by other nodes.

Below are the steps required to enable the node authentication and authorization feature.

Configuration prerequisites

1. The deployed YDB cluster must have gRPC traffic encryption configured to use the TLS protocol.
2. When preparing node certificates for a cluster where you plan to use the node authorization feature, uniform rules must be used for populating

the "Subject" field of the certificates. This allows the identification of certificates issued for the cluster nodes. For more information, see the
certificate verification rules documentation.

Note

The proposed example script generates self-signed certificates for YDB nodes and ensures that the "Subject" field is populated
with the value O=YDB for all node certificates. The configuration examples provided below are prepared for certificates with this
specific "Subject" field configuration, but feel free to use your real organization name instead.

3. The command-line parameters for starting database nodes must include options that specify the paths to the trusted CA certificate, the node
certificate, and the node key files. The required additional command-line options are shown in the table below.

Below is an example of the complete command to start the database node, including the extra options for gRPC TLS key and certificate files:

Enabling database node authentication and authorization

To enable mandatory database node authorization, add the following configuration blocks to the static cluster configuration file:

1. At the root level, add the client_certificate_authorization block to define the requirements for the "Subject" field of trusted node
certificates. For example:

/opt/ydb/bin/ydbd server --yaml-config /opt/ydb/cfg/config.yaml --tenant /Root/testdb \
 --grpcs-port 2136 --grpc-ca /opt/ydb/certs/ca.crt \
 --grpc-cert /opt/ydb/certs/node.crt --grpc-key /opt/ydb/certs/node.key \
 --ic-port 19002 --ca /opt/ydb/certs/ca.crt \
 --mon-port 8766 --mon-cert /opt/ydb/certs/web.pem \
 --node-broker grpcs://<ydb1>:2135 \
 --node-broker grpcs://<ydb2>:2135 \
 --node-broker grpcs://<ydb3>:2135

Command-line option Description

--grpc-ca Path to the trusted certification authority file ca.crt

--grpc-cert Path to the node certificate file node.crt

--grpc-key Path to the node secret key file node.key

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_node-authorization
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_node-authorization_configuration-prerequisites
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_node-authorization_enabling-database-node-authentication-and-authorization
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_client_certificate_authorization
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-sid
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_tls_grpc
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_client_certificate_authorization
https://github.com/ydb-platform/ydb/blob/main/ydb/deploy/tls_cert_gen/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_initial-deployment_start-dynnode
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index

Add other certificate validation settings as defined in the documentation, if required.

If the certificate is successfully verified and the components of the "Subject" field comply with the requirements defined in the subject_terms
sub-block, the connection will be assigned the access subjects listed in the member_groups parameter. To distinguish these subjects from
other user groups and accounts, their names typically have the @cert suffix.

2. Add the register_dynamic_node_allowed_sids element to the cluster authentication settings security_config block, and list the subjects
permitted for database node registration. For internal technical reasons, the list must include the root@builtin element. Example:

For more detailed information on configuring cluster authentication parameters, see the relevant documentation section.

3. Deploy the static configuration files on all cluster nodes either manually, or using the Ansible playbook action.

4. Perform the rolling restart of storage nodes by using ydbops or Ansible playbook action.

5. Perform the rolling restart of database nodes through ydbops or Ansible playbooks.

client_certificate_authorization:
 request_client_certificate: true
 client_certificate_definitions:
 - member_groups: ["registerNode@cert"]
 subject_terms:
 - short_name: "O"
 values: ["YDB"]

domains_config:
 ...
 security_config:
 enforce_user_token_requirement: true
 monitoring_allowed_sids:
 ...
 administration_allowed_sids:
 ...
 viewer_allowed_sids:
 ...
 register_dynamic_node_allowed_sids:
 - "root@builtin" # required for internal technical reasons
 - "registerNode@cert"

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_client_certificate_authorization
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_security-access-levels
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_update-config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_scenarios
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_restart

Changing an actor system's configuration
An actor system is the basis of YDB. Each component of the system is represented by one or more actors.
Each actor is allocated to a specific ExecutorPool corresponding to the actor's task.
Changing the configuration lets you more accurately distribute the number of cores reserved for each type of task.

Actor system config description

The actor system configuration contains an enumeration of ExecutorPools, their mapping to task types, and the actor system scheduler
configurations.

The following task types and their respective pools are currently supported:

System: Designed to perform fast internal YDB operations.

User: Includes the entire user load for handling and executing incoming requests.

Batch: Tasks that have no strict limit on the execution time, mainly running background operations.

IO: Responsible for performing any tasks with blocking operations (for example, writing logs to a file).

IC: Interconnect, includes all the load associated with communication between nodes.

Each pool is described by the Executor field as shown in the example below.

A summary of the main fields:

Type: Currently, two types are supported, such as BASIC and IO. All pools, except IO, are of the BASIC type.

Threads: The number of threads (concurrently running actors) in this pool.

SpinThreshold: The number of CPU cycles before going to sleep if there are no tasks, which a thread running as an actor will take (affects the
CPU usage and request latency under low loads).
Name: The pool name to be displayed for the node in Monitoring.

Mapping pools to task types is done by setting the pool sequence number in special fields. Pool numbering starts from 0. Multiple task types can be
set for a single pool.

List of fields with their respective tasks:

SysExecutor: System

UserExecutor: User

BatchExecutor: Batch

IoExecutor: IO

Example:

The IC pool is set in a different way, via ServiceExecutor, as shown in the example below.

The actor system scheduler is responsible for the delivery of deferred messages exchanged by actors and is set with the following parameters:

Resolution: The minimum time offset step in microseconds.

SpinThreshold: Similar to the pool parameter, the number of CPU cycles before going to sleep if there are no messages.

ProgressThreshold: The maximum time offset step in microseconds.

If, for an unknown reason, the scheduler thread is stuck, it will send messages according to the lagging time, offsetting it by the
ProgressThreshold value each time.

We do not recommend changing the scheduler config. You should only change the number of threads in the pool configs.

Example of the default actor system configuration:

Executor {
 Type: BASIC
 Threads: 9
 SpinThreshold: 1
 Name: "System"
}

SysExecutor: 0
UserExecutor: 1
BatchExecutor: 2
IoExecutor: 3

ServiceExecutor {
 ServiceName: "Interconnect"
 ExecutorId: 4
}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_change_actorsystem_configs
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_change_actorsystem_configs_actor-system-config-description

On static nodes

Static nodes take the configuration of the actor system from the /opt/ydb/cfg/config.yaml file.

After changing the configuration, restart the node.

On dynamic nodes

Dynamic nodes take the configuration from the CMS. To change it, you can use the following command:

Executor {
 Type: BASIC
 Threads: 9
 SpinThreshold: 1
 Name: "System"
}
Executor {
 Type: BASIC
 Threads: 16
 SpinThreshold: 1
 Name: "User"
}
Executor {
 Type: BASIC
 Threads: 7
 SpinThreshold: 1
 Name: "Batch"
}
Executor {
 Type: IO
 Threads: 1
 Name: "IO"
}
Executor {
 Type: BASIC
 Threads: 3
 SpinThreshold: 10
 Name: "IC"
 TimePerMailboxMicroSecs: 100
}
SysExecutor: 0
UserExecutor: 1
IoExecutor: 3
BatchExecutor: 2
ServiceExecutor {
 ServiceName: "Interconnect"
 ExecutorId: 4
}

ConfigureRequest {
 Actions {
 AddConfigItem {
 ConfigItem {
 // UsageScope: { ... }
 Config {
 ActorSystemConfig {
 <actor system config>
 }
 }
 MergeStrategy: 3
 }
 }
 }
}

```bash
ydbd -s <endpoint> admin console execute --domain=<domain> --retry=10 actorsystem.txt

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_change_actorsystem_configs_on-static-nodes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_change_actorsystem_configs_on-dynamic-nodes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_cms


Updating configurations via CMS

Get the current settings

The following command will let you get the current settings for a cluster or tenant.

Update the settings

First, you need to pull the desired config as indicated above and then prepare a protobuf file with an update request.

The UsageScope field is optional and is needed to use settings for a specific tenant.

ydbd -s <endpoint> admin console configs load --out-dir <config-folder>

ydbd -s <endpoint> admin console configs load --out-dir <config-folder> --tenant <tenant-name>

Actions {
  AddConfigItem {
    ConfigItem {
      Cookie: "<cookie>"
      UsageScope {
        TenantAndNodeTypeFilter {
          Tenant: "<tenant-name>"
        }
      }
      Config {
          <config-name> {
              <full-config>
          }
      }
    }
  }
}

ydbd -s <endpoint> admin console configs update <protobuf-file>

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_cms
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_cms_get-the-current-settings
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_cms_update-the-settings


Cluster system views
To enable internal introspection of the cluster state, the user can make queries to special system views. These tables are accessible from the
cluster's root directory and use the .sys  system path prefix.

Cloud database users usually don't have access to cluster system tables, as cluster support and timely diagnostics are the prerogatives of the cloud
team.

Hereinafter, in the descriptions of available fields, the Key column contains the corresponding table's primary key field index.

Note

There are also similar system views describing what's happening inside a given database, they are covered in a separate article for
DBAs.

Distributed Storage

Information about the operation of distributed storage is contained in several interconnected tables, each of which is responsible for describing its
entity, such as:

PDisk

VSlot

Group

Storage Pool

In addition, there is a separate table that shows statistics on the use of the number of groups in different storage pools and whether these pools can
be increased.

ds_pdisks

Field Type Key Value

NodeId Uint32 0 ID of the node where a PDisk is running.

PDiskId Uint32 1 ID of the PDisk (unique within the node).

Type String Media type (ROT, SSD, NVME).

Kind Uint64 A user-defined numeric ID that is needed to group disks with the same type of 
media into different subgroups.

Path String Path to the block device inside the machine.

Guid Uint64 A unique ID that is generated randomly when adding a disk to the system and is 
designed to prevent data loss in the event of disk swapping.

BoxId Uint64 ID of the Box that this PDisk belongs to.

SharedWithOs Bool Flag indicating if the "SharedWithOs" label is available. Set manually when 
creating a PDisk. You can use it to filter disks when creating new groups.

ReadCentric Bool Flag indicating if the "ReadCentric" label is available. Set manually when creating 
a PDisk. You can use it to filter disks when creating new groups.

AvailableSize Uint64 The number of bytes that can be allocated on the PDisk.

TotalSize Uint64 The total number of bytes on the PDisk.

Status String PDisk operation mode that affects its participation in the allocation of groups 
(ACTIVE, INACTIVE, BROKEN, FAULT, and TO_BE_REMOVED).

StatusChangeTimestamp Timestamp The time when the Status was last changed. NULL indicates that the Status hasn't 
changed since the creation of PDisk.

ExpectedSlotCount Uint32 The maximum number of VSlots that can be created on this PDisk.

NumActiveSlots Uint32 The number of slots that are currently active.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_system-views
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_system-views_distributed-storage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_system-views_ds_pdisks
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_system-views


ds_vslots

Please not that the (NodeId, PDiskId) tuple creates an external key to the ds_pdisks  table and the (GroupId) to the ds_groups  table.

ds_groups

Field Type Key Value

NodeId Uint32 0 ID of the node where a VSlot is running.

PDiskId Uint32 1 ID of the PDisk inside the node where the VSlot is running.

VSlotId Uint32 2 ID of the VSlot inside the PDisk.

GroupId Uint32 Number of the storage group that this VSlot belongs to.

GroupGeneration Uint32 Generation of the storage group configuration that this VSlot belongs to.

FailRealm Uint32 Relative number of the fail realm of the VSlot within the storage group.

FailDomain Uint32 Relative number of the fail domain of the VSlot within the fail realm.

VDisk Uint32 Relative number of the VSlot inside the fail domain.

AllocatedSize Uint64 The number of bytes that the VSlot occupies on the PDisk.

AvailableSize Uint64 The number of bytes that can be allocated to this VSlot.

Status String Status of the VDisk running in this VSlot (INIT_PENDING, REPLICATING, READY, or 
ERROR).

Kind String Preset VDisk operation mode (Default, Log, ...).

Field Type Key Value

GroupId Uint32 0 Number of the storage group in the cluster.

Generation Uint32 Storage group configuration generation.

ErasureSpecies String Group redundancy coding mode (block-4-2, mirror-3-dc, mirror-3of4, ...).

BoxId Uint64 ID of the Box that this group is created in.

StoragePoolId Uint64 ID of the storage pool inside the Box that this group operates in.

EncryptionMode Uint32 Group data encryption and its algorithm (if enabled).

LifeCyclePhase Uint32 Availability of a generated encryption key (if encryption is enabled).

AllocatedSize Uint64 The number of allocated bytes of data in the group (reduced to user bytes, that is, to 
redundancy).

AvailableSize Uint64 The number of bytes of user data available for allocation (up to redundancy as well).

SeenOperational Bool A Boolean flag that indicates whether the group was operational after its creation.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_system-views_ds_vslots
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_system-views_ds_groups


In this table, the (BoxId, StoragePoolId) tuple creates an external key to the ds_storage_pools  table.

ds_storage_pools

ds_storage_stats

Unlike other tables that show physical entities, the ds_storage_stats  table shows aggregated storage statistics.

PutTabletLogLatency Interval 90th percentile of the PutTabletLog request execution time.

PutUserDataLatency Interval 90th percentile of the PutUserData request execution time.

GetFastLatency Interval 90th percentile of the GetFast request execution time.

Field Type Key Value

BoxId Uint64 0 ID of the Box that this storage pool belongs to.

StoragePoolId Uint64 1 ID of the storage pool inside the Box.

Name String User-defined storage pool name (used when linking tablets and storage pools).

Generation Uint64 Storage pool configuration generation (number of changes).

ErasureSpecies String Redundancy coding mode for all groups within this storage pool.

VDiskKind String Preset operation mode for all VDisks in this storage pool.

Kind String A user-defined string description of the purpose of the pool, which can also be used for filtering.

NumGroups Uint32 Number of groups within this storage pool.

EncryptionMode Uint32 Data encryption setting for all groups (similar to ds_groups.EncryptionMode).

SchemeshardId Uint64 ID of the SchemeShard object of the schema that this storage pool belongs to (as of now, 
always NULL).

PathId Uint64 ID of the node of the schema object inside the specified SchemeShard that this storage pool 
belongs to.

Field Type Key Value

BoxId Uint64 0 ID of the Box that statistics are calculated for.

PDiskFilter String 1 A string description of filters that select a PDisk to create groups (for example, by 
media type).

ErasureSpecies String 2 Redundancy coding mode that statistics are collected for.

CurrentGroupsCreated Uint32 Number of groups created with the specified characteristics.

CurrentAllocatedSize Uint64 Total space occupied by all groups from CurrentGroupsCreated.

CurrentAvailableSize Uint64 Total space that is available to all groups from CurrentGroupsCreated.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_system-views_ds_storage_pools
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_system-views_ds_storage_stats


It should be noted that AvailableGroupsToCreate shows the maximum number of groups that can be created if no other types of groups are created.
So when extending a storage pool, the count of AvailableGroupsToCreate in several rows of statistics may change.

Note

Loads caused by accessing system views are more analytical in nature. Making frequent queries to them in large DBs will consume a
lot of system resources. The recommended load is no more than 1-2 RPS.

AvailableGroupsToCreate Uint32 Number of groups with the specified characteristics that can be created taking into 
account the need for a reserve.

AvailableSizeToCreate Uint64 Number of available bytes that will be obtained when creating all groups from 
AvailableGroupsToCreate.



Maintenance without downtime
A YDB cluster periodically needs maintenance, such as upgrading its version or replacing broken disks. Maintenance can cause a cluster or its
databases to become unavailable due to:

Going beyond the expectations of the affected storage groups failure model.

Going beyond the expectations of the State Storage failure model.

Lack of computational resources due to stopping too many dynamic nodes.

To avoid such situations, YDB has a system tablet that monitors the state of the cluster - the Cluster Management System (CMS). The CMS allows
you to answer the question of whether a YDB node or host running YDB nodes can be safely taken out for maintenance. To do this, create a
maintenance task in the CMS and specify in it to acquire exclusive locks on the nodes or hosts that will be involved in the maintenance. The cluster
components on which the locks are acquired are considered unavailable from the CMS perspective and can be safely engaged in maintenance.
The CMS will check the current state of the cluster and acquire locks only if the maintenance complies with the availability mode and unavailable
node limits.

Failures during maintenance

During maintenance activities whose safety is guaranteed by the CMS, failures unrelated to those activities may occur in the cluster. If
the failures threaten the cluster's availability, urgently aborting the maintenance can help mitigate the risk of cluster downtime.

Maintenance task

A maintenance task is a set of actions that the user asks the CMS to perform for safe maintenance.

Supported actions:

Acquiring an exclusive lock on a cluster component (node, host, or disk).

Actions in a task are divided into groups. Actions from the same group are performed atomically. Currently, groups can consist of only one action.

If an action cannot be performed at the time of the request, the CMS informs you of the reason and time it is worth refreshing the task and sets the
action status to pending. When the task is refreshed, the CMS attempts to perform the pending actions again.

Performed actions have a deadline after which they are considered completed and stop affecting the cluster. For example, an exclusive lock is
released. An action can be completed early.

Protracted maintenance

If maintenance continues after the actions performed to make it safe have been completed, this is considered a failure in the cluster.

Completed actions are automatically removed from the task.

Availability mode

In a maintenance task, you need to specify the cluster's availability mode to comply with when checking whether actions can be performed. The
following modes are supported:

Strong: a mode that minimizes the risk of availability loss.

No more than one unavailable VDisk is allowed in each affected storage group.

No more than one unavailable State Storage ring is allowed.

Weak: a mode that does not allow exceeding the failure model.

For affected storage groups with the block-4-2 scheme, no more than two unavailable VDisks are allowed.

For affected storage groups with the mirror-3-dc scheme, up to four unavailable VDisks are allowed, three of which must be in the same
data center.

No more than (nto_select - 1) / 2  unavailable State Storage rings are allowed.

Force: a forced mode, the failure model is ignored. Not recommended for use.

Priority

You can specify the priority of a maintenance task. A lower value means a higher priority.

The task's actions cannot be performed until all conflicting actions from tasks with a higher priority are completed. Tasks with the same priority have
no advantage over each other.

Unavailable node limits

In the CMS configuration, you can configure limits on the number of unavailable nodes for a database (tenant) or the cluster as a whole. Relative
and absolute limits are supported.

By default, each database and the cluster as a whole are allowed to have no more than 13% unavailable nodes.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_maintenance-without-downtime
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_maintenance-without-downtime_maintenance-task
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_maintenance-without-downtime_availability-mode
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_maintenance-without-downtime_priority
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_maintenance-without-downtime_unavailable-node-limits
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_storage-groups
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_domains-state
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_dynamic-node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_maintenance-without-downtime_maintenance-task
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_maintenance-without-downtime_checking-algorithm
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_maintenance-without-downtime_availability-mode
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_maintenance-without-downtime_unavailable-node-limits
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_vdisk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_reliability
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_reliability


Checking algorithm

To check if the actions of a maintenance task can be performed, the CMS sequentially goes through each action group in the task and checks the
action from the group:

If the action's object is a host, the CMS checks whether the action can be performed with all nodes running on the host.

If the action's object is a node, the CMS checks:

Whether there is a lock on the node.

Whether it's possible to lock the node according to the limits of unavailable nodes.

Whether it's possible to lock all VDisks of the node according to the availability mode.

Whether it's possible to lock the State Storage ring of the node according to the availability mode.

Whether it's possible to lock the node according to the limit of unavailable nodes on which cluster system tablets can run.

If the action's object is a disk, the CMS checks:

Whether there is a lock on the disk.
Whether it's possible to lock all VDisks of the disk according to the availability mode.

The action can be performed if the checks are successful, and temporary locks are acquired on the checked nodes, hosts, or disks. The CMS then
considers the next group of actions. Temporary locks help to understand whether the actions requested in different groups conflict with each other.
Once the check is complete, the temporary locks are released.

Examples

The ydbops utility tool uses CMS for cluster maintenance without downtime. You can also use the CMS directly through the gRPC API.

Rolling restart

To perform a rolling restart of the entire cluster, you can use the command:

The default availability mode is strong . This mode minimizes the risk of availability loss. Use the --availability-mode  parameter to override
the default availability mode.

The ydbops  utility will automatically create a maintenance task to restart the entire cluster using the given availability mode. As it progresses, the
ydbops  will refresh the maintenance task and acquire exclusive locks on the nodes in the CMS until all nodes are restarted.

Take out a host for maintenance

To take out a host for maintenance, follow these steps:

1. Create a maintenance task using the command:

This command creates a maintenance task that will acquire an exclusive lock for <seconds>  seconds on the host with the fully qualified
domain name <fqdn> .

2. After creating a task, refresh its state until the lock is taken, using the command:

This command refreshes the task with identifier <id>  and attempts to acquire the required lock. When a PERFORMED  response is received,
proceed to the next step.

3. Perform host maintenance while the lock is acquired.
4. After the maintenance is complete, release the lock using the command:

$ ydbops restart

$ ydbops maintenance create --hosts=<fqdn> --duration=<seconds>

$ ydbops maintenance refresh --task-id=<id>

$ ydbops maintenance complete --task-id=<id> --hosts=<fqdn>

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_maintenance-without-downtime_checking-algorithm
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_maintenance-without-downtime_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_maintenance-without-downtime_en/devops/manual/maintenance-without-downtime.html##rolling-restart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_maintenance-without-downtime_host-maintenance
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_index
https://github.com/ydb-platform/ydb/blob/main/ydb/public/api/grpc/draft/ydb_maintenance_v1.proto


Deploying YDB with Federated Query functionality

Warning

This functionality is in the "Experimental" mode.

General installation scheme

YDB can perform federated queries to external sources, for example, object storages or relational DBMS, without the need to move the data from
external sources directly into YDB. This section describes the changes that are required in the configuration of YDB and the surrounding
infrastructure to enable federated queries.

Note

A special microservice called connector must be deployed to access some of data sources. Check the list of supported sources to
determine if you need to install a connector.

The YDB cluster and external data sources in a production installation should be deployed on different physical or virtual servers, including clouds.
If access to a specific source requires a connector, it should be deployed on the same servers as the dynamic nodes of YDB. In other words, each
ydbd  process running in dynamic node mode should have one local connector process.

The following requirements must be met:

The external data source must be accessible over the network to queries from YDB database nodes or from the connector, if present.

The connector must be accessible over the network from YDB database nodes.

Tip

The easiest way to make the connector accessible from YDB nodes is to run them on the same set of hosts.

Note

Currently, we do not support deploying the connector in Kubernetes, but we plan to add it shortly.

Step-by-step guide

1. Follow the steps in the dynamic node YDB deployment guide up to and including preparing the configuration files.

2. If a connector must be deployed to access the desired source, do so according to the instructions.

3. If a connector needs to be deployed to access your desired source, add the generic  subsection to the query_service_config  section of
the YDB configuration file as shown below. Specify the network address of the connector in the connector.endpoint.host  and
connector.endpoint.port  fields (default values are localhost  and 2130 ). When co-locating the connector and the YDB dynamic node

on the same server, encrypted connections between them are not required. If necessary, you can enable encryption by setting

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_federated-queries_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_federated-queries_index_general-scheme
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_federated-queries_index_step-by-step-guide
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_architecture_connectors
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_architecture_supported-datasources
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_initial-deployment_config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_federated-queries_connector-deployment


connector.use_ssl  to true  and specifying the path to the CA certificate that is used to sign the connector's TLS keys in
connector.ssl_ca_crt :

4. Add the following feature_flags  section to the YDB configuration file:

5. Continue deploying YDB database nodes. See the instructions.

query_service_config:
    generic:
        connector:
            endpoint:
                host: localhost                 # hostname where the connector is deployed
                port: 2130                      # port number for the connector's listening socket
            use_ssl: false                      # flag to enable encrypted connections
            ssl_ca_crt: "/opt/ydb/certs/ca.crt" # (optional) path to the CA certificate
        default_settings:
            - name: DateTimeFormat
              value: string
            - name: UsePredicatePushdown
              value: "true"

feature_flags:
    enable_external_data_sources: true
    enable_script_execution_operations: true

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_initial-deployment


Overview of cluster disk subsystem management
Managing a cluster's disk subsystem includes the following actions:

Editing the cluster configuration:

Expanding a cluster

Adding storage groups

Moving a State Storage

Moving a static group

Maintenance:

Safe restart and shutdown of nodes
Enabling/disabling Scrubbing

Working with SelfHeal

Decommissioning a cluster part

Moving VDisks

Troubleshooting:

Staying within the failure model

Disk load balancing

Freeing up space on physical devices

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_cluster_expansion
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_adding_storage_groups
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_state-storage-move
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_static-group-move
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_node_restarting
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_scrubbing
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_selfheal
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_decommissioning
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_moving_vdisks
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_failure_model
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_balancing_load
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_disk_end_space


Expanding a cluster
You can expand a YDB cluster by adding new nodes to its configuration. Below is the list of actions for expanding a YDB cluster installed manually
on VM instances or physical servers. In the Kubernetes environment, clusters are expanded by adjusting the YDB controller settings for
Kubernetes.

When expanding your YDB cluster, you do not have to pause user access to databases. When the cluster is expanded, its components are
restarted to apply the updated configurations. This means that any transactions that were in progress at the time of expansion may need to be
executed again on the cluster. The transactions are rerun automatically because the applications leverage the YDB SDK features for error control
and transaction rerun.

Preparing new servers

If you deploy new static or dynamic nodes of the cluster on new servers added to the expanded YDB cluster, on each new server, you need to
install the YDB software according to the procedures described in the cluster deployment instructions. Among other things, you need to:

1. Create an account and a group in the operating system to enable YDB operation.

2. Install the YDB software.

3. Generate the appropriate TLS key and certificate for the software and add them to the server.

4. Copy the up-to-date configuration file for the YDB cluster to the server.

The TLS certificates used on the new servers must meet the requirements for filling out the fields and be signed by the same trusted certification
authority that signed the certificates for the existing servers of the expanded YDB cluster.

Adding dynamic nodes

By adding dynamic nodes, you can expand the available computing resources (CPU cores and RAM) needed for your YDB cluster to process user
queries.

To add a dynamic node to the cluster, run the process that serves this node, passing to it, in the command line options, the name of the served
database and the addresses of any three static nodes of the YDB cluster, as shown in the cluster deployment instructions.

Once you have added the dynamic node to the cluster, the information about it becomes available on the cluster monitoring page in the built-in UI.

To remove a dynamic node from the cluster, stop the process on the dynamic node.

Adding static nodes

By adding static nodes, you can increase the throughput of your I/O operations and increase the available storage capacity in your YDB cluster.

To add static nodes to the cluster, perform the following steps:

1. Format the disks that will be used to store the YDB data by following the procedure for the cluster deployment step

2. Edit the cluster's configuration file:

Add, to the configuration, the description of the added nodes (in the hosts  section) and disks used by them (in the host_configs
section).

Use the storage_config_generation: K  option to set the ID of the configuration update at the top level, where K  is the integer update
ID (for the initial config, K=0  or omitted; for the first expansion, K=1 ; for the second expansion, K=2 ; and so on).

3. Copy the updated cluster's configuration file to all the existing and added servers in the cluster, overwriting the old version of the configuration
file.

4. Restart all the existing static nodes in the cluster one-by-one, waiting for each restarted node to initialize and become fully operational.

5. Restart all the existing static nodes in the cluster one-by-one.

6. Start the processes that serve the new static nodes in the cluster, on the appropriate servers.

7. Make sure that all the new static nodes now show up on the cluster monitoring page in the built-in UI.

8. Issue an authentication token using the YDB CLI, for example:

The command example above uses the following options:

node1.ydb.tech : The FQDN of any server hosting the cluster's static nodes.

2135 : Port number of the gRPCs service for the static nodes.

ca.crt : Name of the file with the certificate authority certificate.

root : The name of a user who has administrative rights.

token-file : name of the file where the authentication token is saved for later use.

When you run the above command, YDB CLI will request the password to authenticate the given user.

9. Allow the YDB cluster to use disks to store data on the new static nodes. For this, run the following command on any cluster node:

ydb -e grpcs://<node1.ydb.tech>:2135 -d /Root --ca-file ca.crt \
      --user root auth get-token --force >token-file

export LD_LIBRARY_PATH=/opt/ydb/lib
/opt/ydb/bin/ydbd -f ydbd-token-file --ca-file ca.crt -s grpcs://`hostname -f`:2135 \

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_cluster_expansion
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_cluster_expansion_add-host
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_cluster_expansion_add-dynamic-node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_cluster_expansion_add-static-node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_initial-deployment
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_initial-deployment_tls-certificates
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_initial-deployment_start-dynnode
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_initial-deployment_prepare-disks
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_initial-deployment_config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring


The command example above uses the following options:

ydbd-token-file : File name of the previously issued authentication token.

2135 : Port number of the gRPCs service for the static nodes.

ca.crt : Name of the file with the certificate authority certificate.

If the above command results in the error of the configuration ID mismatch, it means that you made an error editing
the  storage_config_generation  field in the cluster configuration file. In the error text, you can find the expected configuration ID that can be
used to edit the cluster configuration file. Sample error message for the configuration ID mismatch:

10. Add additional storage groups to one or more databases by running the following commands on any cluster node:

The command example above uses the following options:

ydbd-token-file : File name of the previously issued authentication token.

2135 : Port number of the gRPCs service for the static nodes.

ca.crt : Name of the file with the certificate authority certificate.

/Root/testdb : Full path to the database.

ssd:1 : Name of the storage pool and the number of storage groups allocated.

11. Make sure that all the new storage groups now show up on the cluster monitoring page in the built-in UI.

To remove a static node from the YDB cluster, use the documented decommissioning procedure.

If the server running the static cluster node is damaged or becomes irreparable, deploy the unavailable static node on a new server with the same
or higher number of disks.

    admin blobstorage config init --yaml-file  /opt/ydb/cfg/config.yaml
echo $?

ErrorDescription: "ItemConfigGeneration mismatch ItemConfigGenerationProvided# 0 ItemConfigGenerationExpected# 1"

export LD_LIBRARY_PATH=/opt/ydb/lib
/opt/ydb/bin/ydbd -f ydbd-token-file --ca-file ca.crt -s grpcs://`hostname -f`:2135 \
    admin database /Root/testdb pools add ssd:1
echo $?

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_decommissioning


Adding storage groups
As the amount of stored data grows, you may need to add disks to your YDB cluster. You can add disks either to existing nodes or along with new
nodes. To make the resources of new disks available to the database, add storage groups.

To add new storage groups, use YDB DSTool.

View a list of cluster storage pools:

The command below adds 10 groups to the /Root/testdb:ROT  pool:

If successful, the command returns a zero exit status . Or else, it returns a non-zero exit status and
outputs an error message to stderr .

To check if groups can be added without actually adding them, use the --dry-run  global parameter. The command below checks if 100 groups
can be added to the /Root/testdb:ROT  pool:

The --dry-run  parameter lets you estimate the maximum number of groups that you can add to the pool.

ydb-dstool -e <bs_endpoint> pool list

Result example:

┌──────────────┬──────────────────┬────────────────┬──────┬──────────────┬──────────────┐
│ BoxId:PoolId │ PoolName         │ ErasureSpecies │ Kind │ Groups_TOTAL │ VDisks_TOTAL │
├──────────────┼──────────────────┼────────────────┼──────┼──────────────┼──────────────┤
│ [1:1]        │ /Root/testdb:ROT │ mirror-3-dc    │ ROT  │ 1            │ 9            │
└──────────────┴──────────────────┴────────────────┴──────┴──────────────┴──────────────┘

ydb-dstool -e <bs_endpoint> group add --pool-name /Root/testdb:ROT --groups 10

ydb-dstool --dry-run -e <bs_endpoint> group add --pool-name /Root/testdb:ROT --groups 100

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_adding_storage_groups
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_storage-groups
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-dstool_index


Moving a State Storage
To decommission a YDB cluster host that accommodates a part of a State Storage, you need to move the group to another host.

Warning

The YDB cluster might become unavailable as a result of an invalid sequence of actions or a configuration error.

As an example, let's take a YDB cluster with the following State Storage configuration:

The static node of the cluster that serves a part of State Storage is set up and running on the host with node_id:1 . Suppose that you want to
decommission this host.

To replace node_id:1 , we added to the cluster a new host with node_id:10  and deployed a static node in it.

To move State Storage from the node_id:1  host to the node_id:10  host:

1. Stop the cluster's static nodes on the hosts with node_id:1  and node_id:10 .

Note

YDB cluster is fault tolerant. Temporarily shutting down a node doesn't affect the cluster availability. For details, see YDB Cluster
Topology.

2. In the config.yaml  configuration file, change the node  host list, replacing the ID of the removed host by the ID of the added host:

3. Update the config.yaml  configuration files for all the cluster nodes, including dynamic nodes.

4. Use the rolling-restart procedure to restart all the cluster nodes (including dynamic nodes but excluding static nodes on the hosts with
node_id:1  and node_id:10 ). Please note that there must be at least a 15 second delay between host restarts.

5. Stop static cluster nodes on the hosts with node_id:1  and node_id:10 .

...
domains_config:
  ...
  state_storage:
  - ring:
      node: [1, 2, 3, 4, 5, 6, 7, 8, 9]
      nto_select: 9
    ssid: 1
  ...
...

domains_config:
...
  state_storage:
  - ring:
      node: [2, 3, 4, 5, 6, 7, 8, 9, 10]
      nto_select: 9
    ssid: 1
...

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_state-storage-move
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_domains-state
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_hosts
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_cluster_expansion_add-host
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_cluster_expansion_add-static-node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topology
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_node_restarting


Moving a static group
To decommission a YDB cluster host that accommodates a part of a static group, you need to move the group to another host.

Warning

The YDB cluster might become unavailable as a result of an invalid sequence of actions or a configuration error.

As an example, let's take a YDB cluster where you set up and launched a static node on a host with node_id:1 . This node serves a part of the
static group.

Fragment of the static group configuration:

To replace node_id:1 , we added to the cluster a new host with node_id:10  and deployed a static node in it.

To move a part of the static group from the node_id:1  host to the node_id:10  host:

1. Stop the static cluster node on the host with node_id:1 .

Note

YDB cluster is fault tolerant. Temporarily shutting down a node doesn't affect the cluster availability. For details, see YDB Cluster
Topology.

2. In the config.yaml  configuration file, change node_id , replacing the ID of the removed host by the ID of the added host:

Edit the path  and pdisk_category  for the disk if these parameters are different on the host with node_id: 10 .

3. Update the config.yaml  configuration files for all the cluster nodes, including dynamic nodes.

4. Use the rolling-restart procedure to restart all the static cluster nodes.

...
blob_storage_config:
  ...
  service_set:
    ...
    groups:
      ...
      rings:
        ...
        fail_domains:
        - vdisk_locations:
          - node_id: 1
            path: /dev/vda
            pdisk_category: SSD
        ...
      ...
    ...
  ...
...

...
blob_storage_config:
  ...
  service_set:
    ...
    groups:
      ...
      rings:
        ...
        fail_domains:
        - vdisk_locations:
          - node_id: 10
            path: /dev/vda
            pdisk_category: SSD
        ...
      ...
    ...
  ...
...

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_static-group-move
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_blob_storage_config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_hosts
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_cluster_expansion_add-host
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_cluster_expansion_add-static-node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topology
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_node_restarting


5. Go to the Embedded UI monitoring page and make sure that the VDisk of the static group is visible on the target physical disk and its
replication is in progress. For details, see Monitoring static groups.

6. Use the rolling-restart procedure to restart all the dynamic cluster nodes.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring_static-group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_node_restarting


Safe restart and shutdown of nodes

Stopping/restarting a YDB process on a node

To make sure that the process is stoppable, follow these steps.

1. Access the node via SSH.

2. Execute the command

If the process is stoppable, you'll see ALLOW .

3. Stop the process

4. Restart the process if needed

Replacing equipment

Before replacing equipment, make sure that the YDB process is stoppable.
If the replacement is going to take a long time, first move all the VDisks from this node and wait until replication is complete.
After replication is complete, you can safely shut down the node.

To make sure that disabling the dynamic node doesn't affect query handling, drain the tablets from this node first.

Go to the Hive web-viewer page.
Click "View Nodes" to see a list of all nodes.

Before disabling the node, first disable the transfer of tablets through the Active button, then click Drain, and wait for all the tablets to be moved
away.

ydbd cms request restart host {node_id} --user {user} --duration 60 --dry --reason 'some-reason'

sudo service ydbd stop

 sudo service ydbd start

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_node_restarting
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_node_restarting_restart_process
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_node_restarting_replace-hardware
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_node_restarting_restart_process
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_hive


Enabling/disabling Scrubbing
Scrubbing is a process that reads data, checks its integrity, and restores it if needed. The process is run by default. The interval between completing
a scrub and starting the next one is 1 month. You can change the interval using YDB DSTool. The process checks data that was accessed before
the previous scrub. Scrubbing is started and stopped for the entire YDB cluster. Scrubbing is performed in the background without overloading the
system.

To set a 48-hour interval, run the command:

You can also set the maximum number of cluster disks to be scrubbed at a time. For example, to only scrub one disk at a time, run the command:

To stop cluster scrubbing, run the command:

ydb-dstool -e <bs_endpoint> cluster set --scrub-periodicity 48h

ydb-dstool -e <bs_endpoint> cluster set --max-scrubbed-disks-at-once

ydb-dstool -e <bs_endpoint> cluster set --scrub-periodicity disable

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_scrubbing
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-dstool_index


Working with SelfHeal
While a clusters are running, entire nodes or individual block devices that YDB runs on can fail.

SelfHeal ensures a cluster's continuous performance and fault tolerance if malfunctioning nodes or devices cannot be repaired quickly.

SelfHeal can:

Detect faulty system elements.

Transfer faulty elements carefully without data loss and disintegration of storage groups.

SelfHeal is enabled by default.

YDB component responsible for SelfHeal is called "Sentinel".

Enabling and disabling SelfHeal

You can enable and disable SelfHeal using YDB DSTool.

To enable SelfHeal, run the command:

To disable SelfHeal, run the command:

SelfHeal settings

You can configure SelfHeal in Viewer → Cluster Management System → CmsConfigItems.

To create the initial settings, click Create. If you want to update the current settings, click .

You can use the following settings:

ydb-dstool -e <bs_endpoint> cluster set --enable-self-heal

ydb-dstool -e <bs_endpoint> cluster set --disable-self-heal

Parameter Description

Status Enabling and disabling SelfHeal in CMS.

Dry run Enables/disables the mode in which the CMS doesn't change the BSC setting.

Config update interval (sec.) BSC configuration update interval.

Retry interval (sec.) Interval of configuration update attempts.

State update interval (sec.) PDisk state update interval.

Timeout (sec.) PDisk state update timeout.

Change status retries Number of retries to change the PDisk status for BSC ( ACTIVE , FAULTY , BROKEN , and so on).

Change status retry interval 
(sec.)

Delay between retries to update the PDisk status in BSC. CMS monitors the status of the disk with the 
interval State update inverval. If the disk remains in one Status update interval state during several 
cycles, the CMS changes its status to BSC.
Next are the settings for the number of update cycles after which the CMS changes the disk status. If 
the disk state is Normal , the disk status changes to ACTIVE . In other states, the disk switches to 
FAULTY .

The 0  value disables status changes for the state (by default, this is set for Unknown ).
For example, with the default settings, if the CMS detects the Initial  disk state for five 
Status update interval  cycles which are 60 seconds each, the disk status changes to FAULTY .

Default state limit For states with no setting specified, this value can be used by default. This value is also used for 
unknown PDisk states that don't have any settings. It's used if no value is set for states such as 
Initial , InitialFormatRead , InitialSysLogRead , InitialCommonLogRead , and Normal .

Initial PDisk starts initializing. Transition to FAULTY .

InitialFormatRead PDisk is reading its format. Transition to FAULTY .

InitialFormatReadError PDisk received an error when reading its format. Transition to FAULTY .

InitialSysLogRead PDisk is reading the system log. Transition to FAULTY .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_selfheal
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_selfheal_on-off
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_selfheal_settings
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-dstool_index


Working with donor disks

The donor disk is the previous VDisk after the data transfer, which continues to store its data and only responds to read requests from the new
VDisk. When data is transfered with donor disks enabled, previous VDisks continue to function until the data is fully moved to the new disks. To
prevent data loss when moving a VDisk, enable donor disks:

To disable donor disks, run the command:

ydb-dstool -e <bs_endpoint> cluster set --enable-donor-mode

ydb-dstool -e <bs_endpoint> cluster set --disable-donor-mode

InitialSysLogReadError PDisk received an error when reading the system log. Transition to FAULTY .

InitialSysLogParseError PDisk received an error when parsing and checking the consistency of the system log. Transition to 
FAULTY .

InitialCommonLogRead PDisk is reading the common VDisk log. Transition to FAULTY .

InitialCommonLogReadError PDisk received an error when reading the common VDisk log. Transition to FAULTY .

InitialCommonLogParseError PDisk received an error when parsing and checking the consistency of the common log. Transition to 
FAULTY .

CommonLoggerInitError PDisk received an error when initializing internal structures to be logged to the common log. Transition 
to FAULTY .

Normal PDisk completed initialization and is running normally. Transition to ACTIVE  will occur after a 
specified number of cycles (for example, if the disk is Normal  for 5 minutes, it switches to ACTIVE ).

OpenFileError PDisk received an error when opening a disk file. Transition to FAULTY .

Missing The node responds, but this PDisk is missing from its list. Transition to FAULTY .

Timeout The node didn't respond within the specified timeout. Transition to FAULTY .

NodeDisconnected The node has disconnected. Transition to FAULTY .

Stopped PDisk has been stopped. Transition to FAULTY .

Unknown Unexpected response, for example, TEvUndelivered  to the state request. Transition to FAULTY .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_selfheal_disks


Decommissioning a cluster part
Decommissioning is the procedure for moving a VDisk from a PDisk that needs to be decommissioned.

Data is moved to PDisk clusters where there is enough free space to create new slots. Moving is performed only when there is a possibility of
moving with at least partial preservation of the failure model. It may happen that the system can't strictly follow the failure model during
decommissioning. However, it does its best to ensure fault-tolerance as fully as under normal operation. For example, when encoding mirror-3-
dc , a situation may arise when a group is located in four rather than three data centers.

Decommissioning is done asynchronously, meaning that data is not moved immediately while handling the command. If the failure model allows,
SelfHeal moves slots one by one in the background to completely release the specified PDisks.

Managing decommissioning

To manage the state of decommissioning, set the DecommitStatus  parameter for the appropriate PDisk. The parameter can take the following
values:

DECOMMIT_NONE : The disk is not being decommissioned and is running normally, according to its condition.

DECOMMIT_PENDING : Disk decommissioning is scheduled. Data is not transferred from the disk. However, slots for new groups won't be
created and the slots of the previously created groups won't be moved.

DECOMMIT_IMMINENT : Disk decommissioning is required. Data is transferred in the background to disks that have the DECOMMIT_NONE  status
and satisfy the failure model.

The DECOMMIT_PENDING  and DECOMMIT_IMMINENT  values shouldn't be removed under normal decommissioning, since the equipment is removed
from the cluster by running the DefineBox  command.

To cancel decommissioning, just change the disk status to DECOMMIT_NONE . In this case, BS_CONTROLLER won't take any additional actions: the
previously moved VDisks remain where they are. To return them, you can use commands to move slots point by point, depending on the specific
situation.

By managing the DECOMMIT_PENDING  and DECOMMIT_IMMINENT  states, you can perform cluster decommissioning in parts.

For example, you need to move equipment from data center-1 (DC-1) to data center-2 (DC-2):

1. The DC-2 hosts buffer equipment to transfer the first chunk of data to.

2. Switch the status of all DC-1 disks to DECOMMIT_PENDING  so that no data can be moved inside the DC-1.

3. Switch the status of all DC-1 disks to DECOMMIT_IMMINENT  on the equipment that is equivalent to the buffer one.

4. Wait until all the disks in the DECOMMIT_IMMINENT  status are released.

5. Move the released equipment from the DC-1 to the DC-2 and switch the status of its disks to DECOMMIT_NONE .

Repeat the above steps for the next set of equipment in the DC-1 until all the equipment is moved.

To set the desired state of disk decommissioning, use the YDB DSTool utility. The command below sets the DECOMMIT_IMMINENT  status for the disk
with the ID 1000  on the node with the ID 1 :

ydb-dstool -e  <bs_endpoint> pdisk set --decommit-status DECOMMIT_IMMINENT --pdisk-ids "[1:1000]"

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_decommissioning
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_decommissioning_decommitstatus
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-dstool_index


Moving VDisks
Sometimes you may need to free up a block store volume to replace equipment. Or a VDisk may be in active use, affecting the performance of
other VDisks running on the same PDisk. In cases like this, VDisks need to be moved.

Move a VDisk from a block store volume

Get a list of VDisk IDs using YDB DSTool:

To move a VDisk from a block store volume, run the following commands on the cluster node:

VDISK_ID1 ... VDISK_IDN : The list of VDisk IDs like [GroupId:GroupGeneration:FailRealmIdx:FailDomainIdx:VDiskIdx] . The IDs are
separated by a space.

GroupId : The ID of the storage group.

GroupGeneration : Storage group generation.

FailRealmIdx : Fail realm number.

FailDomainIdx : Fail domain number.

VDiskIdx : Slot number.

Move VDisks from a broken/missing block store volume

If SelfHeal is disabled or fails to move VDisks automatically, you'll have to run this operation manually:

1. Go to monitoring and make sure that the VDisk has actually failed.

2. Get the appropriate [NodeId:PDiskId]  using YDB DSTool:

3. Move the VDisk:

Enable the VDisk back after reassignment

To enable the VDisk back after reassignment:

1. Go to monitoring and make sure that the VDisk is actually operable.
2. Get the appropriate [NodeId:PDiskId]  using YDB DSTool:

3. Enable the PDisk back:

ydb-dstool -e <bs_endpoint> vdisk list --format tsv --columns VDiskId --no-header

ydb-dstool -e <bs_endpoint> vdisk evict --vdisk-ids VDISK_ID1 ... VDISK_IDN
ydbd admin bs config invoke --proto 'Command { ReassignGroupDisk { GroupId: <Storage group ID> GroupGeneration: <Storage 
group generation> FailRealmIdx: <FailRealm> FailDomainIdx: <FailDomain> VDiskIdx: <Slot number> } }'

ydb-dstool -e <bs_endpoint> vdisk list | fgrep VDISK_ID

ydb-dstool -e <bs_endpoint> pdisk set --status BROKEN --pdisk-ids "[NodeId:PDiskId]"

ydb-dstool -e <bs_endpoint> pdisk list

ydb-dstool -e <bs_endpoint> pdisk set --status ACTIVE --pdisk-ids "[NodeId:PDiskId]"

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_moving_vdisks
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_moving_vdisks_moving_vdisk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_moving_vdisks_removal_from_a_broken_device
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_moving_vdisks_return_a_device_to_work
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-dstool_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-dstool_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-dstool_index


Staying within the failure model

One VDisk in the storage group failed

With SelfHeal enabled, this situation is considered normal. SelfHeal will move the VDisk over the time specified in the settings, then data replication
will start on a different PDisk.

If SelfHeal is disabled, you'll have to manually move the VDisk. Before moving it, make sure that only one VDisk in the storage group has failed.
Then follow the instructions.

More than one VDisk in the same storage group have failed without going beyond the failure model

In this kind of failure, no data is lost, the system maintains operability, and read and write queries are executed successfully. Performance might
degrade because of the load handover from the failed disks to the operable ones.

If multiple VDisks have failed in the group, SelfHeal stops moving VDisks. If the maximum number of failed VDisks for the failure model has been
reached, recover at least one VDisk before you start moving the VDisks. You may also need to be more careful when moving VDisks one by one.

The number of failed VDisks has exceeded the failure model

The availability and operability of the system might be lost. Make sure to revive at least one VDisk without losing the data stored on it.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_failure_model
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_failure_model_storage_group_lost_one_disk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_failure_model_storage_group_lost_more_than_one_disk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_failure_model_exceeded_the_failure_model
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_moving_vdisks_removal_from_a_broken_device
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_moving_vdisks_removal_from_a_broken_device
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_moving_vdisks_moving_vdisk


Disk load balancing
YDB supports two methods for disk load balancing:

Distribute the load evenly across groups.

Distribute VDisks evenly across block store volumes.

Distribute the load evenly across groups

At the bottom of the Hive web-viewer page, there is a button named "Reassign Groups".

Distribute VDisks evenly across block store volumes

As a result of some operations, such as decommissioning, VDisks can be distributed across block store volumes unevenly. You can distribute them
more evenly in one of the following ways:

Move VDisks one by one from overloaded block store volumes.

Use YDB DSTool. The command below moves a VDisk from an overloaded block store volume to a less loaded one:

The command moves a single VDisk per run.

Changing the number of slots for VDisks on PDisks

To add storage groups, redefine the host config by increasing the number of slots on PDisks.

Before that, you need to get the config to be changed. You can do this with the following command:

Insert the obtained config into the protobuf below and edit the PDiskConfig/ExpectedSlotCount  field value in it.

ydb-dstool -e <bs_endpoint> cluster balance

Command {
  TReadHostConfig{
    HostConfigId: <host-config-id>
  }
}

ydbd -s <endpoint> admin bs config invoke --proto-file ReadHostConfig.txt

Command {
  TDefineHostConfig {
    <host config>
  }
}

ydbd -s <endpoint> admin bs config invoke --proto-file DefineHostConfig.txt

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_balancing_load
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_balancing_load_reassign-groups
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_balancing_load_cluster-balance
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_balancing_load_changing-the-number-of-slots-for-vdisks-on-pdisks
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_balancing_load_reassign-groups
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_balancing_load_cluster-balance
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_hive_reassign_groups
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_decommissioning
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_moving_vdisks_moving_vdisk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-dstool_index


Freeing up space on physical devices
When the disk space is used up, the database may start responding to all queries with an error. To keep the database healthy, we recommend
deleting a part of the data or adding block store volumes to extend the cluster.

Below are instructions that can help you add or free up disk space.

Defragment a VDisk

When working with the DB, internal VDisk fragmentation is done. You can find out the percentage of fragmentation on the VDisk monitoring page.
We do not recommend that you perform defragmentation of VDisks that are fragmented by 20% or less.

According to the failure model, the cluster survives the loss of two VDisks in the same group without data loss. If all VDisks in the group are up and
there are no VDisks with the error or replication status, then deleting data from one VDisk will result in the VDisk recovering it in a compact format.
Please keep in mind that data storage redundancy will be decreased until automatic data replication is complete.

During data replication, the load on all the group's VDisks increases, and response times may deteriorate.

1. View the fragmentation coefficient on the VDisk page in the viewer.

If its value is more than 20%, defragmentation can help free up VDisk space.

2. Check the status of the group that hosts the VDisk. There should be no VDisks that are unavailable or in the error or replication status in the
group.

You can view the status of the group in the viewer.

3. Run the wipe command for the VDisk.

All data stored on a VDisk will be permanently deleted, whereupon the VDisk will begin restoring the data by reading them from the other
VDisks in the group.

You can view the details for the command in the viewer.

If the block store volume is running out of space, you can apply defragmentation to the entire block store volume.

1. Check the health of the groups in the cluster. There shouldn't be any problem groups on the same node with the problem block store volume.

2. Log in via SSH to the node hosting this block store volume

3. Check if you can restart the process.

4. Stop the process

5. Format the block store volume

6. Run the process

Moving individual VDisks from full block store volumes

If defragmentation doesn't help free up space on the block store volume, you can move individual VDisks.

ydbd admin blobstorage group reconfigure wipe --domain <Domain number> --node <Node ID> --pdisk <pdisk-id> --vslot 
<Slot number>

sudo systemctl stop ydbd

sudo ydbd admin blobstorage disk obliterate <path to the store volume part label>

sudo systemctl start ydbd

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_disk_end_space
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_disk_end_space_defragment-a-vdisk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_disk_end_space_moving-individual-vdisks-from-full-block-store-volumes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_node_restarting_restart_process
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_moving_vdisks_moving_disk


Replacing a node's FQDN
Sometimes, a node's FQDN changes, but the node itself remains in the system under a different name. Simply changing the node name in the
hosts section will not work because BS_CONTROLLER  internally stores the resource bindings to the FQDN:IcPort  pairs, where IcPort is the
Interconnect port number on which the node operates.

Replacement procedure

1. Determine the NodeId of the node to be replaced.

2. Prepare the DefineBox command that describes the cluster resources, in which an element EnforcedNodeId: <NodeId>  will be added for the
resources of the node to be replaced.

3. Execute this command.

4. Replace the FQDN in the hosts list in cluster.yaml .

5. Perform a rolling restart.

6. Remove the EnforcedNodeId field from DefineBox and replace the Fqdn with the new node name.

7. Execute DefineBox with the new values.

Example

Suppose a cluster consisting of three nodes:

config.yaml :

DefineBox looks like this:

Suppose we want to rename host1.my.sub.net to host4.my.sub.net. First, we create a DefineBox as follows:

Then modify config.yaml :

Next, perform a rolling restart of the cluster.

Finally, perform the second adjusted DefineBox:

- host: host1.my.sub.net
  node_id: 1
  location: {unit: 12345, data_center: MYDC, rack: r1}
- host: host2.my.sub.net
  node_id: 2
  location: {unit: 23456, data_center: MYDC, rack: r2}
- host: host3.my.sub.net
  node_id: 3
  location: {unit: 34567, data_center: MYDC, rack: r3}

DefineBox {
    BoxId: 1
    Host { Key { Fqdn: "host1.my.sub.net" IcPort: 19001 } HostConfigId: 1 }
    Host { Key { Fqdn: "host2.my.sub.net" IcPort: 19001 } HostConfigId: 1 }
    Host { Key { Fqdn: "host3.my.sub.net" IcPort: 19001 } HostConfigId: 1 }
}

DefineBox {
    BoxId: 1
    Host { Key { Fqdn: "host1.my.sub.net" IcPort: 19001 } HostConfigId: 1 EnforcedNodeId: 1 }
    Host { Key { Fqdn: "host2.my.sub.net" IcPort: 19001 } HostConfigId: 1 }
    Host { Key { Fqdn: "host3.my.sub.net" IcPort: 19001 } HostConfigId: 1 }
}

- host: host4.my.sub.net
  node_id: 1
  location: {unit: 12345, data_center: MYDC, rack: r1}
- host: host2.my.sub.net
  node_id: 2
  location: {unit: 23456, data_center: MYDC, rack: r2}
- host: host3.my.sub.net
  node_id: 3
  location: {unit: 34567, data_center: MYDC, rack: r3}

DefineBox {
    BoxId: 1
    Host { Key { Fqdn: "host4.my.sub.net" IcPort: 19001 } HostConfigId: 1 }

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_replacing_nodes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_replacing_nodes_replacement-procedure
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_replacing_nodes_example


    Host { Key { Fqdn: "host2.my.sub.net" IcPort: 19001 } HostConfigId: 1 }
    Host { Key { Fqdn: "host3.my.sub.net" IcPort: 19001 } HostConfigId: 1 }
}



Configuration overview
A YDB node requires configuration to run. There are two types of configurations:

Static — a YAML file stored on the node's local disk.

Dynamic — a YAML document stored in the YDB configuration repository.

Static nodes in the cluster use static configuration. Dynamic nodes can use static configuration, dynamic configuration, or a combination of both.

Static configuration

Static configuration is a YAML file stored on the cluster nodes. This file lists all the system settings. The path to the file is passed to the ydbd
process at startup via a command-line parameter. Distributing the static configuration across the cluster and maintaining it in a consistent state on
all nodes is the responsibility of the cluster administrator. Details on using static configuration can be found in the section YDB cluster configuration.
This configuration is required for running static nodes.

Basic usage scenario

1. Copy the standard configuration from GitHub.

2. Modify the configuration according to your requirements.

3. Place identical configuration files on all cluster nodes.

4. Start all cluster nodes, explicitly specifying the path to the configuration file using the --yaml-config  command-line argument.

Dynamic configuration

Dynamic configuration is a YAML document securely stored in the cluster in a Console tablet. Unlike static configuration, uploading it to the cluster
is sufficient, as YDB will handle its distribution and maintenance in a consistent state. Dynamic configuration, using selectors, allows handling
complex scenarios while remaining within a single configuration file. A description of the dynamic configuration is provided in the section Dynamic
cluster configuration.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_config-overview
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_config-overview_static-config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_config-overview_basic-usage-scenario
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_config-overview_dynamic-config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index
https://github.com/ydb-platform/ydb/tree/main/ydb/deploy/yaml_config_examples/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config


Basic usage scenario

1. Copy the standard configuration from GitHub.

2. Modify the configuration according to your requirements.
3. Place identical configuration files on all static cluster nodes.

4. Start all static cluster nodes, explicitly specifying the path to the configuration file using the --yaml-config  command-line argument.

5. Extend the configuration file to the dynamic configuration format.

6. Upload the resulting configuration to the cluster using ydb admin config replace -f dynconfig.yaml .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_config-overview_basic-usage-scenario1
https://github.com/ydb-platform/ydb/tree/main/ydb/deploy/yaml_config_examples/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config_example


Dynamic cluster configuration
Dynamic configuration allows running dynamic nodes by configuring them centrally without manually distributing files across the nodes. YDB acts
as a configuration management system, providing tools for reliable storage, versioning, and delivery of configurations, as well as a DSL (Domain
Specific Language) for overriding parts of the configuration for specific groups of nodes. The configuration is a YAML document and is an extended
version of the static configuration:

The configuration description is moved to the config  field

The metadata  field is added for validation and versioning

The allowed_labels  and selector_config  fields are added for granular overrides of settings

This configuration is uploaded to the cluster, where it is reliably stored and delivered to each dynamic node upon startup. Certain settings are
updated on the fly without restarting nodes. Using dynamic configuration, you can centrally solve the following tasks:

Change logging levels for all or specific components across the entire cluster or for specific groups of nodes.

Enable experimental features (feature flags) on specific databases.

Change actor system settings on individual nodes or groups of nodes.

Preparing to use the dynamic configuration

The following tasks should be performed before using the dynamic configuration in the cluster:

1. Enable database node authentication and authorization.

2. Export the current settings from the CMS in YAML format using the following command if CMS-based configuration management has been
used in the cluster:

Before running the command shown above, obtain the authentication token using the ydb auth get-token  command, as detailed in the
cluster initial deployment procedure.

3. Prepare the initial dynamic configuration file:
If there are non-empty CMS settings exported in the previous step, adjust the YAML file with the exported CMS settings:

Add the metadata  section based on the configuration example.

Add the yaml_config_enabled: true  parameter to the config  section.

If there are no previous CMS-based settings, use the minimal configuration example.

For clusters using TLS encryption for actor system interconnect, add the interconnect TLS settings to the config  section.

4. Apply the dynamic configuration settings file to the cluster:

Note

The legacy configuration management via CMS will become unavailable after enabling dynamic configuration support on the YDB
cluster.

Configuration examples

Example of a minimal dynamic configuration for a single-datacenter cluster:

./ydbd -s grpcs://<node1.ydb.tech>:2135 --ca-file ca.crt --token-file ydbd-token \
     admin console configs dump-yaml > dynconfig.yaml

# Apply the dynconfig.yaml on the cluster
ydb admin config replace -f dynconfig.yaml

# Configuration metadata.
# This field is managed by the server.
metadata:
  # Cluster name from the cluster_uuid parameter set during cluster installation, or "", if the parameter is not set.
  cluster: ""
  # Configuration file identifier, always increments by 1 starting from 0.
  # Automatically increases when a new configuration is uploaded to the server.
  version: 0
# Main cluster configuration. All values here are applied by default unless overridden by selectors.
# Content is similar to the static cluster configuration.
config:
  # It must always be set to true when using YAML configuration.
  yaml_config_enabled: true
  # Actor system configuration, as by default, this section is used only by dynamic nodes.
  # Configuration is set specifically for them.
  actor_system_config:
    # Automatic configuration selection for the node based on type and available cores.
    use_auto_config: true

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config_preparation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config_example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cluster_common_scheme_ydb_nodes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config-selectors
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config_dynamic-kinds
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_node-authorization
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_cms
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_cms
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_initial-deployment_initialize-cluster
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config_example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config_example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_actor-system-interconnect
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_tls_interconnect


Detailed configuration parameters are described on the YDB cluster configuration page.

By default, the cluster configuration is assigned version 1. When applying a new configuration, the system compares the uploaded configuration's
version with the value specified in the YAML file. If the versions match, the current version number is automatically incremented by one.

Below is a more comprehensive example of a dynamic configuration that defines typical global parameters as well as parameters specific to a
particular database:

    # HYBRID || COMPUTE || STORAGE — node type.
    node_type: COMPUTE
    # Number of cores.
    cpu_count: 14
allowed_labels: {}
selector_config: []

---
metadata:
  kind: MainConfig
  cluster: ""
  version: 1
config:
  yaml_config_enabled: true
  table_profiles_config:
    table_profiles:
    - name: default
      compaction_policy: default
      execution_policy: default
      partitioning_policy: default
      storage_policy: default
      replication_policy: default
      caching_policy: default
    compaction_policies:
    - name: default
    execution_policies:
    - name: default
    partitioning_policies:
    - name: default
      auto_split: true
      auto_merge: true
      size_to_split: 2147483648
    storage_policies:
    - name: default
      column_families:
      - storage_config:
          sys_log:
            preferred_pool_kind: ssd
          log:
            preferred_pool_kind: ssd
          data:
            preferred_pool_kind: ssd
    replication_policies:
    - name: default
    caching_policies:
    - name: default
  interconnect_config:
    encryption_mode: REQUIRED
    path_to_certificate_file: "/opt/ydb/certs/node.crt"
    path_to_private_key_file: "/opt/ydb/certs/node.key"
    path_to_ca_file: "/opt/ydb/certs/ca.crt"
allowed_labels:
  node_id:
    type: string
  host:
    type: string
  tenant:
    type: string
selector_config:
- description: Custom settings for testdb
  selector:
    tenant: /cluster1/testdb
  config:
    shared_cache_config:
      memory_limit: 34359738368
    feature_flags: !inherit
      enable_views: true
    actor_system_config:
      use_auto_config: true

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index


Updating the dynamic configuration

Additional configuration options are described on the selectors and temporary configuration pages.
All commands for working with configuration are described in the Fetch the cluster configuration section.

Operation mechanism

Configuration update from the administrator's perspective

1. The configuration file is uploaded by the user using a grpc call or YDB CLI to the cluster.

2. The file is checked for validity, basic constraints, version correctness, cluster name correctness, and the correctness of the configurations
obtained after DSL transformation are verified.

3. The configuration version in the file is incremented by one.

4. The file is reliably stored in the cluster using the Console tablet.

5. File updates are distributed across the cluster nodes.

Configuration update from the cluster node's perspective

1. Each node requests the entire configuration at startup.

2. Upon receiving the configuration, the node generates the final configuration for its set of labels.

3. The node subscribes to configuration updates by registering with the Console tablet.

4. In case of configuration updates, the local service receives it and transforms it for the node's labels.

5. All local services subscribed to updates receive the updated configuration.

Steps 1 and 2 are performed only for dynamic cluster nodes.

Configuration versioning

This mechanism prevents concurrent configuration modifications and makes updates idempotent. When a modification request is received, the
server compares the version of the received modification with the stored one. If the version is one less, the configurations are compared: if they are
identical, it means the user is attempting to upload the configuration again, the user receives OK, and the cluster configuration is not updated. If the
version matches the current one on the cluster, the configuration is replaced with the new one, and the version field is incremented by one. In all
other cases, the user receives an error.

Dynamically updated settings

Some system settings are updated without restarting nodes. To change them, upload a new configuration and wait for it to propagate across the
cluster.

List of dynamically updated settings:

immediate_controls_config

log_config

memory_controller_config

monitoring_config

table_service_config

tracing_config.external_throttling

tracing_config.sampling

The list may be expanded in the future.

Limitations

Using more than 30 different labels in selectors can lead to validation delays of several seconds, as YDB needs to check the validity of each
possible final configuration. The number of values for a single label has much less impact.

Using large files (more than 500KiB for a cluster with 1000 nodes) can lead to increased network traffic in the cluster when updating the
configuration. The traffic volume is directly proportional to the number of nodes and the configuration size.

      node_type: COMPUTE
      cpu_count: 14

# Fetch the cluster configuration
ydb admin config fetch > dynconfig.yaml
# Edit using any text editor
vim dynconfig.yaml
# Apply the configuration file dynconfig.yaml to the cluster
ydb admin config replace -f dynconfig.yaml

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config_updating-the-dynamic-configuration
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config_operation-mechanism
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config_configuration-update-from-the-administrators-perspective
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config_configuration-update-from-the-cluster-nodes-perspective
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config_configuration-versioning
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config_dynamic-kinds
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config_limitations
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config-selectors
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config-volatile-config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_configs
https://github.com/ydb-platform/ydb/blob/5251c9ace0a7617c25d50f1aa4d0f13e3d56f985/ydb/public/api/grpc/draft/ydb_dynamic_config_v1.proto#L22
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config-selectors_selectors-resolve
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config-selectors_selectors-intro
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config-selectors
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config-selectors


Cluster configuration DSL

Selectors

The main entity of the DSL is selectors. They allow the overriding of parts of the configuration or the entire configuration for specific nodes or
groups of nodes. For example, they can be used to enable experimental functionality for nodes of a particular database. Each selector is an array of
overrides and extensions to the main configuration. Each selector has a description  field, which can be used to store an arbitrary description
string. The selector  field represents a set of rules that determine whether the selector should be applied to a specific node based on a set of
labels. The config  field describes the override rules. Selectors are applied in the order they are described.

Labels

Labels are special tags used to mark nodes or groups of nodes. Each node has a set of automatically assigned labels:

node_id  — the internal identifier of the node in the system

node_host  — the node's hostname  obtained at startup

tenant  — the database served by this node

dynamic  — whether this node is dynamic (true/false)

Additionally, the user can explicitly define any additional labels when starting the ydbd  process on the node using command-line arguments, such
as --label example=test .

Example of using selectors

The example below defines the actor system's general configuration and the tenant large_tenant  configuration. By default, with such a
configuration, the actor system assumes that each node has 4 cores, while nodes of the large_tenant  have 16 cores. The actor system's node
type is overridden to COMPUTE .

Permissive labels

A mapping in which you can set the allowable values for labels. This section is used as a hint when generating possible configurations using the
resolve command. Values are not validated at node startup.

There are two types of labels available:

string;

enum.

string

It can take any value or be unset.

Example:

metadata:
  cluster: ""
  version: 8
config:
  actor_system_config:
    use_auto_config: true
    node_type: STORAGE
    cpu_count: 4

# This section is used as a hint when generating possible configurations using the resolve command
allowed_labels:
  dynamic:
    type: string

selector_config:
- description: large_tenant has bigger nodes with 16 cpu # arbitrary description string
  selector: # selector for all nodes of the tenant large_tenant
    tenant: large_tenant
  config:
    actor_system_config: !inherit # reuse the original actor_system_config, the semantics of !inherit are described in 
the section below
      # in this case, !inherit allows managing the actor_system_config.use_auto_config parameter for the entire cluster 
by changing only the base setting
      cpu_count: 16
      node_type: COMPUTE

dynamic:
  type: string

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config-selectors
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config-selectors_selectors-intro
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config-selectors_labels
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config-selectors_selectors-example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config-selectors_permissive-labels
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config-selectors_string


enum

It can take values from the values  list or be unset.

Example:

Selector behavior

Selectors represent a simple predicate language. Selectors for each label are combined using the AND condition.

Simple selector

The following selector will select nodes where the label1  is equal to value1  and the label2  is equal to value2 :

The following selector will select ALL nodes in the cluster, as no conditions are specified:

In

This operator allows for selecting nodes with label values from a list.

The following selector will select all nodes where label1  is equal to value1  or value2 :

NotIn

This operator allows selecting nodes where the chosen label does not match any value from a list.

The following selector will select all nodes where label1  is equal to value1  and label2  is not equal to value2  and value3 :

Additional YAML tags

Tags are necessary for partial or complete reuse of configurations from previous selectors. They allow you to merge, extend, delete, and override
parameters set in previous selectors and the main configuration.

!inherit

Scope: YAML mapping
Action: similar to the merge tag in YAML, copy all child elements from the parent mapping and merge with the current ones, overwriting them.
Example:

host_name:
  type: string

flavour:
  type: enum
  values:
    ? small
    ? medium
    ? big

selector:
  label1: value1
  label2: value2

selector: {}

selector:
  label1:
    in:
    - value1
    - value2

selector:
  label1: value1
  label2:
    not_in:
    - value2
    - value3

Original configuration Override Resulting configuration

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config-selectors_enum
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config-selectors_selector-behavior
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config-selectors_simple-selector
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config-selectors_in
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config-selectors_notin
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config-selectors_additional-yaml-tags
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config-selectors_inherit
https://yaml.org/spec/1.2.2/#mapping
https://yaml.org/type/merge.html


!inherit:<key>

Scope: YAML sequence
Action: copy elements from the parent array and overwrite, treating the key  object in the elements as the key, appending new keys to the end.
Example:

!remove

Scope: YAML sequence element under !inherit:<key>
Action: remove the element with the corresponding key.
Example:

            

        

config:
  some_config:
    first_entry: 1
    second_entry: 2
    third_entry: 3

        
    

        

config:
  some_config: !inherit
    second_entry: 100

        
    

        

config:
  some_config:
    first_entry: 1
    second_entry: 100
    third_entry: 3

        
    

Original configuration Override Resulting configuration

            

        

config:
  some_config:
    array:
    - abc: 2
      value: 10
    - abc: 1
      value: 20
      another_value: test

        
    

        

config:
  some_config: !inherit
    array: !inherit:abc
    - abc: 1
      value: 30
    - abc: 3
      value: 40

        
    

        

config:
  some_config:
    array:
    - abc: 2
      value: 10
    - abc: 1
      value: 30
    - abc: 3
      value: 40

        
    

Original configuration Override Resulting configuration

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config-selectors_inheritkey
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config-selectors_remove
https://yaml.org/spec/1.2.2/#sequence


!append

Scope: YAML sequence
Action: copy elements from the parent array and append new ones to the end.
Example:

Generating final configurations

Configurations can contain complex sets of overrides. With the YDB CLI, you can view the final configurations for:

specific nodes

sets of labels

all possible combinations for the current configuration

The configuration transformation command is described in more detail in the section Fetch the cluster configuration.

Example output of ydb admin config resolve --all -f cluster.yaml  for the following configuration file:

# Generate all possible final configurations for cluster.yaml
ydb admin config resolve --all -f cluster.yaml
# Generate the configuration for cluster.yaml with labels tenant=/Root/test and canary=true
ydb admin config resolve -f cluster.yaml --label tenant=/Root/test --label canary=true
# Generate the configuration for cluster.yaml with labels similar to those on node 1001
ydb admin config resolve -f cluster.yaml --node_id 1001
# Take the current cluster configuration and generate the final configuration for it with labels similar to those on 
node 1001
ydb admin config resolve --from-cluster --node_id 1001

metadata:
  cluster: ""
  version: 8
config:
  actor_system_config:
    use_auto_config: true
    node_type: STORAGE

            

        

config:
  some_config:
    array:
    - abc: 2
      value: 10
    - abc: 1
      value: 20
      another_value: test

        
    

        

config:
  some_config: !inherit
    array: !inherit:abc
    - !remove
      abc: 1

        
    

        

config:
  some_config:
    array:
    - abc: 2
      value: 10

        
    

Original configuration Override Resulting configuration

            

        

config:
  some_config:
    array:
    - abc: 2
      value: 10
    - abc: 1
      value: 20
      another_value: test

        
    

        

config:
  some_config: !inherit
    array: !append
    - abc: 1
      value: 30
    - abc: 3
      value: 40

        
    

        

config:
  some_config:
    array:
    - abc: 2
      value: 10
    - abc: 1
      value: 20
      another_value: test
    - abc: 1
      value: 30
    - abc: 3
      value: 40

        
    

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config-selectors_append
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config-selectors_selectors-resolve
https://yaml.org/spec/1.2.2/#sequence
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_configs


Output:

    cpu_count: 4
allowed_labels:
  dynamic:
    type: string
selector_config:
- description: Actorsystem for dynnodes # arbitrary description string
  selector: # selector for all nodes with label dynamic = true
    dynamic: true
  config:
    actor_system_config: !inherit # reuse the original actor_system_config, the semantics of !inherit are described in 
the section below
      node_type: COMPUTE
      cpu_count: 8

---
label_sets: # sets of labels for which the configuration is generated
- dynamic:
    type: NOT_SET # one of three label types: NOT_SET | COMMON | EMPTY
config: # generated configuration
  invalid: 1
  actor_system_config:
    use_auto_config: true
    node_type: STORAGE
    cpu_count: 4
---
label_sets:
- dynamic:
    type: COMMON
    value: true # label value
config:
  invalid: 1
  actor_system_config:
    use_auto_config: true
    node_type: COMPUTE
    cpu_count: 8



Volatile configurations
Volatile configurations are a special type of configuration that complements dynamic configurations while being non-persistent. These
configurations are discarded when the Console tablet is moved or restarted, as well as when the main configuration is updated.

Primary use cases:

Temporarily changing configuration for debugging or testing

Trial activation of potentially dangerous settings. In the event of a cluster crash or restart, these settings will be automatically disabled

These configurations are added at the end of the selectors set, and the syntax for their description is identical to the selector syntax.

Example of working with volatile configuration

Temporarily enabling logging settings for the blobstorage  component to DEBUG  on the node host1.example.com :

# Retrieve all volatile configurations uploaded to the cluster
ydb admin volatile-config fetch --all --output-directory <dir>
# Retrieve the volatile configuration with id=1
ydb admin volatile-config fetch --id 1
# Apply the volatile configuration volatile.yaml to the cluster
ydb admin volatile-config add -f volatile.yaml
# Delete volatile configurations with id=1 and id=3 on the cluster
ydb admin volatile-config drop --id 1 --id 3
# Delete all volatile configurations on the cluster
ydb admin volatile-config drop --all

# Request current metadata to form a correct header for the volatile configuration
$ ydb admin config fetch --all
---
kind: MainConfig
cluster: "example-cluster-name"
version: 2
config:
  # ...
---
kind: VolatileConfig
cluster: "example-cluster-name"
version: 2
id: 1
selector_config:
  # ...
# Load configuration with version 2, cluster name example-cluster-name, and identifier 2
$ ydb admin volatile-config add -f - <<<EOF
metadata:
  kind: VolatileConfig
  cluster: "example-cluster-name"
  version: 2
  id: 2
selector_config:
- description: Set blobstorage logging level to DEBUG
  selector:
    node_host: host1.example.com
  config:
    log_config: !inherit
      entry: !inherit_key:component
      - component: BLOBSTORAGE
        level: 8
EOF
# ...
# log analysis
# ...
# Delete the configuration
$ ydb admin volatile-config drop --id 2

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config-volatile-config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config-volatile-config_example-of-working-with-volatile-configuration
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config-selectors


Deploying connectors to external data sources

Warning

This functionality is in "Experimental" mode.

Connectors are special microservices providing YDB with a universal abstraction for accessing external data sources. Connectors act as extension
points for the YDB federated query processing system. This guide will discuss the specifics of deploying connectors in an on-premise environment.

fq-connector-go

The fq-connector-go  connector is implemented in Go; its source code is hosted on GitHub. It provides access to the following data sources:

ClickHouse

Greenplum

Microsoft SQL Server

MySQL

PostgreSQL

YDB

The connector can be installed using a binary distribution or a Docker image.

Running from a binary distribution

Use binary distributions to install the connector on a physical or virtual Linux server without container virtualization.

1. On the releases page of the connector, select the latest release and download the archive for your platform and architecture. The following
command downloads version v0.2.4  of the connector for the Linux platform and amd64  architecture:

2. If YDB nodes have not yet been deployed on the server, create directories for storing executable and configuration files:

3. Place the extracted executable and configuration files of the connector into the newly created directories:

4. In the recommended usage mode, the connector is deployed on the same servers as the dynamic nodes of YDB, so encryption of network
connections between them is not required. However, if you need to enable encryption, prepare a pair of TLS keys and specify the paths to the
public and private keys in the connector_server.tls.cert  and connector_server.tls.key  fields of the fq-connector-go.yaml
configuration file:

5. If external data sources use TLS, the connector will need a root or intermediate Certificate Authority (CA) certificate that signed the sources'
certificates to establish encrypted connections. Linux servers usually have some CA root certificates pre-installed. For Ubuntu OS, the list of
supported CAs can be displayed with the following command:

If the server lacks the required CA certificate, copy it to a special system directory and update the certificates list:

6. You can start the service manually or using systemd .

mkdir /tmp/connector && cd /tmp/connector
wget https://github.com/ydb-platform/fq-connector-go/releases/download/v0.2.4/fq-connector-go-v0.2.4-linux-
amd64.tar.gz
tar -xzf fq-connector-go-v0.2.4-linux-amd64.tar.gz

sudo mkdir -p /opt/ydb/bin /opt/ydb/cfg

sudo cp fq-connector-go /opt/ydb/bin
sudo cp fq-connector-go.yaml /opt/ydb/cfg

connector_server:
  # ...
  tls:
    cert: "/opt/ydb/certs/fq-connector-go.crt"
    key: "/opt/ydb/certs/fq-connector-go.key"

awk -v cmd='openssl x509 -noout -subject' '/BEGIN/{close(cmd)};{print | cmd}' < /etc/ssl/certs/ca-certificates.crt

sudo cp root_ca.crt /usr/local/share/ca-certificates/
sudo update-ca-certificates

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_federated-queries_connector-deployment
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_federated-queries_connector-deployment_fq-connector-go
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_federated-queries_connector-deployment_fq-connector-go-binary
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_architecture_connectors
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_index
https://github.com/ydb-platform/fq-connector-go
https://clickhouse.com/
https://greenplum.org/
https://www.microsoft.com/en-us/sql-server
https://www.mysql.com/
https://www.postgresql.org/
https://ydb.tech/
https://github.com/ydb-platform/fq-connector-go/releases
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_federated-queries_index_general-scheme
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_initial-deployment_tls-certificates


Running in Docker

1. To run the connector, use the official Docker image. It already contains the service's configuration file. Start the service with default settings
using the following command:

A listening socket of the GRPC service connector will start on port 2130 of your host's public network interface. Subsequently, the YDB server
must connect to this network address.

2. If configuration changes are needed, prepare the configuration file based on the sample and mount it to the container:

3. In the recommended usage mode, the connector is deployed on the same servers as the dynamic nodes of YDB, so encryption of network
connections between them is not required. However, if you need to enable encryption between YDB and the connector, prepare a pair of TLS
keys and specify the paths to the public and private keys in the connector_server.tls.cert  and connector_server.tls.key  fields of the
configuration file:

When starting the container, mount the directory with the TLS key pair inside it so that they are accessible to the fq-connector-go  process
at the paths specified in the configuration file:

Manually

Start the service from the console with the following command:

/opt/ydb/bin/fq-connector-go server -c /opt/ydb/cfg/fq-connector-go.yaml

Using systemd

Along with the binary distribution, fq-connector-go includes a sample configuration file (unit) for the systemd  initialization system. Copy the
unit to the /etc/systemd/system  directory, enable, and start the service:

If successful, the service should enter the active (running)  state. Check it with the following command:

Service logs can be read using the command:

cd /tmp/connector
sudo cp fq-connector-go.service /etc/systemd/system/
sudo systemctl enable fq-connector-go.service
sudo systemctl start fq-connector-go.service

sudo systemctl status fq-connector-go
● fq-connector-go.service - YDB FQ Connector Go
    Loaded: loaded (/etc/systemd/system/fq-connector-go.service; enabled; vendor preset: enabled)
    Active: active (running) since Thu 2024-02-29 17:51:42 MSK; 2s ago

sudo journalctl -u fq-connector-go.service

docker run -d \
    --name=fq-connector-go \
    -p 2130:2130 \
    ghcr.io/ydb-platform/fq-connector-go:latest

docker run -d \
    --name=fq-connector-go \
    -p 2130:2130 \
    -v /path/to/config.yaml:/opt/ydb/cfg/fq-connector-go.yaml
    ghcr.io/ydb-platform/fq-connector-go:latest

connector_server:
  # ...
  tls:
    cert: "/opt/ydb/certs/fq-connector-go.crt"
    key: "/opt/ydb/certs/fq-connector-go.key"

docker run -d \
    --name=fq-connector-go \
    -p 2130:2130 \
    -v /path/to/config.yaml:/opt/ydb/cfg/fq-connector-go.yaml
    -v /path/to/keys/:/opt/ydb/certs/
    ghcr.io/ydb-platform/fq-connector-go:latest

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_federated-queries_connector-deployment_fq-connector-go-docker
https://github.com/ydb-platform/fq-connector-go/pkgs/container/fq-connector-go
https://github.com/ydb-platform/fq-connector-go/blob/main/app/server/config/config.prod.yaml
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_federated-queries_connector-deployment_fq-connector-go-config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_federated-queries_index_general-scheme
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_initial-deployment_tls-certificates
https://github.com/ydb-platform/fq-connector-go/blob/main/examples/systemd/fq-connector-go.service


4. If external data sources use TLS, the connector will need a root or intermediate Certificate Authority (CA) certificate that signed the sources'
certificates to establish encrypted connections. The Docker image for the connector is based on the Alpine Linux distribution image, which
already contains some CA certificates. Check for the required CA in the pre-installed list with the following command:

If the source TLS keys are issued by a CA that is not included in the trusted list, add the CA certificate to the system paths of the container with
the connector. For example, build a custom Docker image based on the existing one. Prepare the following Dockerfile :

Place the Dockerfile  and the CA root certificate in one folder, navigate to it, and build the image with the following command:

The new fq-connector-go_custom_ca  image can be used to deploy the service using the above commands.

Configuration

A current example of the fq-connector-go  service configuration file can be found in the repository.

docker run -it --rm ghcr.io/ydb-platform/fq-connector-go sh
# then in the console inside the container:
apk add openssl
awk -v cmd='openssl x509 -noout -subject' ' /BEGIN/{close(cmd)};{print | cmd}' < /etc/ssl/certs/ca-certificates.crt

FROM ghcr.io/ydb-platform/fq-connector-go:latest

USER root

RUN apk --no-cache add ca-certificates openssl
COPY root_ca.crt /usr/local/share/ca-certificates
RUN update-ca-certificates

docker build -t fq-connector-go_custom_ca .

Parameter Description

connector_server Required section. Contains the settings of the main GPRC server that accesses the data.

connector_server.endpoint.host Hostname or IP address on which the service's listening socket runs.

connector_server.endpoint.port Port number on which the service's listening socket runs.

connector_server.tls Optional section. Filled if TLS connections are required for the main GRPC service 
fq-connector-go . By default, the service runs without TLS.

connector_server.tls.key Full path to the private encryption key.

connector_server.tls.cert Full path to the public encryption key.

logger Optional section. It contains logging settings.

logger.log_level Logging level. Valid values: TRACE , DEBUG , INFO , WARN , ERROR , FATAL . Default value: 
INFO .

logger.enable_sql_query_logging For data sources supporting SQL, query logging  is enabled. Valid values: true , false . 
IMPORTANT: Enabling this option may result in printing confidential user data in the logs. 
Default value: false .

paging Optional section. It contains settings for the algorithm of splitting the data stream extracted from 
the source into Arrow blocks. For each request, a queue of blocks prepared for sending to YDB 
is created in the connector. Arrow block allocation contributes significantly to the memory 
consumption of the fq-connector-go  process. The minimum memory required for the 
connector's operation can be roughly estimated by the formula , where  is the number of 
concurrent requests,  is the paging.bytes_per_page  parameter, and  is the 
paging.prefetch_queue_capacity  parameter.

paging.bytes_per_page Maximum number of bytes in one block. Recommended values range from 4 to 8 MiB, and the 
maximum is 48 MiB. Default value: 4 MiB.

paging.prefetch_queue_capacity Number of pre-read data blocks stored in the connector's address space until YDB requests the 
next data block. In some scenarios, larger values of this setting can increase throughput but will 
also lead to higher memory consumption by the process. Recommended values - at least 2. 
Default value: 2.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_federated-queries_connector-deployment_fq-connector-go-config
https://github.com/ydb-platform/fq-connector-go/blob/main/app/server/config/config.prod.yaml




Getting started with YDB as an Application Developer / Software Engineer
First of all, you'll need to obtain access to a YDB cluster. Follow the quickstart instructions to get a basic local instance. Later on, you can work with
your DevOps team to build a production-ready cluster or leverage one of the cloud service providers that offer a managed YDB service.

The second step is designing a data schema for an application you will build from scratch or adapt the schema of an existing application if you're
migrating from another database management system.

In parallel with designing the schema, you need to set up your development environment for interaction with YDB. There are a few main aspects to
it, explored below.

Choosing API

Choose the YDB API you want to use; there are several options:

The recommended way for mainstream programming languages is using a YDB SDK. They provide high-level APIs and implement best
practices on working with YDB. YDB SDKs are available for several popular languages and strive for feature parity, but not all are feature-
complete. Refer to the SDK feature comparison table to check if the SDK for the programming language you had in mind will fit your needs or
to choose a programming language with better feature coverage if you're flexible.

Alternatively, YDB provides PostgreSQL-compatible API. It is intended to simplify migrating existing applications that have outgrown
PostgreSQL. However, it is also useful for exotic programming languages that have a PostgreSQL client library but don't have a YDB SDK.
Refer to PostgreSQL compatibility documentation to check if its completeness will suit your needs.

If you are interested in YDB topics feature, it is worth noting that they also provide Kafka-compatible API. Follow that link if this use case is
relevant.

As a last resort, YDB's native API is based on the gRPC protocol, which has an ecosystem around it, including code generation of clients.
YDB's gRPC specs are hosted on GitHub and you could leverage them in your application. The generated clients are low-level and will require
extra work to handle aspects like retries and timeouts properly, so go this route only if other options above aren't possible and you know what
you're doing.

Install prerequisites

Choose the specific programming language you'll be using. Install the respective YDB SDK or a PostgreSQL driver depending on the route you
have chosen above.

Additionally, you'd want to set up at least one of the available ways to run ad-hoc queries for debugging purposes. Choose at least one according to
your preferences:

YDB CLI

Embedded UI

Any SQL IDE that supports JDBC

psql or pgAdmin for the PostgreSQL-compatible route.

Start coding

For YDB SDK route

Go through YQL tutorial to get familiar with YDB's SQL dialect.

Explore example applications to see how working with SDK's looks like.

Check out SDK recipies for typical SDK use cases, which you can refer to later.

Learn how to handle YDB SDK errors.

Leverage your IDE capabilities to navigate the SDK code.

For PostgreSQL-compatibility route

Learn how to connect PostgreSQL driver with YDB cluster.
The rest should be similar to using vanilla PostgreSQL. Use your experience with it or refer to any favorite resources. However, refer to the list
of functions and statements to adjust your expectations.

Testing

To write tests on applications working with YDB:

For functional tests, you can mock YDB's responses using a suitable testing framework for your chosen programming language.

For integrational tests, you can launch a single-node YDB instance in your CI/CD environment with either a Docker image or executable
similarly to how it is done in the Quickstart article. It is recommended to test against a few versions of YDB: the one you have in production to
check for issues you can encounter when updating your application and the newer versions to identify the potential issues of upgrading YDB
early on.

For performance tests, you'd want to use a cluster deployed according to instructions for production use as single-node won't yield realistic
results. You can run ydb workload if you want to see how your YDB cluster performs in generic scenarios even before writing any application
code. Then you can use the source code of the library behind this tool as an example of how to write your own performance tests with YDB.
It'd be great if you could contribute an anonymized version of your workload to upstream so it can be included in performance testing of YDB
itself.

What's next

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_getting-started
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_getting-started_choosing-api
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_getting-started_install-prerequisites
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_getting-started_start-coding
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_getting-started_for-ydb-sdk-route
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_getting-started_for-postgresql-compatibility-route
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_getting-started_testing
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_getting-started_whats-next
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_quickstart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_feature-parity
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_intro
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_kafka-api_index
https://grpc.io/
https://github.com/ydb-platform/ydb/tree/main/ydb/public/api/grpc
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_index
https://wiki.postgresql.org/wiki/List_of_drivers
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_install
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_index
https://github.com/ydb-platform/ydb-jdbc-driver
https://www.postgresql.org/docs/14/app-psql.html
https://www.pgadmin.org/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_yql-tutorial_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_docker-connect
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions
https://en.wikipedia.org/wiki/CI/CD
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_quickstart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_index
https://github.com/ydb-platform/ydb/tree/main/ydb/library/workload
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_index


The above should be enough to start developing applications that interact with YDB. Along the way use YQL and YDB SDK reference
documentation and other resources in this documentation section.

In case of any issues, feel free to discuss them in YDB Discord.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_index
https://discord.gg/R5MvZTESWc


YQL Tutorial - Overview
From this tutorial, you will learn how to perform basic operations with data in YDB and get familiar with the YQL syntax. A detailed description of this
syntax is also available in the YQL reference documentation.

The tutorial consists of 15 steps:

1. Creating a table

2. Adding data to a table

3. Selecting data from all columns

4. Selecting data from specific columns

5. Sorting and filtering

6. Data aggregation

7. Additional selection criteria
8. Joining tables with JOIN

9. Inserting and updating data with REPLACE

10. Inserting and updating data with UPSERT

11. Inserting data with INSERT

12. Updating data with UPDATE

13. Deleting data

14. Adding and deleting columns

15. Deleting a table

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_yql-tutorial_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_yql_reference_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_create_demo_tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_fill_tables_with_data
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_select_all_columns
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_select_specific_columns
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_basic_filter_and_sort
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_basic_aggregation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_conditional_values
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_join_tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_replace_into
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_upsert_into
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_insert_into
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_update
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_delete
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_alter_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_delete_table


Example applications working with YDB
This section outlines the implementation of example applications, all designed to perform similar functions, using the YDB SDKs across various
programming languages. Each app is developed to demonstrate how a respective SDK can be utilized in a specific language.

C++

C# (.NET)

Go

Java

Node.js

Python

Refer to YDB SDK reference documentation for more details.

A test app performs the following steps:

Initializing a database connection

To interact with YDB, create instances of the driver, client, and session:

The YDB driver facilitates interaction between the app and YDB nodes at the transport layer. It must be initialized before creating a client or
session and must persist throughout the YDB access lifecycle.

The YDB client operates on top of the YDB driver and enables the handling of entities and transactions.
The YDB session, which is part of the YDB client context, contains information about executed transactions and prepared queries.

C++ | C# (.NET) | Go | Java | Node.js | PHP | Python

Creating tables

Create tables to be used in operations on a test app. This step results in the creation of database tables for the series directory data model:

Series

Seasons

Episodes

After the tables are created, a method for retrieving information about data schema objects is called, and the result of its execution is displayed.

C++ | C# (.NET) | Go | Java | Node.js | PHP | Python

Adding data

Add data to the created tables using the UPSERT  statement in YQL. A data update request is sent to the server as a single request with transaction
auto-commit mode enabled.

C++ | C# (.NET) | Go | Java | Node.js | PHP | Python

Retrieving data

Retrieve data using a SELECT  statement in YQL. Handle the retrieved data selection in the app.

C++ | C# (.NET) | Go | Java | Node.js | PPHP | Python

Parameterized queries

Query data using parameters. This query execution method is preferable because it allows the server to reuse the query execution plan for
subsequent calls and protects against vulnerabilities such as SQL injection.

C++ | C# (.NET) | Go | Java | Node.js | PHP | Python

Multistep transactions

Multiple statements can be executed within a single multistep transaction. Client-side code can run between query steps. Using a transaction
ensures that queries executed in its context are consistent with each other.

C++ | C# (.NET) | Go | Java | Node.js | PHP | Python

Managing transactions

Transactions are managed through TCL Begin  and Commit  calls.

In most cases, instead of explicitly using Begin  and Commit  calls, it's better to use transaction control parameters in execute calls. This allows to
avoid additional requests to YDB server and thus run queries more efficiently.

C++ | C# (.NET) | Go | Java | Node.js | PHP | Python

Error handling

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_index_init
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_index_create-table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_index_write-queries
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_index_query-processing
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_index_param-queries
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_index_multistep-transactions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_index_tcl
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_index_error-handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-cpp
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-dotnet
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_go_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_java_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-nodejs
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_python_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_ydb-sdk_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-cpp_init
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-dotnet_init
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_go_index_init
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_java_index_init
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-php_init
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_python_index_init
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-cpp_create-table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-dotnet_create-table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_go_index_create-table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_java_index_create-table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-php_create-table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_python_index_create-table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_yql_reference_syntax_upsert_into
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_yql_reference_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-cpp_write-queries
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-dotnet_write-queries
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_java_index_write-queries
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-php_write-queries
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_python_index_write-queries
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_yql_reference_syntax_select_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_yql_reference_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-cpp_query-processing
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-dotnet_query-processing
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_go_index_query-processing
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_java_index_query-processing
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-php_query-processing
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_python_index_query-processing
https://en.wikipedia.org/wiki/SQL_injection
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-cpp_param-queries
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-dotnet_param-queries
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_go_index_param-queries
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_java_index_param-queries
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-php_param-queries
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_python_index_param-queries
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-cpp_multistep-transactions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_java_index_multistep-transactions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_concepts_transactions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-cpp_tcl
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_java_index_tcl
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_python_index_tcl


For more information about error handling, see Error handling in the API.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_reference_ydb-sdk_error_handling


Choosing a primary key
The recommendations for choosing a proper primary key for a table depend on its type:

Row-oriented tables

Column-oriented tables

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_primary-key_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_primary-key_row-oriented
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_primary-key_column-oriented


Secondary indexes
Indexes are auxiliary structures within databases that help find data by certain criteria without having to search an entire database and retrieve
sorted samples without actually sorting, which would require processing the entire dataset.

Data in a YDB table is always sorted by the primary key. That means that retrieving any entry from the table with specified field values comprising
the primary key always takes the minimum fixed time, regardless of the total number of table entries. Indexing by the primary key makes it possible
to retrieve any consecutive range of entries in ascending or descending order of the primary key. Execution time for this operation depends only on
the number of retrieved entries rather than on the total number of table records.

To use a similar feature with any field or combination of fields, additional indexes called secondary indexes can be created for them

In transactional systems, indexes are used to limit or avoid performance degradation and increase of query cost as your data grows.

This article describes the main operations with secondary indexes and gives references to detailed information on each operation. For more
information about various types of secondary indexes and their specifics, see Secondary indexes in the Concepts section.

Creating secondary indexes

A secondary index is a data schema object that can be defined when creating a table with the CREATE TABLE  YQL command or added to it later
with the ALTER TABLE  YQL command.

The table index add  command is supported in the YDB CLI.

Since an index contains its own data derived from table data, when creating an index on an existing table with data, an operation is performed to
initially build an index. This may take a long time. This operation is executed in the background and you can keep working with the table while it's in
progress. However, you can't use the new index until it's build is completed.

An index can only be used in the order of the fields included in it. If an index contains two fields, such as a  and b , you can effectively use it for
queries such as:

WHERE a = $var1 AND b = $var2 .

WHERE a = $var1 .

WHERE a > $var1  and other comparison operators.

WHERE a = $var1 AND b > $var2  and any other comparison operators in which the first field must be checked for equality.

This index can't be used in the following queries:

WHERE b = $var1 .

WHERE a > $var1 AND b > $var2 , which is equivalent to WHERE a > $var1  in terms of applying the index.

WHERE b > $var1 .

Considering the above, there's no use in pre-indexing all possible combinations of table columns to speed up the execution of any query. An index
is always a compromise between the lookup and write speed and the storage space occupied by the data. Indexes are created for specific queries
and search criteria made by an app in the database.

Using secondary indexes when selecting data

For a table to be accessed by a secondary index, its name must be explicitly specified in the VIEW  section after the table name as described in the
article about the YQL SELECT  statement. For example, a query to retrieve orders from the orders  table by the specified customer ID
( id_customer ) looks like this:

Where idx_customer  is the name of the secondary index on the orders  table with the id_customer  field specified first.

If no VIEW  section is specified, making a query like this results in a full scan of the orders  table.

In transactional applications, such information queries are executed with paginated data output. This eliminates an increase in the cost and time of
query execution if the number of entries that meet the filtering conditions grows. The described approach to writing paginated queries using the
primary key can also be applied to columns that are part of a secondary index.

Checking the cost of queries

Any query made in a transactional application should be checked in terms of the number of I/O operations it performed in the database and how
much CPU was used to run it. You should also make sure these indicators don't continuously grow as the database volume grows. YDB returns
statistics required for the analysis after running each query.

If you use the YDB CLI, select the --stats  option to enable printing statistics after executing the yql  command. All YDB SDKs also contain
structures with statistics returned after running a query. If you make a query in the UI, you'll see a tab with statistics next to the results tab.

Updating data using a secondary index

DECLARE $customer_id AS Uint64;

SELECT *
FROM   orders VIEW idx_customer AS o
WHERE  o.id_customer = $customer_id

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_secondary-indexes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_secondary-indexes_create
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_secondary-indexes_use
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_secondary-indexes_cost
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_secondary-indexes_update
https://en.wikipedia.org/wiki/Database_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_secondary_indexes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_secondary_index_add
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_secondary_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_paging


The UPDATE , UPSERT , and REPLACE  YQL statements don't permit specifying a secondary index to perform a search for data, so an attempt to
make an UPDATE ... WHERE indexed_field = $value  will result in a full scan of the table. To avoid this, you can first run SELECT  by index to
get the primary key value and then UPDATE  by the primary key. You can also use UPDATE ON .

To update data in the table1  table, run the query:

Note

Currently, data updating is possible only using a synchronous secondary index. This limitation exists because data modification is
permitted only in Serializable transactions, and accessing asynchronous indices would violate the guarantees of this transaction mode.

Deleting data using a secondary index

To delete data by secondary index, use SELECT  with a predicate by secondary index and then call DELETE ON .

To delete all data about series with zero views from the series  table, run the query:

Note

Currently, deleting data is possible only using a synchronous secondary index. This is because data removal is permitted only in
Serializable transactions, and accessing asynchronous indices would violate the guarantees of this transaction mode.

Atomic replacement of a secondary index

You can atomically replace a secondary index. This can be useful if you want your index to become covering. This operation is totally transparent
for your running applications: when you replace the index, the compiled queries are invalidated.

To replace an existing index atomically, use the YDB CLI command ydb table index rename with the --replace  parameter.

Performance of data writes to tables with secondary indexes

You need additional data structures to enable secondary indexes. Support for these structures makes table data update operations more costly.

During synchronous index updates, a transaction is only committed after all the necessary data is written in both a table and synchronous indexes.
As a result, it takes longer to execute it and makes it necessary to use distributed transactions even if adding or updating entries in a single
partition.

Indexes that are updated asynchronously let you use single-shard transactions. However, they only guarantee eventual consistency and still put a
load on the database.

$to_update = (
    SELECT pk_field, $f1 AS field1, $f2 AS field2, ...
    FROM   table1 VIEW idx_field3
    WHERE  field3 = $f3)

UPDATE table1 ON SELECT * FROM $to_update

DELETE FROM series ON
SELECT series_id
FROM series VIEW views_index
WHERE views = 0;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_secondary-indexes_delete
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_secondary-indexes_atomic-index-replacement
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_secondary-indexes_write_performance
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_update
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_upsert_into
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_replace_into
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_transactions_modes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_transactions_modes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_secondary_indexes_covering
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_secondary_index_rename
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_transactions_distributed-tx


Vector Indexes

Alert

The functionality of vector indexes is available in the test mode in main. This functionality will be fully available in version 25.1.

The following features are not supported:

modifying rows in tables with vector indexes

building an index for vectors with bit quantization

These limitations may be removed in future versions.

Vector indexes are specialized data structures that enable efficient vector search in multidimensional spaces. Unlike secondary indexes, which
optimize searching by equality or range, vector indexes allow similarity searching based on similarity or distance functions.

Data in a YDB table is stored and sorted by the primary key, ensuring efficient searching by exact match and range scanning. Vector indexes
provide similar efficiency for nearest neighbor searches in vector spaces.

Characteristics of Vector Indexes

Vector indexes in YDB address the nearest neighbor search problem using similarity or distance functions. Several distance/similarity functions are
supported: "inner_product", "cosine" (similarity) and "cosine", "euclidean", "manhattan" (distance).

The current implementation offers one type of index: vector_kmeans_tree .

Vector Index Type vector_kmeans_tree

The vector_kmeans_tree  index implements hierarchical data clustering. The structure of the index includes:

1. Hierarchical clustering:

the index builds multiple levels of k-means clusters

at each level, vectors are distributed across a predefined number of clusters raised to the power of the level

the first level clusters the entire dataset

subsequent levels recursively cluster the contents of each parent cluster

2. Search process:
search proceeds recursively from the first level to the subsequent ones

during queries, the index analyzes only the most promising clusters

such search space pruning avoids complete enumeration of all vectors

3. Parameters:

levels : number of levels in the tree, defining search depth (recommended 1-3)

clusters : number of clusters in k-means, defining search width (recommended 64-512)

Internally, a vector index consists of hidden index tables named indexImpl*Table . In selection queries using the vector index, the index tables will
appear in query statistics.

Types of Vector Indexes

A vector index can be covering, meaning it includes additional columns to enable reading from the index without accessing the main table.

Alternatively, it can be prefixed, allowing for additional columns to be used for quick filtering during reading.

Below are examples of creating vector indexes of different types.

Basic Vector Index

Global vector index on the embedding  column:

Vector Index with Covering Columns

A covering vector index, including an additional column data  to avoid reading from the main table during a search:

ALTER TABLE my_table
  ADD INDEX my_index
  GLOBAL USING vector_kmeans_tree
  ON (embedding)
  WITH (distance=cosine, vector_type="uint8", vector_dimension=512, levels=2, clusters=128);

ALTER TABLE my_table
  ADD INDEX my_index
  GLOBAL USING vector_kmeans_tree

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_vector-indexes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_vector-indexes_characteristics
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_vector-indexes_kmeans-tree-type
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_vector-indexes_types
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_vector-indexes_basic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_vector-indexes_covering
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_knn_functions-convert
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_vector-index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_vector_search
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_secondary-index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_knn_functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_knn_functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_vector-indexes_select
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_query-plans-optimization


Prefixed Vector Index

A prefixed vector index, allowing filtering by the prefix column user  during vector search:

Prefixed Vector Index with Covering Columns

A prefixed vector index with covering columns:

Creating Vector Indexes

Vector indexes can be created:

during table creation using the YQL operator CREATE TABLE;

added to an existing table using the YQL operator ALTER TABLE.

Using Vector Indexes

Queries to vector indexes are executed using the VIEW  syntax in YQL. For prefixed indexes, specify the prefix columns in the WHERE  clause:

For more details on executing SELECT  queries using vector indexes, see the section VIEW VECTOR INDEX.

Note

If the VIEW  expression is not used, the query will perform a full table scan with pairwise comparison of vectors.

It is recommended to check the optimality of the written query using query statistics. In particular, ensure there is no full scan of the
main table.

  ON (embedding) COVER (data)
  WITH (distance=cosine, vector_type="uint8", vector_dimension=512, levels=2, clusters=128);

ALTER TABLE my_table
  ADD INDEX my_index
  GLOBAL USING vector_kmeans_tree
  ON (user, embedding)
  WITH (distance=cosine, vector_type="uint8", vector_dimension=512, levels=2, clusters=128);

ALTER TABLE my_table
  ADD INDEX my_index
  GLOBAL USING vector_kmeans_tree
  ON (user, embedding) COVER (data)
  WITH (distance=cosine, vector_type="uint8", vector_dimension=512, levels=2, clusters=128);

DECLARE $query_vector AS List<Uint8>;

SELECT user, data
FROM my_table VIEW my_index
ORDER BY Knn::CosineSimilarity(embedding, $query_vector) DESC
LIMIT 10;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_vector-indexes_prefixed
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_vector-indexes_prefixed-covering
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_vector-indexes_creation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_vector-indexes_select
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_vector_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_indexes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_vector_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_query-plans-optimization


Query plan optimization
Before executing a query, it is essential to analyze its execution plan to detect and eliminate the reasons for possible excessive cluster resource
consumption or abnormally high execution time. This article will discuss specific examples of query plan analysis.

Let's consider the following query that searches for episodes by title:

Schema of the episodes  table:

Let's build a plan for this query. You can do this via either UI or YDB CLI:

SELECT season_id, episode_id
  FROM episodes
  WHERE title = 'The Work Outing'

YDB CLI

You can build a query plan via YDB CLI using the following command:

Result:

ydb -p <profile_name> table query explain \
  -q "SELECT season_id, episode_id
  FROM episodes
  WHERE title = 'The Work Outing'"

Query Plan:
ResultSet
└──Limit (Limit: 1001)
   └──<UnionAll>
      └──Limit (Limit: 1001)
      └──Filter (Predicate: item.title == "The Work Outing")
      └──TableFullScan (ReadRanges: ["series_id (-∞, +∞)","season_id (-∞, +∞)","episode_id (-∞, +∞)"], ReadColumns: 
["episode_id","season_id","title"], Table: episodes)
         Tables: ["episodes"]

Embedded UI

You can also build a query plan via Embedded UI. You need to navigate to the database page, go to the Query  section, type the query text, and
click on Explain :

Result:

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_query-plans-optimization
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_explain-plan
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring


Both plan representations contain the result being returned to the client at the root, table operations at the leaves, and data transformations at the
intermediate nodes. It is important to pay attention to the node containing the table reading operation. In this case, it is a TableFullScan  for the
episodes  table. Full table scans consume time and resources proportional to the size of the table, so it is advisable to avoid them whenever

possible in tables that tend to grow over time or are simply large.

One typical approach to avoid full scans is using a secondary index. In this case, it makes sense to add a secondary index for the column title
using the following query:

Please note that this example uses synchronous secondary index. Building an index in YDB is an asynchronous operation. Even if the index
creation query is successful, it is advisable to wait for some time because the index may not be ready for use immediately. You can manage
asynchronous operations through the CLI.

Let's build the query plan using the secondary index title_index . Secondary indexes to be used need to be explicitly specified in the VIEW
clause.

ALTER TABLE episodes
  ADD INDEX title_index GLOBAL ON (title)

YDB CLI

Command:

Result:

ydb -p <profile_name> table query explain \
  -q "SELECT season_id, episode_id
  FROM episodes VIEW title_index
  WHERE title = 'The Work Outing'"

Query Plan:
ResultSet
└──Limit (Limit: 1001)
   └──<UnionAll>
      └──Limit (Limit: 1001)
      └──Filter (Predicate: Exist(item.title))
      └──TablePointLookup (ReadRange: ["title (The Work Outing)","series_id (-∞, +∞)","season_id (-∞, +∞)","episode_id 
(-∞, +∞)"], ReadLimit: 1001, ReadColumns: ["episode_id","season_id","title"], Table: 

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_secondary-indexes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_secondary_indexes_sync
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_secondary_index_add


The secondary index allowed the query to be executed without fully scanning the main table. Instead of a TableFullScan,  we received a
TablePointLookup —reading the index table by key. We no longer need to read the main table because all necessary columns are contained in

the index table.

episodes/title_index/indexImplTable)
         Tables: ["episodes/title_index/indexImplTable"]

Embedded UI

Result:



Uploading data to YDB
This section provides recommendations on efficiently uploading data to YDB.

There are anti-patterns and non-optimal settings for uploading data. They don't guarantee acceptable data uploading performance.
To accelerate data uploads, consider the following recommendations:

Shard a table when creating it. This lets you effectively use the system bandwidth as soon as you start uploading data.

By default, a new table consists of a single shard. YDB supports automatic table sharding by data volume. This means that a table shard
is divided into two shards when it reaches a certain size.

The acceptable size for splitting a table shard is 2 GB. As the number of shards grows, the data upload bandwidth increases, but it
remains low for some time at first. Therefore, when uploading a large amount of data for the first time, we recommend initially creating a
table with the desired number of shards. You can calculate the number of shards based on 1 GB of data per shard in a resulting set.

Insert multiple rows in each transaction to reduce the overhead of the transactions themselves.

Each transaction in YDB has some overhead. It is recommended to make transactions that insert multiple rows to reduce the total
overhead. Good performance indicators terminate a transaction when it reaches 1 MB of data or 100,000 rows.

When uploading data, avoid transactions that insert a single row.

Within each transaction, insert rows from the primary key-sorted set to minimize the number of shards affected by each transaction.
In YDB, transactions that span multiple shards have a higher overhead compared to transactions that involve exactly one shard.
Moreover, this overhead increases with the growing number of table shards involved in the transaction.

We recommend selecting rows to be inserted in a particular transaction so that they're located in a small number of shards, ideally, in one.

If you need to push data to multiple tables, we recommend pushing data to a single table within a single query.

If you need to push data to a table with a synchronous secondary index, we recommend that you first push data to a table and, when done,
build a secondary index.

You should avoid writing data sequentially in ascending or descending order of the primary key. Writing data to a table with a monotonically
increasing key causes all new data to be written to the end of the table since all tables in YDB are sorted by ascending primary key. As YDB
splits table data into shards based on key ranges, inserts are always processed by the same server responsible for the "last" shard.
Concentrating the load on a single server will result in slow data uploading and inefficient use of a distributed system.

Some use cases require writing the initial data (often large amounts) to a table before enabling OLTP workloads. In this case, transactionality
at the level of individual queries is not required, and you can use BulkUpsert  calls in the CLI, SDK and API. Since no transactionality is used,
this approach has a much lower overhead than YQL queries. In case of a successful response to the query, the BulkUpsert  method
guarantees that all data added within this query is committed.

Warning

The BulkUpsert  method isn't supported for tables with synchronous secondary indexes.

We recommend the following algorithm for efficiently uploading data to YDB:

1. Create a table with the desired number of shards based on 1 GB of data per shard.

2. Sort the source data set by the expected primary key.

3. Partition the resulting data set by the number of shards in the table. Each part will contain a set of consecutive rows.

4. Upload the resulting parts to the table shards concurrently.

5. Make a COMMIT  after every 100,000 rows or 1 MB of data.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_batch-upload
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-restore
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_bulk-upsert


Paginated output
This section provides recommendations for organizing paginated data output.

To organize paginated output, we recommend selecting data sorted by primary key sequentially, limiting the number of rows with the LIMIT
keyword.

Note

$lastCity, $lastNumber : Primary key values obtained from the previous query.

A query demonstrating the recommended way to organize paginated output:

In the query example shown above, the WHERE  clause uses a tuple comparison to select the next set of rows. Tuples are compared element by
element from left to right, so the order of the fields in the tuple must match the order of the fields in the primary key to avoid table full scan.

NULL value in key column

In YDB, all columns, including key ones, may have a NULL value. Despite this, using NULL  as key column values is highly
discouraged, since the SQL standard doesn't allow NULL  to be compared. As a result, concise SQL statements with simple
comparison operators won't work correctly. Instead, you'll have to use cumbersome statements with IS NULL / IS NOT NULL
expressions.

Examples of paginated output implementation

C++

Java

Python

Go

--  Table `schools`:
-- ┌─────────┬─────────┬─────┐
-- | Name    | Type    | Key |
-- ├─────────┼─────────┼─────┤
-- | city    | Utf8?   | K0  |
-- | number  | Uint32? | K1  |
-- | address | Utf8?   |     |
-- └─────────┴─────────┴─────┘

DECLARE $limit AS Uint64;
DECLARE $lastCity AS Utf8;
DECLARE $lastNumber AS Uint32;

SELECT * FROM schools
WHERE (city, number) > ($lastCity, $lastNumber)
ORDER BY city, number
LIMIT $limit;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_paging
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_paging_examples-of-paginated-output-implementation
https://github.com/ydb-platform/ydb/tree/main/ydb/public/sdk/cpp/examples/pagination
https://github.com/ydb-platform/ydb-java-examples/tree/master/ydb-cookbook/src/main/java/tech/ydb/examples/pagination
https://github.com/ydb-platform/ydb-python-sdk/tree/main/examples/pagination
https://github.com/ydb-platform/ydb-go-examples/tree/master/pagination


Using timeouts
This section describes available timeouts and provides examples of their usage in various programming languages.

Prerequisites for using timeouts

The timeout mechanism in YDB is designed to:

Make sure the query execution time doesn't exceed a certain interval after which its result is not interesting for further use.

Detect network connectivity issues.

Both of these use cases are important for ensuring the fault tolerance of the entire system. Let's take a closer look at timeouts.

Operation timeout

The operation_timeout  value shows the time during which the query result is interesting to the user. If the operation fails during this time, the
server returns an error with the Timeout  code and tries to terminate the query, but its cancellation is not guaranteed. So the query that the user
was returned the Timeout  error for can be both successfully executed on the server and canceled.

Timeout for canceling an operation

The cancel_after  value shows the time after which the server will start canceling the query, if it can be canceled. If canceled, the server returns
the Cancelled  error code.

Transport timeout

The client must set a transport timeout for each query. This value lets you determine the amount of time that the client is ready to wait for a
response from the server. If the server doesn't respond during this time, the client will get a transport error with the DeadlineExceeded  code. Be
sure to set such a client timeout value that won't trigger transport timeouts under the normal operation of the application and network.

Using timeouts

We recommend that you always set an operation timeout and transport timeout. The value of the transport timeout should be 50-100 milliseconds
more than that of the operation timeout, that way there is some time left for the client to get a server error with the Timeout  code.

Timeout usage example:

Python

import ydb

def execute_in_tx(session, query):
  settings = ydb.BaseRequestSettings()
  settings = settings.with_timeout(0.5)  # transport timeout
  settings = settings.with_operation_timeout(0.4)  # operation timeout
  settings = settings.with_cancel_after(0.4)  # cancel after timeout
  session.transaction().execute(
      query,
      commit_tx=True,
      settings=settings,
  )

C++

#include <ydb/public/sdk/cpp/client/ydb.h>
#include <ydb/public/sdk/cpp/client/ydb_table.h>
#include <ydb/public/sdk/cpp/client/ydb_value.h>

using namespace NYdb;
using namespace NYdb::NTable;

TAsyncStatus ExecuteInTx(TSession& session, TString query, TParams params) {
  return session.ExecuteDataQuery(
      query
      , TTxControl::BeginTx(TTxSettings::SerializableRW()).CommitTx()
      , TExecDataQuerySettings()
      .OperationTimeout(TDuration::MilliSeconds(300))  // operation timeout
      .ClientTimeout(TDuration::MilliSeconds(400))   // transport timeout
      .CancelAfter(TDuration::MilliSeconds(300)));  // cancel after timeout
}

Go

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_timeouts
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_timeouts_intro
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_timeouts_operational
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_timeouts_cancel
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_timeouts_transport
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_timeouts_usage


import (
  "context"

  ydb "github.com/ydb-platform/ydb-go-sdk/v3"
  "github.com/ydb-platform/ydb-go-sdk/v3/table"
)

func executeInTx(ctx context.Context, s table.Session, query string) {
ctx, cancel := context.WithTimeout(ctx, time.Millisecond*300) // client and by default operation timeout
defer cancel()
ctx = ydb.WithOperationTimeout(ctx, time.Millisecond*400)     // operation timeout override
ctx = ydb.WithOperationCancelAfter(ctx, time.Millisecond*300) // cancel after timeout
tx := table.TxControl(table.BeginTx(table.WithSerializableReadWrite()), table.CommitTx())
_, res, err := s.Execute(ctx, tx, query, table.NewQueryParameters())
}



Database system views
To obtain service information about the state of the database, you can access system views. They are accessible from the root of the database tree
and use the system path prefix .sys .

Note

Frequent access to system views leads to additional load on the database, especially in the case of a large database size. Exceeding
the frequency of 1 request per second is not recommended.

Partitions

The following system view stores detailed information about partitions of DB tables:

partition_stats : Contains information about instant metrics and cumulative operation counters. Instant metrics are, for example, CPU load
or count of in-flight transactions. Cumulative counters, for example, count the total number of rows read.

The system view is designed to detect various irregularities in the load on a table partition or show the size of table partition data.

Instant metrics ( NodeID , AccessTime , CPUCores , etc.) contain instantaneous values.
Cumulative metrics ( RowReads , RowUpdate , LockAcquired , etc.) store accumulated values since the last launch ( StartTime ) of the tablet
serving the partition.

Table structure:

Column Description Data type Instant/Cumulative

OwnerId ID of the SchemeShard table.
Key: 0 .

Uint64 Instant

PathId ID of the SchemeShard path.
Key: 1 .

Uint64 Instant

PartIdx Partition sequence number.
Key: 2 .

Uint64 Instant

FollowerId ID of the partition tablet follower. A value of 0 means the 
leader.
Key: 3 .

Uint32 Instant

DataSize Approximate partition size in bytes. Uint64 Instant

RowCount Approximate number of rows. Uint64 Instant

IndexSize Partition index size in bytes. Uint64 Instant

CPUCores Instantaneous value of the load on the partition (the share of 
the CPU core time spent by the actor of the partition).

Double Instant

TabletId ID of the partition tablet. Uint64 Instant

Path Full path to the table. Utf8 Instant

NodeId ID of the partition node. Uint32 Instant

StartTime Last time of the launch of the partition tablet. Timestamp Instant

AccessTime Last time of reading from the partition. Timestamp Instant

UpdateTime Last time of writing to the partition. Timestamp Instant

RowReads Number of point reads. Uint64 Cumulative

RowUpdates Number of rows written. Uint64 Cumulative

RowDeletes Number of rows deleted. Uint64 Cumulative

RangeReads Number of range reads. Uint64 Cumulative

RangeReadRows Number of rows read in ranges. Uint64 Cumulative

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_system-views
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_system-views_partitions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_partitioning
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_transactions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet-follower


Example queries

Top 5 of most loaded partitions among all DB tables:

SELECT
    Path,
    PartIdx,
    CPUCores

InFlightTxCount Number of in-flight transactions. Uint64 Instant

ImmediateTxCompleted Number of completed single-shard transactions. Uint32 Cumulative

CoordinatedTxCompleted Number of completed distributed transactions. Uint64 Cumulative

TxRejectedByOverload Number of transactions cancelled due to overload. Uint64 Cumulative

TxRejectedByOutOfStorage Number of transactions cancelled due to lack of storage 
space.

Uint64 Cumulative

LastTtlRunTime Launch time of the last TTL erasure procedure Timestamp Instant

LastTtlRowsProcessed Number of rows checked during the last TTL erasure 
procedure

Uint64 Instant

LastTtlRowsErased Number of rows deleted during the last TTL erasure 
procedure

Uint64 Instant

LocksAcquired Number of locks acquired. Uint64 Cumulative

LocksWholeShard The number of "whole shard" locks taken. Uint64 Cumulative

LocksBroken Number of broken locks. Uint64 Cumulative

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_system-views_partitions-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_transactions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_transactions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_queries_overloaded-errors
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_datashard-locks-and-change-visibility
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_datashard-locks-and-change-visibility_limitations
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_datashard-locks-and-change-visibility_high-level-overview


List of DB tables with in-flight sizes and loads:

List of DB tables with the largest number of broken locks:

Top queries

The following system views store data for analyzing the user queries.

Maximum total execution time:

top_queries_by_duration_one_minute : data is split into one-minute intervals, contains the history for the last 6 hours;

top_queries_by_duration_one_hour : data is split into one-hour intervals, contains the history for the last 2 weeks.

Maximum number of bytes read from the table:

top_queries_by_read_bytes_one_minute : data is split into one-minute intervals, contains the history for the last 6 hours;

top_queries_by_read_bytes_one_hour : Data is split into one-hour intervals, contains the history for the last 2 weeks.

Maximum CPU time:

top_queries_by_cpu_time_one_minute : Data is split into one-minute intervals, contains the history for the last 6 hours;

top_queries_by_cpu_time_one_hour : Data is split into one-hour intervals, contains the history for the last 2 weeks.

Different runs of a query with the same text are deduplicated. The query with the maximum value of the corresponding metric is included in the
output.
Each time interval (minute or hour) contains the TOP 5 queries completed in that time interval.

Fields that provide information about the used CPU time (... CPUTime ) are expressed in microseconds.

Query text limit is 10 KB.

All tables have the same structure:

FROM `.sys/partition_stats`
ORDER BY CPUCores DESC
LIMIT 5

SELECT
    Path,
    COUNT(*) as Partitions,
    SUM(RowCount) as Rows,
    SUM(DataSize) as Size,
    SUM(CPUCores) as CPU
FROM `.sys/partition_stats`
GROUP BY Path

SELECT
    Path,
    COUNT(*) as Partitions,
    SUM(LocksBroken) as TotalLocksBroken
FROM `.sys/partition_stats`
GROUP BY Path
ORDER BY TotalLocksBroken DESC

Column Description

IntervalEnd The end of the minute or hour interval for which statistics are collected.
Type: Timestamp .
Key: 0 .

Rank Rank of a top query.
Type: Uint32 .
Key: 1 .

QueryText Query text.
Type: Utf8 .

Duration Total query execution time.
Type: Interval .

EndTime Query execution end time. 
Type: Timestamp .

Type Query type (data, scan, or script).
Type: String .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_system-views_top-queries


Example queries

Top queries by execution time. The query is made to the .sys/top_queries_by_duration_one_minute  view:

PRAGMA AnsiInForEmptyOrNullableItemsCollections;
$last = (

ReadRows Number of rows read.
Type: Uint64 .

ReadBytes Number of bytes read.
Type: Uint64 .

UpdateRows Number of rows written.
Type: Uint64 .

UpdateBytes Number of bytes written.
Type: Uint64 .

DeleteRows Number of rows deleted.
Type: Uint64 .

DeleteBytes Number of bytes deleted.
Type: Uint64 .

Partitions Number of table partitions used during query execution.
Type: Uint64 .

UserSID User Security ID.
Type: String .

ParametersSize Size of query parameters in bytes.
Type: Uint64 .

CompileDuration Duration of query compilation.
Type: Interval .

FromQueryCache Shows whether the cache of prepared queries was used.
Type: Bool .

CPUTime Total CPU time used to execute the query (microseconds).
Type: Uint64 .

ShardCount Number of shards used during query execution.
Type: Uint64 .

SumShardCPUTime Total CPU time used in shards.
Type: Uint64 .

MinShardCPUTime Minimum CPU time used in shards.
Type: Uint64 .

MaxShardCPUTime Maximum CPU time used in shards.
Type: Uint64 .

ComputeNodesCount Number of compute nodes used during query execution.
Type: Uint64 .

SumComputeCPUTime Total CPU time used in compute nodes.
Type: Uint64 .

MinComputeCPUTime Minimum CPU time used in compute nodes.
Type: Uint64 .

MaxComputeCPUTime Maximum CPU time used in compute nodes.
Type: Uint64 .

CompileCPUTime CPU time used to compile a query.
Type: Uint64 .

ProcessCPUTime CPU time used for overall query handling.
Type: Uint64 .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_system-views_top-queries-examples


Queries that read the most bytes. The query is made to the .sys/top_queries_by_read_bytes_one_minute  view:

Query details

The following system view stores detailed information about queries:

query_metrics_one_minute : Data is split into one-minute intervals, contains up to 256 queries for the last 6 hours.

Each table row contains information about a set of queries with identical text that were made during one minute. The table fields provide the
minimum, maximum, and total values for each query metric tracked. Within the interval, queries are sorted in descending order of the total CPU
time used.

Restrictions:

Query text limit is 10 KB.

Statistics may be incomplete if the database is under heavy load.

Table structure:

    SELECT
        MAX(IntervalEnd)
    FROM `.sys/top_queries_by_duration_one_minute`
);
SELECT
    IntervalEnd,
    Rank,
    QueryText,
    Duration
FROM `.sys/top_queries_by_duration_one_minute`
WHERE IntervalEnd IN $last

SELECT
    IntervalEnd,
    QueryText,
    ReadBytes,
    ReadRows,
    Partitions
FROM `.sys/top_queries_by_read_bytes_one_minute`
WHERE Rank = 1

Column Description

IntervalEnd The end of the minute interval for which statistics are collected.
Type: Timestamp .
Key: 0 .

Rank Query rank within an interval (by the SumCPUTime  field).
Type: Uint32 .
Key: 1 .

QueryText Query text.
Type: Utf8 .

Count Number of query runs.
Type: Uint64 .

SumDuration Total duration of queries.
Type: Interval .

MinDuration Minimum query duration.
Type: Interval .

MaxDuration Maximum query duration.
Type: Interval .

SumCPUTime Total CPU time used.
Type: Uint64 .

MinCPUTime Minimum CPU time used.
Type: Uint64 .

MaxCPUTime Maximum CPU time used.
Type: Uint64 .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_system-views_query-metrics


Example queries

Top 10 queries for the last 6 hours by the total number of rows updated per minute:

Recent queries that read the most bytes per minute:

History of overloaded partitions

SELECT
    SumUpdateRows,
    Count,
    QueryText,
    IntervalEnd
FROM `.sys/query_metrics_one_minute`
ORDER BY SumUpdateRows DESC LIMIT 10

SELECT
    IntervalEnd,
    SumReadBytes,
    MinReadBytes,
    SumReadBytes / Count as AvgReadBytes,
    MaxReadBytes,
    QueryText
FROM `.sys/query_metrics_one_minute`
WHERE SumReadBytes > 0
ORDER BY IntervalEnd DESC, SumReadBytes DESC
LIMIT 100

SumReadRows Total number of rows read.
Type: Uint64 .

MinReadRows Minimum number of rows read.
Type: Uint64 .

MaxReadRows Maximum number of rows read.
Type: Uint64 .

SumReadBytes Total number of bytes read.
Type: Uint64 .

MinReadBytes Minimum number of bytes read.
Type: Uint64 .

MaxReadBytes Maximum number of bytes read.
Type: Uint64 .

SumUpdateRows Total number of rows written.
Type: Uint64 .

MinUpdateRows Minimum number of rows written.
Type: Uint64 .

MaxUpdateRows Maximum number of rows written.
Type: Uint64 .

SumUpdateBytes Total number of bytes written.
Type: Uint64 .

MinUpdateBytes Minimum number of bytes written.
Type: Uint64 .

MaxUpdateBytes Maximum number of bytes written.
Type: Uint64 .

SumDeleteRows Total number of rows deleted.
Type: Uint64 .

MinDeleteRows Minimum number of rows deleted.
Type: Uint64 .

MaxDeleteRows Maximum number of rows deleted.
Type: Uint64 .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_system-views_query-metrics-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_system-views_top-overload-partitions


The following system views (tables) store the history of points in time when the load on individual DB table partitions was high:

top_partitions_one_minute : The data is split into one-minute intervals, contains the history for the last 6 hours.

top_partitions_one_hour : The data is split into one-hour intervals, contains the history for the last 2 weeks.

These views contain partitions with peak loads of more than 70% ( CPUCores  > 0.7). Partitions within a single interval are ranked by peak load
value.

The keys of the views are:

IntervalEnd  - the moment when the interval is closed;

Rank  - the rank of the partition according to the peak load of CPUCores  in this interval.

For example, if a table has 10 partitions than top_partitions_one_hour  for the hour interval "20.12.2024 10:00-11:00"  will return 10 rows
sorted in descending order of CPUCores . They will have a Rank  from 1 to 10 and the same IntervalEnd  "20.12.2024 11:00" .

All tables have the same structure:

Example queries

The following query returns partitions with CPU usage of more than 70% in the specified interval, with tablet IDs and sizes as of the time when the
percentage was exceeded. The query is made to the .sys/top_partitions_one_minute  view:

SELECT
   IntervalEnd,
   CPUCores,
   Path,
   TabletId,
   DataSize
FROM `.sys/top_partitions_one_minute`
WHERE CPUCores > 0.7

Column Description

IntervalEnd The end of the minute or hour interval for which statistics are collected.
Type: Timestamp .
Key: 0 .

Rank Partition rank within an interval (by CPUCores ).
Type: Uint32 .
Key: 1 .

TabletId ID of the tablet serving the partition.
Type: Uint64 .

FollowerId ID of the partition tablet follower.A value of 0 means the leader.
Type: Uint32

Path Full path to the table.
Type: Utf8 .

PeakTime Peak time within an interval.
Type: Timestamp .

CPUCores Peak load per partition (share of the CPU core time spent by the actor of the partition).
Type: Double .

NodeId ID of the node where the partition was located during the peak load.
Type: Uint32 .

DataSize Approximate partition size, in bytes, during the peak load.
Type: Uint64 .

RowCount Approximate row count during the peak load.
Type: Uint64 .

IndexSize Partition index size per tablet during the peak load.
Type: Uint64 .

InFlightTxCount The number of in-flight transactions during the peak load.
Type: Uint32 .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_system-views_top-overload-partitions-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet-follower


The following query returns partitions with CPU usage of over 90% in the specified interval, with tablet IDs and sizes as of the time when the
percentage was exceeded. The query is made to the .sys/top_partitions_one_hour  view:

History of partitions with broken locks

The following system views contain a history of moments with a non-zero number of broken locks LocksBroken  in individual partitions of DB
tables:

top_partitions_by_tli_one_minute : The data is split into one-minute intervals, contains the history for the last 6 hours.

top_partitions_by_tli_one_hour : The data is split into one-hour intervals, contains the history for the last 2 weeks.

The views provide the top 10 partitions with a non-zero number of broken locks LocksBroken . Within a single interval, partitions are ranked by the
number of broken locks LocksBroken .

The keys of the views are:

IntervalEnd  - the moment of interval closure;

Rank  - the rank of the partition by the number of broken locks LocksBroken  in this interval.

For example, top_partitions_by_tli_one_hour  for the hourly interval "20.12.2024 10:00-11:00"  will output 10 rows, sorted in descending
order by LocksBroken . They will have Rank  from 1 to 10 and the same IntervalEnd  "20.12.2024 11:00" .

All tables have the same structure:

AND IntervalEnd BETWEEN Timestamp("2000-01-01T00:00:00Z") AND Timestamp("2099-12-31T00:00:00Z")
ORDER BY IntervalEnd desc, CPUCores desc

SELECT
   IntervalEnd,
   CPUCores,
   Path,
   TabletId,
   DataSize
FROM `.sys/top_partitions_one_hour`
WHERE CPUCores > 0.9
AND IntervalEnd BETWEEN Timestamp("2000-01-01T00:00:00Z") AND Timestamp("2099-12-31T00:00:00Z")
ORDER BY IntervalEnd desc, CPUCores desc

Column Description

IntervalEnd The end of the minute or hour interval for which statistics are collected.
Type: Timestamp .
Key: 0 .

Rank Partition rank within an interval (by CPUCores ).
Type: Uint32 .
Key: 1 .

TabletId ID of the tablet serving the partition.
Type: Uint64 .

FollowerId ID of the partition tablet follower.A value of 0 means the leader.
Type: Uint32

Path Full path to the table.
Type: Utf8 .

LocksAcquired Number of locks acquired "on a range of keys" in this interval.
Type: Uint64 .

LocksWholeShard Number of locks acquired "on the entire partition" in this interval.
Type: Uint64 .

LocksBroken Number of broken locks in this interval.
Type: Uint64 .

NodeId ID of the node where the partition was located during the peak load.
Type: Uint32 .

DataSize Approximate partition size, in bytes, during the peak load.
Type: Uint64 .

RowCount Approximate row count during the peak load.
Type: Uint64 .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_system-views_top-tli-partitions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_datashard-locks-and-change-visibility
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet-follower


Example queries

The following query returns partitions in the specified time interval, with tablet identifiers and the number of broken locks. The query is made to the
.sys/top_partitions_by_tli_one_minute  view:

Auth users, groups, permissions

Auth users

The auth_users  view lists local YDB users. It does not include users authenticated through external systems such as LDAP.

This view can be fully accessed by administrators, while regular users can only view their own details.

Table structure:

Auth groups

The auth_groups  view lists access groups.

This view can be accessed only by administrators.

Table structure:

SELECT
    IntervalEnd,
    LocksBroken,
    Path,
    TabletId
FROM `.sys/top_partitions_by_tli_one_hour`
WHERE IntervalEnd BETWEEN Timestamp("2000-01-01T00:00:00Z") AND Timestamp("2099-12-31T00:00:00Z")
ORDER BY IntervalEnd desc, LocksBroken desc

IndexSize Partition index size per tablet during the peak load.
Type: Uint64 .

Column Description

Sid SID of the user.
Type: Utf8 .
Key: 0 .

IsEnabled Indicates if login is allowed; used for explicit administrator block. Independent of IsLockedOut .
Type: Bool .

IsLockedOut Automatically locked out due to exceeding failed login attempts. Independent of IsEnabled .
Type: Bool .

CreatedAt Timestamp of user creation.
Type: Timestamp .

LastSuccessfulAttemptAt Timestamp of the last successful login attempt.
Type: Timestamp .

LastFailedAttemptAt Timestamp of the last failed login attempt.
Type: Timestamp .

FailedAttemptCount Number of failed login attempts.
Type: Uint32 .

PasswordHash JSON string containing password hash, salt, and hash algorithm.
Type: Utf8 .

Column Description

Sid SID of the group.
Type: Utf8 .
Key: 0 .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_system-views_top-tli-partitions-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_system-views_auth
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_system-views_users
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_system-views_auth-groups
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_sid
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_sid


Auth group members

The auth_group_members  view lists membership details within access groups.

This view can be accessed only by administrators.

Table structure:

Auth permissions

The auth permissions views list assigned access rights.

Contains two views:

auth_permissions : Directly assigned access rights.

auth_effective_permissions : Effective access rights, accounting for inheritance.

A user can view an access object in the results if they have the ydb.granular.describe_schema  permission on it.

Table structure:

Example queries

All the directly assigned permissions for the table located at the path my_table :

All the effective permissions for the table located at the path my_table , including inherited permissions:

All permissions directly assigned to the user identified as user3 :

Auth owners

The auth_owners  view lists details of access objects ownership.

A user can view an access object in the results if they have the ydb.granular.describe_schema  permission on it.

SELECT *
FROM `.sys/auth_permissions`
WHERE Path = "my_table"

SELECT *
FROM `.sys/auth_effective_permissions`
WHERE Path = "my_table"

SELECT *
FROM `.sys/auth_permissions`
WHERE Sid = "user3"

Column Description

GroupSid SID of the group.
Type: Utf8 .
Key: 0 .

MemberSid SID of the group member.
Type: Utf8 .
Key: 1 .

Column Description

Path Path to the access object.
Type: Utf8 .
Key: 0 .

Sid SID of the access subject.
Type: Utf8 .
Key: 1 .

Permission Name of the YDB access right.
Type: Utf8 .
Key: 2 .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_system-views_auth-group-members
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_system-views_auth-permissions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_system-views_auth-permissions-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_system-views_auth-owners
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-right
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-right-inheritance
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-owner
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-subject
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_grant_permissions-list


Table structure:

Column Description

Path Path to the access object.
Type: Utf8 .
Key: 0 .

Sid SID of the access object owner.
Type: Utf8 .



Change Data Capture
With Change Data Capture (CDC), you can track changes in table data. YDB provides access to changefeeds so that data consumers can monitor
changes in near real time.

Enabling and disabling CDC

CDC is represented as a data schema object: a changefeed that can be added to a table or deleted from them using the ADD CHANGEFEED and
DROP CHANGEFEED directives of the YQL ALTER TABLE  statement.

Reading data from a topic

Before reading data, add a consumer. Below is a sample command that adds a consumer named my_consumer  to the updates_feed  changefeed
of the table  table in the my  directory:

Next, you can use the created consumer to start tracking changes. Below is a sample command for tracking data changes in the CLI:

Impact on table write performance

When writing data to a table with CDC enabled, there are additional overheads for the following operations:

Making records and saving them to a changefeed.

Storing records in a changefeed.

In some modes (such as OLD_IMAGE  and NEW_AND_OLD_IMAGES ), data needs to be pre-fetched even if a user query doesn't require this.

As a result, queries may take longer to execute and size limits for stored data may be exceeded.

In real-world use cases, enabling CDC has virtually no impact on the query execution time (whatever the mode), since almost all data required for
making records is stored in the cache , while the records themselves are sent to a topic asynchronously. However, record delivery background
activity slightly (by 1% to 10%) increases CPU utilization.

When creating a changefeed for a table, the number of partitions of its storage (topic) is determined based on the current number of table partitions.
If the number of source table partitions changes significantly (for example, after uploading a large amount of data or as a result of intensive
accesses), an imbalance occurs between the table partitions and the topic partitions. This imbalance can also result in longer execution time for
queries to modify data in the table or in unnecessary storage overheads for the changefeed. You can recreate the changefeed to correct the
imbalance.

Load testing

As a load generator, you can use the feature of emulating an online store built into the YDB CLI:

1. Initialize a test.

2. Add a changefeed:

1. Create a consumer:

2. Start tracking changes:

ydb topic consumer add \
  my/table/updates_feed \
  --consumer=my_consumer

ydb topic read \
  my/table/updates_feed \
  --consumer=my_consumer \
  --format=newline-delimited \
  --wait

   ALTER TABLE `orders` ADD CHANGEFEED `updates` WITH (
       FORMAT = 'JSON',
       MODE = 'UPDATES'
   );

ydb topic consumer add \
  orders/updates \
  --consumer=my_consumer

ydb topic read \
  orders/updates \
  --consumer=my_consumer \

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_cdc
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_cdc_add-drop
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_cdc_read
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_cdc_performance-considerations
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_cdc_workload
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_changefeed
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_consumer
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_changefeed
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_init


3. Generate a load.

The following changefeed appears in the CLI:

  --format=newline-delimited \
  --wait

...
{"update":{"created":"2022-06-24T11:35:00.000000Z","customer":"Name366"},"key":[13195699997286404932]}
{"update":{"created":"2022-06-24T11:35:00.000000Z","customer":"Name3894"},"key":[452209497351143909]}
{"update":{"created":"2022-06-24T11:35:00.000000Z","customer":"Name7773"},"key":[2377978894183850258]}
...

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_run


Managing YDB using Terraform
Terraform can create, delete, and modify the following objects inside a YDB cluster:

tables

indexes of tables

change data capture for tables

topics

Warning

Currently, the YDB provider for Terraform is under development, and its functionality will be expanded.

To get started, you need to:

1. Deploy the YDB cluster

2. Create a database (described in paragraph 1 for the appropriate type of cluster deployment)

3. Install Terraform

4. Install and configure Terraform provider for YDB

Configuring the Terraform provider to work with YDB

1. You need to download provider code
2. Build the provider by executing $make local-build  in the root directory of the provider's code. To do this, you need to additionally install the

make utility and go
The provider will be installed in the Terraform plugins folder - ~/.terraform.d/plugins/terraform.storage.ydb.tech/...

3. Add the provider to ~/.terraformrc  by adding the following content to the provider_installation  section (if there was no such section
yet, then create):

4. Next, we configure the YDB provider itself to work (for example, in the file provider.tf  in the working directory):

Where:

token  - specifies the access token to the database if authentication is used, for example, using a third-party IAM provider.

user  - the username for accessing the database in case of using authentication by username and password

password  - the password for accessing the database in case of using authentication by username and password

Using the Terraform provider YDB

The following commands are used to apply changes to terraform resources:

1. terraform init  - initialization of the terraform module (performed in the terraform resource directory).

provider_installation {
  direct {
    exclude = ["terraform.storage.ydb.tech/*/*"]
  }

  filesystem_mirror {
    path    = "/PATH_TO_HOME/.terraform.d/plugins"
    include = ["terraform.storage.ydb.tech/*/*"]
  }
}

terraform {
  required_providers {
    ydb = {
      source = "terraform.storage.ydb.tech/provider/ydb"
    }
  }
  required_version = ">= 0.13"
}

provider "ydb" {
  token = "<TOKEN>"
  //OR for static credentials
  user = "<USER>"
  password = "<PASSWORD>"
}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_terraform
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_terraform_setup
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_terraform_work-with-tf
https://www.terraform.io/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_secondary_indexes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_index
https://developer.hashicorp.com/terraform/install
https://github.com/ydb-platform/terraform-provider-ydb/
https://github.com/ydb-platform/terraform-provider-ydb/
https://www.gnu.org/software/make/
https://go.dev/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_iam
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_static-credentials
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_static-credentials


2. terraform validate  - checking the syntax of terraform resource configuration files.

3. terraform apply  - direct application of the terraform resource configuration.

For ease of use, it is recommended to name terraform files as follows:

1. provider.tf  - contains the settings of the terraform provider itself.

2. main.tf  - contains a set of resources to create.

Database connection

For all resources describing data schema objects, you must specify the database details in which they are located. To do this, provide one of the
two arguments:

The connection string connection_string  is an expression of the form grpc(s)://HOST:PORT/?database=/database/path , where
grpc(s)://HOST:PORT/  endpoint, and /database/path  is the path of the database.

For example, grpcs://example.com:2135?database=/Root/testdb0 .

database_endpoint  - used when working with the [topics] resource (#topic_resource) (analogous to connection_string  when working
with table resources).

Note

The user can transfer the connection string to the database using standard Terraform tools - via variables.

If you are using the creation of ydb_table_changefeed  or ydb_topic  resources and authorization is not enabled on the YDB server, then in the
DB config config.yaml you need to specify:

Example of using all types of YDB Terraform provider resources

This example combines all types of resources that are available in the YDB Terraform provider:

...
pqconfig:
  require_credentials_in_new_protocol: false
  check_acl: false

variable "db-connect" {
  type = string
  default = "grpc(s)://HOST:PORT/?database=/database/path" # you need to specify the path to the database
}

resource "ydb_table" "table" {
  path        = "1/2/3/tftest"
  connection_string = var.db-connect
  column {
    name = "a"
    type = "Utf8"
  }
  column {
    name = "b"
    type = "String"
  }
  column {
    name = "ttlBase"
    type = "Uint32"
  }
  ttl {
    column_name = "ttlBase"
    expire_interval = "P7D"
    unit = "milliseconds"
  }

  primary_key = ["b", "a"]

  partitioning_settings {
    auto_partitioning_min_partitions_count = 5
    auto_partitioning_max_partitions_count = 8
    auto_partitioning_partition_size_mb    = 256
    auto_partitioning_by_load              = true
  }
}

resource "ydb_table_index" "table_index" {

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_terraform_connection_string
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_terraform_example-of-using-all-types-of-ydb-terraform-provider-resources
https://developer.hashicorp.com/terraform/language/values/variables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index


All resources of the YDB Terraform provider will be described in detail below.

String table

Note

Working with column-oriented tables via Terraform is not yet available.

The ydb_table  resource is used to work with tables.

Example:

  table_path        = ydb_table.table.path
  connection_string = ydb_table.table.connection_string
  name              = "my_index"
  type              = "global_sync" # "global_async"
  columns           = ["a", "b"]

  depends_on = [ydb_table.table] # link to the table creation resource
}

resource "ydb_table_changefeed" "table_changefeed" {
  table_id = ydb_table.table.id
  name     = "changefeed"
  mode     = "NEW_IMAGE"
  format   = "JSON"
  consumer {
    name = "test"
    supported_codecs = ["raw", "gzip"]
  }

  depends_on = [ydb_table.table] # link to the table creation resource
}

resource "ydb_topic" "test" {
  database_endpoint = ydb_table.table.connection_string
  name              = "1/2/test"
  supported_codecs  = ["zstd"]

  consumer {
    name             = "test-consumer3"
    starting_message_timestamp_ms = 0
    supported_codecs = ["zstd","raw"]
  }

  consumer {
    name             = "test-consumer1"
    starting_message_timestamp_ms = 2000
    supported_codecs = ["zstd"]
  }

  consumer {
    name             = "test-consumer2"
    starting_message_timestamp_ms = 0
    supported_codecs = ["zstd"]
  }
}

  resource "ydb_table" "ydb_table" {
    path = "path/to/table" # path relative to the base root
    connection_string = "grpc(s)://HOST:PORT/?database=/database/path" #DB connection example
    column {
      name = "a"
      type = "Utf8"
      not_null = true
    }
    column {
      name = "b"
      type = "Uint32"
      not_null = true
    }
    column {
      name = "c"
      type = String
      not_null = false

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_terraform_ydb-table


The following arguments are supported:

path  - (required) is the path of the table relative to the root of the database (example - /path/to/table ).

connection_string  — (required) connection string.

column  — (required) column properties (see the column argument).

family  - (optional) is a column group (see the family argument).

primary_key  — (required) primary key of the table that contains an ordered list of column names of the primary key.

ttl  — (optional) TTL (see the ttl argument).

partitioning_settings  — (optional) partitioning settings (see the argument partitioning_settings).

key_bloom_filter  — (optional) (bool) use Bloom filter for primary key, the default value is false.

read_replicas_settings  — (optional) settings for read replicas.

column

The column  argument describes the column properties of the table.

Warning

Using Terraform, you cannot only add columns but not delete them. To delete a column, use the YDB tools, then delete the column
from the resource description. When trying to apply changes to the table's columns (changing the data type or name), Terraform will
not try to delete them but will try to do an update-in-place, though the changes will not be applied.

Example:

name  - (required) is the column's name.

type  — (required) YQL data type columns. Simple column types are allowed. However, container types cannot be used as data types of
table columns.

family  - (optional) is the name of the column group (see the family argument).

not_null  — (optional) column cannot contain NULL . The default value: false .

family

The family  argument describes column group properties.

name  - (required) is the name of the column group.

data  — (required) storage device type for column data of this group.

compression  — (required) data compression codec.

Example:

    }
    column {
      name = "f"
      type = "Utf8"
    }
    column {
      name = "e"
      type = "String"
    }
    column {
      name = "d"
      type = "Timestamp"
    }
    primary_key = ["b", "a"]
  }

column {
  name     = "column_name"
  type     = "Utf8"
  family   = "some_family"
  not_null = true
}

family {
  name        = "my_family"
  data        = "ssd"
  compression = "lz4"
}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_terraform_column
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_terraform_family
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_terraform_connection_string
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_terraform_column
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_terraform_family
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_terraform_ttl
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_terraform_partitioning-settings
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_bloom-filter
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_read_only_replicas
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_primitive
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_terraform_family
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_index


partitioning_settings

The partitioning_settings  argument describes partitioning settings.

Example:

uniform_partitions  — (optional) the number of preallocated partitions.

partition_at_keys  — (optional) partitioning by primary key.

auto_partitioning_min_partitions_count  — (optional) minimum possible number of partitions when auto-partitioning.

auto_partitioning_max_partitions_count  — (optional) maximum possible number of partitions when auto-partitioning.

auto_partitioning_partition_size_mb  — (optional) setting the value of auto-partitioning by size in megabytes.

auto_partitioning_by_size_enabled  — (optional) enabling auto-partitioning by size (bool), enabled by default (true).

auto_partitioning_by_load  — (optional) enabling autopartition by load (bool), disabled by default (false).

See the links above for more information about the parameters and their default values.

ttl

The ttl  argument describes the Time To Live settings.

Example:

column_name  - (required) is the column name for TTL.

expire_interval  — (required) interval in ISO 8601 format (for example, P1D  is an interval of 1 day, that is, 24 hours).

unit  — (optional) is set if the column with ttl has a numeric type. Supported values:

seconds

milliseconds

microseconds

nanoseconds

Secondary index of the table

The ydb_table_index resource is used to work with a table index.

Example:

The following arguments are supported:

table_path  - is the path of the table. Specified if table_id  is not specified.

connection_string  — connection string. Specified if table_id  is not specified.

table_id  - terraform-table identifier. Specify if table_path  or connection_string  is not specified.

name  - (required) is the name of the index.

type  - (required) is the index type global_sync | global_async.

columns  - (required) is an ordered list of column names participating in the index.

cover  - (required) is a list of additional columns for the covering index.

Change Data Capture

partitioning_settings {
  auto_partitioning_min_partitions_count = 5
  auto_partitioning_max_partitions_count = 8
  auto_partitioning_partition_size_mb    = 256
  auto_partitioning_by_load              = true
}

ttl {
  column_name     = "column_name"
  expire_interval = "PT1H" # 1 hour
  unit = "seconds" # for numeric column types (non-ISO8601)
}

resource "ydb_table_index" "ydb_table_index" {
  table_path = "path/to/table" # path relative to the base root
  connection_string = "grpc(s)://HOST:PORT/?database=/database/path" #DB connection example
  name              = "my_index"
  type              = "global_sync" # "global_async"
  columns           = ["a", "b"]
  cover             = ["c"]
}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_terraform_partitioning-settings
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_terraform_ttl
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_terraform_ydb-table-index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_terraform_ydb-table-changefeed
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_partitioning
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_uniform_partitions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_partition_at_keys
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_auto_partitioning_min_partitions_count
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_auto_partitioning_max_partitions_count
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_auto_partitioning_partition_size_mb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_auto_partitioning_by_load
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_ttl
https://en.wikipedia.org/wiki/ISO_8601
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_primitive_numeric
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_secondary_indexes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_terraform_connection_string
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_secondary_index


The ydb_table_changefeed  resource is used to work with the change data capture of the table.

Example:

The following arguments are supported:

table_path  - is the path of the table. Specified if table_id  is not specified.

connection_string  — connection string. Specified if table_id  is not specified.

table_id  — terraform-table identifier. Specify if table_path  or connection_string  is not specified.

name  - (required) is the name of the change stream.

mode  - (required) is the mode of operation of the change data capture.

format  - (required) is the format of the change data capture.

virtual_timestamps  — (optional) using virtual timestamps.

retention_period  — (optional) data storage time in ISO 8601 format.

consumer  - (optional) is a reader of the change data capture (see the argument #consumer).

consumer

The consumer  argument describes the reader of the change data capture.

name  - (required) is the reader's name.

supported_codecs  — (optional) supported data codec.

starting_message_timestamp_ms  — (optional) timestamp in UNIX timestamp format in milliseconds, from which the reader will start reading
the data.

Usage examples

Creating a table in an existing database

resource "ydb_table_changefeed" "ydb_table_changefeed" {
  table_id = ydb_table.ydb_table.id
  name     = "changefeed"
  mode     = "NEW_IMAGE"
  format   = "JSON"
}

resource "ydb_table" "ydb_table" {
  # Path to the table
  path = "path/to/table" # path relative to the base root

  connection_string = "grpc(s)://HOST:PORT/?database=/database/path" #DB connection example

  column {
    name = "a"
    type = "Uint64"
    not_null = true
  }
  column {
    name     = "b"
    type     = "Uint32"
    not_null = true
  }
  column {
    name = "c"
    type = String
    not_null = false
  }
  column {
    name = "f"
    type = "Utf8"
  }
  column {
    name = "e"
    type = "String"
  }
  column {
    name = "d"
    type = "Timestamp"
  }
  # Primary key
  primary_key = [
    "a", "b"

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_terraform_consumer
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_terraform_usage-examples-manage-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_terraform_example-with-connection-string
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_terraform_connection_string
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_changefeed-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_changefeed-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc_virtual-timestamps
https://en.wikipedia.org/wiki/ISO_8601
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_terraform_consumer
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_cdc_read
https://en.wikipedia.org/wiki/Unix_time


Creating a table, index, and change stream

  ]
}

resource "ydb_table" "ydb_table" {
  # Path to the table
  path = "path/to/table" # path relative to the base root

  # ConnectionString to the database.
  connection_string = "grpc(s)://HOST:PORT/?database=/database/path" #DB connection example

  column {
    name = "a"
    type = "Uint64"
    not_null = true
  }
  column {
    name     = "b"
    type     = "Uint32"
    not_null = true
  }
  column {
    name = "c"
    type = "Utf8"
  }
  column {
    name = "f"
    type = "Utf8"
  }
  column {
    name = "e"
    type = "String"
  }
  column {
    name = "d"
    type = "Timestamp"
  }

  # Primary key
  primary_key = [
    "a", "b"
  ]

  ttl {
    column_name     = "d"
    expire_interval = "PT5S"
  }

  partitioning_settings {
    auto_partitioning_by_load = false
    auto_partitioning_partition_size_mb    = 256
    auto_partitioning_min_partitions_count = 6
    auto_partitioning_max_partitions_count = 8
  }

  read_replicas_settings = "PER_AZ:1"

  key_bloom_filter = true # Default = false
}

resource "ydb_table_changefeed" "ydb_table_changefeed" {
  table_id = ydb_table.ydb_table.id
  name = "changefeed"
  mode = "NEW_IMAGE"
  format = "JSON"

  consumer {
    name = "test_consumer"
  }

  depends_on = [ydb_table.ydb_table] # link to the table creation resource
}

resource "ydb_table_index" "ydb_table_index" {

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_terraform_example-with-table


Topic configuration management YDB via Terraform

The ydb_topic  resource is used to work with topics

Note

The topic cannot be created in the root of the database; you need to specify at least one directory in the name of the topic. When trying
to create a topic in the root of the database, the provider will return an error.

Description of the ydb_topic resource

Example:

The following arguments are supported:

name  - (required) is the name of the topic.

database_endpoint  - (required) is the full path to the database, for example: "grpcs://example.com:2135/?database=/Root/testdb0" ;
analogous to connection_string  for tables.

retention_period_ms  - the duration of data storage in milliseconds; the default value is 86400000  (day).

partitions_count  - the number of partitions; the default value is 2 .

supported_codecs  - supported data compression codecs, the default value is "gzip", "raw", "zstd" .

consumer  - readers for the topic.

Description of the data consumer consumer :

name  - (required) is the reader's name.

supported_codecs  - supported data compression encodings, by default - "gzip", "raw", "zstd" .

starting_message_timestamp_ms  - timestamp in UNIX timestamp format in milliseconds, from which the reader will start reading the data;
the default value is 0, which means "from the beginning".

  table_id = ydb_table.ydb_table.id
  name = "some_index"
  columns = ["c", "d"]
  cover = ["e"]
  type = "global_sync"

  depends_on = [ydb_table.ydb_table] # link to the table creation resource
}

resource "ydb_topic" "ydb_topic" {
  database_endpoint = "grpcs://example.com:2135/?database=/Root/testdb0" #database connection example
  name              = "test/test1"
  supported_codecs  = ["zstd"]

  consumer {
    name             = "test-consumer1"
    starting_message_timestamp_ms = 0
    supported_codecs = ["zstd","raw"]
  }

  consumer {
    name             = "test-consumer2"
    starting_message_timestamp_ms = 2000
    supported_codecs = ["zstd"]
  }

  consumer {
    name             = "test-consumer3"
    starting_message_timestamp_ms = 0
    supported_codecs = ["zstd"]
  }
}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_terraform_topic-configuration-management-ydb-via-terraform
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_terraform_topic_resource
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic
https://en.wikipedia.org/wiki/Unix_time


Custom attributes in tables
You can use custom attributes to store any information and process it in your app or using the CLI.

For example, your application uses a database table. It stores versions of the table's scheme in custom attributes. You need to migrate data when
the table scheme changes. To make sure that your application runs a relevant migration, rather than a previous one, when started, access the
custom attributes to check the scheme version:

The version in the attribute is 1 , and your application knows how to work with version 2 . So, you apply the 1 > 2  migration and update the
attribute value with 2 .

In the attribute, the version is 2 , and your application knows how to work with version 2 , so no migration is needed.

The version in the attribute is 2 , and your application knows how to work with version 1 : you terminate your application with an exception,
notifying the user of an attempt to run an older app version against the new data scheme.

When you use custom attributes, you no longer need to store scheme versions in a separate table.

Set a custom attribute when creating a table

Set a custom attribute for an existing table

Update the custom attribute

Go

To set a custom attribute when creating the series  table, pass the scheme_version  key and the attribute value 1  in the
options.WithAttribute  option of the CreateTable  method:

err := client.Do(ctx, func(ctx context.Context, s table.Session) error {
  return s.CreateTable(ctx, "episodes",
    options.WithColumn("series_id", types.Optional(types.TypeUint64)),
    options.WithColumn("season_id", types.Optional(types.TypeUint64)),
    options.WithColumn("episode_id", types.Optional(types.TypeUint64)),
    options.WithColumn("title", types.Optional(types.TypeText)),
    options.WithPrimaryKeyColumn("series_id", "season_id", "episode_id"),
    options.WithAttribute("scheme_version", "1"),
  )
})

Go

To set a custom attribute for the existing series  table, pass the scheme_version  key and the attribute value 1  in the
options.WithAddAttribute  option of the AlterTable  method:

err = db.Table().Do(ctx,
  func(ctx context.Context, s table.Session) (err error) {
    return s.AlterTable(ctx, path.Join(db.Name(), "series"),
      options.WithAddAttribute("scheme_version", "1"),
    )
  },
)

CLI

To set a custom attribute for the existing series  table, pass the scheme_version  key and the attribute value 1  in the --attribute  option of
the ydb table attribute add command:

ydb table attribute add --attribute scheme_version=1 series

Go

To update the custom attribute when changing the table scheme, pass the scheme_version  key and the new attribute value of 2  in the
WithAlterAttribute  option of the AlterTable  method:

err = db.Table().Do(ctx,
  func(ctx context.Context, s table.Session) (err error) {
    return s.AlterTable(ctx, path.Join(db.Name(), "series"),
      options.WithAddColumn("air_date", types.Optional(types.TypeUint64)),
      options.WithAlterAttribute("scheme_version", "2"),
    )
  },
)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_custom-attributes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_custom-attributes_create
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_custom-attributes_add
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_custom-attributes_alter
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_users-attr
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_table-attribute-add


View your custom attributes

Delete the custom attribute

CLI

To edit the custom attribute for the existing series  table, pass the scheme_version  key and the attribute value 2  in the --attribute  option of
the ydb table attribute add command:

ydb table attribute add --attribute scheme_version=2 series

Go

To retrieve the series  table scheme, including the custom attributes, use the method table.Session.DescribeTable() :

err := c.Do(ctx,
  func(ctx context.Context, s table.Session) error {
    description, err := s.DescribeTable(ctx, path.Join(prefix, "series"))
    if err != nil {
      return err
    }
    for k, v := range description.Attributes {
      log.Println(k, "=", v)
    }
    return nil
  },
)

CLI

To get the data about the series  table scheme, including the custom attributes, use the command ydb scheme describe:

Result:

ydb scheme describe series

...
Attributes:
┌────────────────┬───────┐
| Name           | Value |
├────────────────┼───────┤
| scheme_version | 2     |
└────────────────┴───────┘
...

Go

To drop the custom attribute, pass the scheme_version  key in the option WithDropAttribute  of the AlterTable  method:

err = db.Table().Do(ctx,
  func(ctx context.Context, s table.Session) (err error) {
    return s.AlterTable(ctx, path.Join(db.Name(), "series"),
      options.WithDropAttribute("scheme_version"),
    )
  },
)

CLI

To drop the custom attribute, use the scheme_version  key in the --attributes  option of the ydb table attribute drop command:

ydb table attribute drop --attributes scheme_version series

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_custom-attributes_view
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_custom-attributes_drop
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_table-attribute-add
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_scheme-describe
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_table-attribute-drop


Creating a table
Create the tables and set the data schema for them using the statement CREATE TABLE.

Note

Keywords are case-insensitive and written in capital letters for clarity only.

CREATE TABLE series         -- series is the table name.
(                           -- Must be unique within the folder.
    series_id Uint64,
    title Utf8,
    series_info Utf8,
    release_date Uint64,
    PRIMARY KEY (series_id) -- The primary key is a column or
                            -- combination of columns that uniquely identifies
                            -- each table row (contains only
                            -- non-repeating values). A table can have
                            -- only one primary key. For every table
                            -- in YDB, the primary key is required.
);

CREATE TABLE seasons
(
    series_id Uint64,
    season_id Uint64,
    title Utf8,
    first_aired Uint64,
    last_aired Uint64,
    PRIMARY KEY (series_id, season_id)
);

CREATE TABLE episodes
(
    series_id Uint64,
    season_id Uint64,
    episode_id Uint64,
    title Utf8,
    air_date Uint64,
    PRIMARY KEY (series_id, season_id, episode_id)
);

COMMIT;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_yql-tutorial_create_demo_tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_index


Adding data to a table
Populate the created tables with data using the REPLACE INTO statement.

REPLACE INTO series (series_id, title, release_date, series_info)

VALUES

    -- By default, numeric literals have type Int32
    -- if the value is within the range.
    -- Otherwise, they automatically expand to Int64.
    (
        1,
        "IT Crowd",
        CAST(Date("2006-02-03") AS Uint64),   -- CAST converts one datatype into another.
                                              -- You can convert a string
                                              -- literal into a primitive literal.
                                              -- The Date() function converts a string
                                              -- literal in ISO 8601 format into a date.

        "The IT Crowd is a British sitcom produced by Channel 4, written by Graham Linehan, produced by Ash Atalla and 
starring Chris O'Dowd, Richard Ayoade, Katherine Parkinson, and Matt Berry."),
    (
        2,
        "Silicon Valley",
        CAST(Date("2014-04-06") AS Uint64),
        "Silicon Valley is an American comedy television series created by Mike Judge, John Altschuler and Dave Krinsky. 
The series focuses on five young men who founded a startup company in Silicon Valley."
    )
    ;

REPLACE INTO seasons (series_id, season_id, title, first_aired, last_aired)
VALUES
    (1, 1, "Season 1", CAST(Date("2006-02-03") AS Uint64), CAST(Date("2006-03-03") AS Uint64)),
    (1, 2, "Season 2", CAST(Date("2007-08-24") AS Uint64), CAST(Date("2007-09-28") AS Uint64)),
    (1, 3, "Season 3", CAST(Date("2008-11-21") AS Uint64), CAST(Date("2008-12-26") AS Uint64)),
    (1, 4, "Season 4", CAST(Date("2010-06-25") AS Uint64), CAST(Date("2010-07-30") AS Uint64)),
    (2, 1, "Season 1", CAST(Date("2014-04-06") AS Uint64), CAST(Date("2014-06-01") AS Uint64)),
    (2, 2, "Season 2", CAST(Date("2015-04-12") AS Uint64), CAST(Date("2015-06-14") AS Uint64)),
    (2, 3, "Season 3", CAST(Date("2016-04-24") AS Uint64), CAST(Date("2016-06-26") AS Uint64)),
    (2, 4, "Season 4", CAST(Date("2017-04-23") AS Uint64), CAST(Date("2017-06-25") AS Uint64)),
    (2, 5, "Season 5", CAST(Date("2018-03-25") AS Uint64), CAST(Date("2018-05-13") AS Uint64))
;

REPLACE INTO episodes (series_id, season_id, episode_id, title, air_date)
VALUES
    (1, 1, 1, "Yesterday's Jam", CAST(Date("2006-02-03") AS Uint64)),
    (1, 1, 2, "Calamity Jen", CAST(Date("2006-02-03") AS Uint64)),
    (1, 1, 3, "Fifty-Fifty", CAST(Date("2006-02-10") AS Uint64)),
    (1, 1, 4, "The Red Door", CAST(Date("2006-02-17") AS Uint64)),
    (1, 1, 5, "The Haunting of Bill Crouse", CAST(Date("2006-02-24") AS Uint64)),
    (1, 1, 6, "Aunt Irma Visits", CAST(Date("2006-03-03") AS Uint64)),
    (1, 2, 1, "The Work Outing", CAST(Date("2006-08-24") AS Uint64)),
    (1, 2, 2, "Return of the Golden Child", CAST(Date("2007-08-31") AS Uint64)),
    (1, 2, 3, "Moss and the German", CAST(Date("2007-09-07") AS Uint64)),
    (1, 2, 4, "The Dinner Party", CAST(Date("2007-09-14") AS Uint64)),
    (1, 2, 5, "Smoke and Mirrors", CAST(Date("2007-09-21") AS Uint64)),
    (1, 2, 6, "Men Without Women", CAST(Date("2007-09-28") AS Uint64)),
    (1, 3, 1, "From Hell", CAST(Date("2008-11-21") AS Uint64)),
    (1, 3, 2, "Are We Not Men?", CAST(Date("2008-11-28") AS Uint64)),
    (1, 3, 3, "Tramps Like Us", CAST(Date("2008-12-05") AS Uint64)),
    (1, 3, 4, "The Speech", CAST(Date("2008-12-12") AS Uint64)),
    (1, 3, 5, "Friendface", CAST(Date("2008-12-19") AS Uint64)),
    (1, 3, 6, "Calendar Geeks", CAST(Date("2008-12-26") AS Uint64)),
    (1, 4, 1, "Jen The Fredo", CAST(Date("2010-06-25") AS Uint64)),
    (1, 4, 2, "The Final Countdown", CAST(Date("2010-07-02") AS Uint64)),
    (1, 4, 3, "Something Happened", CAST(Date("2010-07-09") AS Uint64)),
    (1, 4, 4, "Italian For Beginners", CAST(Date("2010-07-16") AS Uint64)),
    (1, 4, 5, "Bad Boys", CAST(Date("2010-07-23") AS Uint64)),
    (1, 4, 6, "Reynholm vs Reynholm", CAST(Date("2010-07-30") AS Uint64)),
    (2, 1, 1, "Minimum Viable Product", CAST(Date("2014-04-06") AS Uint64)),
    (2, 1, 2, "The Cap Table", CAST(Date("2014-04-13") AS Uint64)),
    (2, 1, 3, "Articles of Incorporation", CAST(Date("2014-04-20") AS Uint64)),
    (2, 1, 4, "Fiduciary Duties", CAST(Date("2014-04-27") AS Uint64)),
    (2, 1, 5, "Signaling Risk", CAST(Date("2014-05-04") AS Uint64)),
    (2, 1, 6, "Third Party Insourcing", CAST(Date("2014-05-11") AS Uint64)),

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_yql-tutorial_fill_tables_with_data
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_yql-tutorial_create_demo_tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_replace_into


    (2, 1, 7, "Proof of Concept", CAST(Date("2014-05-18") AS Uint64)),
    (2, 1, 8, "Optimal Tip-to-Tip Efficiency", CAST(Date("2014-06-01") AS Uint64)),
    (2, 2, 1, "Sand Hill Shuffle", CAST(Date("2015-04-12") AS Uint64)),
    (2, 2, 2, "Runaway Devaluation", CAST(Date("2015-04-19") AS Uint64)),
    (2, 2, 3, "Bad Money", CAST(Date("2015-04-26") AS Uint64)),
    (2, 2, 4, "The Lady", CAST(Date("2015-05-03") AS Uint64)),
    (2, 2, 5, "Server Space", CAST(Date("2015-05-10") AS Uint64)),
    (2, 2, 6, "Homicide", CAST(Date("2015-05-17") AS Uint64)),
    (2, 2, 7, "Adult Content", CAST(Date("2015-05-24") AS Uint64)),
    (2, 2, 8, "White Hat/Black Hat", CAST(Date("2015-05-31") AS Uint64)),
    (2, 2, 9, "Binding Arbitration", CAST(Date("2015-06-07") AS Uint64)),
    (2, 2, 10, "Two Days of the Condor", CAST(Date("2015-06-14") AS Uint64)),
    (2, 3, 1, "Founder Friendly", CAST(Date("2016-04-24") AS Uint64)),
    (2, 3, 2, "Two in the Box", CAST(Date("2016-05-01") AS Uint64)),
    (2, 3, 3, "Meinertzhagen's Haversack", CAST(Date("2016-05-08") AS Uint64)),
    (2, 3, 4, "Maleant Data Systems Solutions", CAST(Date("2016-05-15") AS Uint64)),
    (2, 3, 5, "The Empty Chair", CAST(Date("2016-05-22") AS Uint64)),
    (2, 3, 6, "Bachmanity Insanity", CAST(Date("2016-05-29") AS Uint64)),
    (2, 3, 7, "To Build a Better Beta", CAST(Date("2016-06-05") AS Uint64)),
    (2, 3, 8, "Bachman's Earnings Over-Ride", CAST(Date("2016-06-12") AS Uint64)),
    (2, 3, 9, "Daily Active Users", CAST(Date("2016-06-19") AS Uint64)),
    (2, 3, 10, "The Uptick", CAST(Date("2016-06-26") AS Uint64)),
    (2, 4, 1, "Success Failure", CAST(Date("2017-04-23") AS Uint64)),
    (2, 4, 2, "Terms of Service", CAST(Date("2017-04-30") AS Uint64)),
    (2, 4, 3, "Intellectual Property", CAST(Date("2017-05-07") AS Uint64)),
    (2, 4, 4, "Teambuilding Exercise", CAST(Date("2017-05-14") AS Uint64)),
    (2, 4, 5, "The Blood Boy", CAST(Date("2017-05-21") AS Uint64)),
    (2, 4, 6, "Customer Service", CAST(Date("2017-05-28") AS Uint64)),
    (2, 4, 7, "The Patent Troll", CAST(Date("2017-06-04") AS Uint64)),
    (2, 4, 8, "The Keenan Vortex", CAST(Date("2017-06-11") AS Uint64)),
    (2, 4, 9, "Hooli-Con", CAST(Date("2017-06-18") AS Uint64)),
    (2, 4, 10, "Server Error", CAST(Date("2017-06-25") AS Uint64)),
    (2, 5, 1, "Grow Fast or Die Slow", CAST(Date("2018-03-25") AS Uint64)),
    (2, 5, 2, "Reorientation", CAST(Date("2018-04-01") AS Uint64)),
    (2, 5, 3, "Chief Operating Officer", CAST(Date("2018-04-08") AS Uint64)),
    (2, 5, 4, "Tech Evangelist", CAST(Date("2018-04-15") AS Uint64)),
    (2, 5, 5, "Facial Recognition", CAST(Date("2018-04-22") AS Uint64)),
    (2, 5, 6, "Artificial Emotional Intelligence", CAST(Date("2018-04-29") AS Uint64)),
    (2, 5, 7, "Initial Coin Offering", CAST(Date("2018-05-06") AS Uint64)),
    (2, 5, 8, "Fifty-One Percent", CAST(Date("2018-05-13") AS Uint64));

COMMIT;



Selecting data from all columns
Select all columns from the table using SELECT:

Note

We assume that you already created tables in step Creating a table and populated them with data in step Adding data to a table.

SELECT         -- Data selection operator.

    *          -- Select all columns from the table.

FROM episodes; -- The table to select the data from.

COMMIT;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_yql-tutorial_select_all_columns
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_create_demo_tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_fill_tables_with_data


Selecting data from specific columns
Select the data from the columns series_id , release_date , and title . At the same time, rename title  to series_title  and cast the
type of release_date  from Uint32  to Date .

Note

We assume that you already created tables in step Creating a table and populated them with data in step Adding data to a table.

SELECT
    series_id,             -- The names of columns (series_id, release_date, title)
                           -- are separated by commas.

    title AS series_title, -- You can use AS to rename columns
                           -- or give a name to an arbitrary expression

    CAST(release_date AS Date) AS release_date

FROM series;

COMMIT;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_yql-tutorial_select_specific_columns
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_create_demo_tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_fill_tables_with_data


Sorting and filtering
Select the first three episodes from every season of "IT Crowd", except the first season.

Note

We assume that you already created tables in step Creating a table and populated them with data in step Adding data to a table.

SELECT
   series_id,
   season_id,
   episode_id,
   CAST(air_date AS Date) AS air_date,
   title

FROM episodes
WHERE
   series_id = 1      -- List of conditions to build the result
   AND season_id > 1  -- Logical AND is used for complex conditions

ORDER BY              -- Sorting the results.
   series_id,         -- ORDER BY sorts the values by one or multiple
   season_id,         -- columns. Columns are separated by commas.
   episode_id

LIMIT 3               -- LIMIT N after ORDER BY means
                      -- "get top N" or "get bottom N" results,
;                     -- depending on sort order.

COMMIT;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_yql-tutorial_basic_filter_and_sort
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_create_demo_tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_fill_tables_with_data


Data aggregation
Find out the number of unique episodes within every season of every series.

Note

We assume that you already created tables in step Creating a table and populated them with data in step Adding data to a table.

SELECT
    series_id,
    season_id,
    COUNT(*) AS cnt  -- Aggregation function COUNT returns the number of rows
                     -- output by the query.
                     -- Asterisk (*) specifies that COUNT
                     -- counts the total number of rows in the table.
                     -- COUNT(*) returns the number of rows in
                     -- the specified table, preserving the duplicate rows.
                     -- It counts each row separately.
                     -- The result includes rows that contain null values.
FROM episodes

GROUP BY
    series_id,       -- The query result will follow the listed order of columns.
    season_id        -- Multiple columns are separated by a comma.
                     -- Other columns can be listed after a SELECT only if
                     -- they are passed to an aggregate function.
ORDER BY
    series_id,
    season_id
;

COMMIT;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_yql-tutorial_basic_aggregation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_create_demo_tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_fill_tables_with_data


Additional selection criteria
Select all the episode names of the first season of each series and sort them by name.

Note

We assume that you already created tables in step Creating a table and populated them with data in step Adding data to a table.

SELECT
    series_title,               -- series_title is defined below in GROUP BY

    String::JoinFromList(       -- calling a C++ UDF,
                                -- see below

        AGGREGATE_LIST(title),  -- an aggregate function that
                                -- returns all the passed values as a list

        ", "                    -- String::JoinFromList concatenates
                                -- items of a given list (the first argument)
                                -- to a string using the separator (the second argument)
    ) AS episode_titles
FROM episodes
WHERE series_id IN (1,2)        -- IN defines the set of values in the WHERE clause,
                                -- to be included into the result.
                                -- Syntax:
                                -- test_expression (NOT) IN
                                -- ( subquery | expression ` ,...n ` )
                                -- If the value of test_expression is equal
                                -- to any value returned by subquery or is equal to
                                -- any expression from the comma-separated list,
                                -- the result value is TRUE. Otherwise, it's FALSE.
                                -- using NOT IN negates the result of subquery
                                -- or expression.
                                -- Warning: using null values together with
                                -- IN or NOT IN may lead to undesirable outcomes.
AND season_id = 1
GROUP BY
    CASE                        -- CASE evaluates a list of conditions and
                                -- returns one of multiple possible resulting
                                -- expressions. CASE can be used in any
                                -- statement or with any clause
                                -- that supports a given statement. For example, you can use CASE in
                                -- statements such as SELECT, UPDATE, and DELETE,
                                -- and in clauses such as IN, WHERE, and ORDER BY.
        WHEN series_id = 1
        THEN "IT Crowd"
        ELSE "Other series"
    END AS series_title         -- GROUP BY can be performed on
                                -- an arbitrary expression.
                                -- The result is available in a SELECT
                                -- via the alias specified with AS.
;

COMMIT;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_yql-tutorial_conditional_values
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_create_demo_tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_fill_tables_with_data


Joining tables with JOIN
Merge the columns of the source tables seasons  and series , then output all the seasons of the IT Crowd series to the resulting table using the
JOIN operator.

Note

We assume that you already created tables in step Creating a table and populated them with data in step Adding data to a table.

SELECT
    sa.title AS season_title,    -- sa and sr are "join names",
    sr.title AS series_title,    -- table aliases declared below using AS.
    sr.series_id,                -- They are used to avoid
    sa.season_id                 -- ambiguity in the column names used.

FROM
    seasons AS sa
INNER JOIN
    series AS sr
ON sa.series_id = sr.series_id
WHERE sa.series_id = 1
ORDER BY                         -- Sorting of the results.
    sr.series_id,
    sa.season_id                 -- ORDER BY sorts the values by one column
;                                -- or multiple columns.
                                 -- Columns are separated by commas.

COMMIT;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_yql-tutorial_join_tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_join
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_create_demo_tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_fill_tables_with_data


Inserting and updating data with REPLACE
Add data to the table using REPLACE INTO:

Note

We assume that you already created tables in step Creating a table and populated them with data in step Adding data to a table.

REPLACE INTO episodes
(
    series_id,
    season_id,
    episode_id,
    title,
    air_date
)
VALUES
(
    2,
    5,
    12,
    "Test Episode !!!",
    CAST(Date("2018-08-27") AS Uint64)
)
;

-- COMMIT is called so that the next SELECT operation
-- can see the changes made by the previous transaction.
COMMIT;

-- View result:
SELECT * FROM episodes WHERE series_id = 2 AND season_id = 5;

COMMIT;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_yql-tutorial_replace_into
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_replace_into
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_create_demo_tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_fill_tables_with_data


Inserting and updating data with UPSERT
Add data to the table using UPSERT INTO:

Note

We assume that you already created tables in step Creating a table and populated them with data in step Adding data to a table.

UPSERT INTO episodes
(
    series_id,
    season_id,
    episode_id,
    title,
    air_date
)
VALUES
(
    2,
    5,
    13,
    "Test Episode",
    CAST(Date("2018-08-27") AS Uint64)
)
;

COMMIT;

-- View result:
SELECT * FROM episodes WHERE series_id = 2 AND season_id = 5;

COMMIT;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_yql-tutorial_upsert_into
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_upsert_into
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_create_demo_tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_fill_tables_with_data


Inserting data with INSERT
Add data to the table using INSERT INTO:

Note

We assume that you already created tables in step Creating a table and populated them with data in step Adding data to a table.

INSERT INTO episodes
(
    series_id,
    season_id,
    episode_id,
    title,
    air_date
)
VALUES
(
    2,
    5,
    21,
    "Test 21",
    CAST(Date("2018-08-27") AS Uint64)
),                                        -- Rows are separated by commas.
(
    2,
    5,
    22,
    "Test 22",
    CAST(Date("2018-08-27") AS Uint64)
)
;

COMMIT;

-- View result:
SELECT * FROM episodes WHERE series_id = 2 AND season_id = 5;

COMMIT;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_yql-tutorial_insert_into
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_insert_into
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_create_demo_tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_fill_tables_with_data


Updating data with UPDATE
Update data in the table using the UPDATE operator:

Note

We assume that you already created tables in step Creating a table and populated them with data in step Adding data to a table.

UPDATE episodes
SET title="test Episode 2"
WHERE
    series_id = 2
    AND season_id = 5
    AND episode_id = 12
;

COMMIT;

-- View result:
SELECT * FROM episodes WHERE series_id = 2 AND season_id = 5;

-- YDB doesn't see changes that take place at the start of the transaction,
-- which is why it first performs a read. You can't UPDATE or DELETE a table
-- already changed within the current transaction. UPDATE ON and
-- DELETE ON let you read, update, and delete multiple rows from one table
-- within a single transaction.

$to_update = (
    SELECT series_id,
           season_id,
           episode_id,
           Utf8("Yesterday's Jam UPDATED") AS title
    FROM episodes
    WHERE series_id = 1 AND season_id = 1 AND episode_id = 1
);

SELECT * FROM episodes WHERE series_id = 1 AND season_id = 1;

UPDATE episodes ON
SELECT * FROM $to_update;

COMMIT;

-- View result:
SELECT * FROM episodes WHERE series_id = 1 AND season_id = 1;

COMMIT;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_yql-tutorial_update
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_update
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_create_demo_tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_fill_tables_with_data


Deleting data
Delete data from the table using DELETE.

Note

We assume that you already created tables in step Creating a table and populated them with data in step Adding data to a table.

DELETE
FROM episodes
WHERE
    series_id = 2
    AND season_id = 5
    AND episode_id = 12
;

COMMIT;

-- View result:
SELECT * FROM episodes WHERE series_id = 2 AND season_id = 5;

-- YDB doesn't see changes that take place at the start of the transaction,
-- which is why it first performs a read. It is impossible to execute UPDATE or DELETE on
-- if the table was changed within the current transaction. UPDATE ON and
-- DELETE ON let you read, update, and delete multiple rows from one table
-- within a single transaction.

$to_delete = (
    SELECT series_id, season_id, episode_id
    FROM episodes
    WHERE series_id = 1 AND season_id = 1 AND episode_id = 2
);

SELECT * FROM episodes WHERE series_id = 1 AND season_id = 1;

DELETE FROM episodes ON
SELECT * FROM $to_delete;

COMMIT;

-- View result:
SELECT * FROM episodes WHERE series_id = 1 AND season_id = 1;

COMMIT;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_yql-tutorial_delete
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_delete
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_create_demo_tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_fill_tables_with_data


Adding and deleting columns
Add a new column to the table and then delete it.

Note

We assume that you already created tables in step Creating a table and populated them with data in step Adding data to a table.

Adding a column

Add a non-key column to the existing table:

Deleting a column

Delete the column you added from the table:

ALTER TABLE episodes ADD COLUMN viewers Uint64;

ALTER TABLE episodes DROP COLUMN viewers;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_yql-tutorial_alter_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_yql-tutorial_alter_table_add-column
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_yql-tutorial_alter_table_delete-column
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_create_demo_tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_fill_tables_with_data


Deleting a table
Delete the created tables using the DROP TABLE statement.

DROP TABLE episodes;
DROP TABLE seasons;
DROP TABLE series;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_yql-tutorial_delete_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_yql-tutorial_create_demo_tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_drop_table


Example app in C++
This page contains a detailed description of the code of a test app that is available as part of the YDB C++SDK.

Initializing a database connection

To interact with YDB, create instances of the driver, client, and session:

The YDB driver facilitates interaction between the app and YDB nodes at the transport layer. It must be initialized before creating a client or
session and must persist throughout the YDB access lifecycle.

The YDB client operates on top of the YDB driver and enables the handling of entities and transactions.

The YDB session, which is part of the YDB client context, contains information about executed transactions and prepared queries.

App code snippet for driver initialization:

App code snippet for creating a client:

Creating tables

Create tables to be used in operations on a test app. This step results in the creation of database tables for the series directory data model:

Series

Seasons

Episodes

After the tables are created, a method for retrieving information about data schema objects is called, and the result of its execution is displayed.

Adding data

Add data to the created tables using the UPSERT  statement in YQL. A data update request is sent to the server as a single request with transaction
auto-commit mode enabled.

Code snippet for data insert/update:

    auto connectionParams = TConnectionsParams()
        .SetEndpoint(endpoint)
        .SetDatabase(database)
        .SetAuthToken(GetEnv("YDB_TOKEN"));

    TDriver driver(connectionParams);

    TClient client(driver);

    //! Creates sample tables with the ExecuteQuery method
    ThrowOnError(client.RetryQuerySync([](TSession session) {
        auto query = Sprintf(R"(
            CREATE TABLE series (
                series_id Uint64,
                title Utf8,
                series_info Utf8,
                release_date Uint64,
                PRIMARY KEY (series_id)
            );
        )");
        return session.ExecuteQuery(query, TTxControl::NoTx()).GetValueSync();
    }));

//! Shows basic usage of mutating operations.
void UpsertSimple(TQueryClient client) {
    ThrowOnError(client.RetryQuerySync([](TSession session) {
        auto query = Sprintf(R"(
            UPSERT INTO episodes (series_id, season_id, episode_id, title) VALUES
                (2, 6, 1, "TBD");
        )");

        return session.ExecuteQuery(query,
            TTxControl::BeginTx(TTxSettings::SerializableRW()).CommitTx()).GetValueSync();
    }));
}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_example-cpp
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_example-cpp_init
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_example-cpp_create-table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_example-cpp_write-queries
https://github.com/ydb-platform/ydb/tree/main/ydb/public/sdk/cpp/examples/basic_example
https://github.com/ydb-platform/ydb/tree/main/ydb/public/sdk/cpp
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_yql_reference_syntax_upsert_into
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_yql_reference_index


PRAGMA TablePathPrefix  adds a specified prefix to the table paths. It uses standard filesystem path concatenation, meaning it supports parent
folder referencing and does not require a trailing slash. For example:

For more information about PRAGMA  in YQL, refer to the YQL documentation.

Retrieving data

Retrieve data using a SELECT  statement in YQL. Handle the retrieved data selection in the app.

To execute YQL queries, use the ExecuteQuery  method.
The SDK lets you explicitly control the execution of transactions and configure the transaction execution mode using the TTxControl  class.

In the code snippet below, the transaction settings are defined using the TTxControl::BeginTx  method. With TTxSettings , set the
SerializableRW  transaction execution mode. When all the queries in the transaction are completed, the transaction is automatically completed by

explicitly setting CommitTx() . The query  described using the YQL syntax is passed to the ExecuteQuery  method for execution.

Processing execution results

The TResultSetParser  class is used for processing query execution results.

The code snippet below shows how to process query results using the parser  object:

The given code snippet prints the following text to the console at startup:

Parameterized queries

Query data using parameters. This query execution method is preferable because it allows the server to reuse the query execution plan for
subsequent calls and protects against vulnerabilities such as SQL injection.

The code snippet shows the use of parameterized queries and the TParamsBuilder  to generate parameters and pass them to the
ExecuteQuery method:

PRAGMA TablePathPrefix = "/cluster/database";
SELECT * FROM episodes;

void SelectSimple(TQueryClient client) {
    TMaybe<TResultSet> resultSet;
    ThrowOnError(client.RetryQuerySync([&resultSet](TSession session) {
        auto query = Sprintf(R"(
            SELECT series_id, title, CAST(release_date AS Date) AS release_date
            FROM series
            WHERE series_id = 1;
        )");

        auto txControl =
            // Begin a new transaction with SerializableRW mode
            TTxControl::BeginTx(TTxSettings::SerializableRW())
            // Commit the transaction at the end of the query
            .CommitTx();

        auto result = session.ExecuteQuery(query, txControl).GetValueSync();
        if (!result.IsSuccess()) {
            return result;
        }
        resultSet = result.GetResultSet(0);
        return result;
    }));

    TResultSetParser parser(*resultSet);
    while (parser.TryNextRow()) {
        Cout << "> SelectSimple:" << Endl << "Series"
            << ", Id: " << parser.ColumnParser("series_id").GetOptionalUint64()
            << ", Title: " << parser.ColumnParser("title").GetOptionalUtf8()
            << ", Release date: " << parser.ColumnParser("release_date").GetOptionalDate()->FormatLocalTime("%Y-%m-%d")
            << Endl;
    }
}

> SelectSimple:
series, Id: 1, title: IT Crowd, Release date: 2006-02-03

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_example-cpp_query-processing
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_example-cpp_results-processing
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_example-cpp_param-queries
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_yql_reference_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_yql_reference_syntax_select_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_yql_reference_index
https://en.wikipedia.org/wiki/SQL_injection


The given code snippet prints the following text to the console at startup:

Stream queries

Making a stream query that results in a data stream. Streaming lets you read an unlimited number of rows and amount of data.

Warning

Do not use the StreamExecuteQuery  method without wrapping the call with RetryQuery  or RetryQuerySync .

void SelectWithParams(TQueryClient client) {
    TMaybe<TResultSet> resultSet;
    ThrowOnError(client.RetryQuerySync([&resultSet](TSession session) {
        ui64 seriesId = 2;
        ui64 seasonId = 3;
        auto query = Sprintf(R"(
            DECLARE $seriesId AS Uint64;
            DECLARE $seasonId AS Uint64;

            SELECT sa.title AS season_title, sr.title AS series_title
            FROM seasons AS sa
            INNER JOIN series AS sr
            ON sa.series_id = sr.series_id
            WHERE sa.series_id = $seriesId AND sa.season_id = $seasonId;
        )");

        auto params = TParamsBuilder()
            .AddParam("$seriesId")
                .Uint64(seriesId)
                .Build()
            .AddParam("$seasonId")
                .Uint64(seasonId)
                .Build()
            .Build();

        auto result = session.ExecuteQuery(
            query,
            TTxControl::BeginTx(TTxSettings::SerializableRW()).CommitTx(),
            params).GetValueSync();
        
        if (!result.IsSuccess()) {
            return result;
        }
        resultSet = result.GetResultSet(0);
        return result;
    }));

    TResultSetParser parser(*resultSet);
    if (parser.TryNextRow()) {
        Cout << "> SelectWithParams:" << Endl << "Season"
            << ", Title: " << parser.ColumnParser("season_title").GetOptionalUtf8()
            << ", Series title: " << parser.ColumnParser("series_title").GetOptionalUtf8()
            << Endl;
    }
}

> SelectWithParams:
Season, title: Season 3, series title: Silicon Valley

void StreamQuerySelect(TQueryClient client) {
    Cout << "> StreamQuery:" << Endl;

    ThrowOnError(client.RetryQuerySync([](TQueryClient client) -> TStatus {
        auto query = Sprintf(R"(
            DECLARE $series AS List<UInt64>;

            SELECT series_id, season_id, title, CAST(first_aired AS Date) AS first_aired
            FROM seasons
            WHERE series_id IN $series
            ORDER BY season_id;
        )");

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_example-cpp_stream-query


The given code snippet prints the following text to the console at startup (there may be duplicate lines in the output stream due to an external
RetryQuerySync ):

Multistep transactions

Multiple statements can be executed within a single multistep transaction. Client-side code can run between query steps. Using a transaction
ensures that queries executed in its context are consistent with each other.

The first step is to prepare and execute the first query:

        auto paramsBuilder = TParamsBuilder();
        auto& listParams = paramsBuilder
                                    .AddParam("$series")
                                    .BeginList();
        
        for (auto x : {1, 10}) {
            listParams.AddListItem().Uint64(x);
        }
                
        auto parameters = listParams
                                .EndList()
                                .Build()
                                .Build();

        // Executes stream query
        auto resultStreamQuery = client.StreamExecuteQuery(query, TTxControl::NoTx(), parameters).GetValueSync();

        if (!resultStreamQuery.IsSuccess()) {
            return resultStreamQuery;
        }

        // Iterates over results
        bool eos = false;

        while (!eos) {
            auto streamPart = resultStreamQuery.ReadNext().ExtractValueSync();

            if (!streamPart.IsSuccess()) {
                eos = true;
                if (!streamPart.EOS()) {
                    return streamPart;
                }
                continue;
            }

            // It is possible for lines to be duplicated in the output stream due to an external retrier
            if (streamPart.HasResultSet()) {
                auto rs = streamPart.ExtractResultSet();
                TResultSetParser parser(rs);
                while (parser.TryNextRow()) {
                    Cout << "Season"
                            << ", SeriesId: " << parser.ColumnParser("series_id").GetOptionalUint64()
                            << ", SeasonId: " << parser.ColumnParser("season_id").GetOptionalUint64()
                            << ", Title: " << parser.ColumnParser("title").GetOptionalUtf8()
                            << ", Air date: " << parser.ColumnParser("first_aired").GetOptionalDate()-
>FormatLocalTime("%Y-%m-%d")
                            << Endl;
                }
            }
        }
        return TStatus(EStatus::SUCCESS, NYql::TIssues());
    }));

}

> StreamQuery:
Season, SeriesId: 1, SeasonId: 1, Title: Season 1, Air date: 2006-02-03
Season, SeriesId: 1, SeasonId: 2, Title: Season 2, Air date: 2007-08-24
Season, SeriesId: 1, SeasonId: 3, Title: Season 3, Air date: 2008-11-21
Season, SeriesId: 1, SeasonId: 4, Title: Season 4, Air date: 2010-06-25

//! Shows usage of transactions consisting of multiple data queries with client logic between them.
void MultiStep(TQueryClient client) {
    TMaybe<TResultSet> resultSet;
    ThrowOnError(client.RetryQuerySync([&resultSet](TSession session) {
        ui64 seriesId = 2;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_example-cpp_multistep-transactions


A transaction identifier needs to be obtained to continue working within the current transaction:

The next step is to create the next query that uses the results of code execution on the client side:

        ui64 seasonId = 5;
        auto query1 = Sprintf(R"(
            DECLARE $seriesId AS Uint64;
            DECLARE $seasonId AS Uint64;

            SELECT first_aired AS from_date FROM seasons
            WHERE series_id = $seriesId AND season_id = $seasonId;
        )");

        auto params1 = TParamsBuilder()
            .AddParam("$seriesId")
                .Uint64(seriesId)
                .Build()
            .AddParam("$seasonId")
                .Uint64(seasonId)
                .Build()
            .Build();

        // Execute the first query to retrieve the required values for the client.
        // Transaction control settings do not set the CommitTx flag, allowing the transaction to remain active
        // after query execution.
        auto result = session.ExecuteQuery(
            query1,
            TTxControl::BeginTx(TTxSettings::SerializableRW()),
            params1);

        auto resultValue = result.GetValueSync();

        if (!resultValue.IsSuccess()) {
            return resultValue;
        }

        // Get the active transaction id
        auto txId = resultValue.GetTransaction()->GetId();
        
        // Processing the request result
        TResultSetParser parser(resultValue.GetResultSet(0));
        parser.TryNextRow();
        auto date = parser.ColumnParser("from_date").GetOptionalUint64();

        // Perform some client logic on returned values
        auto userFunc = [] (const TInstant fromDate) {
            return fromDate + TDuration::Days(15);
        };

        TInstant fromDate = TInstant::Days(*date);
        TInstant toDate = userFunc(fromDate);

        // Construct next query based on the results of client logic
        auto query2 = Sprintf(R"(
            DECLARE $seriesId AS Uint64;
            DECLARE $fromDate AS Uint64;
            DECLARE $toDate AS Uint64;

            SELECT season_id, episode_id, title, air_date FROM episodes
            WHERE series_id = $seriesId AND air_date >= $fromDate AND air_date <= $toDate;
        )");

        auto params2 = TParamsBuilder()
            .AddParam("$seriesId")
                .Uint64(seriesId)
                .Build()
            .AddParam("$fromDate")
                .Uint64(fromDate.Days())
                .Build()
            .AddParam("$toDate")
                .Uint64(toDate.Days())
                .Build()
            .Build();

        // Execute the second query.
        // The transaction control settings continue the active transaction (tx)



The given code snippets output the following text to the console at startup:

Managing transactions

Transactions are managed through TCL Begin  and Commit  calls.

In most cases, instead of explicitly using Begin  and Commit  calls, it's better to use transaction control parameters in execute calls. This allows to
avoid additional requests to YDB server and thus run queries more efficiently.

Code snippet for BeginTransaction  and tx.Commit()  calls:

        // and commit it at the end of the second query execution.
        auto result2 = session.ExecuteQuery(
            query2,
            TTxControl::Tx(txId).CommitTx(),
            params2).GetValueSync();
        
        if (!result2.IsSuccess()) {
            return result2;
        }
        resultSet = result2.GetResultSet(0);
        return result2;
    })); // The end of the retried lambda

    TResultSetParser parser(*resultSet);
    Cout << "> MultiStep:" << Endl;
    while (parser.TryNextRow()) {
        auto airDate = TInstant::Days(*parser.ColumnParser("air_date").GetOptionalUint64());

        Cout << "Episode " << parser.ColumnParser("episode_id").GetOptionalUint64()
            << ", Season: " << parser.ColumnParser("season_id").GetOptionalUint64()
            << ", Title: " << parser.ColumnParser("title").GetOptionalUtf8()
            << ", Air date: " << airDate.FormatLocalTime("%a %b %d, %Y")
            << Endl;
    }
}

> MultiStep:
Episode 1, Season: 5, title: Grow Fast or Die Slow, Air date: Sun Mar 25, 2018
Episode 2, Season: 5, title: Reorientation, Air date: Sun Apr 01, 2018
Episode 3, Season: 5, title: Chief Operating Officer, Air date: Sun Apr 08, 2018

void ExplicitTcl(TQueryClient client) {
    // Demonstrate the use of explicit Begin and Commit transaction control calls.
    // In most cases, it's preferable to use transaction control settings within ExecuteDataQuery calls instead, 
    // as this avoids additional hops to the YDB cluster and allows for more efficient query execution.
    ThrowOnError(client.RetryQuerySync([](TQueryClient client) -> TStatus {
        auto airDate = TInstant::Now();
        auto session = client.GetSession().GetValueSync().GetSession();
        auto beginResult = session.BeginTransaction(TTxSettings::SerializableRW()).GetValueSync();
        if (!beginResult.IsSuccess()) {
            return beginResult;
        }

        // Get newly created transaction id
        auto tx = beginResult.GetTransaction();

        auto query = Sprintf(R"(
            DECLARE $airDate AS Date;

            UPDATE episodes SET air_date = CAST($airDate AS Uint16) WHERE title = "TBD";
        )");

        auto params = TParamsBuilder()
            .AddParam("$airDate")
                .Date(airDate)
                .Build()
            .Build();

        // Execute query.
        // Transaction control settings continues active transaction (tx)
        auto updateResult = session.ExecuteQuery(query,
            TTxControl::Tx(tx.GetId()),
            params).GetValueSync();

        if (!updateResult.IsSuccess()) {

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_example-cpp_tcl
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_concepts_transactions


            return updateResult;
        }
        // Commit active transaction (tx)
        return tx.Commit().GetValueSync();
    }));
}



Example app in C# (.NET)
This page contains a detailed description of the code of a test app that uses the YDB C# (.NET) SDK.

Initializing a database connection

To interact with YDB, create instances of the driver, client, and session:

The YDB driver facilitates interaction between the app and YDB nodes at the transport layer. It must be initialized before creating a client or
session and must persist throughout the YDB access lifecycle.

The YDB client operates on top of the YDB driver and enables the handling of entities and transactions.

The YDB session, which is part of the YDB client context, contains information about executed transactions and prepared queries.

App code snippet for driver initialization:

App code snippet for creating a session:

Creating tables

Create tables to be used in operations on a test app. This step results in the creation of database tables for the series directory data model:

Series

Seasons

Episodes

After the tables are created, a method for retrieving information about data schema objects is called, and the result of its execution is displayed.

To create tables, use the queryClient.Exec  method with a DDL (Data Definition Language) YQL query.

public static async Task Run(
    string endpoint,
    string database,
    ICredentialsProvider credentialsProvider)
{
    var config = new DriverConfig(
        endpoint: endpoint,
        database: database,
        credentials: credentialsProvider
    );

    using var driver = new Driver(
        config: config
    );

    await driver.Initialize();
}

using var queryClient = new QueryService(driver);

await queryClient.Exec(@"
    CREATE TABLE series (
        series_id Uint64 NOT NULL,
        title Utf8,
        series_info Utf8,
        release_date Date,
        PRIMARY KEY (series_id)
    );

    CREATE TABLE seasons (
        series_id Uint64,
        season_id Uint64,
        title Utf8,
        first_aired Date,
        last_aired Date,
        PRIMARY KEY (series_id, season_id)
    );

    CREATE TABLE episodes (
        series_id Uint64,
        season_id Uint64,
        episode_id Uint64,
        title Utf8,
        air_date Date,

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_example-dotnet
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_example-dotnet_init
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_example-dotnet_create-table
https://github.com/ydb-platform/ydb-dotnet-examples
https://github.com/ydb-platform/ydb-dotnet-sdk


Adding data

Add data to the created tables using the UPSERT  statement in YQL. A data update request is sent to the server as a single request with transaction
auto-commit mode enabled.

Code snippet for data insert/update:

Retrieving data

Retrieve data using a SELECT  statement in YQL. Handle the retrieved data selection in the app.

To execute YQL queries, use the queryClient.ReadRow  или queryClient.ReadAllRows  method. The SDK lets you explicitly control the
execution of transactions and configure the transaction execution mode using the TxMode  enum. In the code snippet below, a transaction with the
NoTx  mode and an automatic commit after executing the request is used. The values of the request parameters are passed in the form of a

dictionary name-value in the parameters  argument.

Processing execution results

The result of query execution (resultset) consists of an organized set of rows. Example of processing the query execution result:

Scan queries

Execute a scan query to produce a data stream. Streaming allows to read an unlimited number of rows and an unlimited amount of data.

        PRIMARY KEY (series_id, season_id, episode_id)
    );
");

await queryClient.Exec(@"
    UPSERT INTO series (series_id, title, release_date) VALUES
        ($id, $title, $release_date);
    ",
    new Dictionary<string, YdbValue>
    {
        { "$id", YdbValue.MakeUint64(1) },
        { "$title", YdbValue.MakeUtf8("NewTitle") },
        { "$release_date", YdbValue.MakeDate(DateTime.UtcNow) }
    }
);

var row = await queryClient.ReadRow(@"
        SELECT
            series_id,
            title,
            release_date
        FROM series
        WHERE series_id = $id;
    ",
    new Dictionary<string, YdbValue>
    {
        { "$id", YdbValue.MakeUint64(id) }
    }
);

foreach (var row in resultSet.Rows)
{
    Console.WriteLine($"> Series, " +
        $"series_id: {(ulong)row["series_id"]}, " +
        $"title: {(string?)row["title"]}, " +
        $"release_date: {(DateTime?)row["release_date"]}");
}

await queryClient.Stream(
    $"SELECT title FROM seasons ORDER BY series_id, season_id;",
    async stream =>
    {
        await foreach (var part in stream)
        {
            foreach (var row in part.ResultSet!.Rows)
            {
                Console.WriteLine(row[0].GetOptionalUtf8());
            }

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_example-dotnet_write-queries
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_example-dotnet_query-processing
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_example-dotnet_results-processing
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_example-dotnet_scan-query
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_yql_reference_syntax_upsert_into
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_yql_reference_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_yql_reference_syntax_select_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_yql_reference_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_concepts_scan_query


        }
    });



Example app in Go
This page provides a detailed description of the code for a test app that uses the YDB Go SDK.

Downloading and starting

The instructions below assume that Git and Go are installed. Make sure to install the YDB Go SDK.

Create a working directory and use it to run the following command from the command line to clone the GitHub repository:

Next, from the same working directory, run the following command to start the test app:

Initializing a database connection

To interact with YDB, create instances of the driver, client, and session:

The YDB driver facilitates interaction between the app and YDB nodes at the transport layer. It must be initialized before creating a client or
session and must persist throughout the YDB access lifecycle.

The YDB client operates on top of the YDB driver and enables the handling of entities and transactions.

The YDB session, which is part of the YDB client context, contains information about executed transactions and prepared queries.

To work with YDB in Go , import the ydb-go-sdk  driver package:

To interact with YDB, it is necessary to create a YDB driver:

git clone https://github.com/ydb-platform/ydb-go-sdk.git

Local Docker

To connect to a locally deployed YDB database according to the Docker use case, run the following command in the default configuration:

( export YDB_ANONYMOUS_CREDENTIALS=1 && cd ydb-go-sdk/examples && \
go run ./basic/native/query -ydb="grpc://localhost:2136/local" )

Any database

To run the example against any available YDB database, the endpoint and the database path need to be provide.

If authentication is enabled for the database, the authentication mode needs to be chosen and credentials (a token or a username/password pair)
need to be provided.

Run the command as follows:

where

<endpoint> : The endpoint.

<database> : The database path.

<auth_mode_var> : The environment variable that determines the authentication mode.

<auth_mode_value>  is the authentication parameter value for the selected mode.

For example:

( export <auth_mode_var>="<auth_mode_value>" && cd ydb-go-sdk/examples && \
go run ./basic -ydb="<endpoint>?database=<database>" )

( export YDB_ACCESS_TOKEN_CREDENTIALS="t1.9euelZqOnJuJlc..." && cd ydb-go-sdk/examples && \
go run ./basic -ydb="grpcs://ydb.example.com:2135/somepath/somelocation" )

import (
 "context"
 "log"
 "path"

 "github.com/ydb-platform/ydb-go-sdk/v3"
 "github.com/ydb-platform/ydb-go-sdk/v3/query"
)

db, err := ydb.Open(context.Background(), "grpc://localhost:2136/local")
if err != nil {
  // handle connection error

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_go_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_go_index_download
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_go_index_init
https://github.com/ydb-platform/ydb-go-examples/tree/master/basic
https://github.com/ydb-platform/ydb-go-sdk
https://git-scm.com/downloads
https://go.dev/doc/install
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_install
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#quickstart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_connect_endpoint
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_connect_database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#security_authentication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_connect_endpoint
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_connect_database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_ydb-sdk_auth_env


The ydb.Open  method returns a driver instance if successful. The driver performs several services, such as YDB cluster discovery and client-side
load balancing.

The ydb.Open  method takes two mandatory arguments:

a context

a YDB connection string

There are also many connection options available that let you override the default settings.

By default, anonymous authentication is used. To connect to the YDB cluster using a token, use the following syntax:

You can see the full list of auth providers in the ydb-go-sdk documentation and on the recipes page.

It is necessary to close the driver at the end of work to clean up resources.

The db  struct is the entry point for working with YDB. To query tables, use the db.Query()  query service:

YQL queries are executed within special objects called query.Session . Sessions store the execution context of queries (for example,
transactions) and provide server-side load balancing among the YDB cluster nodes.

The query service client provides an API for executing queries:

db.Query().Do(ctx, op)  creates sessions in the background and automatically retries the provided op func(ctx context.Context, s 
query.Session) error  operation if necessary. As soon as a session is ready, it is passed to the callback.

db.Query().DoTx(ctx, op)  automatically handles the transaction lifecycle. It provides a prepared transaction object, query.TxActor , to
the user-defined function op func(ctx context.Context, tx query.TxActor)  error. If the operation returns without an error (nil), the
transaction commits automatically. If the operation returns an error, the transaction rolls back automatically.

db.Query().Exec  runs a single query that returns no result, with automatic retry logic on failure. This method returns nil if the execution is
successful or an error otherwise.

db.Query().Query  executes a single query containing one or more statements that return a result. It automatically handles retries. Upon
successful execution, it returns a fully materialized result ( query.Result ). All result rows are loaded into memory and available for immediate
iteration. For queries returning large datasets, this may lead to an out of memory problem.

db.Query().QueryResultSet  executes a query that contains exactly one statement returning results (it may contain other auxiliary
statements that return no results, such as UPSERT ). Like db.Query().Query , it automatically retries failed operations and returns a fully
materialized result set ( query.ResultSet ). Queries that return large datasets may cause an OOM error.

db.Query().QueryRow  runs queries expected to return exactly one row. It also automatically retries failed operations. On success, it returns a
query.Row  instance.

Creating tables

Create tables to be used in operations on a test app. This step results in the creation of database tables for the series directory data model:

Series

Seasons

Episodes

After the tables are created, a method for retrieving information about data schema objects is called, and the result of its execution is displayed.

Example of a query with no returned result (table creation):

}

// You should close the driver when your application finishes its work (for example, when exiting the program).
defer db.Close(context.Background())

db, err := ydb.Open(context.Background(), clusterEndpoint,
 ydb.WithAccessTokenCredentials(token),
)

defer db.Close(ctx)

import "github.com/ydb-platform/ydb-go-sdk/v3/query"

err = db.Query().Exec(ctx, `
 CREATE TABLE IF NOT EXISTS series (
  series_id Bytes,
  title Text,
  series_info Text,
  release_date Date,
  comment Text,

  PRIMARY KEY(series_id)
 )`, query.WithTxControl(query.NoTx()),

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_go_index_create-table
https://github.com/ydb-platform/ydb-go-sdk?tab=readme-ov-file#credentials-
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_auth
https://en.wikipedia.org/wiki/Out_of_memory
https://en.wikipedia.org/wiki/Out_of_memory


Retrieving data

Retrieve data using a SELECT  statement in YQL. Handle the retrieved data selection in the app.

To execute YQL queries and fetch results, use query.Session  methods: query.Session.Query , query.Session.QueryResultSet , or
query.Session.QueryRow .

The YDB SDK supports explicit transaction control via the query.TxControl  structure:

You can extract row data ( query.Row ) using the following methods:

query.Row.ScanStruct  — scans row data into a struct based on struct field tags that match column names.

query.Row.ScanNamed  — scans data into variables using explicitly defined column-variable pairs.

query.Row.Scan  — scans data directly by column order into the provided variables.

)
if err != nil {
  // handle query execution error
}

readTx := query.TxControl(
 query.BeginTx(
  query.WithSnapshotReadOnly(),
 ),
 query.CommitTx(),
)
row, err := db.Query().QueryRow(ctx,`
 DECLARE $seriesID AS Uint64;
 SELECT
   series_id,
   title,
   release_date
 FROM
   series
 WHERE
   series_id = $seriesID;`,
 query.WithParameters(
  ydb.ParamsBuilder().Param("$seriesID").Uint64(1).Build(),
 ),
 query.WithTxControl(readTx),
)
if err != nil {
  // handle query execution error
}

ScanStruct

var info struct {
 SeriesID    string    `sql:"series_id"`
 Title       string    `sql:"title"`
 ReleaseDate time.Time `sql:"release_date"`
}
err = row.ScanStruct(&info)
if err != nil {
  // handle query execution error
}

ScanNamed

var seriesID, title string
var releaseDate time.Time
err = row.ScanNamed(query.Named("series_id", &seriesID), query.Named("title", &title), query.Named("release_date", 
&releaseDate))
if err != nil {
  // handle query execution error
}

Scan

var seriesID, title string
var releaseDate time.Time
err = row.Scan(&seriesID, &title, &releaseDate)
if err != nil {

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_go_index_query-processing
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#yql_reference_syntax_select_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#yql_reference_index


Scan queries

Execute a scan query to produce a data stream. Streaming allows to read an unlimited number of rows and an unlimited amount of data.

Warning

If the expected query result is very large, avoid loading all data into memory using helper methods like query.Client.Query  or
query.Client.QueryResultSet . These methods return fully materialized results, storing all rows from the server in local client

memory. Large result sets can cause an OOM problem.

Instead, use the query.TxActor.Query  or query.TxActor.QueryResultSet  methods on a transaction or session. These methods
return iterators over results without fully materializing them upfront. The query.Session  object is accessible via the
query.Client.Do  method, which handles automatic retries. Keep in mind that the read operation can be interrupted at any time,

restarting the entire query process. Therefore, the user function passed to Do  may run multiple times.

  // handle query execution error
}

err = db.Query().Do(ctx,
 func(ctx context.Context, s query.Session) error {
  rows, err := s.QueryResultSet(ctx,`
   SELECT series_id, season_id, title, first_aired
   FROM seasons`,
  )
  if err != nil {
   return err
  }
  defer rows.Close(ctx)
  for row, err := range rows.Rows(ctx) {
   if err != nil {
    return err
   }
   var info struct {
    SeriesID    string    `sql:"series_id"`
    SeasonID    string    `sql:"season_id"`
    Title       string    `sql:"title"`
    FirstAired  time.Time `sql:"first_aired"`
   }
   err = row.ScanStruct(&info)
   if err != nil {
    return err
   }
   fmt.Printf("%+v\n", info)
  }
  return nil
 },
 query.WithIdempotent(),
)
if err != nil {
  // handle query execution error
}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_go_index_scan-query
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_scan_query
https://en.wikipedia.org/wiki/Out_of_memory


Example app in Java
This page contains a detailed description of the code of a test app that is available as part of the YDB Java SDK Examples.

Downloading SDK Examples and running the example

The following execution scenario is based on Git and Maven.

Create a working directory and use it to run from the command line the command to clone the GitHub repository:

Then build the SDK Examples

Next, from the same working directory, run the following command to start the test app:

Initializing a database connection

To interact with YDB, create instances of the driver, client, and session:

The YDB driver facilitates interaction between the app and YDB nodes at the transport layer. It must be initialized before creating a client or
session and must persist throughout the YDB access lifecycle.

The YDB client operates on top of the YDB driver and enables the handling of entities and transactions.

The YDB session, which is part of the YDB client context, contains information about executed transactions and prepared queries.

Main driver initialization parameters

A connection string containing details about an endpoint and database. This is the only parameter that is required.

Authentication provider. Unless explicitly specified, an anonymous connection is used.
Session pool settings

App code snippet for driver initialization:

git clone https://github.com/ydb-platform/ydb-java-examples

mvn package -f ./ydb-java-examples

Local Docker

To connect to a locally deployed YDB database according to the Docker use case, run the following command in the default configuration:

YDB_ANONYMOUS_CREDENTIALS=1 java -jar ydb-java-examples/query-example/target/ydb-query-example.jar 
grpc://localhost:2136/local

Any database

To run the example against any available YDB database, the endpoint and the database path need to be provide.

If authentication is enabled for the database, the authentication mode needs to be chosen and credentials (a token or a username/password pair)
need to be provided.

Run the command as follows:

where

<endpoint> : The endpoint.

<database> : The database path.

<auth_mode_var> : The environment variable that determines the authentication mode.

<auth_mode_value>  is the authentication parameter value for the selected mode.

For example:

<auth_mode_var>="<auth_mode_value>" java -jar ydb-java-examples/query-example/target/ydb-query-example.jar 
grpcs://<endpoint>:<port>/<database>

YDB_ACCESS_TOKEN_CREDENTIALS="..." java -jar ydb-java-examples/query-example/target/ydb-query-example.jar 
grpcs://ydb.example.com:2135/somepath/somelocation

this.transport = GrpcTransport.forConnectionString(connectionString)
        .withAuthProvider(CloudAuthHelper.getAuthProviderFromEnviron())
        .build();
this.queryClient = QueryClient.newClient(transport).build();

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_java_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_java_index_download
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_java_index_init
https://github.com/ydb-platform/ydb-java-examples/tree/master/query-example
https://github.com/ydb-platform/ydb-java-examples
https://git-scm.com/downloads
https://maven.apache.org/download.html
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_connect_endpoint
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_connect_database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_auth_auth-provider
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_session-pool-limit
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#quickstart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_connect_endpoint
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_connect_database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#security_authentication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_connect_endpoint
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_connect_database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_ydb-sdk_auth_env


It is also [recommended] (../../../recipes/ydb-sdk/retry.md) to use the SessionRetryContext  helper class for execution of operations with the YDB:
it ensures proper retries in case the database becomes partially unavailable. Sample code to initialize the retry context:

Creating tables

Create tables to be used in operations on a test app. This step results in the creation of database tables for the series directory data model:

Series

Seasons

Episodes

After the tables are created, a method for retrieving information about data schema objects is called, and the result of its execution is displayed.

To create tables, use the TxMode.NONE  transaction mode, which allows the execution of DDL queries:

Adding data

Add data to the created tables using the UPSERT  statement in YQL. A data update request is sent to the server as a single request with transaction
auto-commit mode enabled.

To execute YQL queries, use the QuerySession.createQuery()  method. It creates a new QueryStream  object, which allows to execute a query
and subscribe for receiving response data from the server. Because write requests don't expect any results, the QueryStream.execute()  method
is used without parameters; it just executes the request and waits for the stream to complete.
Code snippet demonstrating this logic:

Retrieving data

Retrieve data using a SELECT  statement in YQL. Handle the retrieved data selection in the app.

this.retryCtx = SessionRetryContext.create(queryClient).build();

private void createTables() {
    retryCtx.supplyResult(session -> session.createQuery(""
            + "CREATE TABLE series ("
            + "  series_id UInt64,"
            + "  title Text,"
            + "  series_info Text,"
            + "  release_date Date,"
            + "  PRIMARY KEY(series_id)"
            + ")", TxMode.NONE).execute()
    ).join().getStatus().expectSuccess("Can't create table series");

    retryCtx.supplyResult(session -> session.createQuery(""
            + "CREATE TABLE seasons ("
            + "  series_id UInt64,"
            + "  season_id UInt64,"
            + "  title Text,"
            + "  first_aired Date,"
            + "  last_aired Date,"
            + "  PRIMARY KEY(series_id, season_id)"
            + ")", TxMode.NONE).execute()
    ).join().getStatus().expectSuccess("Can't create table seasons");

    retryCtx.supplyResult(session -> session.createQuery(""
            + "CREATE TABLE episodes ("
            + "  series_id UInt64,"
            + "  season_id UInt64,"
            + "  episode_id UInt64,"
            + "  title Text,"
            + "  air_date Date,"
            + "  PRIMARY KEY(series_id, season_id, episode_id)"
            + ")", TxMode.NONE).execute()
    ).join().getStatus().expectSuccess("Can't create table episodes");
}

private void upsertSimple() {
    String query
            = "UPSERT INTO episodes (series_id, season_id, episode_id, title) "
            + "VALUES (2, 6, 1, \"TBD\");";

    // Executes data query with specified transaction control settings.
    retryCtx.supplyResult(session -> session.createQuery(query, TxMode.SERIALIZABLE_RW).execute())
        .join().getValue();

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_java_index_create-table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_java_index_write-queries
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_java_index_query-processing
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#yql_reference_syntax_upsert_into
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#yql_reference_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#yql_reference_syntax_select_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#yql_reference_index


Direct usage of the QueryStream  class to obtain results may not always be convenient, as it involves receiving data from the server
asynchronously in the callback of the QueryStream.execute()  method. If the number of expected rows in a result is not too large, it is more
practical to use the QueryReader  helper from the SDK, which first reads all response parts from the stream and provides them all to the user in an
ordered form.

As a result of the query, an object of the QueryReader  class is generated. It may contain several sets obtained using the getResultSet( <index> 
)  method. Since there was only one SELECT  statement in the query, the result contains only one selection indexed as 0 . The given code snippet
prints the following text to the console at startup:

Parameterized queries

Query data using parameters. This query execution method is preferable because it allows the server to reuse the query execution plan for
subsequent calls and protects against vulnerabilities such as SQL injection.

The code snippet below demonstrates how to use parameterized queries and the Params  class to construct parameters and pass them to the
QuerySession.createQuery  method.

private void selectSimple() {
    String query
            = "SELECT series_id, title, release_date "
            + "FROM series WHERE series_id = 1;";

    // Executes data query with specified transaction control settings.
    QueryReader result = retryCtx.supplyResult(
            session -> QueryReader.readFrom(session.createQuery(query, TxMode.SERIALIZABLE_RW))
    ).join().getValue();

    logger.info("--[ SelectSimple ]--");

    ResultSetReader rs = result.getResultSet(0);
    while (rs.next()) {
        logger.info("read series with id {}, title {} and release_date {}",
                rs.getColumn("series_id").getUint64(),
                rs.getColumn("title").getText(),
                rs.getColumn("release_date").getDate()
        );
    }
}

12:06:36.548 INFO  App - --[ SelectSimple ]--
12:06:36.559 INFO  App - read series with id 1, title IT Crowd and release_date 2006-02-03

private void selectWithParams(long seriesID, long seasonID) {
    String query
            = "DECLARE $seriesId AS Uint64; "
            + "DECLARE $seasonId AS Uint64; "
            + "SELECT sa.title AS season_title, sr.title AS series_title "
            + "FROM seasons AS sa INNER JOIN series AS sr ON sa.series_id = sr.series_id "
            + "WHERE sa.series_id = $seriesId AND sa.season_id = $seasonId";

    // Begin new transaction with SerializableRW mode
    TxControl txControl = TxControl.serializableRw().setCommitTx(true);

    // Type of parameter values should be exactly the same as in DECLARE statements.
    Params params = Params.of(
            "$seriesId", PrimitiveValue.newUint64(seriesID),
            "$seasonId", PrimitiveValue.newUint64(seasonID)
    );

    DataQueryResult result = retryCtx.supplyResult(session -> session.executeDataQuery(query, txControl, params))
            .join().getValue();

    logger.info("--[ SelectWithParams ] -- ");

    ResultSetReader rs = result.getResultSet(0);
    while (rs.next()) {
        logger.info("read season with title {} for series {}",
                rs.getColumn("season_title").getText(),
                rs.getColumn("series_title").getText()
        );
    }
}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_java_index_param-queries
https://en.wikipedia.org/wiki/SQL_injection


Streaming data reads

If the expected row count in the response is large, asynchronous reading is the preferred way to process them. In this case, the
SessionRetryContext  is still used for retries because processing response parts can be interrupted at any moment, requiring the entire execution

process to restart.

Multistep transactions

Multiple statements can be executed within a single multistep transaction. Client-side code can run between query steps. Using a transaction
ensures that queries executed in its context are consistent with each other.

To ensure interoperability between the transactions and the retry context, each transaction must wholly execute inside the callback passed to
SessionRetryContext . The callback must return after the entire transaction is completed.

Code template for running complex transactions inside SessionRetryContext

The first step is to prepare and execute the first query:

After that, we can process the resulting data on the client side:

private void asyncSelectRead(long seriesID, long seasonID) {
    String query
            = "DECLARE $seriesId AS Uint64; "
            + "DECLARE $seasonId AS Uint64; "
            + "SELECT ep.title AS episode_title, sa.title AS season_title, sr.title AS series_title "
            + "FROM episodes AS ep "
            + "JOIN seasons AS sa ON sa.season_id = ep.season_id "
            + "JOIN series AS sr ON sr.series_id = sa.series_id "
            + "WHERE sa.series_id = $seriesId AND sa.season_id = $seasonId;";

    // Type of parameter values should be exactly the same as in DECLARE statements.
    Params params = Params.of(
            "$seriesId", PrimitiveValue.newUint64(seriesID),
            "$seasonId", PrimitiveValue.newUint64(seasonID)
    );

    logger.info("--[ ExecuteAsyncQueryWithParams ]--");
    retryCtx.supplyResult(session -> {
        QueryStream asyncQuery = session.createQuery(query, TxMode.SNAPSHOT_RO, params);
        return asyncQuery.execute(part -> {
            ResultSetReader rs = part.getResultSetReader();
            logger.info("read {} rows of result set {}", rs.getRowCount(), part.getResultSetIndex());
            while (rs.next()) {
                logger.info("read episode {} of {} for {}",
                        rs.getColumn("episode_title").getText(),
                        rs.getColumn("season_title").getText(),
                        rs.getColumn("series_title").getText()
                );
            }
        });
    }).join().getStatus().expectSuccess("execute query problem");
}

private void multiStepTransaction(long seriesID, long seasonID) {
    retryCtx.supplyStatus(session -> {
        QueryTransaction transaction = session.createNewTransaction(TxMode.SNAPSHOT_RO);

        //...

        return CompletableFuture.completedFuture(Status.SUCCESS);
    }).join().expectSuccess("multistep transaction problem");
}

    String query1
            = "DECLARE $seriesId AS Uint64; "
            + "DECLARE $seasonId AS Uint64; "
            + "SELECT MIN(first_aired) AS from_date FROM seasons "
            + "WHERE series_id = $seriesId AND season_id = $seasonId;";

    // Execute the first query to start a new transaction
    QueryReader res1 = QueryReader.readFrom(transaction.createQuery(query1, Params.of(
            "$seriesId", PrimitiveValue.newUint64(seriesID),
            "$seasonId", PrimitiveValue.newUint64(seasonID)
    ))).join().getValue();

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_java_index_async-requests
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_java_index_multistep-transactions


And get the current transaction id  to continue processing within the same transaction:

The next step is to create the next query that uses the results of code execution on the client side:

The given code snippets output the following text to the console at startup:

Managing transactions

Transactions are managed through TCL Begin  and Commit  calls.

In most cases, instead of explicitly using Begin  and Commit  calls, it's better to use transaction control parameters in execute calls. This allows to
avoid additional requests to YDB server and thus run queries more efficiently.

Code snippet for beginTransaction()  and transaction.commit()  calls:

    // Perform some client logic on returned values
    ResultSetReader resultSet = res1.getResultSet(0);
    if (!resultSet.next()) {
        throw new RuntimeException("not found first_aired");
    }
    LocalDate fromDate = resultSet.getColumn("from_date").getDate();
    LocalDate toDate = fromDate.plusDays(15);

    // Get active transaction id
    logger.info("started new transaction {}", transaction.getId());

    // Construct next query based on the results of client logic
    String query2
            = "DECLARE $seriesId AS Uint64;"
            + "DECLARE $fromDate AS Date;"
            + "DECLARE $toDate AS Date;"
            + "SELECT season_id, episode_id, title, air_date FROM episodes "
            + "WHERE series_id = $seriesId AND air_date >= $fromDate AND air_date <= $toDate;";

    // Execute the second query and commit
    QueryReader res2 = QueryReader.readFrom(transaction.createQueryWithCommit(query2, Params.of(
        "$seriesId", PrimitiveValue.newUint64(seriesID),
        "$fromDate", PrimitiveValue.newDate(fromDate),
        "$toDate", PrimitiveValue.newDate(toDate)
    ))).join().getValue();

    logger.info("--[ MultiStep ]--");
    ResultSetReader rs = res2.getResultSet(0);
    while (rs.next()) {
        logger.info("read episode {} with air date {}",
                rs.getColumn("title").getText(),
                rs.getColumn("air_date").getDate()
        );
    }

12:06:36.850 INFO  App - --[ MultiStep ]--
12:06:36.851 INFO  App - read episode Grow Fast or Die Slow with air date 2018-03-25
12:06:36.851 INFO  App - read episode Reorientation with air date 2018-04-01
12:06:36.851 INFO  App - read episode Chief Operating Officer with air date 2018-04-08

private void tclTransaction() {
    retryCtx.supplyResult(session -> {
        QueryTransaction transaction = session.beginTransaction(TxMode.SERIALIZABLE_RW)
            .join().getValue();

        String query
                = "DECLARE $airDate AS Date; "
                + "UPDATE episodes SET air_date = $airDate WHERE title = \"TBD\";";

        Params params = Params.of("$airDate", PrimitiveValue.newDate(Instant.now()));

        // Execute data query.
        // Transaction control settings continues active transaction (tx)
        QueryReader reader = QueryReader.readFrom(transaction.createQuery(query, params))
            .join().getValue();

        logger.info("get transaction {}", transaction.getId());

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_java_index_tcl
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_transactions


        // Commit active transaction (tx)
        return transaction.commit();
    }).join().getStatus().expectSuccess("tcl transaction problem");
}



Example app in Node.js
This page provides a detailed description of the code for
an example application,
which is available as part of the YDB Node.js SDK.

Initializing a database connection

To interact with YDB, create instances of the driver, client, and session:

The YDB driver facilitates interaction between the app and YDB nodes at the transport layer. It must be initialized before creating a client or
session and must persist throughout the YDB access lifecycle.

The YDB client operates on top of the YDB driver and enables the handling of entities and transactions.

The YDB session, which is part of the YDB client context, contains information about executed transactions and prepared queries.

App code snippet for driver initialization:

App code snippet for creating a session:

Creating tables

Create tables to be used in operations on a test app. This step results in the creation of database tables for the series directory data model:

Series

Seasons

Episodes

After the tables are created, a method for retrieving information about data schema objects is called, and the result of its execution is displayed.

Using connectionString

const authService = getCredentialsFromEnv();
logger.debug('Driver initializing...');
const driver = new Driver({connectionString, authService});
const timeout = 10000;
if (!await driver.ready(timeout)) {
    logger.fatal(`Driver did not become ready within ${timeout}ms!`);
    process.exit(1);
}

Using endpoint and database

const authService = getCredentialsFromEnv();
logger.debug('Driver initializing...');
const driver = new Driver({endpoint, database, authService});
const timeout = 10000;
if (!await driver.ready(timeout)) {
    logger.fatal(`Driver did not become ready within ${timeout}ms!`);
    process.exit(1);
}

const result = await driver.queryClient.do({
    ...
    fn: async (session) => {
        ...
    }
});

async function createTables(driver: Driver, logger: Logger) {
    logger.info('Dropping old tables and creating new ones...');
    await driver.queryClient.do({
        fn: async (session) => {

          try {
              await session.execute({
                  text: `
                      DROP TABLE ${SERIES_TABLE};
                      DROP TABLE ${EPISODES_TABLE};
                      DROP TABLE ${SEASONS_TABLE};`,
              });
          } catch (err) { // Ignore if tables are missing
              if (err instanceof SchemeError) throw err;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_example-nodejs
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_example-nodejs_init
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_example-nodejs_create-table
https://github.com/ydb-platform/ydb-nodejs-sdk/tree/master/examples/basic-example-v2-with-query-service
https://github.com/ydb-platform/ydb-nodejs-sdk


Adding data

Add data to the created tables using the UPSERT  statement in YQL. A data update request is sent to the server as a single request with transaction
auto-commit mode enabled.

Code snippet for data insert/update:

Retrieving data

Retrieve data using a SELECT  statement in YQL. Handle the retrieved data selection in the app.

The QuerySession.execute()  method is used to execute YQL queries.

Depending on the rowMode parameter, the data can be retrieved in javascript form or as YDB structures.

          }

          await session.execute({
              text: `
                  CREATE TABLE ${SERIES_TABLE}
                  (
                      series_id    UInt64,
                      title        Utf8,
                      series_info  Utf8,
                      release_date DATE,
                      PRIMARY KEY (series_id)
                  );

                  CREATE TABLE ${SEASONS_TABLE}
                  (
                      series_id   UInt64,
                      season_id   UInt64,
                      title UTF8,
                      first_aired DATE,
                      last_aired DATE,
                      PRIMARY KEY (series_id, season_id)
                  );

                  CREATE TABLE ${EPISODES_TABLE}
                  (
                      series_id  UInt64,
                      season_id  UInt64,
                      episode_id UInt64,
                      title      UTf8,
                      air_date   DATE,
                      PRIMARY KEY (series_id, season_id, episode_id),
                      INDEX      episodes_index GLOBAL ASYNC ON (air_date)
                  );`,
          });
        },
    });
}

async function upsertSimple(driver: Driver, logger: Logger): Promise<void> {
    logger.info('Making an upsert...');
    await driver.queryClient.do({
        fn: async (session) => {
             await session.execute({
                 text: `
                    UPSERT INTO ${EPISODES_TABLE} (series_id, season_id, episode_id, title)
                    VALUES (2, 6, 1, "TBD");`,
           })
        }
    });
    logger.info('Upsert completed.')
}

rowMode: RowType.Native

async function selectNativeSimple(driver: Driver, logger: Logger): Promise<void> {
    logger.info('Making a simple native select...');
    const result = await driver.queryClient.do({
        fn: async (session) => {
            const {resultSets} =
                await session.execute({
                    // rowMode: RowType.Native, // Result set columns and rows are returned as native JavaScript values. 

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_example-nodejs_write-queries
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_example-nodejs_query-processing
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_yql_reference_syntax_upsert_into
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_yql_reference_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_yql_reference_syntax_select_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_yql_reference_index


Parameterized queries

Query data using parameters. This query execution method is preferable because it allows the server to reuse the query execution plan for
subsequent calls and protects against vulnerabilities such as SQL injection.

This is the default behavior.
                    text: `
                        SELECT series_id,
                               title,
                               release_date
                        FROM ${SERIES_TABLE}
                        WHERE series_id = 1;`,
                });
            const {value: resultSet1} = await resultSets.next();
            const rows: any[][] = []
            for await (const row of resultSet1.rows) rows.push(row);
            return {cols: resultSet1.columns, rows};
        }
    });
    logger.info(`selectNativeSimple cols: ${JSON.stringify(result.cols, null, 2)}`);
    logger.info(`selectNativeSimple rows: ${JSON.stringify(result.rows, null, 2)}`);
}

rowMode: RowType.Ydb

async function selectTypedSimple(driver: Driver, logger: Logger): Promise<void> {
    logger.info('Making a simple typed select...');
    const result = await driver.queryClient.do({
        fn: async (session) => {
            const {resultSets} =
                await session.execute({
                    rowMode: RowType.Ydb, // enables typedRows() on result sets
                    text: `
                        SELECT series_id,
                               title,
                               release_date
                        FROM ${SERIES_TABLE}
                        WHERE series_id = 1;`,
                });
            const {value: resultSet1} = await resultSets.next();
            const rows: Series[] = [];
            // Note: resultSet1.rows will iterate YDB IValue structures
            for await (const row of resultSet1.typedRows(Series)) rows.push(row);
            return {cols: resultSet1.columns, rows};
        }
    });
    logger.info(`selectTypedSimple cols: ${JSON.stringify(result.cols, null, 2)}`);
    logger.info(`selectTypedSimple rows: ${JSON.stringify(result.rows, null, 2)}`);
}

async function selectWithParameters(driver: Driver, data: ThreeIds[], logger: Logger): Promise<void> {

    await driver.queryClient.do({
        fn: async (session) => {
            for (const [seriesId, seasonId, episodeId] of data) {
                const episode = new Episode({seriesId, seasonId, episodeId, title: '', airDate: new Date()});
                const {resultSets, opFinished} = await session.execute({
                    parameters: {
                        '$seriesId': episode.getTypedValue('seriesId'),
                        '$seasonId': episode.getTypedValue('seasonId'),
                        '$episodeId': episode.getTypedValue('episodeId')
                    },
                    text: `
                        DECLARE $seriesId AS Uint64;
                        DECLARE $seasonId AS Uint64;
                        DECLARE $episodeId AS Uint64;

                        SELECT title,
                               air_date
                        FROM episodes
                        WHERE series_id = $seriesId
                          AND season_id = $seasonId
                          AND episode_id = $episodeId;`
                });
                const {value: resultSet} = await resultSets.next();

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_example-nodejs_param-queries
https://en.wikipedia.org/wiki/SQL_injection


Scan queries

Execute a scan query to produce a data stream. Streaming allows to read an unlimited number of rows and an unlimited amount of data.

The QuerySession.execute()  method is used to retrieve data in a streaming manner.

Managing transactions

Transactions are managed through TCL Begin  and Commit  calls.

In most cases, instead of explicitly using Begin  and Commit  calls, it's better to use transaction control parameters in execute calls. This allows to
avoid additional requests to YDB server and thus run queries more efficiently.

Here's a code sample demonstrating how to explicitly use the Session.beginTransaction()  and Session.commitTransaction()  calls to
execute a transaction:

                const {value: row} = await resultSet.rows.next();
                await opFinished;
                logger.info(`Parametrized select query ${JSON.stringify(row, null, 2)}`);
            }
        }
    });
}

async function selectWithParametrs(driver: Driver, data: ThreeIds[], logger: Logger): Promise<void> {
    logger.info('Selecting with a parametrized query...');
    await driver.queryClient.do({
        fn: async (session) => {
            for (const [seriesId, seasonId, episodeId] of data) {

                const episode = new Episode({seriesId, seasonId, episodeId, title: '', airDate: new Date()});

                const {resultSets, opFinished} = await session.execute({
                    parameters: {
                        '$seriesId': episode.getTypedValue('seriesId'),
                        '$seasonId': episode.getTypedValue('seasonId'),
                        '$episodeId': episode.getTypedValue('episodeId')
                    },
                    text: `
                        DECLARE $seriesId AS Uint64;
                        DECLARE $seasonId AS Uint64;
                        DECLARE $episodeId AS Uint64;

                        SELECT title,
                               air_date
                        FROM episodes
                        WHERE series_id = $seriesId
                          AND season_id = $seasonId
                          AND episode_id = $episodeId;`
                });
                const {value: resultSet} = await resultSets.next();
                const {value: row} = await resultSet.rows.next();
                await opFinished;
                logger.info(`Parametrized select query ${JSON.stringify(row, null, 2)}`);
            }
        }
    });
}

do()

async function explicitTcl(driver: Driver, ids: ThreeIds, logger: Logger) {
    logger.info('Running a parametrized query with explicit transaction control...');
    await driver.queryClient.do({
        fn: async (session) => {
            await session.beginTransaction({serializableReadWrite: {}});
            const [seriesId, seasonId, episodeId] = ids;
            const episode = new Episode({seriesId, seasonId, episodeId, title: '', airDate: new Date()});
            await session.execute({
                parameters: {
                    '$seriesId': episode.getTypedValue('seriesId'),
                    '$seasonId': episode.getTypedValue('seasonId'),
                    '$episodeId': episode.getTypedValue('episodeId')
                },
                text: `
                    DECLARE $seriesId AS Uint64;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_example-nodejs_scan-query
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_example-nodejs_tcl
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_concepts_scan_query
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_concepts_transactions


Error handling

For more information about error handling, see Error handling in the API.

                    DECLARE $seasonId AS Uint64;
                    DECLARE $episodeId AS Uint64;

                    UPDATE episodes
                    SET air_date = CurrentUtcDate()
                    WHERE series_id = $seriesId
                      AND season_id = $seasonId
                      AND episode_id = $episodeId;`
            })
            const txId = session.txId;
            await session.commitTransaction();
            logger.info(`TxId ${txId} committed.`);
        }
    });
}

doTx()

async function transactionPerWholeDo(driver: Driver, ids: ThreeIds, logger: Logger) {
    logger.info('Running a query with one transaction per whole doTx()...');
    await driver.queryClient.doTx({
        txSettings: {serializableReadWrite: {}},
        fn: async (session) => {
            const [seriesId, seasonId, episodeId] = ids;
            const episode = new Episode({seriesId, seasonId, episodeId, title: '', airDate: new Date()});
            await session.execute({
                parameters: {
                    '$seriesId': episode.getTypedValue('seriesId'),
                    '$seasonId': episode.getTypedValue('seasonId'),
                    '$episodeId': episode.getTypedValue('episodeId')
                },
                text: `
                    DECLARE $seriesId AS Uint64;
                    DECLARE $seasonId AS Uint64;
                    DECLARE $episodeId AS Uint64;

                    UPDATE episodes
                    SET air_date = CurrentUtcDate()
                    WHERE series_id = $seriesId
                      AND season_id = $seasonId
                      AND episode_id = $episodeId;`
            })
            logger.info(`TxId ${session.txId} will be committed by doTx().`);
        }
    });
}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_example-nodejs_error-handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_reference_ydb-sdk_error_handling


Example app in PHP
This page contains a detailed description of the code of a test app that is available as part of the YDB PHP SDK.

Initializing a database connection

To interact with YDB, create instances of the driver, client, and session:

The YDB driver facilitates interaction between the app and YDB nodes at the transport layer. It must be initialized before creating a client or
session and must persist throughout the YDB access lifecycle.

The YDB client operates on top of the YDB driver and enables the handling of entities and transactions.

The YDB session, which is part of the YDB client context, contains information about executed transactions and prepared queries.

App code snippet for driver initialization:

Creating tables

Create tables to be used in operations on a test app. This step results in the creation of database tables for the series directory data model:

Series

Seasons

Episodes

After the tables are created, a method for retrieving information about data schema objects is called, and the result of its execution is displayed.

To create tables, use the session->createTable()  method:

<?php

use YdbPlatform\Ydb\Ydb;

$config = [
    // Database path
    'database'    => '/ru-central1/b1glxxxxxxxxxxxxxxxx/etn0xxxxxxxxxxxxxxxx',

    // Database endpoint
    'endpoint'    => 'ydb.serverless.yandexcloud.net:2135',

    // Auto discovery (dedicated server only)
    'discovery'   => false,

    // IAM config
    'iam_config'  => [
        // 'root_cert_file' => './CA.pem',  Root CA file (uncomment for dedicated server only)
    ],

    'credentials' => new AccessTokenAuthentication('AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA') // use from reference/ydb-
sdk/auth
];

$ydb = new Ydb($config);

protected function createTabels()
{
    $this->ydb->table()->retrySession(function (Session $session) {

        $session->createTable(
            'series',
            YdbTable::make()
                ->addColumn('series_id', 'UINT64')
                ->addColumn('title', 'UTF8')
                ->addColumn('series_info', 'UTF8')
                ->addColumn('release_date', 'UINT64')
                ->primaryKey('series_id')
        );

    }, true);

    $this->print('Table `series` has been created.');

    $this->ydb->table()->retrySession(function (Session $session) {

        $session->createTable(
            'seasons',
            YdbTable::make()

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_example-php
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_example-php_init
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_example-php_create-table
https://github.com/yandex-cloud/ydb-php-sdk


You can use the session->describeTable()  method to output information about the table structure and make sure that it was properly created:

Adding data

Add data to the created tables using the UPSERT  statement in YQL. A data update request is sent to the server as a single request with transaction
auto-commit mode enabled.

Code snippet for data insert/update:

                ->addColumn('series_id', 'UINT64')
                ->addColumn('season_id', 'UINT64')
                ->addColumn('title', 'UTF8')
                ->addColumn('first_aired', 'UINT64')
                ->addColumn('last_aired', 'UINT64')
                ->primaryKey(['series_id', 'season_id'])
        );

    }, true);

    $this->print('Table `seasons` has been created.');

    $this->ydb->table()->retrySession(function (Session $session) {

        $session->createTable(
            'episodes',
            YdbTable::make()
                ->addColumn('series_id', 'UINT64')
                ->addColumn('season_id', 'UINT64')
                ->addColumn('episode_id', 'UINT64')
                ->addColumn('title', 'UTF8')
                ->addColumn('air_date', 'UINT64')
                ->primaryKey(['series_id', 'season_id', 'episode_id'])
        );

    }, true);

    $this->print('Table `episodes` has been created.');
}

protected function describeTable($table)
{
    $data = $ydb->table()->retrySession(function (Session $session) use ($table) {

        return $session->describeTable($table);

    }, true);

    $columns = [];

    foreach ($data['columns'] as $column) {
        if (isset($column['type']['optionalType']['item']['typeId'])) {
            $columns[] = [
                'Name' => $column['name'],
                'Type' => $column['type']['optionalType']['item']['typeId'],
            ];
        }
    }

    print('Table `' . $table . '`');
    print_r($columns);
    print('');
    print('Primary key: ' . implode(', ', (array)$data['primaryKey']));
}

protected function upsertSimple()
{
    $ydb->table()->retryTransaction(function (Session $session) {
        $session->query('
        DECLARE $series_id AS Uint64;
        DECLARE $season_id AS Uint64;
        DECLARE $episode_id AS Uint64;
        DECLARE $title AS Utf8;
            UPSERT INTO episodes (series_id, season_id, episode_id, title)
            VALUES ($series_id, $season_id, $episode_id, $title);', [
                '$series_id' => (new Uint64Type(2))->toTypedValue(),
                '$season_id' => (new Uint64Type(6))->toTypedValue(),

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_example-php_write-queries
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_yql_reference_syntax_upsert_into
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_yql_reference_index


Retrieving data

Retrieve data using a SELECT  statement in YQL. Handle the retrieved data selection in the app.

To execute YQL queries, use the session->query()  method.

Parameterized queries

Query data using parameters. This query execution method is preferable because it allows the server to reuse the query execution plan for
subsequent calls and protects against vulnerabilities such as SQL injection.

Here's a code sample that shows how to use prepared queries.

                '$episode_id' => (new Uint64Type(1))->toTypedValue(),
                '$title' => (new Utf8Type('TBD'))->toTypedValue(),
            ]);
    }, true);

    print('Finished.');
}

$result = $ydb->table()->retryTransaction(function (Session $session) {
        return $session->query('
        DECLARE $seriesID AS Uint64;
        $format = DateTime::Format("%Y-%m-%d");
        SELECT
            series_id,
            title,
            $format(DateTime::FromSeconds(CAST(release_date AS Uint32))) AS release_date
        FROM series
        WHERE series_id = $seriesID;', [
            '$seriesID' => (new Uint64Type(1))->toTypedValue()
        ]);
}, true, $params);

print_r($result->rows());

protected function selectPrepared($series_id, $season_id, $episode_id)
{
    $result = $ydb->table()->retryTransaction(function (Session $session) use ($series_id, $season_id, $episode_id) {

        $prepared_query = $session->prepare('
        DECLARE $series_id AS Uint64;
        DECLARE $season_id AS Uint64;
        DECLARE $episode_id AS Uint64;

        $format = DateTime::Format("%Y-%m-%d");
        SELECT
            title AS `Episode title`,
            $format(DateTime::FromSeconds(CAST(air_date AS Uint32))) AS `Air date`
        FROM episodes
        WHERE series_id = $series_id AND season_id = $season_id AND episode_id = $episode_id;');

        return $prepared_query->execute(compact(
            'series_id',
            'season_id',
            'episode_id'
        ));
    },true);

    $this->print($result->rows());
}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_example-php_query-processing
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_example-php_param-queries
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_yql_reference_syntax_select_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_yql_reference_index
https://en.wikipedia.org/wiki/SQL_injection


Example app in Python
This page contains a detailed description of the code of a test app that is available as part of the YDB Python SDK.

Downloading and starting

The following execution scenario is based on git and Python3. Be sure to install the YDB Python SDK.

Create a working directory and use it to run from the command line the command to clone the GitHub repository and install the necessary Python
packages:

Next, from the same working directory, run the following command to start the test app:

Initializing a database connection

To interact with YDB, create instances of the driver, client, and session:

The YDB driver facilitates interaction between the app and YDB nodes at the transport layer. It must be initialized before creating a client or
session and must persist throughout the YDB access lifecycle.

The YDB client operates on top of the YDB driver and enables the handling of entities and transactions.

The YDB session, which is part of the YDB client context, contains information about executed transactions and prepared queries.

App code snippet for driver initialization:

git clone https://github.com/ydb-platform/ydb-python-sdk.git
python3 -m pip install iso8601

Local Docker

To connect to a locally deployed YDB database according to the Docker use case, run the following command in the default configuration:

YDB_ANONYMOUS_CREDENTIALS=1 \
python3 ydb-python-sdk/examples/basic_example_v1/ -e grpc://localhost:2136 -d /local

Any database

To run the example against any available YDB database, the endpoint and the database path need to be provide.

If authentication is enabled for the database, the authentication mode needs to be chosen and credentials (a token or a username/password pair)
need to be provided.

Run the command as follows:

where

<endpoint> : The endpoint.

<database> : The database path.

<auth_mode_var> : The environment variable that determines the authentication mode.

<auth_mode_value>  is the authentication parameter value for the selected mode.

For example:

<auth_mode_var>="<auth_mode_value>" \
python3 ydb-python-sdk/examples/basic_example_v1/ -e <endpoint> -d <database>

YDB_ACCESS_TOKEN_CREDENTIALS="t1.9euelZqOnJuJlc..." \
python3 ydb-python-sdk/examples/basic_example_v1/ -e grpcs://ydb.example.com:2135 -d /path/db )

Synchronous

def run(endpoint, database):
    driver_config = ydb.DriverConfig(
        endpoint, database, credentials=ydb.credentials_from_env_variables(),
        root_certificates=ydb.load_ydb_root_certificate(),
    )
    with ydb.Driver(driver_config) as driver:
        try:
            driver.wait(timeout=5)
        except TimeoutError:
            print("Connect failed to YDB")
            print("Last reported errors by discovery:")

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_python_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_python_index_download
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_python_index_init
https://github.com/ydb-platform/ydb-python-sdk/tree/master/examples/basic_example_v2
https://github.com/ydb-platform/ydb-python-sdk
https://git-scm.com/downloads
https://www.python.org/downloads/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_install
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#quickstart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_connect_endpoint
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_connect_database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#security_authentication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_connect_endpoint
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_connect_database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_ydb-sdk_auth_env


App code snippet for session pool initialization:

Executing queries

YDB Python SDK supports queries described by YQL syntax.
There are two primary methods for executing queries, each with different properties and use cases:

pool.execute_with_retries :

Buffers the entire result set in client memory.

Automatically retries execution in case of retriable issues.

Does not allow specifying a transaction execution mode.

Recommended for one-off queries that are expected to produce small result sets.

tx.execute :

Returns an iterator over the query results, allowing processing of results that may not fit into client memory.

Retries must be handled manually via pool.retry_operation_sync .

Allows specifying a transaction execution mode.
Recommended for scenarios where pool.execute_with_retries  is insufficient.

Creating tables

Create tables to be used in operations on a test app. This step results in the creation of database tables for the series directory data model:

Series

Seasons

Episodes

After the tables are created, a method for retrieving information about data schema objects is called, and the result of its execution is displayed.

To execute CREATE TABLE  queries, use the pool.execute_with_retries()  method:

            print(driver.discovery_debug_details())
            exit(1)

Asynchronous

async def run(endpoint, database):
    driver_config = ydb.DriverConfig(
        endpoint, database, credentials=ydb.credentials_from_env_variables(),
        root_certificates=ydb.load_ydb_root_certificate(),
    )
    async with ydb.aio.Driver(driver_config) as driver:
        try:
            await driver.wait(timeout=5)
        except TimeoutError:
            print("Connect failed to YDB")
            print("Last reported errors by discovery:")
            print(driver.discovery_debug_details())
            exit(1)

Synchronous

with ydb.QuerySessionPool(driver) as pool:
    pass  # operations with pool here

Asynchronous

async with ydb.aio.QuerySessionPool(driver) as pool:
    pass  # operations with pool here

Synchronous

def create_tables(pool: ydb.QuerySessionPool):
    print("\nCreating table series...")
    pool.execute_with_retries(
        """
        CREATE TABLE `series` (
            `series_id` Int64,
            `title` Utf8,
            `series_info` Utf8,
            `release_date` Date,
            PRIMARY KEY (`series_id`)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_python_index_executing-queries
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_python_index_create-table


        )
        """
    )

    print("\nCreating table seasons...")
    pool.execute_with_retries(
        """
        CREATE TABLE `seasons` (
            `series_id` Int64,
            `season_id` Int64,
            `title` Utf8,
            `first_aired` Date,
            `last_aired` Date,
            PRIMARY KEY (`series_id`, `season_id`)
        )
        """
    )

    print("\nCreating table episodes...")
    pool.execute_with_retries(
        """
        CREATE TABLE `episodes` (
            `series_id` Int64,
            `season_id` Int64,
            `episode_id` Int64,
            `title` Utf8,
            `air_date` Date,
            PRIMARY KEY (`series_id`, `season_id`, `episode_id`)
        )
        """
    )

Asynchronous

async def create_tables(pool: ydb.aio.QuerySessionPool):
    print("\nCreating table series...")
    await pool.execute_with_retries(
        """
        CREATE TABLE `series` (
            `series_id` Int64,
            `title` Utf8,
            `series_info` Utf8,
            `release_date` Date,
            PRIMARY KEY (`series_id`)
        )
        """
    )

    print("\nCreating table seasons...")
    await pool.execute_with_retries(
        """
        CREATE TABLE `seasons` (
            `series_id` Int64,
            `season_id` Int64,
            `title` Utf8,
            `first_aired` Date,
            `last_aired` Date,
            PRIMARY KEY (`series_id`, `season_id`)
        )
        """
    )

    print("\nCreating table episodes...")
    await pool.execute_with_retries(
        """
        CREATE TABLE `episodes` (
            `series_id` Int64,
            `season_id` Int64,
            `episode_id` Int64,
            `title` Utf8,
            `air_date` Date,
            PRIMARY KEY (`series_id`, `season_id`, `episode_id`)
        )
        """
    )



Adding data

Add data to the created tables using the UPSERT  statement in YQL. A data update request is sent to the server as a single request with transaction
auto-commit mode enabled.

Code snippet for data insert/update:

Retrieving data

Retrieve data using a SELECT  statement in YQL. Handle the retrieved data selection in the app.

To execute YQL queries, the pool.execute_with_retries()  method is often sufficient.

Synchronous

def upsert_simple(pool: ydb.QuerySessionPool):
    print("\nPerforming UPSERT into episodes...")
    pool.execute_with_retries(
        """
        UPSERT INTO episodes (series_id, season_id, episode_id, title) VALUES (2, 6, 1, "TBD");
        """
    )

Asynchronous

async def upsert_simple(pool: ydb.aio.QuerySessionPool):
    print("\nPerforming UPSERT into episodes...")
    await pool.execute_with_retries(
        """
        UPSERT INTO episodes (series_id, season_id, episode_id, title) VALUES (2, 6, 1, "TBD");
        """
    )

Synchronous

def select_simple(pool: ydb.QuerySessionPool):
    print("\nCheck series table...")
    result_sets = pool.execute_with_retries(
        """
        SELECT
            series_id,
            title,
            release_date
        FROM series
        WHERE series_id = 1;
        """,
    )
    first_set = result_sets[0]
    for row in first_set.rows:
        print(
            "series, id: ",
            row.series_id,
            ", title: ",
            row.title,
            ", release date: ",
            row.release_date,
        )
    return first_set

Asynchronous

async def select_simple(pool: ydb.aio.QuerySessionPool):
    print("\nCheck series table...")
    result_sets = await pool.execute_with_retries(
        """
        SELECT
            series_id,
            title,
            release_date
        FROM series
        WHERE series_id = 1;
        """,
    )
    first_set = result_sets[0]

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_python_index_write-queries
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_python_index_query-processing
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#yql_reference_syntax_upsert_into
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#yql_reference_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#yql_reference_syntax_select_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#yql_reference_index


As the result of executing the query, a list of result_set  is returned, iterating on which the text is output to the console:

Parameterized queries

For parameterized query execution, pool.execute_with_retries()  and tx.execute()  behave similarly. To execute parameterized queries, you
need to pass a dictionary with parameters to one of these functions, where each key is the parameter name, and the value can be one of the
following:

1. A value of a basic Python type

2. A tuple containing the value and its type

3. A special type, ydb.TypedValue(value=value, value_type=value_type)

If you specify a value without an explicit type, the conversion takes place according to the following rules:

Warning

Automatic conversion of lists and dictionaries is possible only if the structures are homogeneous. The type of nested values will be
determined recursively according to the rules explained above. In case of using heterogeneous structures, requests will raise
TypeError .

A code snippet demonstrating the parameterized query execution:

    for row in first_set.rows:
        print(
            "series, id: ",
            row.series_id,
            ", title: ",
            row.title,
            ", release date: ",
            row.release_date,
        )
    return first_set

> SelectSimple:
series, Id: 1, title: IT Crowd, Release date: 2006-02-03

Synchronous

def select_with_parameters(pool: ydb.QuerySessionPool, series_id, season_id, episode_id):
    result_sets = pool.execute_with_retries(
        """
        DECLARE $seriesId AS Int64;
        DECLARE $seasonId AS Int64;
        DECLARE $episodeId AS Int64;

        SELECT
            title,
            air_date
        FROM episodes
        WHERE series_id = $seriesId AND season_id = $seasonId AND episode_id = $episodeId;
        """,
        {
            "$seriesId": series_id,  # data type could be defined implicitly
            "$seasonId": (season_id, ydb.PrimitiveType.Int64),  # could be defined via a tuple

Python type YDB type

int ydb.PrimitiveType.Int64

float ydb.PrimitiveType.Double

str ydb.PrimitiveType.Utf8

bytes ydb.PrimitiveType.String

bool ydb.PrimitiveType.Bool

list ydb.ListType

dict ydb.DictType

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_python_index_param-queries


The code snippet above outputs the following text to the console:

Managing transactions

Transactions are managed through TCL Begin  and Commit  calls.

In most cases, instead of explicitly using Begin  and Commit  calls, it's better to use transaction control parameters in execute calls. This allows to
avoid additional requests to YDB server and thus run queries more efficiently.

The session.transaction().execute()  method can also be used to execute YQL queries. Unlike pool.execute_with_retries , this method
allows explicit control of transaction execution by configuring the desired transaction mode using the TxControl  class.

Available transaction modes:

ydb.QuerySerializableReadWrite()  (default);

ydb.QueryOnlineReadOnly(allow_inconsistent_reads=False) ;

ydb.QuerySnapshotReadOnly() ;

ydb.QueryStaleReadOnly() .

For more information about transaction modes, see Transaction Modes.

The result of executing tx.execute()  is an iterator. This iterator allows you to read result rows without loading the entire result set into memory.
However, the iterator must be read to the end after each request to correctly maintain the transaction state on the YDB server side. If this is not
done, write queries could not be applied on the YDB server side. For convenience, the result of the tx.execute()  function can be used as a
context manager that automatically iterates to the end upon exit.

            "$episodeId": ydb.TypedValue(episode_id, ydb.PrimitiveType.Int64),  # could be defined via a special class
        },
    )

    print("\n> select_with_parameters:")
    first_set = result_sets[0]
    for row in first_set.rows:
        print("episode title:", row.title, ", air date:", row.air_date)

    return first_set

Asynchronous

async def select_with_parameters(pool: ydb.aio.QuerySessionPool, series_id, season_id, episode_id):
    result_sets = await pool.execute_with_retries(
        """
        DECLARE $seriesId AS Int64;
        DECLARE $seasonId AS Int64;
        DECLARE $episodeId AS Int64;

        SELECT
            title,
            air_date
        FROM episodes
        WHERE series_id = $seriesId AND season_id = $seasonId AND episode_id = $episodeId;
        """,
        {
            "$seriesId": series_id,  # could be defined implicitly
            "$seasonId": (season_id, ydb.PrimitiveType.Int64),  # could be defined via a tuple
            "$episodeId": ydb.TypedValue(episode_id, ydb.PrimitiveType.Int64),  # could be defined via a special class
        },
    )

    print("\n> select_with_parameters:")
    first_set = result_sets[0]
    for row in first_set.rows:
        print("episode title:", row.title, ", air date:", row.air_date)

    return first_set

> select_prepared_transaction:
('episode title:', u'To Build a Better Beta', ', air date:', '2016-06-05')

Synchronous

with tx.execute(query) as _:
    pass

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_python_index_tcl
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_transactions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_transactions_modes


The code snippet below demonstrates the explicit use of transaction().begin()  and tx.commit() :

Asynchronous

async with await tx.execute(query) as _:
    pass

Synchronous

def explicit_transaction_control(pool: ydb.QuerySessionPool, series_id, season_id, episode_id):
    def callee(session: ydb.QuerySession):
        query = """
        DECLARE $seriesId AS Int64;
        DECLARE $seasonId AS Int64;
        DECLARE $episodeId AS Int64;

        UPDATE episodes
        SET air_date = CurrentUtcDate()
        WHERE series_id = $seriesId AND season_id = $seasonId AND episode_id = $episodeId;
        """

        # Get newly created transaction id
        tx = session.transaction().begin()

        # Execute data query.
        # Transaction control settings continues active transaction (tx)
        with tx.execute(
            query,
            {
                "$seriesId": (series_id, ydb.PrimitiveType.Int64),
                "$seasonId": (season_id, ydb.PrimitiveType.Int64),
                "$episodeId": (episode_id, ydb.PrimitiveType.Int64),
            },
        ) as _:
            pass

        print("\n> explicit TCL call")

        # Commit active transaction(tx)
        tx.commit()

    return pool.retry_operation_sync(callee)

Asynchronous

async def explicit_transaction_control(
    pool: ydb.aio.QuerySessionPool, series_id, season_id, episode_id
):
    async def callee(session: ydb.aio.QuerySession):
        query = """
        DECLARE $seriesId AS Int64;
        DECLARE $seasonId AS Int64;
        DECLARE $episodeId AS Int64;

        UPDATE episodes
        SET air_date = CurrentUtcDate()
        WHERE series_id = $seriesId AND season_id = $seasonId AND episode_id = $episodeId;
        """

        # Get newly created transaction id
        tx = await session.transaction().begin()

        # Execute data query.
        # Transaction control settings continues active transaction (tx)
        async with await tx.execute(
            query,
            {
                "$seriesId": (series_id, ydb.PrimitiveType.Int64),
                "$seasonId": (season_id, ydb.PrimitiveType.Int64),
                "$episodeId": (episode_id, ydb.PrimitiveType.Int64),
            },
        ) as _:
            pass

        print("\n> explicit TCL call")



However, a transaction can be opened implicitly with the first request and can be committed automatically by setting the commit_tx=True  flag in
arguments. Implicit transaction management is preferable because it requires fewer server calls.

Iterating over query results

If a SELECT  query is expected to return a potentially large number of rows, it is recommended to use the tx.execute  method instead of
pool.execute_with_retries  to avoid excessive memory consumption on the client side. Instead of buffering the entire result set into memory,
tx.execute  returns an iterator for each top-level SELECT  statement in the query.

Example of a SELECT  with unlimited data and implicit transaction control:

        # Commit active transaction(tx)
        await tx.commit()

    return await pool.retry_operation_async(callee)

Synchronous

def huge_select(pool: ydb.QuerySessionPool):
    def callee(session: ydb.QuerySession):
        query = """SELECT * from episodes;"""

        with session.transaction(ydb.QuerySnapshotReadOnly()).execute(
            query,
            commit_tx=True,
        ) as result_sets:
            print("\n> Huge SELECT call")
            for result_set in result_sets:
                for row in result_set.rows:
                    print("episode title:", row.title, ", air date:", row.air_date)

    return pool.retry_operation_sync(callee)

Asynchronous

async def huge_select(pool: ydb.aio.QuerySessionPool):
    async def callee(session: ydb.aio.QuerySession):
        query = """SELECT * from episodes;"""

        async with await session.transaction(ydb.QuerySnapshotReadOnly()).execute(
            query,
            commit_tx=True,
        ) as result_sets:
            print("\n> Huge SELECT call")
            async for result_set in result_sets:
                for row in result_set.rows:
                    print("episode title:", row.title, ", air date:", row.air_date)

    return await pool.retry_operation_async(callee)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_python_index_iterating


Selecting a primary key for maximum performance
The way columns are selected for a table's primary key defines YDB's ability to scale load and improve performance.

General recommendations for choosing a primary key:

Avoid situations where the main load falls on one partition of a table. The more evenly load is distributed across partitions, the better the
performance.

Reduce the number of partitions that can be affected in a single request. Moreover, if the request affects no more than one partition, it is
performed using a special simplified protocol. This significantly increases the speed and saves the resources.

All YDB tables are sorted by primary key in ascending order. In a table with a monotonically increasing primary key, this will result in new data being
added at the end of a table. As YDB splits table data into partitions based on key ranges, inserts are always processed by the same server that is
responsible for the "last" partition. Concentrating the load on a single server results in slow data uploading and inefficient use of a distributed
system.
As an example, let's take logging of user events to a table with the ( timestamp, userid, userevent, PRIMARY KEY (timestamp, userid) )
schema.

The values in the timestamp  column increase monotonically resulting in all new records being added at the end of a table, and the final partition,
which is responsible for this range of keys, handles all the table inserts. This makes scaling insert loads impossible and performance will be limited
by the single process servicing this partition and won't increase as new servers are added to a cluster.

YDB supports further automatic partition splitting upon a threshold size or load being reached. However, in this situation, once it splits off, the new
partition will again begin handling all the inserts, and the situation will recur.

Techniques that let you evenly distribute load across table partitions

Changing the sequence of key components

Writing data to a table with the ( timestamp, userid, userevent, PRIMARY KEY (timestamp, userid) )  schema results in an uneven load on
table partitions due to a monotonically increasing primary key. Changing the sequence of key components so that the monotonically increasing part
isn't the first component can help distribute the load more evenly. If you redefine a table's primary key as PRIMARY KEY (userid, timestamp) , the
DB writes will distribute more evenly across the partitions provided there is a sufficient number of users generating events.

Using a hash of key column values as a primary key

To obtain a more even distribution of operations across a table's partitions and reduce the size of internal data structures, make the primary key
"prefix" (initial part) values more varied. To do this, make the primary key include the value of a hash of the entire primary key or a part of the
primary key.

For instance, the schema of this table with the schema ( timestamp, userid, userevent, PRIMARY KEY (userid, timestamp) )  might be
made to include an additional field computed as a hash: userhash = HASH(userid) . This would change the table schema as follows:

If you select the hash function properly, rows will be distributed fairly evenly throughout the entire key space, which will result in a more even load
on the system. At the same time, the fact that the key includes userid, timestamp  after userhash  keeps the data local and sorted by time for a
specific user.

The userhash  field in the example above must be computed by the application and specified explicitly both for inserting new records into the table
and for data access by primary key.

Reducing the number of partitions affected by a single query

Let's assume that the main scenario for working with table data is to read all events by a specific userid . Then, when you use the ( timestamp, 
userid, userevent, PRIMARY KEY (timestamp, userid) )  table schema, each read affects all the partitions of the table. Moreover, each
partition is fully scanned, since the rows related to a specific userid  are located in an order that isn't known in advance. Changing the sequence
of ( timestamp, userid, userevent, PRIMARY KEY (userid, timestamp) )  key components causes all rows related to a specific userid  to
follow each other. This row distribution will be useful for reading data by userid  and will reduce load.

NULL value in a key column

In YDB, all columns, including key ones, may contain a NULL value. Using NULL as values in key columns isn't recommended. According to the
SQL standard (ISO/IEC 9075), you can't compare NULL with other values. Therefore, the use of concise SQL statements with simple comparison
operators may lead, for example, to skipping rows containing NULL during filtering.

Row size limit

To achieve high performance, we don't recommend writing rows larger than 8 MB and key columns larger than 2 KB to the DB.

( userhash, userid, timestamp, userevent, PRIMARY KEY (userhash, userid, timestamp) )

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_primary-key_row-oriented
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_primary-key_row-oriented_balance-shard-load
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_primary-key_row-oriented_key-order
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_primary-key_row-oriented_key-hash
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_primary-key_row-oriented_decrease-shards
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_primary-key_row-oriented_key-null
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_primary-key_row-oriented_limit-string
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_partitioning


Choosing keys for maximum column-oriented table performance
Unlike row-oriented YDB tables, column-oriented tables are partitioned by designated partitioning keys. Within each partition, data is distributed
based on the table's primary key.

Partitioning key

The partitioning key must be a non-empty subset of the primary key columns. The hash of the partition key determines the partition to which the row
belongs. The partition key should be chosen to ensure that data is evenly distributed across partitions. This is typically achieved by including high-
cardinality columns, such as high-resolution timestamps ( Timestamp  data type), in the partition key. Using a partitioning key with low cardinality
can lead to an uneven distribution of data across partitions, causing some partitions to become overloaded. Overloaded partitions may result in
suboptimal query performance and/or limit the maximum rate of data insertion.

Column-oriented tables do not support automatic repartitioning at the moment. That's why it's important to specify a realistic number of partitions at
table creation. You can evaluate the number of partitions you need based on the expected data amounts you are going to add to the table. The
average insert throughput for a partition is 1 MB/s. The throughput is mostly affected by the selected primary keys (the need to sort data inside the
partition when inserting data). We do not recommend setting up more than 128 partitions for small data streams.

Primary key

The primary key determines how the data will be stored inside the partition. That's why, when selecting a primary key, you need to keep in mind
both the effectiveness of reading data from the partition and the effectiveness of inserting data into the partition. The optimum insert use case is to
write data to the beginning or end of the table, making rare local updates of previously inserted data. For example, an effective use case would be
to store application logs by timestamps, adding records to the end of the partition using the current time in the primary key.

Example

When your data stream is 1 GB per second, an analytical table with 1,000 partitions is an optimal choice. Nevertheless, it is not advisable to create
tables with an excessive number of partitions: this could raise resource consumption in the cluster and negatively impact the query rate.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_primary-key_column-oriented
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_primary-key_column-oriented_partitioning-key
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_primary-key_column-oriented_primary-key
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_primary-key_column-oriented_example


Authentication
Once a network connection is established, the server starts to accept client requests with authentication information for processing. The server uses
it to identify the client's account and to verify access to execute the query.

Note

An authentication client refers to a user undergoing the authentication process when accessing YDB. Examples of clients include the
SDK or CLI.

The following authentication modes are supported:

Anonymous authentication.

Authentication by username and password.

LDAP authentication.

Authentication through a third-party IAM provider, for example, Yandex Identity and Access Management.

Anonymous authentication

Anonymous authentication allows you to connect to YDB without specifying any credentials like username and password. This type of access
should be used only for educational purposes in local databases that cannot be accessed over the network.

However, if a user or token is specified, the corresponding authentication mode will work with subsequent authorization.

Warning

Anonymous authentication should be used only for informational purposes for local databases that are not accessible over the network.

To enable anonymous authentication, use false  in the enforce_user_token_requirement  key of the cluster's configuration file.

Authenticating by username and password

Authentication by username and password using the YDB server is available only to local users. Authentication of external users involves third-party
servers.

This access type implies that each database user has a username and password.

Only digits and lowercase Latin letters can be used in usernames. Password complexity requirements can be configured.

The username and hashed password are stored in a table inside the authentication component. The password is hashed using the Argon2 method.
Only the system administrator has access to this table.

A token is returned in response to the username and password. Tokens have a default lifetime of 12 hours. To rotate tokens, the client, such as the
SDK, independently sends requests to the authentication service. Tokens accelerate authentication and enhance security.

Authentication by username and password includes the following steps:

1. The client accesses the database and presents their username and password to the YDB authentication service.

2. The service validates authentication data. If the data matches, it generates a token and returns it to the authentication service.

3. The client accesses the database, presenting their token as authentication data.

To enable authentication by username and password, ensure that the use_login_provider  and enable_login_authentication  parameters are
set to the default value of true  in the configuration file. Besides, to disable anonymous authentication, set the
enforce_user_token_requirement  parameter to true .

To learn how to manage roles and users, see Authorization.

Password complexity

YDB allows configuring requirements for password complexity. If a password specified in the CREATE USER  or ALTER USER  command does not
meet complexity requirements, the command will result in an error. By default, YDB has no password complexity requirements. A password of any
length is accepted, including an empty string. A password can contain any number of digits and uppercase or lowercase letters, as well as special
characters from the !@#$%^&*()_+{}|<>?=  list. To set requirements for password complexity, define parameters in the password_complexity
section in the configuration.

Password brute-force protection

YDB provides password brute-force protection. A user is locked out after exceeding a specified number of failed attempts to enter a password. After
a certain period, the user will be unlocked and able to log in again.

By default, a user has four attempts to enter a password. If a user fails to enter the correct password in four attempts, the user will be locked out for
an hour. You can change these lockout settings in the auth_config  section of the configuration.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_anonymous
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_static-credentials
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_password-complexity
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_password-brute-force-protection
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_anonymous
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_static-credentials
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_ldap-auth-provider
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_iam
https://yandex.cloud/en/docs/iam/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_auth
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_password-complexity
https://en.wikipedia.org/wiki/Argon2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_auth_config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_security_config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authorization
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_auth_config_password-complexity
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_auth_config_account-lockout


If necessary, a YDB cluster or database administrator can unlock a user before the lockout period expires.

Manual user lockout

YDB provides another method for disabling authentication for a user, manual user lockout by a {{ ydb-short-name } cluster or database
administrator. An administrator can unlock user accounts that were previously locked manually or automatically after exceeding the number of failed
attempts to enter the correct password. For more information about manual user lockout, see the ALTER USER LOGIN/NOLOGIN  command
description.

LDAP directory integration

YDB supports authentication and authorization via an LDAP directory. To use this feature, an LDAP directory service must be deployed and
accessible from the YDB servers.

Examples of supported LDAP implementations include OpenLDAP and Active Directory.

Authentication through a third-party IAM provider

Anonymous: Empty token passed in a request.

Access Token: Fixed token set as a parameter for the client (SDK or CLI) and passed in requests.
Refresh Token: OAuth token of a user's personal account set as a parameter for the client (SDK or CLI), which the client periodically sends to
the IAM API in the background to rotate a token (obtain a new one) to pass in requests.

Service Account Key: Service account attributes and a signature key set as parameters for the client (SDK or CLI), which the client
periodically sends to the IAM API in the background to rotate a token (obtain a new one) to pass in requests.

Metadata: Client (SDK or CLI) periodically accesses a local service to rotate a token (obtain a new one) to pass in requests.

OAuth 2.0 token exchange - The client (SDK or CLI) exchanges a token of another type for an access token using the OAuth 2.0 token
exchange protocol, then it uses the access token in YDB API requests.

Any owner of a valid token can get access to perform operations; therefore, the principal objective of the security system is to ensure that a token
remains private and to protect it from being compromised.

Authentication modes with token rotation, such as Refresh Token and Service Account Key, provide a higher level of security compared to the
Access Token mode that uses a fixed token, since only secrets with a short validity period are transmitted to the YDB server over the network.

The highest level of security and performance is provided when using the Metadata mode, since it eliminates the need to work with secrets when
deploying an application and allows accessing the IAM system and caching a token in advance, before running the application.

When choosing the authentication mode among those supported by the server and environment, follow the recommendations below:

You would normally use Anonymous on self-deployed local YDB clusters that are inaccessible over the network.

You would use Access Token when other modes are not supported on server side or for setup/debugging purposes. It does not require that
the client access IAM. However, if the IAM system supports an API for token rotation, fixed tokens issued by this IAM usually have a short
validity period, which makes it necessary to update them manually in the IAM system on a regular basis.

Refresh Token can be used when performing one-time manual operations under a personal account, for example, related to DB data
maintenance, performing ad-hoc operations in the CLI, or running applications from a workstation. You can manually obtain this token from
IAM once to have it last a long time and save it in an environment variable on a personal workstation to use automatically and with no
additional authentication parameters on CLI launch.

Service Account Key is mainly used for applications designed to run in environments where the Metadata mode is supported, when testing
them outside these environments (for example, on a workstation). It can also be used for applications outside these environments, working as
an analog of Refresh Token for service accounts. Unlike a personal account, service account access objects and roles can be restricted.

Metadata is used when deploying applications in clouds. Currently, this mode is supported on virtual machines and in Cloud Functions
Yandex.Cloud.

The token to specify in request parameters can be obtained in the IAM system that the specific YDB deployment is associated with. In particular,
YDB in Yandex.Cloud uses Yandex.Passport OAuth and Yandex.Cloud service accounts. When using YDB in a corporate context, a company's
standard centralized authentication system may be used.

When using modes in which the YDB client accesses the IAM system, the IAM URL that provides an API for issuing tokens can be set additionally.
By default, existing SDKs and CLIs attempt to access the Yandex.Cloud IAM API hosted at iam.api.cloud.yandex.net:443 .

Authentication

Authentication using the LDAP protocol is similar to the static credentials authentication process (using a login and password). The difference is that
the LDAP directory acts as the authentication component. The LDAP directory is used solely to verify the login/password pair.

Note

Since the LDAP directory is an external, independent service, YDB cannot manage user accounts within it. For successful
authentication, the user must already exist in the LDAP directory. The commands CREATE USER , CREATE GROUP , ALTER USER ,
ALTER GROUP , DROP USER , and DROP GROUP  do not affect the list of users and groups in the LDAP directory. Information on

managing accounts should be found in the documentation for the specific LDAP directory implementation in use.

Currently, YDB supports only one method of LDAP authentication, known as the search+bind  method, which involves several steps. Upon
receiving the username and password of the user being authenticated, a bind operation is performed using the credentials of a special service
account specified in the ldap_authentication section. These credentials are defined by the bind_dn and bind_password configuration parameters.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_manual-user-lockout
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_ldap-auth-provider
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_iam
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_authentication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-user
https://en.wikipedia.org/wiki/LDAP
https://openldap.org/
https://azure.microsoft.com/en-us/products/active-directory/
https://auth0.com/blog/refresh-tokens-what-are-they-and-when-to-use-them/
https://www.rfc-editor.org/rfc/rfc8693
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_ldap-auth-config


After the service account is successfully authenticated, a search is conducted in the LDAP directory for the user attempting to authenticate in the
system. The search operation is performed across the entire subtree rooted at the location specified by the base_dn configuration parameter and
uses the filter defined in the search_filter configuration parameter.

Once the user entry is found, YDB performs another bind operation using the found user's entry and the password provided earlier. The success of
this second bind operation determines whether the user authentication is successful.

After successful authentication, a token is generated. This token is then used in place of the username and password, speeding up the
authentication process and enhancing security.

Note

When using LDAP authentication, no user passwords are stored in YDB.

Token verification

After a user is authenticated in the system, a token is generated and verified before executing the requested operation. During the token verification
process, the system determines on whose behalf the action is being requested and identifies the groups the user belongs to. For users from the
LDAP directory, the token does not include information about group memberships. Therefore, after the token is verified, an additional query is made
to the LDAP server to retrieve the list of groups the user is a member of.

Groups, like users, are entities that can have assigned access rights to perform operations on database schema objects and other resources.
These assigned rights determine which operations a user is authorized to perform.

The process of retrieving a user's group list from an LDAP directory is similar to the steps taken during authentication. First, a bind operation is
performed using the service user credentials specified by the bind_dn and bind_password parameters in the ldap_authentication section of the
configuration file. After successful authentication, a search is conducted for the user entry associated with the previously generated token. This
search uses the search_filter parameter. If the user still exists, the result of the search operation will be a list of attribute values specified by the
requested_group_attribute parameter. If this parameter is not set, the memberOf attribute is used as the default for reverse group membership.
The memberOf attribute contains the distinguished names (DNs) of the groups to which the user belongs.

Group search

By default, YDB only searches for groups in which the user is a direct member. However, by enabling the
extended_settings.enable_nested_groups_search flag in the ldap_authentication section, YDB will attempt to retrieve groups at all levels of
nesting, not just those the user directly belongs to. If YDB is configured to work with Active Directory, the Active Directory-specific matching rule
LDAP_MATCHING_RULE_IN_CHAIN will be used to find all nested groups. This rule allows for the retrieval of all nested groups with a single
query. For LDAP servers based on OpenLDAP, group searches will be conducted using recursive graph traversal, which generally requires multiple
queries. In both Active Directory and OpenLDAP configurations, the group search is performed only within the subtree specified by the base_dn
parameter.

Note

In the current implementation, the group names that YDB uses match the values stored in the memberOf attribute. These names can
be long and difficult to read.

Example:

Note

In the configuration file section that specifies authentication information, the refresh rate for user and group information can be set
using the refresh_time parameter. For more detailed information about configuration files, refer to the cluster configuration section.

Warning

It should be noted that currently, YDB does not have the capability to track group renaming on the LDAP server side. Consequently, a
group with a new name will not retain the rights assigned to the group under its previous name.

LDAP users and groups in YDB

Since YDB supports various methods of user authentication (login and password authentication, IAM provider usage, LDAP directory), it is often
helpful to identify the specific source of authentication when handling user and group names. For all authentication types except login and
password, a suffix in the format <username>@<domain>  is appended to user and group names.

For LDAP users, the <domain>  is determined by the ldap_authentication_domain configuration parameter in the configuration section. By
default, this parameter is set to ldap , so all usernames authenticated through the LDAP directory, as well as their corresponding group names in

cn=Developers,ou=Groups,dc=mycompany,dc=net@ldap

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_token-verification
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_group-search
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_ldap-users-and-groups-in-ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_ldap-auth-config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_ldap-auth-config
https://learn.microsoft.com/en-us/windows/win32/adsi/search-filter-syntax?redirectedfrom=MSDN
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_auth-config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_ldap-auth-config


YDB, will follow this format:

user1@ldap

group1@ldap

group2@ldap

Warning

To indicate that the entered login should be recognized as a username from the LDAP directory, rather than for login and password
authentication, you need to append the LDAP authentication domain suffix. This suffix is specified through the
ldap_authentication_domain configuration parameter.

Below are examples of authenticating the user user1  using the YDB CLI:

Authentication of a user from the LDAP directory: ydb --user user1@ldap -p ydb_profile scheme ls

Authentication of a user using the internal YDB mechanism: ydb --user user1 -p ydb_profile scheme ls

TLS connection

Depending on the specified configuration parameters, YDB can establish either an encrypted or unencrypted connection. An encrypted connection
with the LDAP server is established using the TLS protocol, which is recommended for production clusters. There are two ways to enable a TLS
connection:

Automatically via the ldaps  connection scheme.

Using the StartTls  LDAP protocol extension*.

When using an unencrypted connection, all data transmitted in requests to the LDAP server, including passwords, will be sent in plain text. This
method is easier to set up and is more suited for experimentation or testing purposes.

LDAPS

To have YDB automatically establish an encrypted connection with the LDAP server, the scheme value in the configuration parameter should be
set to ldaps . The TLS handshake will be initiated on the port specified in the configuration. If no port is specified, the default port 636 will be used
for the ldaps  scheme. The LDAP server must be configured to accept TLS connections on the specified ports.

LDAP protocol extension StartTls

StartTls  is an LDAP protocol extension that enables message encryption using the TLS protocol. It allows a combination of encrypted and plain-
text message transmission within a single connection to the LDAP server. YDB sends a StartTls  request to the LDAP server to initiate a TLS
connection. In YDB, enabling or disabling TLS within an active session is not supported. Therefore, once an encrypted connection is established
using StartTls , all subsequent messages sent to the LDAP server will be encrypted. One advantage of using this extension, provided the LDAP
server is appropriately configured, is the capability to initiate a TLS connection over an unencrypted port. The extension can be enabled in the
use_tls  section of the configuration file.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_ldap-tls
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_ldaps
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_starttls
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_ldaps
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_starttls
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_ldap-auth-config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_ldap-auth-config


Authorization

Basic concepts

Authorization in YDB is based on the concepts of:

Access object

Access subject

Access right

Access control list

Owner

User

Group

Regardless of the authentication method, authorization is always performed on the server side of YDB based on the stored information about
access objects and rights. Access rights determine the set of operations available to perform.

Authorization is performed for each user action: the rights are not cached, as they can be revoked or granted at any time.

User

To create, alter, and delete users in YDB, the following commands are available:

CREATE USER
ALTER USER

DROP USER

Note

The scope of the commands CREATE USER , ALTER USER , and DROP USER  does not extend to external user directories. Keep this in
mind if users with third-party authentication (e.g., LDAP) are connecting to YDB. For example, the CREATE USER  command does not
create a user in the LDAP directory. Learn more about YDB's interaction with the LDAP directory.

Note

There is a separate user root  with maximum rights. It is created during the initial deployment of the cluster, during which a password
must be set immediately. It is not recommended to use this account long-term; instead, users with limited rights should be created.

More about initial deployment:

Ansible

Kubernetes

Manually

YDB allows working with users from different directories and systems, and they differ by SID using a suffix.

The suffix @<subsystem>  identifies the "user source" or "auth domain", within which the uniqueness of all login  is guaranteed. For example, in
the case of LDAP authentication, user names will be user1@ldap  and user2@ldap .
If a login  without a suffix is specified, it implies users directly created in the YDB cluster.

Group

Any user can be included in or excluded from a certain access group. Once a user is included in a group, they receive all the rights to database
objects that were provided to the access group.
With access groups in YDB, business roles for user applications can be implemented by pre-configuring the required access rights to the necessary
objects.

Note

An access group can be empty when it does not include any users.

Access groups can be nested.

To create, alter, and delete groups, the following types of YQL queries are available:

CREATE GROUP

ALTER GROUP

DROP GROUP

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authorization
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authorization_basic-concepts
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authorization_user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authorization_group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-subject
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-right
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-acl
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-owner
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-group
https://en.wikipedia.org/wiki/Authentication
https://en.wikipedia.org/wiki/Authorization
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_drop-user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_ldap-auth-provider
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_initial-deployment
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_kubernetes_initial-deployment
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_initial-deployment
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-sid
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_ldap-auth-provider
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_drop-group


Right

Rights in YDB are tied not to the subject, but to the access object.

Each access object has a list of permissions — ACL (Access Control List) — it stores all the rights provided to access subjects (users and groups)
for the object.

By default, rights are inherited from parents to descendants in the access objects tree.

The following types of YQL queries are used for managing rights:

GRANT.

REVOKE.

The following CLI commands are used for managing rights:

chown

grant

revoke

set

clear

clear-inheritance

set-inheritance

The following CLI commands are used to view the ACL of an access object:

describe

list

Object Owner

Each access object has an owner. By default, it becomes the access subject who created the access object.

Note

For the owner, permission lists on this access object are not checked.

They have a full set of rights on the object.

An object owner exists for the entire cluster and each database.

The owner can be changed using the CLI command chown .

The owner of an object can be viewed using the CLI command describe .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authorization_right
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authorization_owner
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-right
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-subject
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-acl
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_subject
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_grant
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_revoke
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_scheme-permissions_chown
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_scheme-permissions_grant-revoke
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_scheme-permissions_grant-revoke
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_scheme-permissions_set
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_scheme-permissions_clear
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_scheme-permissions_clear-inheritance
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_scheme-permissions_set-inheritance
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_scheme-describe
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_scheme-permissions_list
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-owner
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-subject
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-control-list
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_scheme-permissions_chown
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_scheme-describe


Initial cluster security configuration
Initial security is configured automatically when the YDB cluster starts for the first time.

During this process YDB adds a superuser and a set of roles for user access management.

Note

For information about overriding and skipping initial security configuration, see the following sections:

Skipping initial security configuration

Overriding initial security configuration

Roles

Groups

Roles in YDB are implemented as a hierarchy of user groups and a set of access rights for these groups. Access rights for the groups are granted
on the cluster scheme root.

Groups can be nested, and a child group inherits the access rights of its parent group:

For example, users in the DATA-WRITERS  group are allowed to:

View the scheme — METADATA-READERS

Read data — DATA-READERS

Change data — DATA-WRITERS

Users in the DDL-ADMINS  group are allowed to:

View the scheme — METADATA-READERS

Change the scheme — DDL-ADMINS

Users in the ADMINS  group are allowed to perform all operations on the scheme and data.

Superuser

A superuser belongs to the ADMINS  and USERS  groups and has full access rights to the cluster scheme.

By default, a superuser is the root  user with an empty password.

A group for all users

The USERS  group is a common group for all local users. When you add new users, they are automatically added to the USERS  group.

For more information about managing groups and users, see Authorization.

Overriding initial security configuration

You can override the initial security configuration with a custom set of users, groups, and access rights.

Role Description

ADMINS Provides unlimited access rights for the entire YDB cluster scheme.

DATABASE-ADMINS Provides access rights to manage databases, their scheme, and scheme access rights. No data access.

ACCESS-ADMINS Provides access rights to manage scheme access rights. No data access.

DDL-ADMINS Provides access rights to manage the scheme. No data access.

DATA-WRITERS Provides access rights for scheme objects, including reading and modifying data.

DATA-READERS Provides access rights for scheme objects and reading data.

METADATA-READERS Provides access rights for scheme objects. No data access.

USERS Provides access rights for databases. This is a common group for all users.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_builtin-security
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_builtin-security_roles
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_builtin-security_groups
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_builtin-security_superuser
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_builtin-security_all-users-group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_builtin-security_override-initial-security
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_builtin-security_superuser
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_builtin-security_roles
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_builtin-security_skip-initial-security
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_builtin-security_override-initial-security
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authorization_group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authorization_right
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authorization_user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authorization


To specify custom users, groups, and access rights to be created during the initial security configuration, define the default_users ,
default_groups , or default_access  parameters in the security_config  section in the cluster configuration file.

Skipping initial security configuration

You can skip initial security configuration by setting the security_config.disable_builtin_security  parameter to true .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_builtin-security_skip-initial-security
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_security_config_security-bootstrap
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_domains-config


Audit log
An audit log is a stream that includes data about all the operations that tried to change the YDB objects, successfully or unsuccessfully:

Database: Creating, editing, and deleting databases.

Directory: Creating and deleting.

Table: Creating or editing table schema, changing the number of partitions, backup and recovery, copying and renaming, and deleting tables.

Topic: Creating, editing, and deleting.

ACL: Editing.

The data of the audit log stream can be delivered to:

File on each YDB cluster node.

Agent for delivering Unified Agent metrics.

Standard error stream, stderr .

You can use any of the listed destinations or their combinations.

If you forward the stream to a file, access to the audit log is set by file-system rights. Saving the audit log to a file is recommended for production
installations.

Forwarding the audit log to the standard error stream ( stderr ) is recommended for test installations. Further stream processing is determined by
the YDB cluster logging settings.

Audit log events

The information about each operation is saved to the audit log as a separate event. Each event includes a set of attributes. Some attributes are
common across events, while other attributes are determined by the specific YDB component that generated the event.

Attribute Description

Common attributes

subject Event source SID ( <login>@<subsystem>  format). Unless mandatory authentication is enabled, the attribute will 
be set to {none} .
Required.

operation Names of operations or actions are similar to the YQL syntax (for example, ALTER DATABASE , CREATE TABLE ).
Required.

status Operation completion status.
Acceptable values:

SUCCESS : The operation completed successfully.

ERROR : The operation failed.

IN-PROCESS : The operation is in progress.

Required.

reason Error message.
Optional.

component Name of the YDB component that generated the event (for example, schemeshard ).
Optional.

request_id Unique ID of the request that invoked the operation. You can use the request_id  to differentiate events related 
to different operations and link the events together to build a single audit-related operation context.
Optional.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_audit-log
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_audit-log_events
https://yandex.cloud/docs/monitoring/concepts/data-collection/unified-agent/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_logging


Enabling audit log

remote_address The IP of the client that delivered the request.
Optional.

detailed_status The status delivered by a YDB component (for example, StatusAccepted , StatusInvalidParameter , 
StatusNameConflict ).

Optional.

Ownership and permission attributes

new_owner The SID of the new owner of the object when ownership is transferred. 
Optional.

acl_add List of added permissions in short notation (for example, [+R:someuser] ).
Optional.

acl_remove List of revoked permissions in short notation (for example, [-R:someuser] ).
Optional.

Custom attributes

user_attrs_add List of custom attributes added when creating objects or updating attributes (for example, 
[attr_name1: A, attr_name2: B] ).

Optional.

user_attrs_remove List of custom attributes removed when creating objects or updating attributes (for example, 
[attr_name1, attr_name2] ).

Optional.

Attributes of the SchemeShard component

tx_id Unique transaction ID. Similarly to request_id , this ID can be used to differentiate events related to different 
operations.
Required.

database Database path (for example, /my_dir/db ).
Required.

paths List of paths in the database that are changed by the operation (for example, 
[/my_dir/db/table-a, /my_dir/db/table-b] ).

Required.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_audit-log_enabling-audit-log
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_short-access-control-notation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_short-access-control-notation


Delivering events to the audit log stream is enabled for the entire YDB cluster. To enable it, add, to the cluster configuration, the audit_config
section, and specify in it one of the stream destinations ( file_backend , unified_agent_backend , stderr_backend ) or their combination:

Sample configuration that saves the audit log text to /var/log/ydb-audit.log :

Sample configuration that saves the audit log text to Yandex Unified Agent with the audit  label and outputs it to stderr  in JSON format:

Examples

Fragment of audit log file in JSON  format.

audit_config:
  file_backend:
    format: audit_log_format
    file_path: "path_to_log_file"
  unified_agent_backend:
    format: audit_log_format
    log_name: session_meta_log_name
  stderr_backend:
    format: audit_log_format

audit_config:
  file_backend:
    format: TXT
    file_path: "/var/log/ydb-audit.log"

audit_config:
  unified_agent_backend:
    format: TXT
    log_name: audit
  stderr_backend:
    format: JSON

2023-03-13T20:05:19.776132Z: {"paths":"
[/my_dir/db1/some_dir]","tx_id":"562949953476313","database":"/my_dir/db1","remote_address":"ipv6:
[xxxx:xxx:xxx:xxx:x:xxxx:xxx:xxxx]:xxxxx","status":"SUCCESS","subject":"
{none}","detailed_status":"StatusAccepted","operation":"CREATE DIRECTORY","component":"schemeshard"}
2023-03-13T20:07:30.927210Z: {"reason":"Check failed: path: '/my_dir/db1/some_dir', error: path exist, request accepts 
it (id: [OwnerId: 72075186224037889, LocalPathId: 3], type: EPathTypeDir, state: EPathStateNoChanges)","paths":"
[/my_dir/db1/some_dir]","tx_id":"844424930216970","database":"/my_dir/db1","remote_address":"ipv6:
[xxxx:xxx:xxx:xxx:x:xxxx:xxx:xxxx]:xxxxx","status":"SUCCESS","subject":"
{none}","detailed_status":"StatusAlreadyExists","operation":"CREATE DIRECTORY","component":"schemeshard"}

Key Description

file_backend Write the audit log to a file at each cluster node.Optional.

format Audit log format. The default value is JSON .
Acceptable values:

JSON : Serialized JSON.

TXT : Text format.
Optional.

file_path Path to the file that the audit log will be streamed to. If the path and the file are missing, they will be created 
on each node at cluster startup. If the file exists, the data will be appended to it.
This parameter is required if you use file_backend .

unified_agent_backend Stream the audit log to the Unified Agent. In addition, you need to define the uaclient_config  section in 
the cluster configuration.Optional.

log_name The session metadata delivered with the message. Using the metadata, you can redirect the log stream to 
one or more child channels based on the condition: _log_name: "session_meta_log_name" .
Optional.

stderr_backend Forward the audit log to the standard error stream ( stderr ).Optional.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_audit-log_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index
https://en.wikipedia.org/wiki/JSON
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index


Event that occurred at 2023-03-13T20:05:19.776132Z  in JSON-pretty:

The same events in TXT  format will look as follows:

2023-03-13T19:59:27.614731Z: {"paths":"
[/my_dir/db1/some_table]","tx_id":"562949953426315","database":"/my_dir/db1","remote_address":"
{none}","status":"SUCCESS","subject":"{none}","detailed_status":"StatusAccepted","operation":"CREATE 
TABLE","component":"schemeshard"}
2023-03-13T20:10:44.345767Z: {"paths":"[/my_dir/db1/some_table, 
/my_dir/db1/another_table]","tx_id":"562949953506313","database":"{none}","remote_address":"ipv6:
[xxxx:xxx:xxx:xxx:x:xxxx:xxx:xxxx]:xxxxx","status":"SUCCESS","subject":"
{none}","detailed_status":"StatusAccepted","operation":"ALTER TABLE RENAME","component":"schemeshard"}
2023-03-14T10:41:36.485788Z: {"paths":"
[/my_dir/db1/some_dir]","tx_id":"281474976775658","database":"/my_dir/db1","remote_address":"ipv6:
[xxxx:xxx:xxx:xxx:x:xxxx:xxx:xxxx]:xxxxx","status":"SUCCESS","subject":"
{none}","detailed_status":"StatusAccepted","operation":"MODIFY ACL","component":"schemeshard","acl_add":"[+
(ConnDB):subject:-]"}

{
  "paths": "[/my_dir/db1/some_dir]",
  "tx_id": "562949953476313",
  "database": "/my_dir/db1",
  "remote_address": "ipv6:[xxxx:xxx:xxx:xxx:x:xxxx:xxx:xxxx]:xxxxx",
  "status": "SUCCESS",
  "subject": "{none}",
  "detailed_status": "StatusAccepted",
  "operation": "CREATE DIRECTORY",
  "component": "schemeshard"
}

2023-03-13T20:05:19.776132Z: component=schemeshard, tx_id=844424930186969, remote_address=ipv6:
[xxxx:xxx:xxx:xxx:x:xxxx:xxx:xxxx]:xxxxx, subject={none}, database=/my_dir/db1, operation=CREATE DIRECTORY, paths=
[/my_dir/db1/some_dir], status=SUCCESS, detailed_status=StatusAccepted
2023-03-13T20:07:30.927210Z: component=schemeshard, tx_id=281474976775657, remote_address=ipv6:
[xxxx:xxx:xxx:xxx:x:xxxx:xxx:xxxx]:xxxxx, subject={none}, database=/my_dir/db1, operation=CREATE DIRECTORY, paths=
[/my_dir/db1/some_dir], status=SUCCESS, detailed_status=StatusAlreadyExists, reason=Check failed: path: 
'/my_dir/db1/some_dir', error: path exist, request accepts it (id: [OwnerId: 72075186224037889, LocalPathId: 3], type: 
EPathTypeDir, state: EPathStateNoChanges)
2023-03-13T19:59:27.614731Z: component=schemeshard, tx_id=562949953426315, remote_address={none}, subject={none}, 
database=/my_dir/db1, operation=CREATE TABLE, paths=[/my_dir/db1/some_table], status=SUCCESS, 
detailed_status=StatusAccepted
2023-03-13T20:10:44.345767Z: component=schemeshard, tx_id=562949953506313, remote_address=ipv6:
[xxxx:xxx:xxx:xxx:x:xxxx:xxx:xxxx]:xxxxx, subject={none}, database={none}, operation=ALTER TABLE RENAME, paths=
[/my_dir/db1/some_table, /my_dir/db1/another_table], status=SUCCESS, detailed_status=StatusAccepted
2023-03-14T10:41:36.485788Z: component=schemeshard, tx_id=281474976775658, remote_address=ipv6:
[xxxx:xxx:xxx:xxx:x:xxxx:xxx:xxxx]:xxxxx, subject={none}, database=/my_dir/db1, operation=MODIFY ACL, paths=
[/my_dir/db1/some_dir], status=SUCCESS, detailed_status=StatusSuccess, acl_add=[+(ConnDB):subject:-]



Encryption in YDB
YDB provides two main approaches for user data encryption:

Data at rest encryption

Data in transit encryption

It is recommended to use both of them simultaneously in any production environments that handle sensitive data.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_encryption_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_encryption_data-at-rest
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_encryption_data-in-transit


Short access control notation
When describing or logging the permissions granted to users (e.g., in the audit log records), a special short notation for access control may be
used. The notation can vary slightly depending on the list of permissions and their inheritance from child objects.

Notation format

Each entry begins with a +  sign and consists of 2 or 3 attributes listed through the :  symbol.
These attributes are:

List of permissions. If there are multiple, they are wrapped in round brackets and separated by | . Mandatory.

SID of the subject granted permissions. Mandatory.

Inheritance type. Optional.

When the inheritance type is not specified, it means that permission wasn't inherited.

Examples

+R:subject:O

+W:subject

+(SR|UR):subject

+(SR|ConnDB):subject:OC+

List of permissions

A short abbreviation is used to record each permission.

Permission Groups

Permission groups are unions of several permissions. Where possible, one of the groups will be indicated in the short notation.
For example, +R:subject  — permission to read.

Simple Permissions

If there's no matching permission group, the list of permissions will be provided in parentheses separated by the vertical bar |  symbol.

For example, +(SR|UR):subject  — permission for reading and updating table records.

Group Description

L (list) enumeration. It consists of permissions to read ACL attributes and describe objects.

R (read) reading. It consists of permissions to enumerate and read from a table and a topic.

W (write) writing. It consists of permissions to update and delete table records, write ACL attributes, create subdirectories, create 
tables, and topics, modify and delete objects, and change user attributes.

U (use) use. It consists of permissions for reading, writing, granting access rights, and sending requests to the database.

UL (use legacy) obsolete version of use. It consists of permissions for reading, writing, and granting access rights.

M (manage) management. It consists of permissions to create and delete databases.

F (full) all rights. It consists of permissions for use and management.

FL (full legacy) obsolete version of all rights. It consists of permissions for use (obsolete) and management.

Permission Description

SR (select row) reading from the table

UR (update row) updating table records

ER (erase row) deleting table records

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_short-access-control-notation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_short-access-control-notation_notation-format
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_short-access-control-notation_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_short-access-control-notation_access-rights
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_short-access-control-notation_permission-groups
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_short-access-control-notation_simple-permissions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_audit-log


Inheritance Types

One or more inheritance flags can be used to describe the passing of permissions to child objects.

RA (read attributes) reading ACL attributes

WA (write attributes) writing ACL attributes

CD (create directory) creating subdirectory

CT (create table) creating table

CQ (create queue) creating queue

RS (remove schema) deleting objects

DS (describe schema) describing objects, listing directories content

AS (alter schema) modifying objects

CDB (create database) creating database

DDB (drop database) deleting database

GAR (grant access rights) granting access rights (not exceeding their own)

WUA (write user attributes) changing user attributes

ConnDB (connect database) connecting and sending requests to the database

Flag Description

- without inheritance

O this entry will be inherited by child objects

C this entry will be inherited by child containers

+ this entry will be used only for inheritance and will not be used for access checking on the current object

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_short-access-control-notation_inheritance-types


Data at rest encryption
YDB supports transparent data encryption at the DS proxy level using the ChaCha8 algorithm. YDB includes two implementations of this algorithm,
which switch depending on the availability of the AVX-512F instruction set.

By default, data at rest encryption is disabled. For instructions on enabling it, refer to the Blob Storage configuration section.

For more details on the implementation, refer to ydb/core/blobstorage/dsproxy/dsproxy_encrypt.cpp and ydb/core/blobstorage/crypto.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_encryption_data-at-rest
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_ds-proxy
https://cr.yp.to/chacha/chacha-20080128.pdf
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_domains-blob
https://github.com/ydb-platform/ydb/blob/main/ydb/core/blobstorage/dsproxy/dsproxy_encrypt.cpp
https://github.com/ydb-platform/ydb/tree/main/ydb/core/blobstorage/crypto


Data in transit encryption
As YDB is a distributed system typically running on a cluster, often spanning multiple datacenters or availability zones, user data is routinely
transferred over the network. Various protocols can be involved, and each can be configured to run over TLS. Below is a list of protocols supported
by YDB:

Interconnect, a specialized protocol for all communication between YDB nodes.

YDB as a server:

gRPC for external communication with client applications designed to work natively with YDB via the SDK or CLI.

PostgreSQL wire protocol for external communication with client applications initially designed to work with PostgreSQL.

Kafka wire protocol for external communication with client applications initially designed to work with Apache Kafka.

HTTP for running the Embedded UI, exposing metrics, and other miscellaneous endpoints.

YDB as a client:
LDAP for user authentication.

Federated queries, a feature that allows YDB to query various external data sources. Some sources are queried directly from the ydbd
process, while others are proxied via a separate connector process.

Tracing data sent to an external collector via gRPC.

In asynchronous replication between two YDB databases, one serves as a client to the other.

By default, data in transit encryption is disabled and must be enabled separately for each protocol. They can either share the same set of TLS
certificates or use dedicated ones. For instructions on how to enable TLS, refer to the TLS configuration section.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_encryption_data-in-transit
https://en.wikipedia.org/wiki/Transport_Layer_Security
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_actor-system-interconnect
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_overview-grpc-api
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_intro
https://www.postgresql.org/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_kafka-api_index
https://kafka.apache.org/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_monitoring
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_ldap
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_setup
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_async-replication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_tls


Development process: working on a change for YDB
This section contains a step-by-step scenario which helps you complete necessary configuration steps, and learn how to bring a change to the YDB
project. This scenario does not have to be strictly followed, you may develop your own approach based on the provided information.

Set up the environment

GitHub account

You need to have a GitHub account to suggest any changes to the YDB source code. Register at GitHub if haven't done it yet.

SSH key pair

In general to connect to GitHub you can use: ssh/token/ssh from yubikey/password etc. Recommended method is ssh keys.

If you don't have already created keys (or yubikey), then just create new keys. Full instructions are on this GitHub page.

If you have personal keys and use skotty as ssh-agent:

Add keys to skotty with command ssh-add

Edit ~/.skotty/config.yaml  file by adding a section:

If you have a yubikey, you can use the legacy key from the yubikey:

Let's assume you have already configured yubikey (or configure yubikey locally)

On your laptop: skotty ssh keys

Upload legacy@yubikey  ssh key to GitHub (via UI)

test connection on laptop: ssh -T git@github.com

Remote development

If you are developing on a remote dev host you can use the key from your laptop (generated keys or keys from yubikey). You need to configure key
forwarding. (Full instructions are on this GitHub page ).

Suppose your remote machine is dev123456.search.yandex.net.

on your laptop add ssh forwarding ( ~/.ssh/config ):

on remote dev host add to ~/.bashrc :

test connection: ssh -T git@github.com

Git CLI

You need to have the git  command-line utility installed to run commands from the console. Visit the Downloads page of the official website for
installation instructions.

To install it under Linux/Ubuntu run:

Build dependencies

You need to have some libraries installed on the development machine.

To install it under Linux/Ubuntu run:

keys_order:
    - added
    - insecure
    - legacy
    - secure

Host dev123456.search.yandex.net
    ForwardAgent yes

if [[ -S "$SSH_AUTH_SOCK" && ! -h "$SSH_AUTH_SOCK" ]]; then
    ln -sf "$SSH_AUTH_SOCK" ~/.ssh/ssh_auth_sock;
fi
export SSH_AUTH_SOCK=~/.ssh/ssh_auth_sock;

sudo apt-get update
sudo apt-get install git

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_suggest-change
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_suggest-change_envsetup
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_suggest-change_GitHub_login
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_suggest-change_ssh_key_pair
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_suggest-change_remote-development
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_suggest-change_git_cli
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_suggest-change_build_dependencies
https://github.com/
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent#generating-a-new-ssh-key
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent?platform=mac#adding-your-ssh-key-to-the-ssh-agent
https://github.com/settings/keys
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/using-ssh-agent-forwarding
https://git-scm.com/downloads


GitHub CLI (optional)

Using GitHub CLI enables you to create Pull Requests and manage repositories from a command line. You can also use GitHub UI for such actions.

Install GitHub CLI as described at the home page. For Linux Ubuntu, you can go directly to the installation instructions.

Run authentication configuration:

You will be asked several questions interactively, answer them as follows:

After the last answer, you will be asked for a token which you can generate in the GitHub UI:

Tip

You can generate a Personal Access Token here.
The minimum required scopes are 'repo', 'read:org', 'admin:public_key'.

Open the https://github.com/settings/tokens, click on "Generate new token" / "Classic", tick FOUR boxes:

Box workflow

Three others as adivised in the tip: "repo", "admin:public_key" and "read:org" (under "admin:org")

And copy-paste the shown token to complete the GitHub CLI configuration.

Fork and clone repository

YDB official repository is https://github.com/ydb-platform/ydb, located under the YDB organization account ydb-platform .

To work on the YDB code changes, you need to create a fork repository under your GitHub account. Create a fork by pressing the Fork  button on
the official YDB repository page.

After your fork is set up, create a local git repository with two remotes:

official : official YDB repository, for main and stable branches

fork : your YDB repository fork, for your development branches

Once completed, you have a YDB Git repository set up in ~/ydbwork/ydb .

Forking a repository is an instant action, however cloning to the local machine takes some time to transfer about 650 MB of repository data over the
network.

sudo apt-get update
sudo apt-get install libidn11-dev libaio-dev libc6-dev

gh auth login

mkdir -p ~/ydbwork
cd ~/ydbwork
git clone -o official git@github.com:ydb-platform/ydb.git

cd ydb
git remote add fork git@github.com:{your_github_user_name}/ydb.git

Question Answer

What account do you want to log 
into?

GitHub.com

What is your preferred protocol for 
Git operations?

SSH

Upload your SSH public key to 
your GitHub account?

Choose a file with a public key (extention .pub ) of those created on the "Create SSH key pair" 
step, for instance /home/user/.ssh/id_ed25519.pub

Title for your SSH key GitHub CLI (leave default)

How would you like to authenticate 
GitHub CLI

Paste your authentication token

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_suggest-change_gh_cli
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_suggest-change_fork_create
https://cli.github.com/
https://github.com/cli/cli/blob/trunk/docs/install_linux.md#debian-ubuntu-linux-raspberry-pi-os-apt
https://github.com/settings/tokens
https://github.com/settings/tokens
https://github.com/ydb-platform/ydb
https://github.com/ydb-platform/ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_suggest-change_ssh_key_pair


Next, let's configure the default git push  behavior:

This way, git push {remote}  command will automatically set upstream for the current branch to the {remote}  and consecutive git push
commands will only push current branch.

If you intend to use GitHub CLI, then set ydb-platform/ydb  as a default repository for GitHub CLI:

Configure commit authorship

Run the following command to set up your name and email for commits pushed using Git (replace example name and email with your real ones):

Working on a feature

To start working on a feature, ensure the steps specified in the Setup the environment section above are completed.

Refresh trunk

Usually you need a fresh revision to branch from. Sync your local main  branch by running the following command in the repository:

If your current local branch is main :

If your current local branch is not main :

This command updates your local main  branch without checking it out.

Create a development branch

Create a development branch using Git (replace "feature42" with a name for your new branch):

Make changes and commits

Edit files locally, use standard Git commands to add files, verify status, make commits, and push changes to your fork repository:

Consecutive pushes do not require an upstream or a branch name:

Create a pull request to the official repository

When the changes are completed and locally tested (see Ya Build and Test), create Pull Request.

git config push.default current
git config push.autoSetupRemote true

gh repo set-default ydb-platform/ydb

git config --global user.name "Marco Polo"
git config --global user.email "marco@ydb.tech"

git pull --ff-only official main

cd ~/ydbwork/ydb
git fetch official main:main

git checkout -b feature42

git add .
git status

git commit -m "Implemented feature 42"
git push fork

git push

GitHub UI

Visit your branch's page on GitHub.com ( https://github.com/{your_github_user_name}/ydb/tree/{branch_name} ), press Contribute  and
then Open Pull Request .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_suggest-change_author
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_suggest-change_feature
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_suggest-change_fork_sync
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_suggest-change_create_devbranch
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_suggest-change_commit
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_suggest-change_create_pr
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_suggest-change_envsetup
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_build-ya


Precommit checks

Prior to merging, the precommit checks are run for the Pull Request.

For changes in the YDB code, precommit checks build YDB artifacts, and run tests as described in ya.make  files. Build and test run on a specific
commit which merges your changes to the current main  branch. If there are merge conflicts, build/test checks cannot be run, and you need to
rebase your changes as described below.

You can see the checks status on the Pull Request page. Also, key information for YDB build/test checks progress and status is published to the
comments of the Pull Ruquest.

If you are not a member of the YDB team, build/test checks do not run until a team member reviews your changes and approves the PR for tests by
assigning a label ok-to-test .

Checks are restarted every time you push changes to the pull request, cancelling the previous run if it's still in progress. Each iteration of checks
produces its own comment on the pull request page, so you can see the history of checks.

If you are a member of the YDB team, you can also restart checks on a new merge commit without pushing. To do so, add label rebase-and-
check  to the PR.

Test results

You can click on the test amounts in different sections of the test results comment to get to the simple HTML test report. In this report you can see
which tests have been failed/passed, and get to their logs.

Test history

Each time when tests are run by the YDB CI, their results are uploaded to the test history application. There's a link "Test history" in the comment
with test results heading to the page with the relevant run in this application.

In the "Test History" YDB team members can browse test runs, search for tests, see the logs, and compare them between different test runs. If
some test is failed in a particular precommit check, it can be seen in its history if this failure had been introduced by the change, or the test had
been broken/flaky earlier.

Review and merge

The Pull Request can be merged after obtaining an approval from the YDB team member. Comments are used for communication. Finally a
reviewer from the YDB team clicks on the 'Merge' button.

Update changes

If there's a Pull Request opened for some development branch in your repository, it will update every time you push to that branch, restarting the
checks.

Rebase changes

If you have conflicts on the Pull Request, you may rebase your changes on top of the actual trunk from the official repository. To do so, refresh main
branch state on your local machine, and run the rebase command:

Cherry-picking fixes to the stable branch

You can also use the link in the git push  output to open a Pull Request:

...
remote: Resolving deltas: 100% (1/1), completed with 1 local object.
remote:
remote: Create a pull request for '{branch_name}' on GitHub by visiting:
remote:      https://github.com/{your_github_user_name}/test/pull/new/{branch_name}
...

GitHub CLI

Install and configure GitHub CLI.

After answering some questions, the Pull Request will be created and you will get a link to its page on GitHub.com.

cd ~/ydbwork/ydb

gh pr create --title "Feature 42 implemented"

# Assuming your active branch is your development branch
git fetch official main:main
git rebase main

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_suggest-change_precommit_checks
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_suggest-change_test-results
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_suggest-change_test_history
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_suggest-change_review
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_suggest-change_update
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_suggest-change_rebase
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_suggest-change_cherry_pick_stable
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_suggest-change_rebase
https://nebius.testmo.net/projects/view/1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_suggest-change_fork_sync
https://cli.github.com/


When required to cherry-pick a fix to the stable branch, first branch off of the stable branch:

Then cherry-pick the fix and push the branch to your fork:

And then create a PR from your branch with the cherry-picked fix to the stable branch. It is done similarly to opening a PR to main , but make sure
to double-check the target branch.

If you are using GitHub CLI, pass -B  argument to specify the target branch:

git fetch official
git checkout -b "cherry-pick-fix42" official/stable-24-1

git cherry-pick {fixes_commit_hash}
git push fork

gh pr create --title "Title" -B stable-24-1



Build and test YDB using Ya Make
Ya Make is a build and test system used historically for YDB development. Initially designed for C++, now it supports number of programming
languages including Java, Go, and Python.

Ya Make build configuration language is a primary one for YDB, with a ya.make  file in each directory representing Ya Make targets.

Setup the development environment as described in Working on a change - Setup environment arcticle to work with Ya Make .

Running Ya commands

There's a ya  script in the YDB repository root to run Ya Make  commands from the console. You can add it to the PATH evniromnet variable to
enable launching without specifiying a full path. For Linux/Bash and GitHub repo cloned to ~/ydbwork/ydb  you can use the following command:

Run ya  without parameters to get help:

You can get detailed help on any subcommand launching it with a --help  flag, for instance:

The ya  script downloads required platform-specific artifacts when started, and caches them locally. Periodically, the script is updated with the links
to the new versions of the artifacts.

Setup IDE

If you're using IDE for development, there's a command ya ide  which helps you create a project with configured tools. The following IDEs are
supported: goland, idea, pycharm, venv, vscode (multilanguage, clangd, go, py).

Go to the directory in the source code which you need to be a root of your project. Run the ya ide  command specifying the IDE name, and the
target directory to write the IDE project configuration in a -P  parameter. For instance, to work on the YQL library changes in vscode you can run
the following command:

Now you can open the ~/ydbwork/vscode/yqllib/ide.code-workspace  from vscode.

Build a target

There are 3 basic types of targets in Ya Make : Program, Test, and Library. To build a target run ya make  with the directory name. For instance, to
build a YDB CLI run:

echo "alias ya='~/ydbwork/ydb/ya'" >> ~/.bashrc
source ~/.bashrc

$ ya
Yet another build tool.

Usage: ya [--precise] [--profile] [--error-file ERROR_FILE] [--keep-tmp] [--no-logs] [--no-report] [--no-tmp-dir] [--
print-path] [--version] [-v] [--diag] [--help] <SUBCOMMAND> [OPTION]...

Options:
...

Available subcommands:
...

$ ya make --help
Build and run tests
To see more help use -hh/-hhh

Usage:
  ya make [OPTION]... [TARGET]...

Examples:
  ya make -r               Build current directory in release mode
  ya make -t -j16 library  Build and test library with 16 threads
  ya make --checkout -j0   Checkout absent directories without build

Options:
...

cd ~/ydbwork/ydb/library/yql
ya ide vscode -P=~/ydbwork/vscode/yqllib

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_build-ya
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_build-ya_run_ya
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_build-ya_ide
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_build-ya_make
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_suggest-change


You can also run ya make  from inside a target directory without parameters:

Run tests

Running a ya test  command in some directory will build all test binaries located inside its subdirectories, and start tests.

For instance, to run YDB Core small tests run:

To run medium and large tests, add options -tt  and -ttt  to the ya test  call, respectively.

cd ~/ydbwork/ydb
ya make ydb/apps/ydb

cd ~/ydbwork/ydb/ydb/apps/ydb
ya make

cd ~/ydbwork/ydb
ya test ydb/core

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_build-ya_test


Manage YDB releases
There are two products based on the source code from the YDB repository with independent release cycles:

YDB server

YDB command-line interface (CLI)

YDB server release cycle

Release numbers and schedule

YDB server version consists of three numbers separated by dots:

1. The last two digits of calendar year of the release

2. Major release ordinal number in a given year

3. Minor release ordinal number for a given major release

Thus, YDB server major version is a combination of the first two numbers (for example, 23.3 ), and the full version is a combination of all three (for
example, 23.3.5 ).

YDB server release schedule typically includes 4 major releases per year, so the release YY.1  is the first one, and YY.4  is the last one for a year
YY . The number of minor releases is not fixed, and may vary from one major release to another.

Compatibility

YDB maintains compatibility between major versions to ensure a cluster can operate while its nodes run two adjacent major versions of the YDB
server executable. You may refer the Updating YDB article to learn more about the cluster upgrade procedure.

Given the above compatibility target, major releases go in pairs: odd numbered releases add new functionality switched off by feature flags, and
even numbered releases enable that functionality by default.

For instance, release 23.1  comes with the new functionality switched off. It can be incrementally rolled out to a cluster running 22.4 , without
downtime. As soon as the whole cluster runs 23.1  nodes, you can manually toggle feature flags to test new functionality and later further upgrade
it to 23.2  to fully leverage this new functionality.

Release branches and tags

A release cycle for an odd major release starts by a member of a YDB Release team forking a new branch from the main  branch. Major release
branch name starts with prefix stable- , followed with the major version with dots replaced by dashes (for example, stable-23-1 ).

A release cycle for an even major release starts by branching from the preceding odd major version branch. The branch follows the same naming
convention.

All major version releases, both odd and even, go through the comprehensive testing process producing a number of minor versions. Each minor
version is created by tagging a relevant commit of the release branch with a full version number. So, there can be tags 24.1.1 , 24.1.2  etc. on
the stable-24-1  branch. As soon as a minor version proves its quality, we consider it as stable, and register a Release on GitHub linked to its tag,
add it to downloads and changelog documentation pages, etc. Thus, there can be more that one stable release for a major version.

Testing

Release testing is iterative. Each iteration starts by assigning a tag to a commit on the release branch, specifying a minor version to be tested. For
example, the minor version tag 23.3.5  marks a 5th testing iteration for the major release 23.3 .

A tag can be considered to be either "candidate" or "stable". Initially, the first tag is created in the release branch right after its creation. This tag is
considered as "candidate".

During a testing iteration, code from release branches undergoes an extensive testing including deployment on UAT, prestable, and production
environments of companies using YDB. To perform such testing, YDB code from a GitHub release tag is imported into the corporate context of a
given user, following its internal policies and standards. Then it's built, deployed to the necessary environments, and thoroughly tested.

Based on a list of uncovered problems, the YDB Release team decides if the current minor release can be promoted to be called "stable", or a new
testing iteration must be started over with a new minor release tag. In fact, as soon as a critical problem is discovered during testing, developers fix
it in the main  branch, and backport changes to the release branch right away. So, by the time testing iteration finishes, there will be a new tag and
a new testing iteration if there are some new commits on top of the current tag.

Stable release

If testing iteration proves the quality of a minor release, the YDB Release team prepares the release notes, and publishes the YDB server release
on both the GitHub Releases and Downloads pages, therefore declaring it as "stable".

YDB CLI (Command-Line Interface) release cycle

Release numbers and schedule

YDB CLI version consists of three numbers separated by dots:

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_manage-releases
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_manage-releases_server
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_manage-releases_server-versioning
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_manage-releases_server-compatibility
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_manage-releases_server-branches-tags
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_manage-releases_server-testing
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_manage-releases_server-stable
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_manage-releases_cli
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_manage-releases_cli-versioning
https://github.com/ydb-platform/ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_manage-releases_server
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_manage-releases_cli
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_upgrade
https://github.com/orgs/ydb-platform/teams/release
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_index_ydb-server
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server
https://en.wikipedia.org/wiki/Acceptance_testing
https://github.com/orgs/ydb-platform/teams/release
https://github.com/orgs/ydb-platform/teams/release
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server
https://github.com/ydb-platform/ydb/releases
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_index_ydb-server


1. Major release ordinal number (currently, 2 )

2. Minor release ordinal number for a given major release

3. Patch number

For example, 2.8.0  is the 2nd major release, 8th minor, without additional patches.

There's no schedule for the YDB CLI minor releases, a new release comes as soon as there's some new valuable functionality. Initially, every new
minor release has 0  as a patch number. If there are critical bugs found in that version, or some minor part of functionality did not catch it as
planned, a patch can be released, incrementing only the patch number, like it was for 2.1.1 .

In general, release cycle for YDB CLI is much simpler and shorter than for the server, producing more frequent releases.

Release tags

Tags for YDB CLI are assigned on the main  branch by a member of the YDB Release team after running tests for some revision. To distinguish
from the YDB server tags, YDB CLI tags have a CLI_  prefix before the version number, for example CLI_2.8.0.

Stable release

To declare a YDB CLI tag as stable, a member of the YDB Release team prepares the release notes, and publishes the release on the GitHub
Releases and Downloads pages.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_manage-releases_cli-tags
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_manage-releases_cli-stable
https://github.com/orgs/ydb-platform/teams/release
https://github.com/ydb-platform/ydb/tree/CLI_2.8.0
https://github.com/orgs/ydb-platform/teams/release
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli
https://github.com/ydb-platform/ydb/releases
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_index_ydb-cli


Contributing to YDB documentation
YDB follows the "Documentation as Code" approach, meaning that the YDB documentation is developed using similar techniques and tools as its
main C++ source code.

The documentation source code consists of Markdown files and YAML configuration files located in the ydb/docs folder of the primary YDB GitHub
repository. The compiler for this source code is an open-source tool called Diplodoc. See its documentation for details on its Markdown syntax
flavor, configuration options, extensions, and more.

The process of suggesting changes to the documentation source code is mostly similar to changing any other YDB source code, so most of
Development process: working on a change for YDB applies. The main additional considerations are:

Extra precommit checks run for pull requests to the documentation. One of these checks posts a comment with a link to an online preview of
the changes or a list of errors.

The code review process includes additional steps. See Review process for YDB documentation and YDB documentation style guide.

For small changes like fixing a typo, you can use the "Edit this file" feature in the GitHub web interface. Each documentation page has an "Edit
on GitHub" link (represented by a pencil icon in the top-right corner) that directs you to the page's source code in the GitHub web interface.

After a pull request to the documentation is merged into the main  branch, the CI/CD pipeline automatically deploys it to the YDB website.
Documentation is also automatically deployed for stable YDB server versions from git  branches named stable-* , where these versions are
developed. If C++ code and documentation for a feature were committed separately and a new stable branch was forked between these commits,
backporting some changes to the stable branch might be necessary. The same applies to typo fixes and other "bug fixes" to the documentation
content. See Manage YDB releases for more details on the YDB release process.

See also

YDB documentation structure

YDB documentation genres

GitHub documentation

Git documentation

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_index_see-also
https://github.com/ydb-platform/ydb/tree/main/ydb/docs
https://diplodoc.com/en/
https://diplodoc.com/docs/en/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_suggest-change
https://github.com/ydb-platform/ydb/actions/workflows/docs_build.yaml
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_review
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_style-guide
https://github.com/ydb-platform/ydb/actions/workflows/docs_release.yaml
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_manage-releases
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_structure
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_genres
https://docs.github.com/en
https://git-scm.com/doc


Review process for YDB documentation
Building on the high-level overview in Contributing to YDB documentation, this article dives deeper into what happens during the documentation pull
request review stage.

Roles

Author — the person suggesting a change to the documentation.

Primary reviewer — the person thoroughly inspecting the suggested change according to the checklist.

Final reviewer — the person double-checking the change using the same checklist and approving the pull request on GitHub.

Process

1. Author opens a GitHub pull request with suggested changes to the ydb/docs folder. Following the style guide from the beginning makes the
review process smoother.

2. Author ensures the pull request is in a reviewable state by meeting all of the following criteria:

2.1. The pull request has * Documentation  as the only changelog category. If done correctly, automation marks the pull request with a
"documentation" label.

2.2. The pull request is not marked as a draft.

2.3. The suggested change builds successfully, and automation has posted a comment with a preview link (instead of errors). The preview
shows the changed content as expected.

3. (optional) Author shares a link to the pull request in a community or documentation-related chat for extra visibility.

4. A primary reviewer gets automatically assigned or picks the pull request from the inbound list via the "assign yourself" button, and then
provides the initial set of feedback and suggestions.

5. The author and primary reviewer iterate until the suggested change passes the checklist. The primary reviewer provides feedback via
comments on the pull request, while the author addresses them. The expected turnaround time for each review iteration is two business days,
up to a few weeks in case of force majeure. Additionally, the primary reviewer periodically checks pull requests assigned to them and clarifies
the status with authors if nothing happens for several business days (in GitHub comments, plus in personal communication if possible).

6. Once the primary reviewer confirms that the pull request meets the checklist requirements, they:

Enable auto-merge for the pull request. If the target branch of the pull request differs from main , the auto-merge feature will not be
available: in this case, the primary reviewer should manually click the "Squash and merge" button after approval by the final reviewer in

Temporarily excluding yourself from automatic assignment if you're a primary reviewer

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_review
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_review_roles
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_review_process
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_review_checklist
https://github.com/ydb-platform/ydb/tree/main/ydb/docs
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_style-guide
https://t.me/ydb_en
https://github.com/ydb-platform/ydb/pulls?q=is%3Aopen+is%3Apr+label%3Adocumentation+draft%3Afalse+no%3Aassignee
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_review_checklist


step 7.

Dismiss their stale review with a "lgtm" comment.

The primary reviewer passes the process to the final reviewer for additional review with a fresh set of eyes. This typically happens via a
direct personal message, but since whole step 6 is done simultaneously, this event is still visible in the pull request itself through the
previous sub-steps (enabled auto-merge and/or dismissed review from the primary reviewer).

7. Depending on the final reviewer's verdict:

If the final reviewer approves, the pull request starts meeting one of the mandatory conditions for merging. Thus, if the build is still
passing, GitHub's auto-merge likely merges the pull request automatically. Otherwise, any issues must be addressed manually.

If the final reviewer provides additional feedback or suggestions, the process returns to step 5.

8. If auto-merge was not enabled in step 6, the primary reviewer clicks the "Squash and merge" button.

9. After the content lands in the main  branch, it will be automatically published to the official YDB website via CI/CD.

10. YDB documentation is multilingual, and authors are expected to provide synchronized changes for all supported languages (currently English
and Russian), if applicable. If the author does not know all required languages, using an LLM or machine translation is acceptable. The
translation timing depends on complexity:

For simple changes, it's usually best to translate at the beginning and go through the review process with a single pull request covering all
languages.

For complex changes likely requiring multiple review iterations, it's acceptable to first complete the review process in one language and
then start a separate translation pull request after approval.

Checklist

[ ] The text is understandable for the article's target audience.
[ ] The text is technically accurate.

[ ] The text is grammatically correct, with no punctuation, spelling, or typographical errors.

[ ] Terminology is consistent. The first mention of each term used in the article is a link to its explanation in the YDB glossary or a well-known
source like Wikipedia.

[ ] Each new article is correctly placed in the documentation structure.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_review_checklist
https://en.wiktionary.org/wiki/LGTM
https://en.wikipedia.org/wiki/Large_language_model
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_structure


[ ] Each article follows a single genre and aligns with its place in the documentation structure.

[ ] Each new article includes links to all relevant existing documentation pages, either inline or in a "See also" section.

[ ] Relevant existing articles are updated with links to new articles.

[ ] All new articles are listed in YAML files with table of contents and their folder's index.md .

[ ] All renamed or moved articles are reflected in redirects.yaml.

[ ] The article's voice, tone, and style match the rest of the documentation or, at a minimum, remain consistent within the article.

Tip

This checklist is a condensed version of YDB documentation style guide and serves as a reminder. Feel free to copy-paste it into the
pull request description and check off items as you go. Refer to the full style guide for initial understanding and additional details.

What documentation review is not

Testing

Documentation review is not a replacement for testing. If the documentation includes instructions, the author is responsible for ensuring their
correctness, implementing automated tests to maintain accuracy over time, etc.

The primary reviewer and/or final reviewer may choose to follow the instructions to see how they work in practice, but this is not mandatory.

Technical design review

Documentation review is not a technical design review. Documentation is typically written for mostly completed features, so significant changes to
product behavior are rarely possible at this stage. However, the primary reviewer and/or final reviewer may highlight any inconsistencies, odd
behaviors, or usability concerns. It is the author's responsibility to address them immediately if possible or consider them for future iterations of the
feature being described.

See also

GitHub documentation

Git documentation

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_review_what-documentation-review-is-not
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_review_testing
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_review_technical-design-review
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_review_see-also
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_genres
https://github.com/ydb-platform/ydb/blob/main/ydb/docs/redirects.yaml
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_style-guide
https://docs.github.com/en
https://git-scm.com/doc


YDB documentation style guide
The YDB documentation style guide is designed to help writers create clear, consistent, and developer-friendly documentation.

Core principles

Target audience understanding:
Before starting a new article or improving an existing one, take a moment to narrow down its target audience. Consider their specific role
(application developers, DevOps engineers, security engineers, etc.), technical background, and familiarity with the subject and YDB in
general.

Ensure the text is understandable to the article's intended audience.

Clear language:
Use plain, simple language that directly communicates ideas.

Avoid complicated phrases that might be challenging for non-native speakers.

Avoid jargon and slang unless they are industry-standard.
Consistent terminology:

For each uncommon term in the article, ensure that the first usage links to an explanation:

For YDB-specific terms, link to the YDB glossary. If the glossary lists multiple synonyms for the term, use the primary one from the
glossary header. If the glossary entry is missing, add it.

For generic terms that some readers might not know, link to their Wikipedia page or a similar well-known source. Avoid linking to blog
posts, social media, or random third-party articles.

If there's an abbreviation, spell it out in full the first time it appears in the article and explicitly show the abbreviation in parentheses. For
example, Structured Query Language (SQL).

Structured content:
Each article should have only one goal for the reader to achieve. If the text pursues multiple goals, it likely needs to be split into multiple
articles. If possible, explicitly state this goal at the beginning of the article and reiterate it at the end.

Each article should follow only one genre. If not, it likely needs to be split into multiple articles.

Organize articles with clear headings, subheadings, bullet lists, notes, tables, and code blocks to help readers quickly navigate the
information.

Follow the overall documentation structure when creating new articles.

Voice and tone

Conversational. Aim for a tone that feels like a knowledgeable friend explaining concepts in an approachable manner.

Friendly and respectful. Maintain a balance of professionalism and warmth that invites engagement.

Inclusive language. Write in a neutral and respectful way, avoiding biased or exclusive language.

Context-dependent. Adjust your tone based on the type of content. For tutorials, be more encouraging; for reference material, be more
concise.

Active voice. Prefer active constructions to ensure clarity and immediacy, making instructions easier to follow.

Language-specific

Ensure that text follows proper language rules with no typos, grammar, punctuation, or spelling issues. Additionally, follow these YDB-specific rules.

English-only

Use the serial comma where appropriate.

Use title case for headers, preferably following the Chicago Manual of Style rules.

Use double quotes ( " ).

Russian-only

Use ё  where appropriate.

Use guillemets for quotes ( «  and » ).

Use —  for long dashes.

Use semicolons for bullet and numbered lists where appropriate, i.e., for all items except the last one, unless items contain multiple sentences.

Do not use title case for headers.

Formatting and structure

Clear hierarchy. Use headings and subheadings to define sections and make the document easy to scan.
Lists and bullet points. Use bullet points or numbered lists to break down steps, features, or recommendations.

Visual highlights. If there's an important warning, information, or tip, highlight it using a {% note info %} ... {% endnote %}  tag. For
smaller inline highlights, sparingly use bold or italic.

Code and samples. When including code, use proper syntax highlighting, formatting, and comments to ensure readability. Show example
output for queries and CLI commands. Use code blocks  for everything likely to appear in a console or IDE, but not for visual highlights.

File naming. Use dashes instead of underscores for spaces in new file and folder names (e.g., new-folder/new-file.md  instead of
new_folder/new_file.md ). However, underscores are acceptable in keywords that should be written specifically with underscores, such as

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_style-guide
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_style-guide_core-principles
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_style-guide_voice
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_style-guide_language-specific
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_style-guide_english-only
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_style-guide_russian-only
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_style-guide_formatting-and-structure
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_genres
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_structure
https://en.wikipedia.org/wiki/Serial_comma
https://en.wikipedia.org/wiki/Title_case
https://en.wikipedia.org/wiki/Title_case#Chicago_Manual_of_Style
https://en.wikipedia.org/wiki/Guillemet


in setting names.

Linking and references.
Provide clear and descriptive links to related resources or additional documentation.

Links internal to documentation should always include a .md  suffix and always be relative (that is, no https://ydb.tech  prefix);
otherwise, link consistency checking doesn't work, and they will eventually start leading to 404 errors.

Instead of repeating the target's header for internal links, use [{#T}](path/to/an/article.md) .

No copy-pasting. If a piece of information needs to be displayed more than once, create a separate Markdown file in the _includes  folder,
then add it to all necessary places via the include  feature instead of duplicating content by copying and pasting.

Markdown syntax style. YDB documentation uses an automated linter for Markdown files. Refer to .yfmlint for the up-to-date list of enforced
rules.

Variable usage. The YDB documentation has a configuration file, presets.yaml, that lists variables to prevent typos or conditionally hide
content. Use these variables when appropriate, particularly YDB  instead of YDB .

Diagrams. Prefer built-in Mermaid diagrams when possible. If using an external tool, submit the source file in the same _assets  folder near
the image for future edits. Ensure diagrams look good in both light and dark modes.
Proper article placement. New articles should be correctly placed in the documentation structure.

Genre consistency. Articles should not mix multiple genres, and the genre should match the article's place in the documentation structure.

Documentation integration

Cross-referencing. Include links to all relevant existing documentation pages, either inline or in a "See also" section at the end.

Bidirectional linking. Update relevant existing articles with links to new articles.

Index inclusion. Mention all articles in table of contents ( toc_i.yaml  or toc_p.yaml ) and their folder's index.md .

Source code links. Link directly to source files on GitHub when relevant. If the target is likely to change significantly over time, use a link to a
specific commit or stable branch.

Glossary links:
When a YDB-specific term is mentioned in an article for the first time, make it a clickable link to the related glossary entry.

If there's a separate detailed article covering the same topic as a glossary term, link to it from the glossary term description.

Usage and flexibility

Guidelines, not rigid rules. This style guide offers recommendations to improve clarity and consistency, but flexibility is allowed when
deviations benefit the content.

Supplementary resources. Writers are encouraged to consult external style guides (e.g., The Chicago Manual of Style, Merriam-Webster)
when in doubt.
Updates. This guide is meant to evolve with the rest of the content over time. If you contribute to YDB documentation frequently, check back
periodically for updates.

Things to avoid

Jargon and slang.

Using "we".

Jokes and other emotional content.

Excessively long sentences.

Unrelated topics and references, such as culture, religion, or politics.

Overly detailed implementation specifics (except in YDB Development, YDB Server changelog, and Videos).

Reusing third-party content without written permission or a compatible open-source license explicitly allowing it.

HTML inside Markdown, except as a workaround for missing visual styles.

See also

Contributing to YDB documentation

Review process for YDB documentation

YDB documentation structure

YDB documentation genres

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_style-guide_documentation-integration
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_style-guide_usage-and-flexibility
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_style-guide_things-to-avoid
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_style-guide_see-also
https://diplodoc.com/docs/en/project/includes
https://github.com/ydb-platform/ydb/blob/main/ydb/docs/.yfmlint
https://github.com/ydb-platform/ydb/blob/main/ydb/docs/presets.yaml
https://github.com/diplodoc-platform/mermaid-extension
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_structure
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_genres
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_public-materials_videos
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_review
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_structure
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_genres


YDB documentation structure
This article complements YDB documentation style guide. It explains the current top-level folders of the documentation and what kind of content
belongs in each. As a rule of thumb, most top-level sections focus either on a specific target audience (if named "For ...") or on a specific genre.

Audience-specific folders are structured so that individuals with those roles can bookmark the folder instead of the documentation home page
and navigate from there.

Genre-specific folders are mainly designed to be found as needed through the built-in documentation search, third-party search engines, or
LLMs.

Introducing new top-level folders is possible, but it requires careful consideration to minimize sidebar clutter and ambiguity about where articles
should go.

General rules

YDB documentation is multilingual, and the file structure for each language must be consistent for the language switcher to function correctly.
The file content should also be as close as possible between languages. The only exception is the Public materials folder, which intentionally
contains different content for different languages. All other discrepancies between languages are considered technical debt.

Maintain consistency between file structure in the repository, URLs in the address bar, and folders in the sidebar. Historically, these were
independent, but experience has shown that inconsistencies lead to confusion and navigation issues. The documentation is gradually
transitioning to a unified structure.

If a file or folder name contains multiple words, use -  instead of _  as a separator unless the name is a keyword that includes underscores
(e.g., configuration section names).

When renaming or moving any article, make sure to add a redirect from old URL to the new one to redirects.yaml.

List of top-level folders

Quick start. A single guide for beginners explaining how to set up a single-node YDB server and run initial queries.

Concepts. A high-level theoretical overview of YDB as a technology, covering its features, terminology, and architecture. Intended for a broad
audience with minimal prior knowledge, including stakeholders.

For DevOps. A folder for DevOps engineers responsible for setting up and running YDB clusters. Most content consists of practical guides for
specific cluster-related tasks. Since YDB supports multiple deployment options, guides that differ based on deployment method are placed in
respective subfolders (Ansible, Kubernetes, or Manual), each following a consistent internal structure. Role-specific theoretical information is
also included here.
For Developers. A folder for application developers working with YDB. Primarily consists of practical guides and some theory.

For Security Engineers. A folder for security engineers responsible for securing and auditing YDB clusters and applications that interact with
them. Contains mostly practical guides and some role-specific theory.

For Contributors.** A folder for YDB core team members and external contributors. It explains various YDB development processes and
provides deeper insights into how some components work. Mostly theory with some practical guides.

Reference. A detailed reference section covering various aspects of YDB, designed to be found as needed or discovered via inbound links.
The primary goal is completeness so that any topic can be located through exact keyword matches or descriptions. The three main use cases
for this section are:

Looking up unfamiliar keywords, functions, settings, arguments, etc.

Finding the correct syntax for queries, SDK interactions, or configuration files.

Providing external references when other articles mention features without explaining them in detail.

Recipes. Mini-guides explaining specific tasks with YDB, often with examples and code snippets. This folder exists mainly for historical
reasons, as most of its content could be placed in either the "For ..." folders or "Questions and answers."

Troubleshooting. A mix of theory on potential issues related to YDB and applications working with them, as well as practical guides for
diagnosing and resolving them.

Questions and answers. A StackOverflow-style section with frequently asked questions. Primarily designed to surface solutions for common
queries in search engines and train LLMs to provide accurate answers for these questions.

Public materials. A collection of links to videos and articles about YDB. Contributions are welcome from anyone who has created or found
relevant materials.

Downloads. A collection of links to download YDB binaries.

Changelog. Release notes for each new version of the YDB server and other related binaries.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_structure
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_structure_general-rules
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_structure_list-of-top-level-folders
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_style-guide
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_genres
https://en.wikipedia.org/wiki/Large_language_model
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_public-materials_videos
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index
https://github.com/ydb-platform/ydb/blob/main/ydb/docs/redirects.yaml
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_quickstart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_genres_guide
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_genres_theory
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_genres_guide
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_kubernetes_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_genres_theory
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_genres_guide
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_genres_theory
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_genres_guide
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_genres_theory
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_genres_theory
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_genres_guide
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_genres_reference
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_genres_guide
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_genres_theory
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_genres_guide
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_genres_faq
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_public-materials_videos
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_genres_links
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_genres_links
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_genres_release-notes


YDB documentation genres
This article complements YDB documentation style guide by describing the main genres used in YDB documentation. Understanding these genres
helps contributors place new content in the appropriate section and maintain a consistent structure.

Theory

Primary goal for the reader: build a solid knowledge foundation by understanding the fundamental concepts, architecture, and principles behind
YDB.

Introduces key concepts and terminology

Explains how things work both from the user's perspective and under the hood

Provides high-level overviews of system components

Helps users understand the "why" behind design decisions

Can be targeted at either a broad audience with minimal prior knowledge or a specific role

Can include diagrams and other visualizations to help convey information

Theory documentation is primarily found in the "Concepts" section but also appears in role-specific folders when the theoretical information is
relevant only to a particular audience.

Guide

Primary goal for the reader: accomplish a specific practical task or implement a particular solution with YDB by following instructions.

Guides are practical, step-by-step instructions that help users accomplish a specific goal with YDB. Each article in this genre:

Provides a clear goal and sequential instructions to achieve it

Includes concrete examples and commands
Focuses on practical implementation

Addresses specific use cases or scenarios

Can include screenshots to illustrate steps

Guides are primarily found in role-specific folders like "For DevOps", "For Developers", and "For Security Engineers", as well as in the
"Troubleshooting" section.

Reference

Primary goal for the reader: find additional information about a specific niche topic related to YDB.

Reference documentation provides comprehensive, detailed information about YDB components, queries, APIs, configuration options, CLI
commands, UI pages, and more. This genre:

Aims for completeness and precision

Serves as a lookup resource for specific details

Documents all available options, parameters, and settings

Is organized for quick information retrieval via a search engine or LLM

Includes syntax, data types, parameters, return values, defaults, configuration, and examples

Reference documentation is designed to be found as needed and is the most detailed level of documentation. It's particularly useful when users
need specific information about functions, settings, or keywords. This content is primarily found in the "Reference" section.

FAQ

Primary goal for the reader: quickly find answers to common questions encountered when working with YDB.

Frequently Asked Questions (FAQ) documentation answers common questions about YDB in a direct question-and-answer format. This genre:

Addresses specific, commonly asked questions

Provides concise, focused answers

Is organized by topic or category

Helps users quickly find solutions to common problems

Is optimized for search engine or LLM discovery

FAQ content is primarily found in the "Questions and answers" section and is designed to help users who are searching for specific solutions to
common situations.

Recipe

Primary goal for the reader: implement a specific, focused solution to a common issue or use case with YDB.

Recipes are short, focused mini-guides that demonstrate how to accomplish specific tasks with YDB. This genre:

Provides concise solutions to specific problems

Includes code snippets and examples

Focuses on practical implementation

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_genres
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_genres_theory
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_genres_guide
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_genres_reference
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_genres_faq
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_genres_recipe
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_style-guide
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_index
https://en.wikipedia.org/wiki/Large_language_model
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_index


Is more targeted and narrower in scope than full-fledged guides

Often follows a problem-solution format

Recipes are primarily found in the "Recipes" section, though similar content may also appear in role-specific folders.

Release notes

Primary goal for the reader: stay informed about new features, improvements, bug fixes, and breaking changes in YDB releases.

Release notes document changes, improvements, and fixes in each new version of YDB. This genre:

Lists new features and enhancements

Documents bug fixes and resolved issues

Highlights breaking changes and deprecations

Provides upgrade instructions when necessary

Is organized chronologically by version number

Release notes are found in the "Changelog" section and help users understand what has changed between versions and decide whether to
upgrade.

Collection of links

Primary goal for the reader: discover additional resources, learning materials, and external content related to YDB.

Collections of links provide curated lists of resources related to YDB. This genre:

Aggregates related external or internal resources

Provides brief descriptions of each linked resource

May be organized by topic, format, or relevance

Helps users discover additional learning materials
Can include videos, articles, downloads, and other content

Collections of links are primarily found in the "Public materials" and "Downloads" sections, serving as gateways to external resources about YDB.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_genres_release-notes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_genres_links
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_documentation_genres_guide
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_public-materials_videos
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_index


General YDB schema
An approximate general YDB schema is shown below.

gRPC proxy/KQPgRPC proxy/KQP

DataShard

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_general-schema


DataShard

DataShardDataShard

HiveHive

gRPC proxy/KQPgRPC proxy/KQP

DataShardDataShard

Dynamic

Node 1
Dynami...

Dynamic

Node 2
Dynami...

gRPC proxy/KQPgRPC proxy/KQP



DataShardDataShard

HiveHive

Dynamic

Node 3
Dynami...

gRPC proxy/KQPgRPC proxy/KQP

BSCBSC

Static

Node 1
Static...

gRPC proxy/KQPgRPC proxy/KQP

CMSCMS

Static

Node 2
Static...



NodeBrokerNodeBroker

Tenant 1Tenant 1

Tenant 2Tenant 2

StaticStatic

BlobStorageBlobStorage

NodeWardenNodeWarden

NodeWarden



NodeWarden

PDiskPDisk

PDisk



PDisk

VDiskVDisk

VDisk



VDisk

DS proxyDS proxy

DS proxy



DS proxy

NodeWardenNodeWarden

NodeWardenNodeWarden

NodeWarden



NodeWarden

DS proxyDS proxy

DS proxy



DS proxy

DS proxyDS proxyViewer does not support full SVG 1.1

Nodes

A single YDB installation consists of a cluster that is divided into nodes. A node is an individual process in the system, usually ydbd . Each node is
part of the cluster and can exchange data with other nodes via Interconnect. Each node has its own ID, typically called NodeId . The NodeId  is a
20-bit integer equal to or greater than 1. NodeId  0 is reserved for internal purposes and usually indicates the current node or no node at all.

A number of services run on each node and are implemented via actors.

Nodes can be either static or dynamic.

A static node configuration, which includes their complete list with the address for connecting via Interconnect, is stored in a configuration file and is
read once when the process starts. The set of static nodes changes very rarely, typically during cluster expansion or when moving nodes from one
physical machine to another. To change the set of static nodes, you must apply the updated configuration to every node and then perform a rolling
restart of the entire cluster.

Dynamic nodes are not known in advance and are added to the system as new processes are started. This may occur, for example, when new
tenants are created in YDB installations as a database. When a dynamic node is registered, its process first connects to one of the static nodes via
gRPC, transmits information about itself through a special service called Node Broker, and receives a NodeId  to use when logging into the
system. The mechanism for assigning nodes is somewhat similar to DHCP in the context of distributing IP addresses.

Tablets

Special microservices called tablets run on each node. Each tablet is a singleton that has a specific type and ID. It means that only one tablet with a
specific ID can run in the cluster at any given time. A tablet can launch on any suitable node. A generation is an important property of a tablet that
increases with each subsequent launch.

Note

The distributed nature of the system and various issues, such as network partitioning problems, may result in a situation when the
same tablet is actually running on two different nodes simultaneously. However, the distributed storage guarantees that only one of the
duplicate tablets will successfully complete operations that change its state, and that the generation in which each successful operation
runs will not decrease over time.

For cluster-level system tablets, the node on which the tablet runs is chosen by a Bootstrapper, which implements distributed consensus. User
tablets are managed by a special tablet called Hive. Hive ensures that all tablets are running, distributes tablets across nodes, and manages tablet
channels between storage groups.

You can find out on which node the tablet in the current generation is running through the StateStorage service. To send messages to tablets, use a
special set of libraries named tablet pipe. With this, knowing the ID of the target tablet, you can easily send the desired message to it.

A tablet can be divided into two parts: the basic tablet and the user logic.

The basic tablet is a set of tables, each of which may consist of one or more key columns of an arbitrary type and a set of data columns. Each table
may have its own schema. Additionally, tables can be created and deleted while the tablet is running. The basic tablet interface allows you to
perform read and update operations on these tables.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_general-schema_nodes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_general-schema_tablets
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet-generation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet-types
https://en.wikipedia.org/wiki/Consensus_(computer_science)
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_hive
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_channel


User logic is located between the basic tablet and the user, allowing you to process specific requests for this type of tablet, reliably saving changes
to distributed storage. A running tablet typically uses a template that stores all data in memory, reads it only at the start, and synchronously changes
the data in memory and in storage after a successful commit.

How does a tablet store data, and what are they like?

A basic tablet is an LSM tree that holds all of its table data. One level below the basic tablet is distributed storage, which, roughly speaking, is a
KeyValue storage that stores binary large objects (blobs). A BLOB is a binary fragment from 1 byte to 10 MB in size, which has a fixed ID (usually
called BlobId and of the TLogoBlobID  type) and contains related data. The storage is immutable, meaning that only one value corresponds to
each ID, and it cannot change over time. You can write and read a blob and then delete it when it is no longer needed.

To learn more about blobs and distributed storage, see YDB distributed storage.

For distributed storage, blobs are an opaque entity. A tablet can store several types of blobs. The most frequently written blob is a (recovery) log
blob. A tablet's log is arranged as a list of blobs, each containing information about changes made to the tables. When run, the tablet finds the last
blob in the log and then recursively reads all related blobs following the links. The log may also contain links to snapshot blobs, which contain data
from multiple log blobs after a merge (the merge operation in the LSM tree).

The tablet writes blobs of different types to different channels. A channel specifies the branch of storage in which to store blobs and performs
various functions, such as:

1. Selecting a storage type (different channels may be linked to different types of storage devices: SSD, HDD, or NVMe).

2. Load balancing, as each channel has a limit on IOPS, available space, and bandwidth.
3. Specifying the data type. When restoring the log, only the blobs from the null channel are read, allowing you to distinguish them from other

blobs.

Tablet channel history

As mentioned previously, each group has a constant amount of data that fits into it and shares the bandwidth's throughput and the number of
operations per second among all consumers. The load on tablets may vary. As a result, a group may become overloaded and it will be necessary to
switch writes to another group. To address this, the concept of history is introduced, which allows you to determine the group that a blob is written to
based on its channel and generation.

This mechanism works as follows:

TabletIdTabletId

ChannelChannel

GenerationGeneration

StepStep

Cookie

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_general-schema_storage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_general-schema_history
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_distributed-storage


Cookie

BlobSizeBlobSize

PartIdPartId

BlobIdBlobId

6464

88

3232

3232

2424

28

(26)
28 (26)

44

TTabletStorageInfoTTabletStorageInfo

Channel 0Channel 0

Channel 1



Channel 1

Channel 2Channel 2

Channel NChannel N

TTabletChannelInfo



TTabletChannelInfo

0≤gen<100≤gen<10

Group 12345Group 12345

10≤gen<125



10≤gen<125

Group 54321Group 54321

125≤gen125≤gen

Group 12345



Group 12345

TabletTabletViewer does not support full SVG 1.1

For each channel, the TTabletStorageInfo  structure contains the TTabletChannelInfo  substructure with generation ranges and the group
number corresponding to each range. The ranges are strictly adjacent to each other, with the last range being open. Group numbers may overlap in
different ranges and even across different channels, which is legal and quite common.

When writing a blob, a tablet selects the most recent range for the corresponding channel, as a write is always performed on behalf of a tablet's
current generation. When reading a blob, the group number is fetched based on the BlobId.Generation  of the blob being read.



YDB distributed storage
YDB distributed storage is a subsystem of YDB that ensures reliable data storage.

It allows you to store blobs (binary fragments ranging from 1 byte to 10 megabytes in size) with a unique identifier.

Description of the distributed storage Interface

Blob ID Format

Each blob has a 192-bit ID consisting of the following fields (in the order used for sorting):

1. TabletId (64 bits): ID of the blob owner tablet.
2. Channel (8 bits): Channel sequence number.

3. Generation (32 bits): Generation in which the tablet that captured this blob was run.

4. Step (32 bits): Blob group internal ID within the Generation.

5. Cookie (24 bits): ID used if the Step is insufficient.

6. CrcMode (2 bits): Selects a mode for redundant blob integrity verification at the distributed storage level.

7. BlobSize (26 bits): Blob data size.

8. PartId (4 bits): Fragment number when using blob erasure coding. At the "distributed storage <-> tablet" communication level, this parameter
is always 0, referring to the entire blob.

Two blobs are considered different if at least one of the first five parameters (TabletId, Channel, Generation, Step, or Cookie) differs in their IDs.
Therefore, it is impossible to write two blobs that differ only in BlobSize and/or CrcMode.

For debugging purposes, there is a string representation of the blob ID in the format
[TabletId:Generation:Step:Channel:Cookie:BlobSize:PartId] , for example, [12345:1:1:0:0:1000:0] .

When writing a blob, the tablet selects the Channel, Step, and Cookie parameters. TabletId is fixed and must point to the tablet performing the write
operation, while Generation must indicate the generation in which the tablet performing the operation is running.

When performing reads, the blob ID is specified, which can be arbitrary but is preferably preset.

Groups

Blobs are written to a logical entity called a group. A special actor called DS proxy is created on every node for each group that is written to. This
actor is responsible for performing all operations related to the group. The actor is created automatically by the NodeWarden service, which will be
described below.

Physically, a group is a set of multiple physical devices (OS block devices) located on different nodes, so that the failure of one device correlates as
little as possible with the failure of another device. These devices are usually located in different racks or datacenters. On each of these devices,
some space is allocated for the group, which is managed by a special service called VDisk. Each VDisk runs on top of a block storage device, from
which it is separated by another service called PDisk. Blobs are broken into fragments based on erasure coding, with these fragments written to
VDisks. Before splitting into fragments, optional encryption of the data in the group can be performed.

This scheme is shown in the figure below.

PDisk 1:1000

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_distributed-storage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_distributed-storage_description-of-the-distributed-storage-interface
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_distributed-storage_blob-id-format
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_distributed-storage_groups
https://en.wikipedia.org/wiki/Erasure_code


PDisk 1:1000

PDisk 1:1001PDisk 1:1001

PDisk 2:1000PDisk 2:1000

PDisk 2:1001PDisk 2:1001

PDisk 3:1000PDisk 3:1000

PDisk 3:1001



PDisk 3:1001

PDisk 4:1000PDisk 4:1000

PDisk 4:1001PDisk 4:1001

Node

1
Node 1

Node

2
Node 2

N d



Node

3
Node 3

Node

4
Node 4

DS proxyDS proxyViewer does not support full SVG 1.1

VDisks from different groups are shown as multicolored squares; one color stands for one group.

A group can be treated as a set of VDisks:

00

11

22

33

4



4

55

66

77

fail

realm

0

fail realm 0

fail

domain

0

fail...

fail

domain

1

fail...

fail

domain

2

fail...

fail

domain

3

fail...

fail

domain

4

fail...

fail

domain

5

fail...

fail

domain

6

fail...

fail

domain

7

fail...

VDISK[GroupId:Generation:0:6:0]VDISK[GroupId:Generation:0:6:0]

00

1



1

22

33

44

5



5

66

77

88

fail

realm

0



fail realm 0

fail

realm

1

fail realm 1

fail

realm

2

fail realm 2

fail

domain

0

fail...

fail

domain

1

fail...

fail

domain

2



fail...

VDISK[GroupId:Generation:1:2:0]VDISK[GroupId:Generation:1...Viewer does not support full SVG 1.1

Each VDisk within a group has a sequence number, and disks are numbered 0 to N-1, where N is the number of disks in the group.

In addition, the group disks are grouped into fail domains, and fail domains are grouped into fail realms. Each fail domain usually has exactly one
disk inside (although, in theory, it may have more, but this is not used in practice), while multiple fail realms are only used for groups whose data is
stored in all three datacenters. Thus, in addition to a group sequence number, each VDisk is assigned an ID that consists of a fail realm index, the
index that a fail domain has in a fail realm, and the index that a VDisk has in the fail domain. In string form, this ID is written as
VDISK[GroupId:GroupGeneration:FailRealm:FailDomain:VDisk] .

All fail realms have the same number of fail domains, and all fail domains include the same number of disks. The number of fail realms, the number
of fail domains inside each fail realm, and the number of disks inside each fail domain make up the geometry of the group. The geometry depends
on the way the data is encoded in the group. For example, for block-4-2: numFailRealms = 1 , numFailDomainsInFailRealm >= 8  (only 8 fail
domains are used in practice), numVDisksInFailDomain >= 1  (strictly 1 fail domain is used in practice). For mirror-3-dc: numFailRealms >= 3 ,
numFailDomainsInFailRealm >= 3 , and numVDisksInFailDomain >= 1  (3x3x1 are used).

Each PDisk has an ID that consists of the number of the node it is running on and the internal number of the PDisk inside this node. This ID is
usually written as NodeId:PDiskId . For example, 1:1000 . If you know the PDisk ID, you can calculate the service ActorId of this disk and send it
a message.

Each VDisk runs on top of a specific PDisk and has a slot ID comprising three fields (NodeID:PDiskId:VSlotId), as well as the above-mentioned
VDisk ID. Strictly speaking, there are different concepts: a slot is a reserved location on a PDisk occupied by a VDisk, while a VDisk is an element
of a group that occupies a certain slot and performs operations with the slot. Similar to PDisks, if you know the slot ID, you can calculate the service
ActorId of the running VDisk and send it a message. To send messages from the DS proxy to the VDisk, an intermediate actor called BS_QUEUE is
used.

The composition of each group is not constant and may change while the system is running. Hence the concept of group generation. Each
"GroupId:GroupGeneration" pair corresponds to a fixed set of slots (a vector consisting of N slot IDs, where N is equal to group size) that stores the
data of an entire group. Group generation is not to be confused with tablet generation, as they are not related in any way.

As a rule, groups of two adjacent generations differ by no more than one slot.

Subgroups

A special concept of a subgroup is introduced for each blob. It is an ordered subset of group disks with a strictly constant number of elements that
will store the blob's data, depending on the encoding type (the number of elements in a group must be the same or greater). For single-datacenter
groups with conventional encoding, this subset is selected as the first N elements of a cyclic disk permutation in the group, where the permutation
depends on the BlobId hash.

Each disk in the subgroup corresponds to a disk in the group but is limited by the allowed number of stored blobs. For example, for block-4-2
encoding with four data parts and two parity parts, the functional purpose of the disks in a subgroup is as follows:

Number in the Subgroup Possible PartIds

0 1

1 2

2 3

3 4

4 5

5 6

6 1,2,3,4,5,6

7 1,2,3,4,5,6

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_distributed-storage_subgroups


In this case, PartId=1..4 corresponds to data fragments (resulting from dividing the original blob into 4 equal parts), while PartId=5..6 represents
parity fragments. Disks numbered 6 and 7 in the subgroup are called handoff disks. Any part, either one or more, can be written to them. The
respective blob parts can only be written to disks 0..5.

In practice, when performing writes, the system tries to write 6 parts to the first 6 disks of the subgroup, and in the vast majority of cases, these
attempts are successful. However, if any of the disks are unavailable, a write operation cannot succeed, which is when handoff disks come into
play, receiving the parts belonging to the disks that did not respond in time. It may happen that several fragments of the same blob are sent to the
same handoff disk as a result of complex failures and races. This is acceptable, although it makes no sense in terms of storage: each fragment
should ideally be stored on a unique disk.

Redundancy recovery

If a disk fails, YDB can automatically reconfigure a storage group. Whether the disk failure is caused by the whole server failure or not is irrelevant
in this context. Auto reconfiguration of storage groups reduces the risk of data loss in the event of a sequence of failures, provided these failures
occur with sufficient time intervals to recover redundancy. By default, reconfiguration begins one hour after YDB detects a failure.

Disk group reconfiguration replaces the VDisk located on the failed hardware with a new VDisk, and the system tries to place it on operational
hardware. The same rules apply as when creating a storage group:

The new VDisk is created in a fail domain that is different from any other VDisks in the group.

In the mirror-3-dc  mode, it is created within the same fail realm as the failed VDisk.

To ensure reconfiguration is possible, a cluster should have free slots available for creating VDisks in different fail domains. When determining the
number of slots to keep free, consider the risk of hardware failure, the time required to replicate data, and the time needed to replace the failed
hardware.

The disk group reconfiguration process increases the load on other VDisks in the group as well as on the network. The total data replication speed
is limited on both the source and target VDisks to minimize the impact of redundancy recovery on system performance.

The time required to restore redundancy depends on the amount of data and hardware performance. For example, replication on fast NVMe SSDs
may take an hour, while it could take more than 24 hours on large HDDs.

Disk group reconfiguration is limited or totally impossible when a cluster's hardware is distributed across the minimum required number of fail
domains:

If an entire fail domain is down, reconfiguration becomes impractical, as a new VDisk can only be placed in the fail domain that is down.

Reconfiguration only happens when part of a fail domain is down. However, the load previously handled by the failed hardware will be
redistributed across the surviving hardware, remaining in the same fail domain.

The load can be redistributed across all the hardware that is still running if the number of fail domains in a cluster exceeds the minimum amount
required for creating storage groups by at least one. This means having 9 fail domains for block-4-2  and 4 fail domains in each fail realm for
mirror-3-dc , which is recommended.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_distributed-storage_rebuild


Hive
Hive is a tablet responsible for managing other tablets, including selecting nodes for them to run on and deciding when to rebalance tablets.

The creation and deletion of tablets is initiated by the SchemeShard tablet. When a tablet is created, Hive assigns it a unique TabletId, fills in
TabletStorageInfo, chooses the most suitable node, and sends a command to start the tablet on that node. In some abnormal situations, a tablet
may interrupt its operation, in which case the node on which it was running sends a message to Hive. Hive also assumes that if the connection with
a certain node is lost, the tablets running on it have stopped. In such cases, Hive restarts the tablets on other nodes, incrementing the generation.

A YDB cluster runs multiple Hives:

A single root Hive responsible for the system tablets of all databases in the cluster. All nodes in the cluster are registered in the root Hive.

A database Hive (one per database) is responsible for the tablets servicing the user load of a specific database. Only the compute nodes of
the database are registered in that database's Hive.

When a node registers, it informs Hive of the types of tablets and the number of tablets that can be run on it.

Resource usage metrics

Hive evaluates resource usage to evenly distribute tablets across nodes. For each tablet, the usage of four types of resources is tracked:

1. CPU — processor consumption, calculated as the number of microseconds spent on tablet work in the last second. A value of one second
corresponds to 100% load of a single core.

2. Memory — the amount of RAM consumed by the tablet.

3. Network — the amount of traffic generated by the tablet.

4. Counter — a fake resource for even distribution of tablets. If a tablet has a nonzero consumption of any other resource, its Counter value is 0;
otherwise, it is 1. This way, Counter is used for any tablets for which there is no data on real consumption, as well as for tablets where real
consumption tracking is disabled. By default, this applies only to column-oriented tables.

Additionally, to determine overloaded nodes, YDB uses memory consumption and processor resources in the actor system thread pools on each
node. These values are converted into relative values (a number from 0 to 1). The maximum of these relative values is used as the node's overall
resource consumption value — Node usage. Hive also applies aggregation over a window to all metrics to account for load spikes.

Resource usage information is used for choosing a node for a tablet. For example, if Hive has information only on the CPU consumption of a tablet,
it tries to find a node with the lowest CPU load. If information on multiple resources is available, the highest of the resource usage values is used.

Autobalancing

At certain moments, Hive may start an auto-balancing process that moves tablets between nodes to improve load distribution. The situations when
autobalancing occurs are listed below. The auto-balancer works iteratively, making decisions about moving tablets one at a time. It selects the most
loaded node, chooses a tablet that runs on this node using weighted randomness, and chooses a more suitable node for it. This process is
repeated until balance is restored. The way node load is determined depends on the type of balancing. For example, in case of CPU consumption
imbalance, CPU usage is used. For uneven distribution of column-oriented tables, the number of tablets is used instead.

Resource usage imbalance

To quantify the balance of resource usage, Hive uses the Scatter metric, which is calculated separately for each resource using the following
formula:

and are, respectively, the maximum and minimum usage of a resource across all nodes. To normalize consumption on each node, the number of
available resources on the node is used, which may vary between nodes. Under low loads, this metric may fluctuate significantly. To avoid this,
when calculating , it is assumed that resource usage cannot be lower than 30%. The balancer is triggered if exceeds a threshold.

The maximum value of across different resources is available as the sensor Hive/MAX(BalanceScatter)  in the tablets  subgroup.

Node overload

Overloaded nodes can negatively affect YDB performance. CPU overload raises latencies, and consuming all memory can cause the node to crash
with an out-of-memory error. The balancer is triggered when the load of one node exceeds 90% while the load on another node falls below 70%.

The maximum resource usage on a node is reported by the Hive/MAX(BalanceUsageMax)  sensor in the tablets  subgroup.

Even distribution for a specific object

For tablets that use the Counter resource, the evenness of tablet distribution for each object (each table) is tracked in the form of the
ObjectImbalance  metric, similar to the described above. Restarting nodes may break the balance in tablet distribution and trigger balancing.

The maximum value of ObjectImbalance  across different objects is reported by the Hive/MAX(BalanceObjectImbalance)  sensor in the
tablets  subgroup.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_hive
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_hive_resource-usage-metrics
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_hive_autobalancing
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_hive_resource-usage-imbalance
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_hive_node-overload
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_hive_even-distribution-for-a-specific-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_scheme-shard
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_general-schema_history
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet-types
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_monitoring
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_monitoring
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_monitoring


Overview of testing with load actors
Testing system performance is an important stage of adding changes to the YDB core. With load testing, you can:

Determine the performance metrics and compare them to the values before the changes.

Test how the system runs under high or peak loads.

The task to load a high-performance distributed system is non-trivial. A software developer often has to run multiple client instances to achieve the
required server load. YDB implements a simple and convenient load generation mechanism: load actors. Actors are created and run directly on a
cluster, which allows avoiding the use of additional resources for starting client instances. Load actors can be run on arbitrary cluster nodes: one,
all, or only selected ones. You can create any number of actors on any node.

With load actors, you can test both the entire system and its individual components:

PDisk

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-overview
https://en.wikipedia.org/wiki/Load_testing


PDisk

VDiskVDisk

DeviceDevice

Key-value

Tablet
Key-value...

Distributed Storage Proxy



Distributed Storage Proxy

Data Shard

Tablet
Data Shard...

Query ProcessorQuery Processor

VDiskVDisk

PDiskPDisk

Distributed Storage Group



Distributed Storage Group

KqpLoadKqpLoad

KeyValueLoadKeyValueLoad

StorageLoadStorageLoad

VDiskLoadVDiskLoad

PDiskWriteLoad,

PDiskReadLoad,

PDiskLogLoad

PDiskWriteLoad, PDis...

Load actors



Load actors

YDBcomponentsYDB components

DeviceDeviceText is not SVG - cannot display

For example, you can generate a load on Distributed Storage without using tablet and Query Processor layers. This lets you test different system
layers separately and find bottlenecks in an efficient way. By combining a variety of actor types, you can run different types of load.

Note

This feature is under development; the source code is available in the main branch of the YDB repository. To learn how to build YDB
from the source code, see the instructions.

Actor types

Running a load

You can run load using the following tools:

Cluster Embedded UI: Allows you to create, based on a configuration, and start a load actor either on the current node or all tenant nodes at
once.

The ydbd  utility: Allows you to send the actor configuration to any cluster node specifying the nodes to create and run the actor on.

Type Description

KqpLoad Generates a load on the Query Processor layer and loads all cluster components.

KeyValueLoad Loads a key-value tablet.

StorageLoad Loads Distributed Storage without using tablet and Query Processor layers.

VDiskLoad Tests the performance of writes to the VDisk.

PDiskWriteLoad Tests the performance of writes to the PDisk.

PDiskReadLoad Tests the performance of reads from the PDisk.

PDiskLogLoad Tests if cuts from the middle of the PDisk log are correct.

MemoryLoad Allocates memory, useful when testing the logic.

Stop Stops either all or only the specified actors.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-overview_load-actor-type
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-overview_load-actor-start
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-storage
https://github.com/ydb-platform/ydb
https://github.com/ydb-platform/ydb/blob/main/BUILD.md
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-kqp
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-key-value
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-storage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-vdisk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-pdisk-write
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-pdisk-read
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-pdisk-log
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-memory
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-stop


The use case described below shows how to create and run the KqpLoad actor. The actor accesses the /slice/db  database as a key-value store
using 64 threads with a 30-second load. Before the test, the actor creates the necessary tables and deletes them once the test is completed. When
being created, the actor is automatically assigned a tag. The same tag will be assigned to the test result.

Embedded UI

1. Open the page for managing load actors on the desired node (for example, http://<address>:8765/actors/load , where address  is the
address of the cluster node to run the load on).

2. Paste the actor configuration into the input/output field:

3. To create and run the actor, click:

Start new load on current node: Runs the load on the current node.

Start new load on all tenant nodes: Runs the load on all the tenant nodes at once.

You'll see the following message in the input/output field:

status : Load run status.

tag : Tag assigned to the load.

KqpLoad: {
    DurationSeconds: 30
    WindowDuration: 1
    WorkingDir: "/slice/db"
    NumOfSessions: 64
    UniformPartitionsCount: 1000
    DeleteTableOnFinish: 1
    WorkloadType: 0
    Kv: {
        InitRowCount: 1000
        PartitionsByLoad: true
        MaxFirstKey: 18446744073709551615
        StringLen: 8
        ColumnsCnt: 2
        RowsCnt: 1
    }
}

{"status":"OK","tag":1}

CLI

1. Create an actor configuration file:

2. Start the actor:

endpoint : Node HTTP endpoint (for example, http://<address>:<port> , where address  is the node address and port  is the node
HTTP port).

proto_file : Path to the actor configuration file.

start_on_all_nodes : true  to start load on all nodes of a tenant, false  to start load only on node with given endpoint .

KqpLoad: {
    DurationSeconds: 30
    WindowDuration: 1
    WorkingDir: "/slice/db"
    NumOfSessions: 64
    UniformPartitionsCount: 1000
    DeleteTableOnFinish: 1
    WorkloadType: 0
    Kv: {
        InitRowCount: 1000
        PartitionsByLoad: true
        MaxFirstKey: 18446744073709551615
        StringLen: 8
        ColumnsCnt: 2
        RowsCnt: 1
    }
}

curl <endpoint>/actors/load -H "Content-Type: application/x-protobuf-text" --data mode=start --data all_nodes=
<start_on_all_nodes> --data config="$(cat proto_file)"



Viewing test results

You can view the test results using the Embedded UI. For a description of output parameters, see the documentation of the respective actor.

Embedded UI

1. Open the page for managing load actors on the desired node (for example, http://<address>:<port>/actors/load , where address  is the
node address and port  is the HTTP port used for monitoring the node under load).

2. Click Results.

This shows the results of completed tests. Find the results with the appropriate tag.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-overview_view-results


LocalDB: persistent uncommitted changes
Tablets may need to store a potentially large amount of data over a potentially long time, and then either commit or rollback all accumulated
changes atomically without keeping them in-memory. To support this LocalDB allows table changes to be marked with a unique 64-bit transaction id
(TxId), which are stored in the given table alongside committed data, but not visible until the given TxId is committed. The commit or rollback itself is
atomic and very cheap, with committed data eventually integrated into the table as if written normally in the first place.

This feature is used as a building block for various other features:

Storing uncommitted changes in long-running YQL transactions and observing them in subsequent queries in the same transaction

Storing undecided side-effects in upcoming volatile distributed transactions

Cross-region consistent replication, where table changes are streamed and applied in small batches, and periodically committed as consistent
snapshots of the origin database state

Limitations

Current implementation has the following limitations:

1. Keys may have multiple changes written by different TxIds, however these transactions must be committed in the order of these writes. For
example, when key K is updated by tx1 and then by tx2, it is possible to then commit tx1 first and then tx2, and observe both changes.
However, if tx2 is committed first, then tx1 must be rolled back.

2. The number of uncommitted transactions and the amount of uncommitted data to a particular key must be limited by upper layers to some
reasonably small value.

3. TxIds must not be reused after commit or rollback (even across different shards), and must be globally unique.

Logging uncommitted changes

Redo log (see flat_redo_writer.h) has the following events related to uncommitted changes:

EvUpdateTx stores table changes with an uncommitted TxId. This event is generated by TDatabase::UpdateTx database method.

EvRemoveTx is used for removing a given TxId (performing a rollback). This event is generated by TDatabase::RemoveTx database method.

EvCommitTx is used for committing a given TxId at the specified MVCC version. This event is generated by TDatabase::CommitTx database
method.

Storing uncommitted changes in MemTables

MemTable in LocalDB is a relatively small in-memory sorted tree that maps table keys to values. MemTable value is a chain of MVCC (partial) rows,
each tagged with a row version (a pair of Step and TxId which is a global timestamp). Rows are normally pre-merged across the given MemTable.
For example, let's suppose there have been the following operations for some key K:

Then the chain of rows for key K in a single MemTable will look like this:

However, if the MemTable was split between updates, it may look like this:

Changes are applied to the current MemTable, and uncommitted changes are no exception. However, they are tagged with a special version (where
Step is the maximum possible number, as if they are in some "distant" future, and TxId is their uncommitted TxId), without any pre-merging. For
example, let's suppose we additionally performed the following operations:

Version Operation

v1000/10 UPDATE ... SET A = 1

v2000/11 UPDATE ... SET B = 2

v3000/12 UPDATE ... SET C = 3

Version Row

v3000/12 SET A = 1, B = 2, C = 3

v2000/11 SET A = 1, B = 2

v1000/10 SET A = 1

MemTable Version Row

Epoch 2 v3000/12 SET B = 2, C = 3

Epoch 2 v2000/11 SET B = 2

Epoch 1 v1000/10 SET A = 1

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_localdb-uncommitted-txs
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_localdb-uncommitted-txs_limitations
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_localdb-uncommitted-txs_logging-uncommitted-changes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_localdb-uncommitted-txs_storing-uncommitted-changes-in-memtables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_local-database
https://github.com/ydb-platform/ydb/blob/main/ydb/core/tablet_flat/flat_redo_writer.h
https://github.com/ydb-platform/ydb/blob/ab6222f2deabf1a12b50db13728b68cbd6b59604/ydb/core/tablet_flat/flat_redo_writer.h#L160
https://github.com/ydb-platform/ydb/blob/ab6222f2deabf1a12b50db13728b68cbd6b59604/ydb/core/tablet_flat/flat_database.h#L123
https://github.com/ydb-platform/ydb/blob/ab6222f2deabf1a12b50db13728b68cbd6b59604/ydb/core/tablet_flat/flat_redo_writer.h#L169
https://github.com/ydb-platform/ydb/blob/ab6222f2deabf1a12b50db13728b68cbd6b59604/ydb/core/tablet_flat/flat_database.h#L124
https://github.com/ydb-platform/ydb/blob/ab6222f2deabf1a12b50db13728b68cbd6b59604/ydb/core/tablet_flat/flat_redo_writer.h#L183
https://github.com/ydb-platform/ydb/blob/ab6222f2deabf1a12b50db13728b68cbd6b59604/ydb/core/tablet_flat/flat_database.h#L125
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_memtable


The update chain for our key K will look like this:

When reading iterator performs a lookup for changes with Step == max  into an in-memory transaction map, which maps committed TxIds to their
corresponding commit versions, and applies all committed deltas until it finds and applies a pre-merged row with Step != max .

Let's suppose we commit tx 13 at v4000/20 . At that point transaction map is updated with [13] => v4000/20 , and tx 13 is now committed. Any
read afterwards will consult transaction map and apply deltas for tx 13, but skip tx 15, since it was not committed and treated as implicitly rolled
back. MemTable chain for key K is not changed however.

Let's suppose we now perform an UPDATE ... SET A = 30  at version v5000/21 , the resulting chain will look as follows:

Notice how the new record has its state pre-merged, including the previously committed delta for tx 13. Since tx 15 is not committed it was skipped
and baked into a pre-merged state for v5000/21 . It is important that tx 15 is not committed afterwards, and would result in a read anomaly
otherwise: some versions would observe it as committed, and some won't.

Compacting uncommitted changes

Compaction takes some parts from the table, merges them in a sorted order, and writes as a new SST, which replaces compacted data. When
compacting MemTable it also implies compacting the relevant redo log, and includes EvRemoveTx / EvCommitTx  events, which affect change
visibility and must also end up in persistent storage. LocalDB writes TxStatus blobs (see flat_page_txstatus.h), which store a list of committed and
removed transactions, and replace the compacted redo log in regard to EvRemoveTx / EvCommitTx  events. Compaction uses the latest transaction
status maps, but it filters them leaving only those transactions that are mentioned in the relevant MemTables or previous TxStatus pages, so that it
matches the compacted redo log.

Data pages (see flat_page_data.h) store uncommitted deltas from MemTables (or other SSTs) aggregated by their TxId in the same order just
before the primary record. Records may have MVCC flags (HasHistory, IsVersioned, IsErased), which specify whether there is MVCC fields and
data present. Delta records have an IsDelta flag, which is really a HasHistory flag without other MVCC flags. Since it was never used by previous
versions (HasHistory flag was only ever used together with IsVersioned flag, you could not have history rows without a verioned record), it clearly
identifies record as an uncommitted delta. Delta records have a TDelta info immediately after the fixed record data, which specifies TxId of the
uncommitted delta.

One key may have several uncommitted delta records, as well as (optionally) the latest committed record data. Historically, data pages could only
have one record (and one record pointer) per key, so the record pointer leads to the top of the delta chain, and other records are available via
additional per-record offset table for other records:

TxId Operation

15 UPDATE ... SET C = 10

13 UPDATE ... SET B = 20

Version Row

v{max}/13 SET B = 20

v{max}/15 SET C = 10

v3000/12 SET A = 1, B = 2, C = 3

v2000/11 SET A = 1, B = 2

v1000/10 SET A = 1

Version Row

v5000/21 SET A = 30, B = 20, C = 3

v{max}/13 SET B = 20

v{max}/15 SET C = 10

v3000/12 SET A = 1, B = 2, C = 3

v2000/11 SET A = 1, B = 2

v1000/10 SET A = 1

Offset Description

-X*8 offset of Main

... ...

-16 offset of Delta 2

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_localdb-uncommitted-txs_compacting-uncommitted-changes
https://github.com/ydb-platform/ydb/blob/main/ydb/core/tablet_flat/flat_mem_iter.h
https://github.com/ydb-platform/ydb/blob/0e69bf615395fdd48ecee032faaec81bc468b0b8/ydb/core/tablet_flat/flat_table.h#L359
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_sst
https://github.com/ydb-platform/ydb/blob/main/ydb/core/tablet_flat/flat_page_txstatus.h
https://github.com/ydb-platform/ydb/blob/main/ydb/core/tablet_flat/flat_page_data.h
https://github.com/ydb-platform/ydb/blob/0adff98ae52cb826f7fb9705503e430b9812994f/ydb/core/tablet_flat/flat_page_data.h#L98
https://github.com/ydb-platform/ydb/blob/0adff98ae52cb826f7fb9705503e430b9812994f/ydb/core/tablet_flat/flat_page_data.h#L66


Having a pointer to Delta 0, other records for the same key are available with the GetAltRecord(size_t index)  method, where index  is the
record number (which is 1 for Delta 1). The chain of records ends either with a pointer to the record without an IsDelta flag (the Main record), or 0
(when there is no Main record for the key).

Let's suppose that after writing tx 13 above the MemTable was compacted. Entry for the 32-bit key K may look like this (offsets are relative to the
record pointer on the table):

-8 offset of Delta 1

0 header of Delta 0

... ...

offset of Delta 1 header of Delta 1

... ...

offset of Main header of Main

Offset Value Description

-16 58 offset of Main

-8 29 offset of Delta 1

0 0x21 Delta 0: IsDelta + ERowOp::Upsert

1 0x00 .. key column is not NULL

2 K .. key column (32-bit)

6 0x00 .. column A is empty

7 0 .. column A (32-bit)

11 0x01 .. column B = ECellOp::Set

12 20 .. column B (32-bit)

16 0x00 .. column C is empty

17 0 .. column C (32-bit)

21 13 .. TDelta::TxId

29 0x21 Delta 1: IsDelta + ERowOp::Upsert

30 0x00 .. key column is not NULL

31 K .. key column (32-bit)

35 0x00 .. column A is empty

36 0 .. column A (32-bit)

40 0x00 .. column B is empty

41 0 .. column B (32-bit)

45 0x01 .. column C = ECellOp::Set

46 10 .. column C (32-bit)

50 15 .. TDelta::TxId

58 0x61 Main: HasHistory + IsVersioned + ERowOp::Upsert

59 0x00 .. key column is not NULL

60 K .. key column (32-bit)

64 0x01 .. column A = ECellOp::Set

65 1 .. column A (32-bit)



The HasHistory flag in the Main record shows that other two records are stored among history data with keys (RowId, 2000, 11)  and (RowId, 
1000, 10)  respectively.

When compacting iterator runs in a special mode that enumerates all deltas and all versions for each key. The compaction scan implementation
(see flat_ops_compact.h) first aggregates all uncommitted deltas by their TxId in the same order (in case changes from different TxIds overlap their
order may change arbitrarily, which is OK since such transactions are not supposed to both commit). After uncommitted deltas are aggregated, they
are flushed to the resulting SST (see flat_part_writer.h and flat_page_writer.h), and committed row versions for the same key are enumerated,
which are written in decreasing version order.

When iterator positions to the first committed delta (i.e. the IsDelta record which has commit info in the transaction map), the commit info is used as
the resulting row versions, with row state combined from all deltas below, including the first committed record from each LSM level participating in
compaction. When positioning to the next version iterator skips delta with version at or below the last one and the process is repeated.

With a large number of compacted deltas for a key, when they are later committed with different versions, the process of generating committed
records grows quadratically in the number of deltas. For this reason upper levels should control the number of deltas for each key and must not
allow them to grow too large (deltas might be merged in the reverse order in the future to side step this problem). Other limitation is that
uncommitted deltas for a given key need to all be in memory and on a single page, since each read must walk the entire delta chain and check
whether each record is committed. In the future we may want to store deltas across multiple pages, but since they all need to be in memory anyway
there is little reason to do so. Removing the requirement for all deltas to be in memory during reads is theoretically possible, but it requires storing
them in a different form.

Uncommitted transaction stats

Optimistically most transactions are eventually committed, but sometimes transactions roll back, even after compaction. Since rollbacks may cause
a large amount of data to become unreachable, SSTs store TxIdStats pages (see flat_page_txidstat.h) with the number of rows and bytes occupied
by each TxId. As more and more transactions are rolled back, compaction strategy aggregates the number of unreachable bytes, and eventually
runs garbage collecting compactions.

These pages are also used for keeping in-memory transaction maps small. When transaction is eventually committed or rolled back, its status is
stored in an in-memory hashmap as long as the specified TxId has deltas anywhere. As SSTs are compacted, uncommitted deltas from committed
transactions are rewritten into fully committed records, rolled back deltas are removed entirely, and eventually transactions stop being mentioned in
TxIdStats pages of resulting SSTs. When a given TxId is no longer mentioned anywhere, it is safely removed from transaction maps and no longer
occupies any memory.

The in-memory transaction map is limited in size by limiting the number of open (which are neither committed nor rolled back) transactions at the
datashard level. When compacting SSTs may only generate deltas for currently open transactions, so the total transaction map size is limited by the
maximum number of open transactions, multiplied by the number of SSTs.

Borrowing SSTs with uncommitted changes

When copying tables, and when datashards split or merge they use LocalDB borrowing, where source shard SSTs are merged into destination
shard tables. When using uncommitted changes those may contain changes from open transactions, or those which have been committed or rolled
back, but not compacted yet. To guarantee that destination shards have the same view of the data as the source shards, TxStatus blobs also need
borrowing, modifying destination transaction maps.

Note that transaction may have different status at different shards. Let's review a hypothetical example:

Transaction writes changes to key K with TxId at shard S, which are compacted into a large SST
Shard S becomes too large and splits into shards L and R, so that SST is borrowed by both with row filters applied, key K ends up in shard L,
but transaction TxId is also phantomly present in shard R, since it is mentioned in the borrowed SST

Transaction commits changes at shard L, without a commit at shard R (since logically and from the writer's perspective there have been no
changes at shard R)

Since transaction has finished, this TxId would be eventually rolled back at shard R (which doesn't cause any visible side-effects)

Let's supposed that shards L and R are eventually merged

When merged TxStatus from shard L would specify TxId as committed, but TxStatus from shard R would specify TxId as rolled back. Since
transactions are supposed to commit all changes, and phantom rollbacks are possible, when conflicting TxStatus are merged commit "wins" over
rollback.

Note that this is purely theoretical, in reality shards currently fully compact before splitting or merging, so conflicting TxStatus should not be
possible, this is done purely as an additional safety net and must be taken into account. This means that shards are not allowed to partially commit
transaction changes, all changes from a given TxId must be committed. This also means TxIds must never be reused, even across shards, and only
globally unique TxIds are safe to use for uncommitted changes.

69 0x01 .. column B = ECellOp::Set

70 2 .. column B (32-bit)

74 0x01 .. column C = ECellOp::Set

75 3 .. column C (32-bit)

79 3000 .. RowVersion.Step

87 12 .. RowVersion.TxId

95 - End of record

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_localdb-uncommitted-txs_uncommitted-transaction-stats
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_localdb-uncommitted-txs_borrowing-ssts-with-uncommitted-changes
https://github.com/ydb-platform/ydb/blob/main/ydb/core/tablet_flat/flat_ops_compact.h
https://github.com/ydb-platform/ydb/blob/main/ydb/core/tablet_flat/flat_part_writer.h
https://github.com/ydb-platform/ydb/blob/main/ydb/core/tablet_flat/flat_page_writer.h
https://github.com/ydb-platform/ydb/blob/main/ydb/core/tablet_flat/flat_page_txidstat.h


DataShard: locks and transaction change visibility
When a long-running YQL transaction writes data to tables, it may try to read the same table later. To support observing data consistent with
transaction changes DataShard tablets support writing uncommitted changes as part of a transaction, include these changes in subsequent queries
by the same transaction, and allow atomic commits of these changes as long as serializable isolation is not violated.

The underlying LocalDB support also allows very large transaction commits, not limited by the size of a single message between distributed actors.

High level overview

Complex YQL transactions (either interactive, i.e. when client begins a transaction and uses it to perform queries without committing in the same
query, or that involve multiple sub-queries) are split into multiple "phases" by KQP, where output of one phase potentially acts as input to the next
phase. For example, when a YQL query contains a JOIN , the first phase may be reading the first table, and the second phase may use the output
of the first table to perform lookup queries in the second table.

For read-only queries KQP uses global MVCC snapshots to ensure consistency between sub-queries. But when transaction also writes, it needs to
ensure serializable isolation is not violated at commit time. Currently, this is achieved using Optimistic concurrency control, where reads add
optimistic "locks" to observed ranges, and writes by other transactions "break" those locks at their commit time. Transaction may successfully
commit as long as none of those locks are broken at commit time, otherwise it fails with a "transaction locks invalidated" error.

There's another way to look at optimistic locks. A single transaction may read from multiple shards using read timestamps (this may be a single
global MVCC snapshot timestamp, or multiple timestamps, different for each read), while other transactions concurrently write to the same tables or
shards. When transaction commits, it is assigned a single commit timestamp in the global serializable order of execution. As long as all of those
reads could be repeated at the commit timestamp, without any change to observed results, the transaction might as well have executed (in its
entirety) at the commit timestamp. The optimistic lock, as long as it's not broken, tells the transaction that it is possible to move all reads to the
commit timestamp.

Uncommitted changes are not too different from reads in that regard. As long as DataShard can store those changes and then "move" them to the
final commit timestamp without conflicts, the transaction may commit, otherwise it must abort. The main difference is that unlike read locks (which
are stored in-memory), uncommitted changes are persistent, must be tracked across reboots, and must be cleaned up correctly when no longer
needed.

How locks are used for reads

Operations proposed to DataShards are assigned a globally unique 64-bit TxId , which are allocated in large batches from global TxAllocator
tablets. When KQP performs the first read in a multi-phase transaction, it also uses this TxId  as a lock identifier (historically named LockTxId ),
which is then used in all subsequent queries in the same YQL transaction. DataShard will add new locks when operation has LockTxId  specified
(it is not zero):

See LockTxId field in TEvRead  read requests

See LockTxId field in TEvWrite  write requests

See LockTxId field in TDataTransaction  messages (used for encoding data transaction body)

You may also see the LockNodeId  field, which specifies the originating node id of the lock, which is used by DataShard for subscribing to lock
status, and cleaning up locks when they are no longer needed.

Note that LockTxId  is just a unique number, that is used across multiple operations in the same YQL transaction, while TxId  is unique for every
operation for a single DataShard. The use of the first TxId  as LockTxId  is not required, but since KQP already has a globally unique number,
and LockTxId  is unrelated to TxId , it elides an extra allocation.

Locks table (see datashard_locks.h and datashard_locks.cpp) indexes locks by their primary key ranges in a range tree, allowing finding and
"breaking" them by point keys. In the simplest case when read operation reads a range it is added using a SetLock method, and when write
operation writes a key it breaks other locks using a BreakLocks method.

When the lock is added for the first time, it is assigned a monotonically increasing Counter  in the current tablet's Generation  (see TLock
message), and a row with these numbers is added to the virtual /sys/locks  table (which is no longer used). These locks are then returned in
result messages (e.g. see TEvReadResult).

In the successful scenario, the lock exists and is not broken, Generation  and Counter  fields do not change.

In the unsuccessful scenarios, previously acquired locks are broken. For example, when changing the Generation  of the lock (disabling the lock
on restart) or the Counter  (on an explicit error status, or when disabling and recreating the lock in the same generation).

The first Generation  and Counter  for each shard are remembered by KQP, and changes during transaction lifetime are indicative of possible
inconsistencies and serializable isolation violations. Read-Write transactions, or transactions that did not use global MVCC snapshots for efficiency
reasons, perform the final commit that validates Generation / Counter  values and commit only succeeds when all of them match.

Reads using global MVCC snapshots are already consistent. Nevertheless, they still acquire locks in case transaction might perform a write later in
the lifecycle.

When acquiring locks DataShard performs additional checks, on whether or not conflicting changes have been committed "above" the snapshot.
When the conflict is detected, the read succeeds, however the lock will have Counter  equal to ErrorAlreadyBroken, to signal that even though the
read is consistent, writes will never succeed. Such transactions may stop trying to add new locks, and succeed when it turns out the full YQL
transaction is read-only. When such transactions try to write, however, they are aborted early as it would be impossible to commit them anyway.

How locks are used for writes

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_datashard-locks-and-change-visibility
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_datashard-locks-and-change-visibility_high-level-overview
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_datashard-locks-and-change-visibility_how-locks-are-used-for-reads
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_datashard-locks-and-change-visibility_how-locks-are-used-for-writes
https://github.com/ydb-platform/ydb/tree/main/ydb/core/tx/datashard
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_localdb-uncommitted-txs
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_transactions_modes
https://github.com/ydb-platform/ydb/tree/main/ydb/core/kqp
https://en.wikipedia.org/wiki/Multiversion_concurrency_control
https://en.wikipedia.org/wiki/Serializability
https://en.wikipedia.org/wiki/Optimistic_concurrency_control
https://github.com/ydb-platform/ydb/tree/main/ydb/core/tx/tx_allocator
https://github.com/ydb-platform/ydb/blob/3444af692d32224288c41ba8c21e416d5fd4996c/ydb/core/protos/tx_datashard.proto#L1612
https://github.com/ydb-platform/ydb/blob/bcf764f1aa71683e3871616abe6f16b47cec42e4/ydb/core/protos/data_events.proto#L83
https://github.com/ydb-platform/ydb/blob/3444af692d32224288c41ba8c21e416d5fd4996c/ydb/core/protos/tx_datashard.proto#L282
https://github.com/ydb-platform/ydb/blob/main/ydb/core/tx/datashard/datashard_locks.h
https://github.com/ydb-platform/ydb/blob/main/ydb/core/tx/datashard/datashard_locks.cpp
https://github.com/ydb-platform/ydb/blob/207ac81618e05ade724a8a8193bc9125d466bd06/ydb/core/tx/datashard/datashard_locks.h#L831
https://github.com/ydb-platform/ydb/blob/207ac81618e05ade724a8a8193bc9125d466bd06/ydb/core/tx/datashard/datashard_locks.h#L834
https://github.com/ydb-platform/ydb/blob/207ac81618e05ade724a8a8193bc9125d466bd06/ydb/core/protos/data_events.proto#L8
https://github.com/ydb-platform/ydb/blob/b07264456a2e8b5929901f258ad60399bb64678a/ydb/core/protos/tx_datashard.proto#L1702
https://github.com/ydb-platform/ydb/blob/b07264456a2e8b5929901f258ad60399bb64678a/ydb/core/tx/datashard/sys_tables.h#L107


When KQP needs to make uncommitted changes in a YQL transaction, it uses DataShard write transactions with a non-zero LockTxId .
DataShard will then use this LockTxId  as TxId  for persisting uncommitted changes, available as long as the lock is valid. Internally locks that
have uncommitted writes are called write locks. Such locks also become persistent (see the Locks table and related tables below), surviving
DataShard restarts.

There are some limitations to such uncommitted write transactions:

Transaction must run in an immediate transaction mode (i.e. uncommitted writes cannot be distributed, uncommitted writes to different shards
are performed independently instead)

Transaction must have a valid LockNodeId  specified, DataShard subscribes to lock status using this node and automatically rolls back
uncommitted changes when the lock expires (e.g. when transaction aborts unexpectedly, node is restarted and transaction state is lost, etc.)

Transaction must have a valid MVCC snapshot specified, which is used as the conflict detection baseline (and reads when needed), and
expected to be used across all reads and writes in the same YQL transaction.

The specified lock must be valid and non-broken, otherwise the specified LockTxId  must not have any uncompacted data in LocalDB. This
protects against edge cases where transaction rolls back due to lock status failure, and KQP tries writing to the shard again.

When the YQL transaction later reads using the same LockTxId , reads will use a per-query transaction map with LocalDB, where the LockTxId
appears as if it's already committed, allowing transaction to observe its own changes, but not other uncommitted changes. Since reads are
performed using an MVCC snapshot, the transaction map will have a special entry [LockTxId] => v{min} , so the uncommitted change is visible
in all snapshots.

Uncommitted writes need additional conflict detection (see CheckWriteConflicts in the MiniKQL engine host implementation). When multiple
uncommitted transactions write to the same key, DataShard needs to ensure correctness by breaking conflicting transactions. Transaction observer
objects (e.g. TLockedWriteTxObserver) are used to detect these conflicts, where LocalDB calls back various interface methods whenever a change
is skipped or applied during reads, and a special read is used before each write to detect other uncommitted writes to the same key. Whenever a
conflict is detected, it is added to conflict sets between locks, so each lock remembers which other locks must be broken when it commits, and
which locks will break this lock when they commit.

Reads also need additional checks for conflicts when uncommitted writes are involved. Because reads need to not only be internally consistent, but
also match the eventual state at the commit timestamp. Transaction observers are used to gather uncommitted writes from other transactions
(reads need to be able to eventually move to the commit timestamp), which introduce conflict graph edges from write locks to read locks.

Even more complicated is the case where change visibility writes happen over committed changes after the transaction MVCC read snapshot, and
transaction reads rows including those uncommitted changes. For example, let's consider this case:

1. Key K initially has A = 1  at version v4000/100  (the two numbers in version are Step=4000  and TxId=100  of the commit timestamp)

2. Tx1 is started with an MVCC snapshot v5000/max

3. Tx2 commits a blind UPSERT  with B = 2  at version v6000/102

4. Tx1 performs an uncommitted blind UPSERT  with C = 3  and TxId  101

5. At this point Tx1 may still commit successfully, because it didn't read key K and change with C = 3  may still move to some future commit
timestamp

6. Tx1 performs a read of key K, which happens at snapshot v5000/max :

This read will have [101] => v{min}  in its custom transaction map

The iteration will be positioned at the first delta with C = 3  (since v{min} <= v5000/max ), which will be applied to the row state

All other committed deltas and rows will also be applied, i.e. the row state would include B = 2  which is currently committed

However, there is a conflict: B = 2  is committed above the MVCC read snapshot ( v6000/102 > v5000/max )

This will be detected in OnApplyCommitted callback, which calls CheckReadConflict

Since this introduces a read inconsistency, the lock will be immediately broken, and an inconsistent read flag will be raised

7. Not only the above read would fail, Tx1 would not be able to commit since serializable isolation can no longer be provided

8. The application will get a "transaction locks invalidated" error and retry the transaction from the beginning

Interaction with change collectors

DataShards may have change collectors, which log table changes and stream them to other subsystems. This is used to support Change Data
Capture and Asynchronous secondary indexes. Depending on the mode, change collector may need to know the previous row state, and may
perform a row read before each write.

When transaction has uncommitted changes, change collectors need to process those as well, but those must not be streamed until they are
committed, and moreover streamed changes must match the eventual commit order of those changes. Changes are first accumulated in a separate
LockChangeRecords table, and when transaction eventually commits they are added to the output stream in bulk using a single record in a
ChangeRecordCommits table. This way all change processing is done gradually, it matches the size of each individual write, and there is no
expensive post-processing at commit time.

Interaction with distributed transactions

When distributed transaction starts execution, it first validates locks and sends its validation result to other participants. When all successful
validation results are received, the transaction body may execute and apply its intended side-effects. In other words, when all reads from all
involved shards may successfully move to the commit timestamp, the transaction may execute all buffered UPSERTs, otherwise transaction body is
not executed at all participants, and all accumulated changes are rolled back. Normally, validation result is persisted, and correctness is preserved
by runtime key conflicts between transactions. However, uncommitted writes add a serious complication, since when the write lock is committed
DataShard doesn't even know which keys are involved (it would need to keep all keys in memory, which is prohibitively expensive). Left unchecked,
DataShard might validate the write lock, send a successful result to other participants, while another conflicting transaction breaks this lock and rolls
back all changes. It is preferred to optimize for the case where transactions don't conflict, and stopping the pipeline when uncommitted writes are
involved would be prohibitively expensive.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_datashard-locks-and-change-visibility_interaction-with-change-collectors
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_datashard-locks-and-change-visibility_interaction-with-distributed-transactions
https://github.com/ydb-platform/ydb/blob/5aecdb67595db1a47c933b7d8da2cb662a50e185/ydb/core/tx/datashard/datashard_impl.h#L879
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_localdb-uncommitted-txs
https://github.com/ydb-platform/ydb/blob/efe5b5f8d2da503eda4d172f6f2e85aac64ba6a6/ydb/core/tx/datashard/datashard__engine_host.cpp#L802
https://github.com/ydb-platform/ydb/blob/efe5b5f8d2da503eda4d172f6f2e85aac64ba6a6/ydb/core/tx/datashard/datashard__engine_host.cpp#L872
https://github.com/ydb-platform/ydb/blob/efe5b5f8d2da503eda4d172f6f2e85aac64ba6a6/ydb/core/tx/datashard/datashard__engine_host.cpp#L698
https://github.com/ydb-platform/ydb/blob/efe5b5f8d2da503eda4d172f6f2e85aac64ba6a6/ydb/core/tx/datashard/datashard__engine_host.cpp#L751
https://github.com/ydb-platform/ydb/blob/bcf764f1aa71683e3871616abe6f16b47cec42e4/ydb/core/tx/datashard/change_collector.h#L48
https://en.wikipedia.org/wiki/Change_data_capture
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_secondary_indexes_async
https://github.com/ydb-platform/ydb/blob/c5284478af104d82c4d84a5d99bf0a51ecd2ca63/ydb/core/tx/datashard/datashard_impl.h#L911
https://github.com/ydb-platform/ydb/blob/c5284478af104d82c4d84a5d99bf0a51ecd2ca63/ydb/core/tx/datashard/datashard_impl.h#L947


Instead, when the write lock is validated, it becomes "frozen", and cannot be broken anymore. When a conflicting transaction tries to break a frozen
lock, it is temporarily paused, and waits until the transaction with that frozen lock is first resolved. DataShard tracks which locks break which other
locks on commit, and to avoid potential deadlocks it also tracks when commit of a transaction A may break validation results for transaction B and
vice versa. When A must go before B in the global order from coordinators, DataShard won't start transaction B validation until A completes, but as
long as transactions don't conflict they may be executed out-of-order.

Committing changes

When KQP needs to commit previously uncommitted changes, it proposes a transaction that commits previously acquired locks. Specifically this
transaction must not have a LockTxId  specified (the commit is not setting any new locks), and must include a previously set lock in Locks
transaction field, and with Op set to Commit. The commit transaction may either be immediate (when the YQL transaction involves a single shard,
whether or not multiple phases have been used), or prepared as a distributed transaction with multiple participants.

To support distributed transactions all shards that validate locks must be included in SendingShards, and all shards that have side-effects must be
included in ReceivingShards. During validation sending shards will generate persistent ReadSets and send them to all receiving shards, and
receiving shards will wait for all expected ReadSets before executing the transaction. When transaction is executed with all successful validation
results it will commit the lock by calling KqpCommitLocks. Otherwise, transaction body will not be executed, and lock is erased with all uncommitted
changes rolled back by calling KqpEraseLocks, and it cannot be retried later on commit failure.

Note

Note that all uncommitted changes with the same LockTxId  must be included in a commit transaction, and transaction must never try
to partially commit. For example, when a transaction involves multiple writes, and one of those writes fails with an error, it would not be
correct to skip the failed write and partially commit. Shards might merge later and non-matching transaction status would lead to
consistency anomalies.

The commit transaction may also have additional side-effects, which are atomically executed after the lock is committed. KQP will try to accumulate
side-effects in memory until the same table is read in the same transaction, or until transaction commits, to reduce latency and fuse side-effects with
commit as much as possible. When it is possible to accumulate all side-effects in memory, no uncommitted changes are persisted, and only read
locks are optionally acquired.

When YQL transaction needs to rollback it runs an empty transactions with the Rollback lock op. Even if it didn't, when the TLockHandle is
destroyed, subscribed DataShards will clean it up automatically in their TxRemoveLock internal transaction. The explicit removal is preferred, since
uncommitted changes is a finite resource and asynchronous cleanup via TLockHandle  would not ensure that resource is freed before new
transactions try to write more uncommitted changes.

Limitations

Currently, uncommitted changes have a downside that all new writes have to search for conflicts. A single uncommitted write is enough to cause all
new writes at a specific DataShard to switch to become non-blind, i.e. every write will have to perform a read first, which makes them more
expensive, increases latency and decreases throughput. For maximum performance it is recommended to execute transactions where all reads are
performed first, and a small amount of blind writes are performed last. This way uncommitted writes will not be used and DataShard performance
will be optimal.

Due to LocalDB limitations DataShard also needs to ensure it doesn't accumulate too many open transactions, and the locks table is already limited
to ~10k locks, which includes write locks. DataShard also has to count the number of uncommitted changes before each uncommitted write, which
is implemented by counting skips in the transaction observer, and throwing TLockedWriteLimitException when the limit is exceeded.

Persistent locks survive DataShard reboots and restore the last state. Even though it is possible to persist specific ranges, this is not used in
practice (DataShard would need to persist ranges during reads, which is expensive), and read locks are restored in the worst case "whole shard" as
their range.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_datashard-locks-and-change-visibility_committing-changes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_datashard-locks-and-change-visibility_limitations
https://github.com/ydb-platform/ydb/blob/b07264456a2e8b5929901f258ad60399bb64678a/ydb/core/protos/tx_datashard.proto#L219
https://github.com/ydb-platform/ydb/blob/d31477e5ed13679dd3b409b100623cc81a5e0964/ydb/core/protos/data_events.proto#L26
https://github.com/ydb-platform/ydb/blob/d31477e5ed13679dd3b409b100623cc81a5e0964/ydb/core/protos/data_events.proto#L20
https://github.com/ydb-platform/ydb/blob/d31477e5ed13679dd3b409b100623cc81a5e0964/ydb/core/protos/data_events.proto#L21
https://github.com/ydb-platform/ydb/blob/d31477e5ed13679dd3b409b100623cc81a5e0964/ydb/core/tx/datashard/execute_kqp_data_tx_unit.cpp#L228
https://github.com/ydb-platform/ydb/blob/d31477e5ed13679dd3b409b100623cc81a5e0964/ydb/core/tx/datashard/execute_kqp_data_tx_unit.cpp#L190
https://github.com/ydb-platform/ydb/blob/d31477e5ed13679dd3b409b100623cc81a5e0964/ydb/core/protos/data_events.proto#L27
https://github.com/ydb-platform/ydb/blob/0db14d1168517ecacab106e7abfe7af663020829/ydb/core/tx/long_tx_service/public/lock_handle.h#L15
https://github.com/ydb-platform/ydb/blob/0db14d1168517ecacab106e7abfe7af663020829/ydb/core/tx/datashard/remove_locks.cpp#L24
https://github.com/ydb-platform/ydb/blob/d31477e5ed13679dd3b409b100623cc81a5e0964/ydb/core/tx/datashard/datashard__engine_host.cpp#L867


DataShard: distributed transactions
YDB implements distributed transactions, which are based on ideas from the Calvin: Fast Distributed Transactions for Partitioned Database
Systems paper. These transactions consist of a set of operations performed by a group of participants, such as DataShards. Unlike Calvin, these
operations are not required to be deterministic. To execute a distributed transaction, a proposer prepares the transaction at each participant,
assigns a position (or a timestamp) to the transaction in the global transaction execution order using one of the coordinator tablets, and collects the
transaction results. Each participant receives and processes a subset of transactions it is involved in, following a specific order. Participants may
process their part of the larger transaction at different speeds rather than simultaneously. Distributed transactions share the same timestamp across
all participating shards and must include all changes from transactions with preceding timestamps. When viewed as a logical sequence, timestamps
act as a single logical timeline where any distributed transaction fully happens at a single point in time.

When the execution of a transaction depends on the state of other participants, the participants exchange data using so-called ReadSets. These
are persistent messages exchanged between participants that are delivered at least once and contain read results with the state of the transaction.
The use of ReadSets causes transactions to go through additional phases:

1. Reading phase: The participant reads, persists, and sends data that is needed by other participants. During this phase, KQP transactions
(type TX_KIND_DATA , which have a non-empty TDataTransaction.KqpTransaction  field and subtype KQP_TX_TYPE_DATA ) validate
optimistic locks. Older MiniKQL transactions (type TX_KIND_DATA , which have a non-empty TDataTransaction.MiniKQL  field) perform
reads and send arbitrary table data during this phase. Another example of using the reading phase is the distributed TTL transaction for
deleting expired rows. The primary shard generates a bitmask matching expired rows, ensuring that both the primary and index shards delete
the same rows.

2. Waiting phase: The participant waits until it has received all the necessary data from the other participants.

3. Execution phase: The participant uses both local and remote data to determine whether to abort or complete the transaction. The participant
generates and applies the effects specified in the transaction body if the transaction is completed successfully. The transaction body typically
includes a program that uses the same input data and leads all participants to come to the same conclusion.

Participants are allowed to execute transactions in any order for efficiency. However, it's crucial that other transactions can't observe this order.
Transaction ordering based on a coordinator's assigned timestamps ensures strict serializable isolation. In practice, single-shard transactions don't
involve a coordinator, and shards use a locally consistent timestamp for such transactions. Variations in the arrival times of distributed transaction
timestamps weaken the isolation level to serializable.

Additionally, YDB has support for "volatile" distributed transactions. These transactions allow participants, including coordinators, to store
transaction data in volatile memory, which is lost when the shards are restarted until the transaction is completed and the effects are persisted. This
also allows participants to abort the transaction until the very last moment, which will be guaranteed to abort for all other participants. Using volatile
memory removes persistent storage from the critical path before the transaction execution, reducing latency.

When executing the user's YQL transactions, YDB currently uses distributed transactions only for the final commit of non-read-only transactions.
Queries before the commit of a YQL transaction are executed as single-shard operations, using optimistic locks and global multi-version
concurrency control (MVCC) snapshots to ensure data consistency.

Basic distributed transactions protocol

Operations that can be performed as distributed transactions in YDB include various types of participants. The basic protocol for distributed
transactions is the same regardless of the type of transaction, with some notable differences in the schema changes, which have additional
requirements to ensure these transactions are idempotent.

Distributed transactions are managed using proposer actors. Some examples of these are:

TKqpDataExecutor executes DML queries, including distributed commits.

SchemeShard executes distributed transactions for schema changes.

TDistEraser executes a distributed transaction to consistently erase rows in tables with secondary indexes that match time-to-live (TTL) rules.

Distributed transactions in YDB are similar to two-phase commit protocols. The proposer actor goes through the following phases when executing a
distributed transaction:

1. Determining participants: The proposer actor selects specific shards ( TabletId ) that are required for transaction execution. A table may
consist of many shards ( DataShard  tablets with unique TabletId  identifiers), but a particular transaction may only affect a smaller set of
these shards based on the affected primary keys. This subset is fixed at the start of the transaction and cannot be changed later. Transactions
that only affect a single shard are called "single-shard" transactions and are processed in what is known as the "immediate execution" mode.

2. Prepare phase: The proposer sends a special event, usually called TEvProposeTransaction  (there is also the TEvWrite  variant in
DataShards), which specifies a TxId , a transaction identifier, unique within a particular cluster, and includes the transaction body (operations
and parameters). Participants validate whether the specified transaction can be executed, select a range of allowed timestamps, MinStep
and MaxStep , and reply with a PREPARED  status on success.

For single-shard transactions, the proposer typically specifies an "immediate execution" mode ( Immediate ). The shard executes such
transactions as soon as possible (at an unspecified timestamp consistent with other transactions) and replies with the result rather than
PREPARED , which causes the planning phase to be skipped. Some special single-shard operations, such as TEvUploadRowsRequest ,

which implements BulkUpsert , don't even have a globally unique TxId .

The persistent transaction body is stored in the shard's local database, and the participant must ensure that it is executed when planned.
In certain cases (for example, when performing a blind UPSERT  into multiple shards), the participants must also ensure that the
transaction is executed successfully, which may be in conflict with specific schema changes.

The volatile transaction body is stored in memory, and the participant responds with PREPARED  as soon as possible. Future execution,
whether successful or not, is not guaranteed in any way.

The proposer moves on to the next phase when they have received responses from all the participants.

It's not safe to re-send the propose event, except for schema operations, which, thanks to special idempotency fields, guarantee that a
particular transaction will be executed exactly once.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_datashard-distributed-txs
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_datashard-distributed-txs_basic-distributed-transactions-protocol
https://cs.yale.edu/homes/thomson/publications/calvin-sigmod12.pdf
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_mvcc
https://github.com/ydb-platform/ydb/blob/main/ydb/core/kqp/executer_actor/kqp_data_executer.cpp
https://github.com/ydb-platform/ydb/tree/main/ydb/core/tx/schemeshard
https://github.com/ydb-platform/ydb/blob/main/ydb/core/tx/datashard/datashard_distributed_erase.cpp


3. Planning phase: When the proposer has received PREPARED  replies from all participants, it calculates the aggregated MinStep  and
MaxStep  values and selects a coordinator to assign the timestamp to the transaction. A TEvTxProxy::TEvProposeTransaction  event is sent

to the selected coordinator, which includes the TxId  and a list of participants.

The transaction may only involve shards from the same database. Each shard attaches its ProcessingParams to the reply, which has the
same list of coordinators when shards belong to the same database.

The coordinator is selected based on the received ProcessingParams  because, historically, queries could be executed without
specifying a database. The list of coordinators can only be determined from the participants.

When the TEvTxProxy::TEvProposeTransaction  event is re-sent (currently only for schema transactions), it is possible that the
transaction may have multiple timestamps associated with it. This is not typically a problem as the transaction will execute at the earliest
possible timestamp, and any later timestamps will be ignored (the transaction will have been completed and removed by the time they
occur).

4. Execution phase: The proposer waits for responses from the selected coordinator and participants, collecting the overall transaction outcome.

In some cases, such as a temporary network disconnection or a shard restart, the proposer may try to re-establish the connection and
wait for the result. This process may continue until the transaction has been completed and the result is available.

When it is impossible to retrieve the result of a transaction from at least one of participant due to network issues, the transaction usually
fails with an UNDETERMINED  status, indicating that it is impossible to determine whether the transaction was successful.

Prepare phase in the DataShard tablet

Distributed transactions in the DataShard tablet begin with the Prepare  phase, which can be proposed by one of the following events:

TEvDataShard::TEvProposeTransaction provides an entry point for different types of transactions

TDataEvents::TEvWrite provides a special entry point for transactions that write data and commit YQL transactions

Events that don't have an Immediate  execution mode specified will begin the Prepare  phase for the distributed transaction. The transaction body
will be validated to determine whether it's even possible to execute it (for example, by using the CheckDataTxUnit unit for generic data
transactions). A range of timestamps will then be selected:

MinStep  is selected based on the current mediator time or the wall clock.

MaxStep  is determined by a planning timeout, which at the moment is 30 seconds for data transactions.

Then, the transaction is written to disk (for persistent transactions) or kept in memory (for volatile transactions), the shard replies with a PREPARED
status and starts waiting for a plan that specifies the PlanStep  for the given TxId . The planning deadline is important because if the proposer
fails unexpectedly, the shard cannot determine whether the proposer has successfully planned the transaction for a future timestamp, so the shard
must ensure that the transaction will be executed when planned (unless it's volatile). Since transactions that are not yet planned block some
concurrent operations (such as schema and partitioning changes), a deadline is used to make it impossible to plan a transaction after a certain
time. When the mediator time exceeds MaxStep  and there is no corresponding plan for the transaction, then the protocol guarantees that it will not
be possible to plan the transaction anymore. The transaction that reaches the deadline can then be safely removed.

Transactions are stored on disk and in memory using the TTransQueue class. Basic information about persistent transactions is stored in the
TxMain table, which is loaded into memory when DataShard starts. The potentially large transaction body is stored in the TxDetails table and is not
kept in memory while waiting. The transaction body is loaded into memory just before conflict analysis with other transactions in the pipeline.

Volatile transactions are stored in memory and are currently lost when DataShard restarts (they may be migrated during graceful restarts in the
future). The restart aborts the transaction for all participants, and any participant can initiate the abort before the transaction body is executed and
its effects are persisted. Shards use this feature to make schema and partitioning changes faster by aborting all pending transactions without
waiting for a planning deadline.

The distributed transaction body needs to have enough information about the other participants so that each shard can know when it needs to
generate and send outgoing ReadSets and which shards should expect and wait for incoming ReadSets. KQP transactions currently use ReadSets
for validating and committing optimistic locks, which are described using TKqpLocks generated by the TKqpDataExecutor  actor. This message
describes the following shard sets:

SendingShards  are shards that send ReadSets to all shards in the ReceivingShards  set.

ReceivingShards  are shards that expect ReadSets from all shards in the SendingShards  set.

Volatile transactions expect all shards to be in the SendingShards  set because any shard may abort the transaction and need to send its commit
decision to other shards. They also expect all shards that apply changes to be in the ReceivingShards  set. Whether or not changes are
committed depends on the decisions of other shards. Exchanged ReadSet data is serialized into TReadSetData message with a single Decision
field specified.

An example of a distributed transaction that doesn't use ReadSets is a persistent distributed transaction with blind writes. In this case, after
successful planning, the transaction cannot be aborted, and the shards must ensure the future success of the transaction during the Prepare
phase.

Planning phase

When all participants have provided their PREPARED  responses, the proposer calculates the maximum MinStep  and the minimum MaxStep , then
selects a coordinator (which is currently implemented using a TxId  hash) and sends a TEvTxProxy::TEvProposeTransaction  event, which
includes the TxId  and a list of participants with the operation type (read or write) for each participant (even though this information is not currently
used). The selected coordinator then selects the closest matching PlanStep  and associates it with the specified TxId  and the list of participants.
Plan steps for persistent transactions are allocated every 10 milliseconds (this setting is called plan resolution), and the association is also stored
on disk. Plan steps for volatile transactions are selected from those reserved for volatile planning and can be as frequent as every millisecond, and
the association is only stored in memory.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_datashard-distributed-txs_prepare-phase-in-the-datashard-tablet
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_datashard-distributed-txs_planning-phase
https://github.com/ydb-platform/ydb/blob/a68faed0a7b525a750d5f566e5c3fc60424cc91e/ydb/core/protos/subdomains.proto#L31
https://github.com/ydb-platform/ydb/blob/c97ef92f814152462ae0374eafa093bca584d7b5/ydb/core/tx/datashard/datashard.h#L435
https://github.com/ydb-platform/ydb/blob/c97ef92f814152462ae0374eafa093bca584d7b5/ydb/core/tx/data_events/events.h#L38
https://github.com/ydb-platform/ydb/blob/main/ydb/core/tx/datashard/check_data_tx_unit.cpp
https://github.com/ydb-platform/ydb/blob/a833a4359ba77706f9b1fe4104741ef0acfbc83b/ydb/core/tx/datashard/datashard_trans_queue.h#L25
https://github.com/ydb-platform/ydb/blob/a833a4359ba77706f9b1fe4104741ef0acfbc83b/ydb/core/tx/datashard/datashard_impl.h#L593
https://github.com/ydb-platform/ydb/blob/a833a4359ba77706f9b1fe4104741ef0acfbc83b/ydb/core/tx/datashard/datashard_impl.h#L609
https://github.com/ydb-platform/ydb/blob/a833a4359ba77706f9b1fe4104741ef0acfbc83b/ydb/core/protos/data_events.proto#L18
https://github.com/ydb-platform/ydb/blob/a833a4359ba77706f9b1fe4104741ef0acfbc83b/ydb/core/protos/tx.proto#L312


Planning each plan step (which can contain zero or more transactions) involves distributing participants (and their transactions) to mediators. This is
currently done by hashing the TabletId  of each participant modulo the number of mediators. Each mediator receives a subset of the plan step in
increasing the PlanStep  order. The subset only includes matching participants and may be empty, even if the full plan step is not. If a mediator
restarts or the network becomes temporarily disconnected, the coordinator reconnects and sends all unacknowledged plan steps again in order.

Plan steps with persistent transactions are only sent to mediators after being fully persisted to disk. They are only removed from the coordinator's
local database when acknowledged by participants and are guaranteed to be delivered at least once. Plan steps with volatile transactions, on the
other hand, are only stored in memory and may be lost if the coordinator restarts. When a plan step is resent, it may or may not include
acknowledged transactions or previously sent volatile transactions that still need to be acknowledged. This includes empty plan steps. Only the
latest empty plan step will be kept in memory for re-sending.

To reduce the number of errors during graceful restarts, the coordinator leaves its state actor in memory even after the tablet stops working. The
address of this state actor is persisted after the instance has been fully initialized and before it is ready to accept new requests. New instances
contact this state actor and transfer the last known in-memory state, including the list of planned volatile transactions. This state actor is also used
to transfer any unused volatile planning reserves, allowing new instances to start faster without having to wait until those reserves expire.

Mediators receive a stream of TEvTxCoordinator::TEvCoordinatorStep  events from each coordinator and merge them using the matching
PlanStep  field. Merged plan steps with steps less or equal to the minimum of the last step received from each coordinator are considered

complete and are sent to participants using TEvTxProcessing::TEvPlanStep  events. Each participant receives an event with the PlanStep ,
specifying the timestamp, and a list of TxId  that must be executed at that timestamp. Transactions within each plan step are ordered based on
their TxId . The (Step, TxId)  pairs are then used as the global MVCC version in the database.

Participants acknowledge that they have received (and persisted in the case of a persistent transaction) each plan step by sending a
TEvTxProcessing::TEvPlanStepAccepted  event to the sender (which is a mediator tablet) and a TEvTxProcessing::TEvPlanStepAck  event to

the specified coordinator tablet actor (as specified in the AckTo  field of each transaction). Plan steps and/or transactions will be considered
delivered when these events have been processed and will not be resent.

Based on TEvTxProcessing::TEvPlanStepAccepted  events, mediators also track which PlanStep  has been delivered to all participants,
inclusive. This maximum PlanStep  is known as the current mediator time and is distributed to nodes with running DataShards through
subscriptions to the TimeCast  service. The current mediator time indicates that all possible TEvTxProcessing::TEvPlanStep  events have been
received and acknowledged by the shards up to and including the specified PlanStep . Therefore, shards should be aware of all transactions up to
this timestamp. The current mediator time is helpful as it allows the shards to keep track of the time progressing even when they are not
participating in distributed transactions. For efficiency, all shards are partitioned into several timecast buckets at each mediator. The current time in
each bucket advances when all participants in transactions in that bucket acknowledge their TEvTxProcessing::TEvPlanStep  events. The current
mediator time is available to shards when they subscribe by sending TEvRegisterTablet event to the time cast service during shard startup and get
the address of an atomic variable from the TEvRegisterTabletResult event. This atomic variable allows the system to avoid broadcasting many
frequent events to idle shards.

DataShards handle TEvTxProcessing::TEvPlanStep  events in the TTxPlanStep transaction. Transactions are found by their corresponding
TxId , get their Step  assigned, and then are added to the Pipeline . The Pipeline  uses the PlanQueue  to limit the number of concurrently

running transactions and executes them in the (Step, TxId)  order.

Execution phase in the DataShard tablet

The PlanQueue unit allows distributed transactions to start, subject to concurrency limits, in the increasing (Step, TxId)  order. The transaction
body is loaded from disk when needed (for evicted persistent transactions), KQP transactions finalize execution plans and arrive at the
BuildAndWaitDependencies unit. This unit analyzes transaction keys and ranges declared for reading and writing and may add dependencies on
earlier conflicting transactions. For example, when transaction A  writes to key K  and a later transaction B  reads from key K , then transaction
B  depends on transaction A , and transaction B  cannot start until transaction A  completes. Transactions leave BuildAndWaitDependencies

when they no longer have direct dependencies on other transactions.

Next, persistent KQP transactions execute the read phase (which includes validating optimistic locks) and generate outgoing OutReadSets in the
BuildKqpDataTxOutRS unit. Then, the StoreAndSendOutRS persists outgoing ReadSets and access logs for optimistic locks. Optimistic locks that
have attached uncommitted changes are marked with the Frozen  flag, which prevents them from being aborted until the transaction completes.
Otherwise, lock validity is ensured by assigning writes with a higher MVCC version and ensuring the correct execution order of conflicting
transactions. Operations with access logs or outgoing ReadSets are added to the Incomplete  set, which ensures that new writes can't change the
validity of previous reads and generally need to use a higher MVCC version. However, new reads don't necessarily need to block on the outcome of
the incomplete transaction and can use a lower MVCC version as long as it's consistent with other transactions.

Persistent KQP transactions prepare data structures for incoming InReadSets in the PrepareKqpDataTxInRS unit and begin waiting for all
necessary ReadSets from other participants in the LoadAndWaitInRS unit. In some cases, such as blind writes to multiple shards without lock
validation, distributed transactions may not require the exchange of ReadSets, and the ReadSet-related units don't perform any actions in these
scenarios.

Finally, the KQP transaction operation reaches the ExecuteKqpDataTx unit. This unit validates local optimistic locks using previously persisted
AccessLog  data when available, validates ReadSets received from other participants, and, if everything checks out, executes the transaction body

and returns a result. If lock validation fails locally or remotely, the transaction body is not executed, and the operation fails with an ABORTED  status.

Volatile transactions

Volatile distributed transactions are stored only in memory and are lost when the shard is restarted. Nevertheless, they must guarantee that the
distributed transaction either commits at all participants or is aborted promptly. The advantage of volatile transactions is that they don't require
separate read, wait, and execution phases. Instead, they are executed atomically in a single phase with 1RTT storage latency from the start of the
distributed commit to the successful reply. This means they usually don't slow down the pipeline and can increase transaction throughput. Since any
shard can abort a volatile transaction without waiting for a planning deadline, it also limits the unavailability of the shard during partitioning and
schema changes.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_datashard-distributed-txs_execution-phase-in-the-datashard-tablet
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_datashard-distributed-txs_volatile-transactions
https://github.com/ydb-platform/ydb/blob/73296225ea843dc36665fa82444093ced7660ba4/ydb/core/tx/datashard/datashard.cpp#L427
https://github.com/ydb-platform/ydb/blob/73296225ea843dc36665fa82444093ced7660ba4/ydb/core/tx/datashard/datashard.cpp#L3392
https://github.com/ydb-platform/ydb/blob/3fa95b9777601584da35d5925d7908f283f671a9/ydb/core/tx/datashard/datashard__plan_step.cpp#L19
https://github.com/ydb-platform/ydb/blob/3fa95b9777601584da35d5925d7908f283f671a9/ydb/core/tx/datashard/plan_queue_unit.cpp#L44
https://github.com/ydb-platform/ydb/blob/3fa95b9777601584da35d5925d7908f283f671a9/ydb/core/tx/datashard/datashard_active_transaction.cpp#L667
https://github.com/ydb-platform/ydb/blob/3fa95b9777601584da35d5925d7908f283f671a9/ydb/core/tx/datashard/build_and_wait_dependencies_unit.cpp#L72
https://github.com/ydb-platform/ydb/blob/6e0ff4ff86f8dd5ac589b83de59c8bb377fe38c5/ydb/core/tx/datashard/build_kqp_data_tx_out_rs_unit.cpp#L44
https://github.com/ydb-platform/ydb/blob/6e0ff4ff86f8dd5ac589b83de59c8bb377fe38c5/ydb/core/tx/datashard/store_and_send_out_rs_unit.cpp#L42
https://github.com/ydb-platform/ydb/blob/6e0ff4ff86f8dd5ac589b83de59c8bb377fe38c5/ydb/core/tx/datashard/store_and_send_out_rs_unit.cpp#L67
https://github.com/ydb-platform/ydb/blob/6e0ff4ff86f8dd5ac589b83de59c8bb377fe38c5/ydb/core/tx/datashard/store_and_send_out_rs_unit.cpp#L79
https://github.com/ydb-platform/ydb/blob/6e0ff4ff86f8dd5ac589b83de59c8bb377fe38c5/ydb/core/tx/datashard/prepare_kqp_data_tx_in_rs_unit.cpp#L31
https://github.com/ydb-platform/ydb/blob/6e0ff4ff86f8dd5ac589b83de59c8bb377fe38c5/ydb/core/tx/datashard/load_and_wait_in_rs_unit.cpp#L36
https://github.com/ydb-platform/ydb/blob/6e0ff4ff86f8dd5ac589b83de59c8bb377fe38c5/ydb/core/tx/datashard/execute_kqp_data_tx_unit.cpp#L59


Volatile transactions are based on persistent uncommitted changes in the local database. During the execution phase, DataShard optimistically
assumes that all remote locks will be validated, applies effects in the form of uncommitted changes (using the globally unique TxId  of the
distributed transaction), and adds the transaction record to the VolatileTxManager in a Waiting  state for other participants to make decisions. A
successful reply is only sent when all transaction effects are persistent, and a committed decision has been received from all other participants.
Reads use the TxMap  to observe all pending changes and check their status using the TxObserver . When a read result depends on the outcome
of a volatile transaction, operations subscribe to its status and restart after it has been decided (either by reading committed changes or skipping
them if the transaction aborts).

Having uncommitted and not yet aborted changes limits the shard's ability to perform blind writes. Because uncommitted changes must be
committed in the same order in which they were applied to any given key, and shards don't keep these keys in memory after transactions have
been executed, DataShard needs to read each key and detect conflicts before it can perform any write. These conflicting changes may be
uncommitted changes associated with an optimistic lock (and these locks must be broken along with rolling back the changes) or uncommitted
changes from waiting for volatile transactions. We don't want to block writes unnecessarily, so even non-volatile operations can switch to a volatile
commit. Such operations allocate a GlobalTxId  when necessary (this is a per-cluster unique TxId  that is needed when the request doesn't
provide one, such as in BulkUpsert ) and write changes to conflicting keys as uncommitted. The transaction record is then added to the
VolatileTxManager  without specifying other participants and becomes initially committed. It also specifies a list of dependencies, which are

transactions that must be completed before the transaction can be committed. These transactions don't block reads and are eventually committed
in the local database after all their dependencies have been completed or aborted.

To reduce stalls in the pipeline, transactions use the conflict cache for keys that are declared for writes in distributed transactions. These keys are
read while transactions are waiting in the queue, and conflicting transaction sets are cached by the RegisterDistributedWrites function call. All writes
to cached keys update these conflict sets and keep them up-to-date. This allows distributed transactions with writes to execute faster by processing
lists of conflicting transactions using a hash table lookup even when the table data is evicted from memory.

DataShard may have change collectors, such as async indexes and/or Change Data Capture (CDC). Collecting these changes for volatile
transactions is similar to uncommitted changes in transactions, generating a stream of uncommitted change records using the TxId  as its
LockId . These records are then either added atomically to shard change records upon commit or deleted upon abort. Depending on the settings

of the change collector, it may also need to read the current row state. Suppose this row state depends on other volatile transactions that are
waiting. In that case, it is handled similarly to any other read by adding a dependency and restarting when these dependencies are resolved. This
can cause the transaction pipeline to stall, but it's conceptually similar to persistent distributed transactions with ReadSets that read-write conflicts
can also stall.

Volatile transactions also generate and write to disk OutReadSets for all other participants specified in the ReceivingShards  sets in the same
local database transaction, which writes uncommitted effects. When these uncommitted changes become persistent, these ReadSets are sent to
other participants, notifying them that this shard is ready to commit the distributed transaction and will not change its decision until the transaction is
aborted by another participant.

Shards forget about volatile transactions that do not persist in their transaction records when they are restarted and will not send outgoing
ReadSets for transactions they no longer know anything about. Shards that successfully execute the transaction body send a special event called
ReadSet Expectation to inform about them waiting for an incoming ReadSet. This is done even before the effects are persisted, so the shards have
a chance to find out about aborted transactions as early as possible. Restarted shards will receive a request for a transaction they don't know about
and respond with a special ReadSet without data. In this way, all participants will find out about the aborted transaction and abort it as well.

Volatile transaction guarantees

To reiterate, volatile transactions are stored in memory by coordinators and participants and may fail for various reasons. It's important to
understand why a volatile transaction either commits or aborts for all participants and why it's not possible for a transaction to commit only for a
subset of participants.

Some examples of potential sources of error for the transaction:

1. Any shard can unexpectedly restart, including when a new instance starts while the old one is still running and is unaware of the new one.
Since transactions are only stored in memory, the new instance may not be aware of transactions that failed to save their effects to disk. A
transaction may also have been successfully executed and committed without leaving any traces except for its committed effects.

2. The coordinator may unexpectedly restart without transferring its in-memory state, and the transaction may have been sent to some
participants but not all of them.

3. Any shard might have decided to abort the transaction due to an error.

A vital guarantee is that if any shard successfully persists, uncommitted changes, and a transaction record, and if it receives a DECISION_COMMIT
from all other participants, the transaction will be eventually committed at all participants and can't be rolled back. It's also important to note that if
any shard aborts a transaction due to an error (such as forgetting about the transaction after restarting), the transaction will never be able to
complete and will eventually roll back.

These guarantees are based on the following:

1. ReadSets with DECISION_COMMIT  are sent to other participants only after all uncommitted changes, outgoing ReadSets, and a transaction
record have been persisted to disk. Therefore, DECISION_COMMIT  messages are persistent and will be delivered to other participants until
acknowledged. Even if another shard aborts the transaction, these messages will continue to be delivered.

2. ReadSets are only acknowledged either when a shard successfully writes to disk or when a read-only lease is active and an unexpected
ReadSet is received. Specifically, an older tablet instance will not acknowledge a ReadSet for a transaction already prepared and executed by
a newer tablet. The local database ensures that a new tablet will not be activated until the read-only lease on older tablets has expired
(provided that the monotonic clock frequency is not more than twice as fast). A successful write confirms that the tablet held the storage lock at
the beginning of the commit, and no newer tablets were running simultaneously.

Volatile transactions use an optimization where received ReadSets are not written to disk. Acknowledgment is sent only after a commit or
an abort (removal) of the transaction record has been fully persisted on disk.

When all participants have generated and persisted in their outgoing DECISION_COMMIT  ReadSets, they will continue to receive the
complete set of commit decisions until they have fully committed the transaction effects and sent their acknowledgments.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_datashard-distributed-txs_volatile-transaction-guarantees
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_localdb-uncommitted-txs
https://github.com/ydb-platform/ydb/blob/1f1b84d1d160a2b1cfe4298b271c0078ec1602b1/ydb/core/tx/datashard/volatile_tx.cpp#L439
https://github.com/ydb-platform/ydb/blob/3fa95b9777601584da35d5925d7908f283f671a9/ydb/core/tx/datashard/build_and_wait_dependencies_unit.cpp#L95
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_datashard-locks-and-change-visibility
https://github.com/ydb-platform/ydb/blob/6e0ff4ff86f8dd5ac589b83de59c8bb377fe38c5/ydb/core/tx/datashard/execute_kqp_data_tx_unit.cpp#L193
https://github.com/ydb-platform/ydb/blob/6e0ff4ff86f8dd5ac589b83de59c8bb377fe38c5/ydb/core/tx/datashard/execute_kqp_data_tx_unit.cpp#L367
https://github.com/ydb-platform/ydb/blob/6e0ff4ff86f8dd5ac589b83de59c8bb377fe38c5/ydb/core/tx/datashard/execute_kqp_data_tx_unit.cpp#L496
https://github.com/ydb-platform/ydb/blob/6e0ff4ff86f8dd5ac589b83de59c8bb377fe38c5/ydb/core/tx/datashard/execute_kqp_data_tx_unit.cpp#L363
https://github.com/ydb-platform/ydb/blob/6e0ff4ff86f8dd5ac589b83de59c8bb377fe38c5/ydb/core/tx/datashard/datashard__readset.cpp#L48


3. Any message related to an aborted transaction is only sent after the abort has been written to disk. This is necessary to handle situations
where multiple generations of a particular shard are running at the same time. After a newer generation has successfully committed a
transaction and acknowledged ReadSets, an older generation (which would fail when trying to access the disk or validate a read-only lease)
may receive a NO_DATA  reply to its ReadSet Expectation (which was acknowledged by the newer generation). However, the older generation
will not be able to commit the removal of the transaction record and cannot reply with an error incorrectly. When the removal of the transaction
record (and the transaction effects) have been fully committed, the current generation can be assured that newer generations won't start with
the transaction again, and it won't commit.

4. After collecting all DECISION_COMMIT  ReadSets, a successful reply does not need to wait for the final commit in the local database. Instead, it
has to wait until the uncommitted effects and the transaction record have been persisted. This allows the successful reply to have a 1RTT
storage latency on the critical path caused by writing uncommitted changes and the transaction record. This successful response is stable:

If a shard is restarted, its effects and transaction record will be persistent. In the worst case, it will be recovered in the Waiting  state.

From the MVCC perspective, the transaction has already been completed, so any new reads will have an MVCC version that includes
these changes. Any new read will begin waiting for the transaction to resolve, which is now guaranteed to succeed.

The restored Waiting  transaction could not have its incoming ReadSets acknowledged, so they will be resent. Since we received
DECISION_COMMIT  earlier, they will be received again, and the transaction will quickly move to the Committed  state.

5. As long as the transaction is in the queue, and especially while its PlanStep  is not yet known, incoming ReadSets are stored in memory and
will not be acknowledged. Acknowledgments are delayed until the transaction has been fully committed or is aborted prematurely (in which
case, no changes have been made, and no transaction record has been committed, so newer generations cannot recover or commit the
transaction).

Volatile distributed transactions also ensure that changes are visible and stable across multiple shards participating in the same distributed
transaction. For instance, persistent distributed transactions allow the following anomaly:

1. Distributed transaction Tx1  performs a blind write to keys x  and y  in two different shards.

2. Single-shard transaction Tx2  reads key x  and observes a value written by Tx1 .

3. Single-shard transaction Tx3  (which starts after Tx2  has completed) reads key y  and does not observe a value written by Tx1 .

This anomaly can occur when a shard with key x  quickly receives a transaction plan step with Tx1  and performs a write. A subsequent read in
Tx2 , which arrives a bit later, will have its local MVCC version include changes to key x  and observe the change. However, the shard with key y

may be running on a slower node and may not be aware of the Tx1  plan step when a subsequent read in Tx3  arrives. Since the time cast bucket
doesn't have Tx1  acknowledged, its mediator time will remain in the past, and Tx3  will have a local MVCC version that doesn't include changes
to key y . From the user's perspective, Tx2  must happen before Tx3 , but the global serializable order turns out to be Tx3 , Tx1 , and Tx2 .

Volatile transactions cannot observe this particular anomaly because a read that observes changes to key x  must have received
DECISION_COMMIT  from the other shard with key y . This means that the transaction record has been persisted in both shards and, crucially, the

shard with key y  has marked it as completed. A read from key y  will choose a local MVCC version that includes changes made by Tx1  and will
need to wait until Tx1  is resolved.

In other words, if a client observes the result of a volatile transaction at a certain point in time, all subsequent reads will also observe the result of
that volatile transaction, and changes stability is not violated.

Indirect planning of volatile transactions

The coordinator restart may cause the plan step to only reach a subset of the participants in a volatile distributed transaction. As a result, some
shards may execute the transaction and begin waiting for ReadSets, while other shards continue waiting for the plan step to arrive. Due to the
planning timeout of 30 seconds, some transactions could experience excessive delays before eventually aborting.

When any participant receives the first plan step of a volatile transaction, they will include the PlanStep  in the ReadSets they send to other
participants. The other participants then indirectly learn about the PlanStep  assigned to the transaction and remember it as the
PredictedPlanStep . Even if their own plan step is lost, DataShard will add the transaction to the PlanQueue  when its mediator time (directly or

indirectly) reaches the PredictedPlanStep , as if they had received a plan step with that predicted PlanStep  and TxId . If the
PredictedPlanStep  is in the past, the transaction will be quickly aborted, as if it had reached the planning deadline.

Since the same transaction can be assigned to multiple plan steps, with some getting lost, different participants may have a distinct PlanStep
assigned to the same transaction. The same transaction will then try to execute at different timestamps. DataShards verify that DECISION_COMMIT
messages have their PlanStep  matching their assigned PlanStep  and only process them if the steps match. The transaction will be aborted if
there is a mismatch in the plan steps.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_datashard-distributed-txs_indirect-planning-of-volatile-transactions


KqpLoad
Runs general performance testing for the YDB cluster by loading all components via the Query Processor layer. The load is similar to that from the
workload YDB CLI subcommand, but it is generated from within the cluster.

You can run two types of load:

Stock: Simulates a warehouse of an online store: creates multi-product orders, gets a list of orders per customer.

Key-value: Uses the DB as a key-value store.

Before this test, the necessary tables are created. After it's completed, they are deleted.

Actor parameters

The basic actor parameters are described below. For the full list of parameters, see the load_test.proto file in the YDB Git repository.

Examples

The following actor runs a stock load on the /slice/db  database by making simple UPSERT queries of 64  threads during 30  seconds.

KqpLoad: {
    DurationSeconds: 30
    WindowDuration: 1
    WorkingDir: "/slice/db"

Parameter Description

DurationSeconds Load duration in seconds.

WindowDuration Statistics aggregation window duration.

WorkingDir Path to the directory to create test tables in.

NumOfSessions The number of parallel threads creating the load. Each thread writes data to its own session.

DeleteTableOnFinish Set it to False  if you do not want the created tables deleted after the load stops. This might be helpful 
when a large table is created upon the actor's first run, and then queries are made to that table.

UniformPartitionsCount The number of partitions created in test tables.

WorkloadType Type of load.
For Stock:

0 : InsertRandomOrder.

1 : SubmitRandomOrder.

2 : SubmitSameOrder.

3 : GetRandomCustomerHistory.

4 : GetCustomerHistory.

For Key-Value:

0 : UpsertRandom.

1 : InsertRandom.

2 : SelectRandom.

Workload Kind of load.
Stock :

ProductCount : Number of products.

Quantity : Quantity of each product in stock.

OrderCount : Initial number of orders in the database.

Limit : Minimum number of shards for tables.

Kv :

InitRowCount : Before load is generated, the load actor writes the specified number of rows to the 
table.

StringLen : Length of the value  string.

ColumnsCnt : Number of columns to use in the table.

RowsCnt : Number of rows to insert or read per SQL query.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-kqp
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-kqp_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-kqp_example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_index
https://github.com/ydb-platform/ydb/blob/main/ydb/core/protos/load_test.proto


As a result of the test, the number of successful transactions per second, the number of transaction execution retries, and the number of errors are
output.

    NumOfSessions: 64
    UniformPartitionsCount: 1000
    DeleteTableOnFinish: 1
    WorkloadType: 0
    Stock: {
        ProductCount: 100
        Quantity: 1000
        OrderCount: 100
        Limit: 10
    }
}



KeyValueLoad
Loads a key-value tablet.

Actor configuration

message TKeyValueLoad {
    message TWorkerConfig {
        optional string KeyPrefix = 1;
        optional uint32 MaxInFlight = 2;
        optional uint32 Size = 11; // data size, bytes
        optional bool IsInline = 9 [default = false];
        optional uint32 LoopAtKeyCount = 10 [default = 0]; // 0 means "do not loop"
    }
    optional uint64 Tag = 1;
    optional uint64 TargetTabletId = 2;
    optional uint32 DurationSeconds = 5;
    repeated TWorkerConfig Workers = 7;
}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-key-value
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-key-value_options


StorageLoad
Tests the read/write performance to and from Distributed Storage. The load is generated on Distributed Storage directly without using any tablet and
Query Processor layers. When testing write performance, the actor writes data to the specified storage group. To test read performance, the actor
first writes data to the specified storage group and then reads the data. After the load is removed, all the data written by the actor is deleted.

You can generate three types of load:

Continuous: The actor ensures that the specified number of requests are running concurrently. To generate a continuous load, set a zero
interval between requests (e.g., WriteIntervals: { Weight: 1.0 Uniform: { MinUs: 0 MaxUs: 0 } } ), while keeping the
MaxInFlightWriteRequests  parameter value different from zero and omit the WriteHardRateDispatcher  parameter.

Interval: The actor runs requests at specific intervals. To generate an interval load, set a non-zero interval between requests, e.g.,
WriteIntervals: { Weight: 1.0 Uniform: { MinUs: 50000 MaxUs: 50000 } }  and don't set the WriteHardRateDispatcher

parameter. The maximum number of in-flight requests is set by the InFlightWrites  parameter (0 means unlimited).

Hard rate: The actor runs requests at certain intervals, but the interval length is adjusted to maintain a configured request rate per second. If
the duration of the load is limited by LoadDuration  than the request rate may differ between start and finish of the workload and will adjust
gradually throughout all the main load cycle. To generate a load of this type, set the parameters of hard rate load (parameter
WriteHardRateDispatcher ). Note that if this parameter is set, the hard rate type of load will be launched, regardless the value of the
WriteIntervals  parameter. The maximum number of in-flight requests is set by the InFlightWrites  parameter (0 means unlimited).

Actor parameters

The basic actor parameters are described below. For the full list of parameters, see the load_test.proto file in the YDB Git repository.

Parameter Description

DurationSeconds Load duration. The timer starts upon completion of the initial data allocation.

Tablets The load is generated on behalf of a tablet with the following parameters:

TabletId : Tablet ID. It must be unique for each load actor across all the cluster nodes. This 
parameter and TabletName  are mutually exclusive.

TabletName : Tablet name. If the parameter is set, tablets' IDs will be assigned automatically, 
tablets launched on the same node with the same name will be given the same ID, tablets launched 
on different nodes will be given different IDs.

Channel : Tablet channel.

GroupId : ID of the storage group to get loaded.

Generation : Tablet generation.

WriteSizes Size of the data to write. It is selected randomly for each request from the Min - Max  range. You can set 
multiple WriteSizes  ranges, in which case a value from a specific range will be selected based on its 
Weight .

WriteHardRateDispatcher Setting up the parameters of load with hard rate for write requests. If this parameter is set than the value 
of WriteIntervals  is ignored.

WriteIntervals Setting up the parameters for probabilistic distribution of intervals between the records loaded at intervals 
(in milliseconds). You can set multiple WriteIntervals  ranges, in which case a value from a specific 
range will be selected based on its Weight .

MaxInFlightWriteRequests The maximum number of write requests being processed simultaneously.

ReadSizes Size of the data to read. It is selected randomly for each request from the Min - Max  range. You can set 
multiple ReadSizes  ranges, in which case a value from a specific range will be selected based on its 
Weight .

WriteHardRateDispatcher Setting up the parameters of load with hard rate for read requests. If this parameter is set than the value 
of ReadIntervals  is ignored.

ReadIntervals Setting up the parameters for probabilistic distribution of intervals between the queries loaded by 
intervals (in milliseconds). You can set multiple ReadIntervals  ranges, in which case a value from a 
specific range will be selected based on its Weight .

MaxInFlightReadRequests The maximum number of read requests being processed simultaneously.

FlushIntervals Setting up the parameters for probabilistic distribution of intervals (in microseconds) between the queries 
used to delete data written by the write requests in the main load cycle of the StorageLoad actor. You can 
set multiple FlushIntervals  ranges, in which case a value from a specific range will be selected based 
on its Weight . Only one flush request will be processed concurrently.

PutHandleClass Class of data writes to the disk subsystem. If the TabletLog  value is set, the write operation has the 
highest priority.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-storage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-storage_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-storage_hard-rate-dispatcher
https://github.com/ydb-platform/ydb/blob/main/ydb/core/protos/load_test.proto
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-storage_hard-rate-dispatcher
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-storage_params
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-storage_hard-rate-dispatcher
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-storage_params
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-storage_params
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-storage_write-class


Write requests class

Read requests class

Parameters of probabilistic distribution

An interval written as a repeated TIntervalInfo  field is calculated by the following algorithm:

An element from the TIntervalInfo  array is selected at random with the probability proportionate to its weight.

For an element of the TIntervalUniform  type, the value is chosen with equal probability in the range Min-Max. Min-Max  (if MinMs/MaxMs
is used, the value is in milliseconds; if MinUs/MaxUs  is used, the value is in microseconds).

For an element of the TIntervalPoisson  type, the interval is selected using the formula Min(log(-x / Frequency), MaxIntervalMs) ,
where x  is a random value in the interval [0, 1] . As a result, the intervals follow the Poisson distribution with the given Frequency , but
with the interval within MaxIntervalMs .

A similar approach is used for the probabilistic distribution of the size of the written data. However, in this case, only the data size follows a uniform
probability distribution, within the interval [Min, Max] .

Parameters of load with hard rate

GetHandleClass Class of data reads from the disk subsystem. If the FastRead  is set, the read operation is performed 
with the highest speed possible.

Initial allocation Setting up the parameters for initial data allocation. It defines the amount of data to be written before the 
start of the main load cycle. This data can be read by read requests along with the data written in the 
main load cycle.

Class Description

TabletLog The highest priority of write operation.

AsyncBlob Used for writing SSTables and their parts.

UserData Used for writing user data as separate blobs.

Class Description

AsyncRead Used for reading compacted tablets' data.

FastRead Used for fast reads initiated by user.

Discover Reads from Discover query.

LowRead Low priority reads executed on the background.

Parameter Description

RequestRateAtStart Requests per second at the moment of load start. If load duration limit is not set then the request rate will 
remain the same and equal to the value of this parameter.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-storage_write-class
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-storage_read-class
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-storage_params
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-storage_hard-rate-dispatcher
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-storage_read-class
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-storage_initial-allocation


Parameters of initial data allocation

An interval written as a repeated TIntervalInfo  field is calculated by the following algorithm:

An element from the TIntervalInfo  array is selected at random with the probability proportionate to its weight.

For an element of the TIntervalUniform  type, the value is chosen with equal probability in the range Min-Max. Min-Max  (if MinMs/MaxMs
is used, the value is in milliseconds; if MinUs/MaxUs  is used, the value is in microseconds).

For an element of the TIntervalPoisson  type, the interval is selected using the formula Min(log(-x / Frequency), MaxIntervalMs) ,
where x  is a random value in the interval [0, 1] . As a result, the intervals follow the Poisson distribution with the given Frequency , but
with the interval within MaxIntervalMs .

A similar approach is used for the probabilistic distribution of the size of the written data. However, in this case, only the data size follows a uniform
probability distribution, within the interval [Min, Max] .

Examples

Write load

The following actor writes data to the group with the ID 2181038080  during 60  seconds. The size per write is 4096  bytes, the number of in-flight
requests is no more than 256  (continuous load):

When viewing test results, the following values should be of most interest to you:

Writes per second : Number of writes per second, e.g., 28690.29 .

Speed@ 100% : 100 percentile of write speed in MB/s, e.g., 108.84 .

Read load

StorageLoad: {
    DurationSeconds: 60
    Tablets: {
        Tablets: { TabletId: 1000 Channel: 0 GroupId: 2181038080 Generation: 1 }
        WriteSizes: { Weight: 1.0 Min: 4096 Max: 4096 }
        WriteIntervals: { Weight: 1.0 Uniform: { MinUs: 0 MaxUs: 0 } }
        MaxInFlightWriteRequests: 256
        FlushIntervals: { Weight: 1.0 Uniform: { MinUs: 10000000 MaxUs: 10000000 } }
        PutHandleClass: TabletLog
    }
}

RequestRateOnFinish Requests per second at the moment of load finish.

Parameter Description

TotalSize Total size of allocated data. This parameter and BlobsNumber  are mutually exclusive.

BlobsNumber Total number of allocated blobs.

BlobSizes Size of the blobs to write. It is selected randomly for each request from the Min - Max  range. You can set 
multiple WriteSizes  ranges, in which case a value from a specific range will be selected based on its 
Weight .

MaxWritesInFlight Maximum number of simultaneously processed write requests. If this parameter is not set then the number 
of simultaneously processed requests is not limited.

MaxWriteBytesInFlight Maximum number of total amount of simultaneously processed write requests' data. If this parameter is 
not set then the total amount of data being written concurrently is unlimited.

PutHandleClass Class of data writes to the disk subsystem.

DelayAfterCompletionSec The amount of time in seconds the actor will wait upon completing the initial data allocation before starting 
the main load cycle. If its value is 0  or not set the load will start immediately after the completion of the 
data allocaion.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-storage_initial-allocation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-storage_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-storage_write
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-storage_read
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-storage_write-class


To generate a read load, you need to write data first. Data is written by requests of 4096  bytes every 50  ms with no more than 1  in-flight request
(interval load). If a request fails to complete within 50  ms, the actor will wait until it is complete and run another request in 50  ms. Data older than
10 s is deleted. Data reads are performed by requests of 4096  bytes with 16  in-flight requests allowed (continuous load):

When viewing test results, the following value should be of most interest to you:

ReadSpeed@ 100% : 100 percentile of read speed in MB/s, e.g., 60.86 .

Read only

Before the start of the main load cycle the 1 GB  data block of blobs with sizes between 1 MB  and 5 MB  is allocated. To avoid overloading the
system with write requests the number of simultaneously processed requests is limited by the value of 5 . After completing the initial data allocation
the main cycle is launched. It consists of read requests sent with increasing rate: from 10  to 50  requests per second, the rate will increase
gradually for 300  seconds.

Calculated percentiles will only represent the requests of the main load cycle and won't include write requests sent during the initial data allocation.
The graphs in Monitoring should be of interest, for example, they allow to trace the request latency degradation caused by the increasing load.

StorageLoad: {
    DurationSeconds: 60
    Tablets: {
        Tablets: { TabletId: 5000 Channel: 0 GroupId: 2181038080 Generation: 1 }
        WriteSizes: { Weight: 1.0 Min: 4096 Max: 4096}
        WriteIntervals: { Weight: 1.0 Uniform: { MinUs: 50000 MaxUs: 50000 } }
        MaxInFlightWriteRequests: 1

        ReadSizes: { Weight: 1.0 Min: 4096 Max: 4096 }
        ReadIntervals: { Weight: 1.0 Uniform: { MinUs: 0 MaxUs: 0 } }
        MaxInFlightReadRequests: 16
        FlushIntervals: { Weight: 1.0 Uniform: { MinUs: 10000000 MaxUs: 10000000 } }
        PutHandleClass: TabletLog
        GetHandleClass: FastRead
    }
}

StorageLoad: {
    DurationSeconds: 300
    Tablets: {
        Tablets: { TabletId: 5000 Channel: 0 GroupId: 2181038080 Generation: 1 }

        MaxInFlightReadRequests: 10
        GetHandleClass: FastRead
        ReadHardRateDispatcher {
                RequestsPerSecondAtStart: 10
                RequestsPerSecondOnFinish: 50
        }

        InitialAllocation {
                TotalSize: 1000000000
                BlobSizes: { Weight: 1.0 Min: 1000000 Max: 5000000 }
                MaxWritesInFlight: 5
        }
    }
}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-storage_readonly
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_metrics_grafana-dashboards


VDiskLoad
Generates a write-only load on the VDisk. Simulates a Distributed Storage Proxy. The test outputs the VDisk write performance in operations per
second.

Actor parameters

The basic actor parameters are described below. For the full list of parameters, see the load_test.proto file in the YDB Git repository.

Parameters of probabilistic distribution

An interval written as a repeated TIntervalInfo  field is calculated by the following algorithm:

An element from the TIntervalInfo  array is selected at random with the probability proportionate to its weight.

For an element of the TIntervalUniform  type, the value is chosen with equal probability in the range Min-Max. Min-Max  (if MinMs/MaxMs
is used, the value is in milliseconds; if MinUs/MaxUs  is used, the value is in microseconds).

For an element of the TIntervalPoisson  type, the interval is selected using the formula Min(log(-x / Frequency), MaxIntervalMs) ,
where x  is a random value in the interval [0, 1] . As a result, the intervals follow the Poisson distribution with the given Frequency , but
with the interval within MaxIntervalMs .

Parameter Description

VDiskId Parameters of the VDisk used to generate load.

GroupID : Group ID.

GroupGeneration : Group generation.

Ring : Group ring ID.

Domain : Ring fail domain ID.

VDisk : Index of the VDisk in the fail domain.

GroupInfo Description of the group hosting the loaded VDisk (of the appropriate generation).

TabletId ID of the tablet that generates the load. It must be unique for each load actor.

Channel ID of the channel inside the tablet that will be specified in the BLOB write and garbage collection 
commands.

DurationSeconds The total test time in seconds; when it expires, the load stops automatically.

WriteIntervals Setting up the parameters for probabilistic distribution of intervals between the records.

WriteSizes Size of the data to write. It is selected randomly for each request from the Min - Max  range. You can set 
multiple WriteSizes  ranges, in which case a value from a specific range will be selected based on its 
Weight .

InFlightPutsMax Maximum number of concurrent BLOB write queries against the VDisk (TEvVPut queries); if omitted, the 
number of queries is unlimited.

InFlightPutBytesMax Maximum number of bytes in the concurrent BLOB write queries against the VDisk (TEvVPut-requests).

PutHandleClass Class of data writes to the disk subsystem. If the TabletLog  value is set, the write operation has the 
highest priority.

BarrierAdvanceIntervals Setting up the parameters for probabilistic distribution of intervals between the advance of the garbage 
collection barrier and the write step.

StepDistance Distance between the currently written step Gen:Step  of the BLOB and its currently collected step. The 
higher is the value, the more data is stored. Data is written from Step = X  and deleted from all the 
BLOBs where Step = X - StepDistance . The Step  is periodically incremented by one (with the 
BarrierAdvanceIntervals  period).

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-vdisk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-vdisk_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-vdisk_params
https://github.com/ydb-platform/ydb/blob/main/ydb/core/protos/load_test.proto
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-vdisk_params
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-vdisk_params


A similar approach is used for the probabilistic distribution of the size of the written data. However, in this case, only the data size follows a uniform
probability distribution, within the interval [Min, Max] .



PDiskWriteLoad
Tests the performance of writes to the PDisk. The load is generated on behalf of a VDisk. The actor creates chunks on the specified PDisk and
writes random data to them. After the load stops, the data written by the actor is deleted.

You can generate two types of load:

Continuous: The actor ensures the specified number of requests are run concurrently. To generate a continuous load, set a zero interval
between requests, e.g., IntervalMsMin: 0  and IntervalMsMax: 0 , while keeping the InFlightWrites  parameter different from zero.

Interval: The actor runs requests at preset intervals. To generate interval load, set a non-zero interval between requests, e.g.,
IntervalMsMin: 10  and IntervalMsMax: 100 . You can set the maximum number of in-flight requests using the InFlightWrites

parameter. If its value is 0 , their number is unlimited.

Actor parameters

The basic actor parameters are described below. For the full list of parameters, see the load_test.proto file in the YDB Git repository.

Examples

The following actor writes data blocks of 32  MB during 120  seconds with 64  in-flight requests (continuous load):

PDiskWriteLoad: {
    PDiskId: 1000
    PDiskGuid: 2258451612736857634
    VDiskId: {
        GroupID: 11234
        GroupGeneration: 5
        Ring: 1
        Domain: 1
        VDisk: 3
    }
    Chunks: { Slots: 4096 Weight: 1 }
    Chunks: { Slots: 4096 Weight: 1 }
    Chunks: { Slots: 4096 Weight: 1 }

Parameter Description

PDiskId ID of the Pdisk being loaded on the node.

PDiskGuid Globally unique ID of the PDisk being loaded.

VDiskId The load is generated on behalf of a VDisk with the following parameters:

GroupID : Group ID.

GroupGeneration : Group generation.

Ring : Group ring ID.

Domain : Ring fail domain ID.

VDisk : Index of the VDisk in the fail domain.

Chunks Chunk parameters.
Slots : Number of slots per chunk, determines the write size.

You can specify multiple Chunks , in which case a specific chunk to write data to is selected based on its Weight .

DurationSeconds Load duration in seconds.

IntervalMsMin ,
IntervalMsMax

Minimum and maximum intervals between requests under interval load, in milliseconds. The interval value is 
selected randomly from the specified range.

InFlightWrites Number of simultaneously processed write requests.

LogMode Logging mode. In LOG_SEQUENTIAL  mode, data is first written to a chunk and then, once the write is committed, to 
a log.

Sequential Type of writes.

True : Sequential.

False : Random.

IsWardenlessTest Set it to False  in case the PDiskReadLoad actor is run on the cluster; otherwise, e.g. when it is run during unit 
tests, set it to True .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-pdisk-write
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-pdisk-write_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-pdisk-write_example
https://github.com/ydb-platform/ydb/blob/main/ydb/core/protos/load_test.proto


When viewing test results, the following value should be of most interest to you:

Average speed since start : Average write speed since start, in MB/s, e.g., 615.484013 .

    Chunks: { Slots: 4096 Weight: 1 }
    Chunks: { Slots: 4096 Weight: 1 }
    Chunks: { Slots: 4096 Weight: 1 }
    Chunks: { Slots: 4096 Weight: 1 }
    Chunks: { Slots: 4096 Weight: 1 }
    DurationSeconds: 120
    IntervalMsMin: 0
    IntervalMsMax: 0
    InFlightWrites: 64
    LogMode: LOG_SEQUENTIAL
    Sequential: false
    IsWardenlessTest: false
}



PDiskReadLoad
Tests the performance of reads from the PDisk. The load is generated on behalf of a VDisk. The actor creates chunks on the specified PDisk, writes
random data to them, and reads the data from them using the specified parameters. After the load stops, the data written by the actor is deleted.

You can generate two types of load:

Continuous: The actor ensures the specified number of requests are run concurrently. To generate continuous load, set a zero interval
between requests (e.g., IntervalMsMin: 0  and IntervalMsMax: 0 ), while keeping the InFlightReads  parameter different from zero.

Interval: The actor runs requests at preset intervals. To generate interval load, set a non-zero interval between requests, e.g.,
IntervalMsMin: 10  and IntervalMsMax: 100 . You can set the maximum number of in-flight requests using the InFlightReads

parameter. If its value is 0 , their number is unlimited.

Actor parameters

The basic actor parameters are described below. For the full list of parameters, see the load_test.proto file in the YDB Git repository.

Examples

The following actor reads data blocks of 32 MB during 120 seconds with 64 in-flight requests (continuous load):

PDiskReadLoad: {
    PDiskId: 1000
    PDiskGuid: 2258451612736857634
    VDiskId: {
        GroupID: 11234
        GroupGeneration: 5
        Ring: 1
        Domain: 1
        VDisk: 3
    }
    Chunks: { Slots: 4096 Weight: 1 }
    Chunks: { Slots: 4096 Weight: 1 }
    Chunks: { Slots: 4096 Weight: 1 }
    Chunks: { Slots: 4096 Weight: 1 }
    Chunks: { Slots: 4096 Weight: 1 }
    Chunks: { Slots: 4096 Weight: 1 }

Parameter Description

PDiskId ID of the Pdisk being loaded on the node.

PDiskGuid Globally unique ID of the PDisk being loaded.

VDiskId The load is generated on behalf of a VDisk with the following parameters:

GroupID : Group ID.

GroupGeneration : Group generation.

Ring : Group ring ID.

Domain : Ring fail domain ID.

VDisk : Index of the VDisk in the fail domain.

Chunks Chunk parameters.
Slots : Number of slots per chunk, determines the write size.

You can specify multiple Chunks , in which case a specific chunk to read data from is selected based on its 
Weight .

DurationSeconds Load duration in seconds.

IntervalMsMin ,
IntervalMsMax

Minimum and maximum intervals between requests under interval load, in milliseconds. The interval value is 
selected randomly from the specified range.

InFlightReads Number of simultaneously processed read requests.

Sequential Type of reads.

True : Sequential.

False : Random.

IsWardenlessTest Set it to False  in case the PDiskReadLoad actor is run on the cluster; otherwise, e.g. when it is run during unit 
tests, set it to True .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-pdisk-read
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-pdisk-read_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-pdisk-read_examples
https://github.com/ydb-platform/ydb/blob/main/ydb/core/protos/load_test.proto


When viewing test results, the following value should be of most interest to you:

Average speed since start : Average read speed since start, in MB/s, e.g., 1257.148154 .

    Chunks: { Slots: 4096 Weight: 1 }
    Chunks: { Slots: 4096 Weight: 1 }
    DurationSeconds: 120
    IntervalMsMin: 0
    IntervalMsMax: 0
    InFlightReads: 64
    Sequential: false
    IsWardenlessTest: false
}



PDiskLogLoad
All VDisks hosted on a certain PDisk log data about their own performance to the common PDisk log. VDisks gradually delete their obsolete data at
the beginning of the log to free up disk space. Sometimes, after one VDisk completes logging data and before another one starts logging it, a
section with useless obsolete data may appear. In this case, such data is deleted automatically, and the PDiskLogLoad actor will perform a test to
check whether such an operation is running correctly.

SizeInterval

VDisk1
SizeInterv...

BurstSize VDisk1BurstSize VDisk1

BurstInterval

VDisk1
BurstInter...

StorageDuration VDisk1StorageDuration VDisk1

SizeInterval

VDisk2

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-pdisk-log


SizeInterv...

BurstInterval

VDisk2
BurstInter...

StorageDuration VDisk2StorageDuration VDisk2

BurstSize VDisk2BurstSize VDisk2

Data that is being deleted



Data that is being dele...

Timeline,

bytes
Timeline,...Text is not SVG - cannot display

Note

This ad-hoc actor is used for testing specific functionality. This is not a load actor. It is designed to check whether something works
properly.

Actor parameters

The basic actor parameters are described below. For the full list of parameters, see the load_test.proto file in the YDB Git repository.

Examples

The following actor simulates the performance of two VDisks. The first VDisk logs a message of 65536  bytes every 65536  bytes and deletes data
that exceeds 1048576  bytes. The second one writes 1024  bytes as messages of 128  bytes every 2147483647  bytes and deletes data that
exceeds 2147483647  bytes.

PDiskLogLoad: {
    Tag: 1
    PDiskId: 1
    PDiskGuid: 12345
    DurationSeconds: 60
    Workers: {
        VDiskId: {GroupID: 1 GroupGeneration: 5 Ring: 1 Domain: 1 VDisk: 1}
        MaxInFlight: 1
        SizeIntervalMin: 65536
        SizeIntervalMax: 65536
        BurstInterval: 65536
        BurstSize: 65536

Parameter Description

PDiskId ID of the Pdisk being loaded on the node.

PDiskGuid Globally unique ID of the PDisk being loaded.

VDiskId Parameters of the VDisk used to generate load.

GroupID : Group ID.

GroupGeneration : Group generation.

Ring : Group ring ID.

Domain : Ring fail domain ID.

VDisk : Index of the VDisk in the fail domain.

MaxInFlight Number of simultaneously processed requests.

SizeIntervalMin Minimum size of log record in bytes.

SizeIntervalMax Maximum size of log record in bytes.

BurstInterval Interval between logging sessions in bytes.

BurstSize Total amount of data to log per session, in bytes.

StorageDuration Virtual time in bytes. Indicates how long the VDisk should store its data in the log.

IsWardenlessTest Set it to False  in case the PDiskReadLoad actor is run on the cluster; otherwise, e.g. when it is run during unit 
tests, set it to True .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-pdisk-log_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-pdisk-log_example
https://github.com/ydb-platform/ydb/blob/main/ydb/core/protos/load_test.proto


The test passes if none of the cluster nodes got overloaded and the status of the PDisk in question is Normal . You can check this using the cluster
Embedded UI.

        StorageDuration: 1048576
    }
    Workers: {
        VDiskId: {GroupID: 2 GroupGeneration: 5 Ring: 1 Domain: 1 VDisk: 1}
        MaxInFlight: 1
        SizeIntervalMin: 128
        SizeIntervalMax: 128
        BurstInterval: 2147483647
        BurstSize: 1024
        StorageDuration: 2147483647
    }
    IsWardenlessTest: false
}



MemoryLoad
Allocates memory blocks of the specified size at certain intervals. After the load is removed, the allocated memory is released. Using this actor, you
can test the logic, e.g., whether a certain trigger is fired when the RSS limit is reached.

Note

This ad-hoc actor is used for testing specific functionality. This is not a load actor. It is designed to check whether something works
properly.

Actor parameters

Examples

The following actor allocates blocks of 1048576  bytes every 9000000  microseconds during 3600  seconds and takes up 32 GB while running:

MemoryLoad: {
    DurationSeconds: 3600
    BlockSize: 1048576
    IntervalUs: 9000000
}

Parameter Description

DurationSeconds Load duration in seconds.

BlockSize Allocated block size in bytes.

IntervalUs Interval between block allocations in microseconds.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-memory
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-memory_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-memory_examples
https://en.wikipedia.org/wiki/Resident_set_size


Stop
Using this command, you can stop either entire load or only the specified part of it.

Actor parameters

Examples

The command below stops the load tagged 123 :

To stop the entire load, run this command:

Stop: {
    Tag: 123
}

Stop: {
    RemoveAllTags: true
}

Parameter Description

Tag Tag of the load actor to stop. You can view the tag in the cluster Embedded UI.

RemoveAllTags If this parameter value is set to True , all the load actors are stopped.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-stop
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-stop_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_load-actors-stop_examples


YQL - Overview
YQL (YDB Query Language) is a universal declarative query language for YDB, a dialect of SQL. YQL has been natively designed for large
distributed databases, and therefore has a number of differences from the SQL standard.

YDB tools support interfaces for sending YQL queries and receiving their execution results:

YDB CLI

YDB SDK

This documentation section contains the YQL reference that includes the sections:

Data types with a description of data types used in YQL

Syntax with a full list of YQL commands

Built-in functions with a description of the available built-in functions

You can also take a tutorial to get familiar with the basic YQL commands, in the YQL tutorial section.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_yql-tutorial_index


YDB compatibility with PostgreSQL

Warning

At the moment, YDB's compatibility with PostgreSQL is under development, so not all PostgreSQL constructs and functions are
supported yet. PostgreSQL compatibility is available for testing in the form of a Docker container, which can be deployed by following
these instructions.

PostgreSQL compatibility is a mechanism for executing SQL queries in the PostgreSQL dialect on YDB infrastructure using the PostgreSQL wire
protocol. This feature allows the use of familiar PostgreSQL tools such as psql and drivers (e.g., pq for Golang and psycopg2 for Python).
Developers can write queries using the PostgreSQL syntax while benefiting from YDB's advantages such as horizontal scalability and fault
tolerance.

YDB's compatibility with PostgreSQL simplifies the migration of applications that were previously operating within the PostgreSQL ecosystem. This
feature allows for a smoother transition of database-driven applications to YDB. At present, a limited set of PostgreSQL 14 instructions and
functions are supported. PostgreSQL compatibility enables switching from PostgreSQL to YDB without modifying the project code (provided that the
SQL constructs used in the project are supported by YDB), by merely changing the connection parameters.

The operation of PostgreSQL compatibility can be described as follows:

1. The application sends queries to YDB, where they are processed by a component known as pgwire. Pgwire implements the wire protocol of
PostgreSQL and forwards commands to the query processor.

2. The query processor translates the PostgreSQL queries into YQL AST.

3. After the queries are processed, the results are compiled and sent back to the application that issued the query via the PostgreSQL wire
protocol. During query processing, it can be parallelized and executed on any number of YDB nodes.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_intro
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_docker-connect
https://www.postgresql.org/docs/14/app-psql.html
https://github.com/lib/pq
https://pypi.org/project/psycopg2/
https://postgrespro.ru/docs/postgresql/14/protocol


The functionality of PostgreSQL compatibility can be graphically represented as follows:



Using the embedded web UI
YDB provides tools for monitoring and determining system health:

YDB Monitoring: The main monitor of the cluster. It shows the health of nodes and storage groups.

Interconnect overview: The state of cluster interconnects.

Logs: Each YDB component writes messages to logs of different levels. They can be used to detect severe issues or identify the root causes
of issues.

Charts: YDB collects a range of metrics that can be used to determine the health of the entire system or of a specific component.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_interconnect-overview
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_logs
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_charts


Integrations YDB
This section provides the main information about YDB integrations with third-party systems.

Note

In addition to its own native protocol, YDB has a compatibility layer that allows external systems to connect to databases via network
protocols PostgreSQL or Apache Kafka. Due to the compatibility layer, many tools designed to work with these systems can also
interact with YDB. The compatibility level of each specific application needs to be clarified separately.

Graphical user interfaces

Data visualization (Business intelligence, BI)

Orchestration

Data ingestion

Streaming data ingestion

Data migrations

Environment Instruction Compatibility level

Embedded UI Instruction

DBeaver Instruction By JDBC-driver

JetBrains Database viewer — By JDBC-driver

JetBrains DataGrip Instruction By JDBC-driver

Other JDBC-compatible IDEs — By JDBC-driver

Jupyter Notebook Instruction By YDB-SQLAlchemy

Environment Compatibility Level Instruction

Apache Superset PostgreSQL wire protocol Instruction

DataLens Full Instruction

FineBI PostgreSQL wire protocol Instruction

Grafana Full Instruction

System Instruction

Apache Airflow™ Instruction

Delivery System Instruction

FluentBit Instruction

LogStash Instruction

Kafka Connect Sink Instruction

Arbitrary JDBC data sources Instruction

Delivery System Instruction

Apache Kafka API Instruction

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_index_gui
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_index_bi
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_index_orchestration
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_index_ingestion
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_index_streaming-ingestion
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_index_schema_migration
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_reference_embedded-ui_index
https://dbeaver.com/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dbeaver
https://github.com/ydb-platform/ydb-jdbc-driver/releases
https://github.com/ydb-platform/ydb-jdbc-driver/releases
https://www.jetbrains.com/datagrip/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_datagrip
https://github.com/ydb-platform/ydb-jdbc-driver/releases
https://github.com/ydb-platform/ydb-jdbc-driver/releases
https://jupyter.org/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_jupyter
https://github.com/ydb-platform/ydb-sqlalchemy/releases
https://superset.apache.org/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_postgresql_intro
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_superset
https://datalens.tech/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_datalens
https://intl.finebi.com/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_postgresql_intro
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_finebi
https://grafana.com/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_grafana
https://airflow.apache.org/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_airflow
https://fluentbit.io/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_fluent-bit
https://www.elastic.co/logstash
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_logstash
https://docs.confluent.io/platform/current/connect/index.html
https://github.com/ydb-platform/ydb-kafka-sink-connector
https://en.wikipedia.org/wiki/Java_Database_Connectivity
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_import-jdbc
https://kafka.apache.org/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_reference_kafka-api_index


Object–relational mapping (ORM)

Vector search

See also

YDB SDK reference

YDB compatibility with PostgreSQL

Kafka API

Environment Instruction

goose Instruction

Liquibase Instruction

Flyway Instruction

Delivery System Instruction

Hibernate Instruction

Spring Data JDBC Instruction

JOOQ Instruction

Dapper Instruction

System Instruction

LangChain Instruction

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_index_orm
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_index_vectorsearch
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_index_see-also
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_intro
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_kafka-api_index
https://github.com/pressly/goose/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_goose
https://www.liquibase.com/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_liquibase
https://documentation.red-gate.com/fd/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_flyway
https://hibernate.org/orm/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_hibernate
https://spring.io/projects/spring-data-jdbc
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_spring-data-jdbc
https://www.jooq.org/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_jooq
https://www.learndapper.com/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dapper
https://python.langchain.com/docs/introduction/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_langchain


YDB CLI
The YDB CLI provides software for managing your data in YDB.

To use the YDB CLI, first install it and then set up the connection and authentication.

For a full description of YDB CLI commands, see the following articles of this section:

List of objects.

Getting information about schema objects.

Working with directories.

Query execution.

Streaming table reads.

Working with secondary indexes.

Getting a list of DB endpoints.
Load testing.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_install
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_connect
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_scheme-ls
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_scheme-describe
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_dir
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_yql-query-overview
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_readtable
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_secondary_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_discovery-list
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_workload_index


YDB SDK reference
OpenSource SDKs in the following programming languages are available to work with YDB:

The SDK documentation contains the following sections:

Installation

Authentication

Handling errors

Code recipes

Comparison of SDK features

See also:

Documentation for Application Developers

Example applications

Language GitHub repository API reference

C++ ydb-platform/ydb/tree/main/ydb/public/sdk/cpp N/A

С# (.NET) ydb-platform/ydb-dotnet-sdk N/A

Go ydb-platform/ydb-go-sdk https://pkg.go.dev/github.com/ydb-platform/ydb-go-sdk/v3

Java ydb-platform/ydb-java-sdk N/A

Node.js ydb-platform/ydb-nodejs-sdk N/A

PHP ydb-platform/ydb-php-sdk N/A

Python ydb-platform/ydb-python-sdk https://ydb-platform.github.io/ydb-python-sdk

Rust ydb-platform/ydb-rs-sdk N/A

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_install
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_auth
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#recipes_ydb-sdk_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_feature-parity
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#dev_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#dev_example-app_index
https://github.com/ydb-platform/ydb/tree/main/ydb/public/sdk/cpp
https://github.com/ydb-platform/ydb-dotnet-sdk
https://github.com/ydb-platform/ydb-go-sdk
https://pkg.go.dev/github.com/ydb-platform/ydb-go-sdk/v3
https://github.com/ydb-platform/ydb-java-sdk
https://github.com/ydb-platform/ydb-nodejs-sdk
https://github.com/ydb-platform/ydb-php-sdk
https://github.com/ydb-platform/ydb-python-sdk
https://ydb-platform.github.io/ydb-python-sdk/
https://github.com/ydb-platform/ydb-rs-sdk


Languages and APIs
ADO.NET - .NET Access to YDB

JDBC driver for YDB

YDB Model Context Protocol Server

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_jdbc-driver_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_mcp_index


Kafka API
YDB supports working with topics using the Kafka protocol version 3.4.0. It allows to integrate YDB with applications originally developed to work
with Apache Kafka.

The Kafka API documentation contains the following sections:

Usage examples

Constraints

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_kafka-api_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic
https://kafka.apache.org/34/documentation.html
https://kafka.apache.org/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_kafka-api_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_kafka-api_constraints


YDB cluster configuration
The cluster configuration is specified in the YAML file passed in the --yaml-config  parameter when the cluster nodes are run.

This article describes the main groups of configurable parameters in this file.

host_configs: Typical host configurations

A YDB cluster consists of multiple nodes, and one or more typical server configurations are usually used for their deployment. To avoid repeating its
description for each node, there is a host_configs  section in the configuration file that lists the used configurations and assigned IDs.

Syntax

The host_config_id  attribute specifies a numeric configuration ID. The drive  attribute contains a collection of descriptions of connected drives.
Each description consists of two attributes:

path : Path to the mounted block device, for example, /dev/disk/by-partlabel/ydb_disk_ssd_01

type : Type of the device's physical media: ssd , nvme , or rot  (rotational - HDD)

Examples

One configuration with ID 1 and one SSD disk accessible via /dev/disk/by-partlabel/ydb_disk_ssd_01 :

Two configurations with IDs 1 (two SSD disks) and 2 (three SSD disks):

Kubernetes features

The YDB Kubernetes operator mounts NBS disks for Storage nodes at the path /dev/kikimr_ssd_00 . To use them, the following host_configs
configuration must be specified:

The example configuration files provided with the YDB Kubernetes operator contain this section, and it does not need to be changed.

hosts: Static cluster nodes

host_configs:
- host_config_id: 1
  drive:
  - path: <path_to_device>
    type: <type>
  - path: ...
- host_config_id: 2
  ...

host_configs:
- host_config_id: 1
  drive:
  - path: /dev/disk/by-partlabel/ydb_disk_ssd_01
    type: SSD

host_configs:
- host_config_id: 1
  drive:
  - path: /dev/disk/by-partlabel/ydb_disk_ssd_01
    type: SSD
  - path: /dev/disk/by-partlabel/ydb_disk_ssd_02
    type: SSD
- host_config_id: 2
  drive:
  - path: /dev/disk/by-partlabel/ydb_disk_ssd_01
    type: SSD
  - path: /dev/disk/by-partlabel/ydb_disk_ssd_02
    type: SSD
  - path: /dev/disk/by-partlabel/ydb_disk_ssd_03
    type: SSD

host_configs:
- host_config_id: 1
  drive:
  - path: /dev/kikimr_ssd_00
    type: SSD

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_host-configs
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_syntax
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_host-configs-k8s
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_hosts


This group lists the static cluster nodes on which the Storage processes run and specifies their main characteristics:

Numeric node ID

DNS host name and port that can be used to connect to a node on the IP network

ID of the standard host configuration

Placement in a specific availability zone, rack

Server inventory number (optional)

Syntax

Examples

Kubernetes features

When deploying YDB with a Kubernetes operator, the entire hosts  section is generated automatically, replacing any user-specified content in the
configuration passed to the operator. All Storage nodes use host_config_id  = 1 , for which the correct configuration must be specified.

log_config: Logging configuration

The log_config  section controls how YDB processes and manages logs. It allows you to customize logging levels, formats, and destinations for
different components.

For detailed information about log configuration options, see `log_config` configuration section.

domains_config: Cluster domain

This section contains the configuration of the YDB cluster root domain, including the Blob Storage (binary object storage) and State Storage
configurations.

Syntax

Blob Storage configuration

This section defines one or more types of storage pools available in the cluster for the data in the databases with the following configuration
options:

hosts:
- host: <DNS host name>
  host_config_id: <numeric ID of the standard host configuration>
  port: <port> # 19001 by default
  location:
    unit: <string with the server serial number>
    data_center: <string with the availability zone ID>
    rack: <string with the rack ID>
- host: <DNS host name>
  ...

hosts:
- host: hostname1
  host_config_id: 1
  node_id: 1
  port: 19001
  location:
    unit: '1'
    data_center: '1'
    rack: '1'
- host: hostname2
  host_config_id: 1
  node_id: 2
  port: 19001
  location:
    unit: '1'
    data_center: '1'
    rack: '1'

domains_config:
  domain:
  - name: <root domain name>
    storage_pool_types: <Blob Storage configuration>
  state_storage: <State Storage configuration>
  security_config: <authentication configuration>

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_syntax1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_examples1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_hosts-k8s
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_log-config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_domains-config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_syntax2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_domains-blob
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_host-configs
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_host-configs-k8s
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_log_config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_domains-blob
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_domains-state


Storage pool name

Device properties (for example, disk type)

Data encryption (on/off)

Fault tolerance mode

The following fault tolerance modes are available:

Syntax

Each database in the cluster is assigned at least one of the available storage pools selected in the database creation operation. The names of
storage pools among those assigned can be used in the DATA  attribute when defining column groups in YQL operators CREATE TABLE / ALTER 
TABLE .

State Storage configuration

State Storage is an independent in-memory storage for variable data that supports internal YDB processes. It stores data replicas on multiple
assigned nodes.

State Storage usually does not need scaling for better performance, so the number of nodes in it must be kept as small as possible taking into
account the required level of fault tolerance.

State Storage availability is key for a YDB cluster because it affects all databases, regardless of which storage pools they use. To ensure fault
tolerance of State Storage, its nodes must be selected to guarantee a working majority in case of expected failures.

The following guidelines can be used to select State Storage nodes:

When deploying State Storage on clusters that use multiple storage pools with a possible combination of fault tolerance modes, consider increasing
the number of nodes and spreading them across different storage pools because unavailability of State Storage results in unavailability of the entire
cluster.

Syntax

  storage_pool_types:
  - kind: <storage pool name>
    pool_config:
      box_id: 1
      encryption_mode: <optional, specify 1 to encrypt data on the disk>
      erasure_species: <fault tolerance mode name - none, block-4-2, or mirror-3-dc>
      kind: <storage pool name - specify the same value as above>
      pdisk_filter:
      - property:
        - type: <device type to be compared with the one specified in host_configs.drive.type>
      vdisk_kind: Default
  - kind: <storage pool name>
  ...

Mode Description

none There is no redundancy. Applies for testing.

block-4-2 Redundancy factor of 1.5, applies to single data center clusters.

mirror-3-dc Redundancy factor of 3, applies to multi-data center clusters.

Cluster type
Min 
number of
nodes

Selection guidelines

Without fault 
tolerance

1 Select one random node.

Within a single 
availability zone

5 Select five nodes in different block-4-2 storage pool failure domains to ensure that a majority of 3 
working nodes (out of 5) remain when two domains fail.

Geo-distributed 9 Select three nodes in different failure domains within each of the three mirror-3-dc storage pool 
availability zones to ensure that a majority of 5 working nodes (out of 9) remain when the 
availability zone + failure domain fail.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_syntax3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_domains-state
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_syntax4
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topology
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_family
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_family


Each State Storage client (for example, DataShard tablet) uses nto_select  nodes to write copies of its data to State Storage. If State Storage
consists of more than nto_select  nodes, different nodes can be used for different clients, so you must ensure that any subset of nto_select
nodes within State Storage meets the fault tolerance criteria.

Odd numbers must be used for nto_select  because using even numbers does not improve fault tolerance in comparison to the nearest smaller
odd number.

Actor system

The CPU resources are mainly used by the actor system. Depending on the type, all actors run in one of the pools (the name  parameter).
Configuring is allocating a node's CPU cores across the actor system pools. When allocating them, please keep in mind that PDisks and the gRPC
API run outside the actor system and require separate resources.

You can set up your actor system either automatically or manually. In the actor_system_config  section, specify:

Node type and the number of CPU cores allocated to the ydbd process by automatic configuring.

Number of CPU cores for each YDB cluster subsystem in the case of manual configuring.

Automatic configuring adapts to the current system workload. It is recommended in most cases.

You might opt for manual configuring when a certain pool in your actor system is overwhelmed and undermines the overall database performance.
You can track the workload on your pools on the Embedded UI monitoring page.

Automatic configuring

Example of the actor_system_config  section for automatic configuring of the actor system:

Manual configuring

Example of the actor_system_config  section for manual configuring of the actor system:

state_storage:
- ring:
    node: <StateStorage node array>
    nto_select: <number of data replicas in StateStorage>
  ssid: 1

actor_system_config:
  use_auto_config: true
  node_type: STORAGE
  cpu_count: 10

actor_system_config:
  executor:
  - name: System
    spin_threshold: 0
    threads: 2
    type: BASIC
  - name: User
    spin_threshold: 0
    threads: 3
    type: BASIC
  - name: Batch
    spin_threshold: 0
    threads: 2
    type: BASIC
  - name: IO

Parameter Description

use_auto_config Enabling automatic configuring of the actor system.

node_type Node type. Determines the expected workload and vCPU ratio between the pools. Possible values:

STORAGE : The node interacts with network block store volumes and is responsible for managing the 
Distributed Storage.

COMPUTE : The node processes the workload generated by users.

HYBRID : The node is used for hybrid load or the usage of System , User , and IC  for the node under load is 
about the same.

cpu_count Number of vCPUs allocated to the node.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_actor-system
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_autoconfig
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_tuneconfig
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_autoconfig
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_tuneconfig
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring_node_list_page


    threads: 1
    time_per_mailbox_micro_secs: 100
    type: IO
  - name: IC
    spin_threshold: 10
    threads: 1
    time_per_mailbox_micro_secs: 100
    type: BASIC
  scheduler:
    progress_threshold: 10000
    resolution: 256
    spin_threshold: 0

Parameter Description

executor Pool configuration.
You should only change the number of CPU cores (the threads  parameter) in the pool configs.

name Pool name that indicates its purpose. Possible values:

System : A pool that is designed for running quick internal operations in YDB (it serves system 
tablets, state storage, distributed storage I/O, and erasure coding).

User : A pool that serves the user load (user tablets, queries run in the Query Processor).

Batch : A pool that serves tasks with no strict limit on the execution time, background 
operations like garbage collection and heavy queries run in the Query Processor.

IO : A pool responsible for performing any tasks with blocking operations (such as 
authentication or writing logs to a file).

IC : Interconnect, it serves the load related to internode communication (system calls to wait for 
sending and send data across the network, data serialization, as well as message splits and 
merges).

spin_threshold The number of CPU cycles before going to sleep if there are no messages. In sleep mode, there is 
less power consumption, but it may increase request latency under low loads.

threads The number of CPU cores allocated per pool.
Make sure the total number of cores assigned to the System, User, Batch, and IC pools does not 
exceed the number of available system cores.

max_threads Maximum vCPU that can be allocated to the pool from idle cores of other pools. When you set this 
parameter, the system enables the mechanism of expanding the pool at full utilization, provided that 
idle vCPUs are available.
The system checks the current utilization and reallocates vCPUs once per second.

max_avg_ping_deviation Additional condition to expand the pool's vCPU. When more than 90% of vCPUs allocated to the pool 
are utilized, you need to worsen SelfPing by more than max_avg_ping_deviation  microseconds 
from 10 milliseconds expected.

time_per_mailbox_micro_secs The number of messages per actor to be handled before switching to a different actor.

type Pool type. Possible values:

IO  should be set for IO pools.

BASIC  should be set for any other pool.

scheduler Scheduler configuration. The actor system scheduler is responsible for the delivery of deferred 
messages exchanged by actors.
We do not recommend changing the default scheduler parameters.

progress_threshold The actor system supports requesting message sending scheduled for a later point in time. The 
system might fail to send all scheduled messages at some point. In this case, it starts sending them 
in "virtual time" by handling message sending in each loop over a period that doesn't exceed the 
progress_threshold  value in microseconds and shifting the virtual time by the 
progress_threshold  value until it reaches real time.

resolution When making a schedule for sending messages, discrete time slots are used. The slot duration is set 
by the resolution  parameter in microseconds.



Memory controller

There are many components inside YDB database nodes that utilize memory. Most of them need a fixed amount, but some are flexible and can use
varying amounts of memory, typically to improve performance. If YDB components allocate more memory than is physically available, the operating
system is likely to terminate the entire YDB process, which is undesirable. The memory controller's goal is to allow YDB to avoid out-of-memory
situations while still efficiently using the available memory.

Examples of components managed by the memory controller:

Shared cache: stores recently accessed data pages read from distributed storage to reduce disk I/O and accelerate data retrieval.

MemTable: holds data that has not yet been flushed to SST.
KQP: stores intermediate query results.

Allocator caches: keep memory blocks that have been released but not yet returned to the operating system.

Memory limits can be configured to control overall memory usage, ensuring the database operates efficiently within the available resources.

Hard memory limit

The hard memory limit specifies the total amount of memory available to YDB process.

By default, the hard memory limit for YDB process is set to its cgroups memory limit.

In environments without a cgroups memory limit, the default hard memory limit equals to the host's total available memory. This configuration allows
the database to utilize all available resources but may lead to resource competition with other processes on the same host. Although the memory
controller attempts to account for this external consumption, such a setup is not recommended.

Additionally, the hard memory limit can be specified in the configuration. Note that the database process may still exceed this limit. Therefore, it is
highly recommended to use cgroups memory limits in production environments to enforce strict memory control.

Most of other memory limits can be configured either in absolute bytes or as a percentage relative to the hard memory limit. Using percentages is
advantageous for managing clusters with nodes of varying capacities. If both absolute byte and percentage limits are specified, the memory
controller uses a combination of both (maximum for lower limits and minimum for upper limits).

Example of the memory_controller_config  section with a specified hard memory limit:

Soft memory limit

The soft memory limit specifies a dangerous threshold that should not be exceeded by YDB process under normal circumstances.

If the soft limit is exceeded, YDB gradually reduces the shared cache size to zero. Therefore, more database nodes should be added to the cluster
as soon as possible, or per-component memory limits should be reduced.

Target memory utilization

The target memory utilization specifies a threshold for YDB process memory usage that is considered optimal.

Flexible cache sizes are calculated according to their limit thresholds to keep process consumption around this value.

For example, in a database that consumes a little memory on query execution, caches consume memory around this threshold, and other memory
stays free. If query execution consumes more memory, caches start to reduce their sizes to their minimum threshold.

Per-component memory limits

There are two different types of components within YDB.

The first type, known as cache components, functions as caches, for example, by storing the most recently used data. Each cache component has
minimum and maximum memory limit thresholds, allowing them to adjust their capacity dynamically based on the current YDB process
consumption.

The second type, known as activity components, allocates memory for specific activities, such as query execution or the compaction process. Each
activity component has a fixed memory limit. Additionally, there is a total memory limit for these activities from which they attempt to draw the

memory_controller_config:
  hard_limit_bytes: 16106127360

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_memory-controller
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_hard-memory-limit
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_soft-memory-limit
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_target-memory-utilization
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_per-component-memory-limits
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_database-node
https://en.wikipedia.org/wiki/Out_of_memory#Recovery
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_shared-cache
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_distributed-storage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_memtable
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_sst
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_kqp
https://en.wikipedia.org/wiki/Cgroups
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_shared-cache
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_compaction


required memory.

Many other auxiliary components and processes operate alongside the YDB process, consuming memory. Currently, these components do not
have any memory limits.

Cache components memory limits

The cache components include:

Shared cache

MemTable

Each cache component's limits are dynamically recalculated every second to ensure that each component consumes memory proportionally to its
limit thresholds while the total consumed memory stays close to the target memory utilization.

The minimum memory limit threshold for cache components isn't reserved, meaning the memory remains available until it is actually used.
However, once this memory is filled, the components typically retain the data, operating within their current memory limit. Consequently, the sum of
the minimum memory limits for cache components is expected to be less than the target memory utilization.

If needed, both the minimum and maximum thresholds should be overridden; otherwise, any missing threshold will have a default value.

Example of the memory_controller_config  section with specified shared cache limits:

Activity components memory limits

The activity components include:

KQP

The memory limit for each activity component specifies the maximum amount of memory it can attempt to use. However, to prevent the YDB
process from exceeding the soft memory limit, the total consumption of activity components is further constrained by an additional limit known as
the activities memory limit. If the total memory usage of the activity components exceeds this limit, any additional memory requests will be denied.

As a result, while the combined individual limits of the activity components might collectively exceed the activities memory limit, each component's
individual limit should be less than this overall cap. Additionally, the sum of the minimum memory limits for the cache components, plus the activities
memory limit, must be less than the soft memory limit.

There are some other activity components that currently do not have individual memory limits.

Example of the memory_controller_config  section with a specified KQP limit:

Configuration parameters

Each configuration parameter applies within the context of a single database node.

As mentioned above, the sum of the minimum memory limits for the cache components plus the activities memory limit should be less than the soft
memory limit.

This restriction can be expressed in a simplified form:

Or in a detailed form:

memory_controller_config:
  shared_cache_min_percent: 10
  shared_cache_max_percent: 30

memory_controller_config:
  query_execution_limit_percent: 25

Parameter Default Description

hard_limit_bytes CGroup memory limit /
Host memory

Hard memory usage limit.

soft_limit_percent  /
soft_limit_bytes

75% Soft memory usage limit.

target_utilization_percent  /
target_utilization_bytes

50% Target memory utilization.

activities_limit_percent  /
activities_limit_bytes

30% Activities memory limit.

shared_cache_min_percent  /
shared_cache_min_bytes

20% Minimum threshold for the shared cache memory limit.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_cache-components-memory-limits
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_activity-components-memory-limits
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_configuration-parameters


blob_storage_config: Static cluster group

Specify a static cluster group's configuration. A static group is necessary for the operation of the basic cluster tablets, including Hive ,
SchemeShard , and BlobstorageContoller .

As a rule, these tablets do not store a lot of data, so we don't recommend creating more than one static group.

For a static group, specify the disks and nodes that the static group will be placed on. For example, a configuration for the erasure: none  model
can be as follows:

For a configuration located in 3 availability zones, specify 3 rings. For a configuration within a single availability zone, specify exactly one ring.

Enabling stable node names

Node names are assigned through the Node Broker, which is a system tablet that registers dynamic nodes in the YDB cluster.

Node Broker assigns names to dynamic nodes when they register in the cluster. By default, a node name consists of the hostname and the port on
which the node is running.

In a dynamic environment where hostnames often change, such as in Kubernetes, using hostname and port leads to an uncontrollable increase in
the number of unique node names. This is true even for a database with a handful of dynamic nodes. Such behavior may be undesirable for a time
series monitoring system as the number of metrics grows uncontrollably. To solve this problem, the system administrator can set up stable node
names.

A stable name identifies a node within the tenant. It consists of a prefix and a node's sequential number within its tenant. If a dynamic node has
been shut down, after a timeout, its stable name can be taken by a new dynamic node serving the same tenant.

To enable stable node names, you need to add the following to the cluster configuration:

By default, the prefix is slot- . To override the prefix, add the following to the cluster configuration:

Configuring Health Check

This section configures thresholds and timeout settings used by the YDB health check service. These parameters help configure detection of
potential issues, such as excessive restarts or time drift between dynamic nodes.

Syntax

blob_storage_config:
  service_set:
    groups:
    - erasure_species: none
      rings:
      - fail_domains:
        - vdisk_locations:
          - node_id: 1
            path: /dev/disk/by-partlabel/ydb_disk_ssd_02
            pdisk_category: SSD
....

feature_flags:
  enable_stable_node_names: true

node_broker_config:
  stable_node_name_prefix: <new prefix>

healthcheck_config:
  thresholds:
    node_restarts_yellow: 10
    node_restarts_orange: 30
    nodes_time_difference_yellow: 5000
    nodes_time_difference_orange: 25000

shared_cache_max_percent  /
shared_cache_max_bytes

50% Maximum threshold for the shared cache memory limit.

mem_table_min_percent  /
mem_table_min_bytes

1% Minimum threshold for the MemTable memory limit.

mem_table_max_percent  /
mem_table_max_bytes

3% Maximum threshold for the MemTable memory limit.

query_execution_limit_percent  /
query_execution_limit_bytes

20% KQP memory limit.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_blob-storage-config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_node-broker-config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_healthcheck-config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_syntax5
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_issues


Parameters

Sample cluster configurations

You can find model cluster configurations for deployment in the repository. Check them out before deploying a cluster.

    tablets_restarts_orange: 30
  timeout: 20000

Parameter Default Description

thresholds.node_restarts_yellow 10 Number of node restarts to trigger a YELLOW  warning

thresholds.node_restarts_orange 30 Number of node restarts to trigger an ORANGE  alert

thresholds.nodes_time_difference_yellow 5000 Max allowed time difference (in us) between dynamic nodes for YELLOW  
issue

thresholds.nodes_time_difference_orange 25000 Max allowed time difference (in us) between dynamic nodes for ORANGE  
issue

thresholds.tablets_restarts_orange 30 Number of tablet restarts to trigger an ORANGE  alert

timeout 20000 Maximum health check response time (in ms)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_parameters
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_examples
https://github.com/ydb-platform/ydb/tree/main/ydb/deploy/yaml_config_examples/


Reference on YDB observability
This section of YDB documentation covers various observability-related topics that do not depend on a chosen deployment method.

Metrics reference

Grafana dashboards for YDB

Tracing in YDB

Passing external trace-id in YDB

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_metrics_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_metrics_grafana-dashboards
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_setup
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_external-traces


YDB DSTool overview
With the YDB DSTool utility, you can manage your YDB cluster's disk subsystem. To install and configure the utility, follow the instructions.

YDB DSTool includes the following commands:

Command Description

device list List storage devices.

pdisk add-by-serial Add a PDisk to a set by serial number.

pdisk remove-by-serial Remove a PDisk from the set by serial number.

pdisk set Set PDisk parameters.

pdisk list List PDisks.

vdisk evict Move VDisks to different PDisks.

vdisk remove-donor Remove a donor VDisk.

vdisk wipe Wipe VDisks.

vdisk list List VDisks.

group add Add storage groups to a pool.

group check Check storage groups.

group show blob-info Display blob information.

group show usage-by-tablets Display information about tablet usage by groups.

group state Show or change a storage group's state.

group take-snapshot Take a snapshot of storage group metadata.

group list List storage groups.

pool list List pools.

box list List sets of PDisks.

node list List nodes.

cluster balance Move VDisks from overloaded PDisks.

cluster get Show cluster parameters.

cluster set Set cluster parameters.

cluster workload run Run a workload to test the failure model.

cluster list Display cluster information.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-dstool_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-dstool_install
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-dstool_device-list


ydbops utility overview

Note

The ydbops  utility is under active development. Although backward-incompatible changes are unlikely, they may still occur.

ydbops  utility automates some operational tasks on YDB clusters. It supports clusters deployed using Ansible, Kubernetes, or manually.

See also

To install the utility, follow the instructions.

See configuration reference for available configuration options.

The source code of ydbops  can be found on GitHub.

Currently supported scenarios

See the list of currently supported scenarios here.

Scenarios in development

Requesting permission to take out a set of YDB nodes for maintenance without breaking YDB fault model invariants.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_index_see-also
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_index_currently-supported-scenarios
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_index_scenarios-in-development
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_ansible_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_kubernetes_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_install
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_configuration
https://github.com/ydb-platform/ydbops
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_scenarios


YDB Docker container reference
This section provides detailed information about working with YDB when delivered as a Docker container.

The YDB Docker container reference documentation includes the following sections:

Docker image `ydbplatform/local-ydb` tags naming

Prerequisites for working with YDB in Docker

Running YDB in Docker

Configuring the YDB Docker container

Docker stop

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_docker_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_docker_tags
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_docker_prerequisites
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_docker_start
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_docker_configuration
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_docker_cleanup


Query plan structure
To understand how a query will be executed, you can build and analyze its plan. The query plan structure in YDB is represented as a graph, where
each node contains information about operations and tables.

Below, you can find information about node types, and an example of analyzing a specific query plan can be found here.

Node types

Stage

Query execution stage.

UI representation

A stage can contain the following operations:

TableFullScan

Full table scan. This operation's resource consumption is proportional to the table size, so it should be avoided whenever possible.

TableRangeScan

Reading a table by a specific primary key range.

TablePointLookup

Reading a table by specific primary key values. Note that for this operation, all components of the primary key should be specified. Reading by a
key prefix is performed as a TableRangeScan  operation.

Attribute Description

Table table name

ReadColumns read columns list

ReadLimit read rows limit

Reverse flag indicating the order in which the rows will be read, by default the order is forward (ascending), but if the flag is set to 
true , the reading order will be reversed (descending).

Parallel flag indicating that rows will be read from shards in parallel

Attribute Description

Table table name

ReadColumns read columns list

ReadRange key range

ReadLimit read rows limit

Reverse flag indicating the order in which the rows will be read, by default the order is forward (ascending), but if the flag is set to 
true , the reading order will be reversed (descending).

Parallel flag indicating that rows will be read from shards in parallel

Attribute Description

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_query_plans
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_query_plans_node-types
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_query_plans_stage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_query_plans_ui-representation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_query_plans_tablefullscan
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_query_plans_tablerangescan
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_query_plans_tablepointlookup
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_query-plans-optimization


Upsert

Updates or inserts multiple rows to a table based on a comparison by the primary key. The values of the specified columns are updated for the
existing rows, but the values of the other columns are preserved.

Delete

Deleting rows from the table.

Join

Combine two data sources (subqueries or tables) by keys. The join strategy is specified in the operation description.

Filter

Filtering rows, keeping only those for which a predicate returns true .

Aggregate

Grouping rows by the values of the specified columns or expressions.

Sort

Sorting rows.

TopSort

Partial rows sorting with a specified limit.

Table table name

ReadColumns read columns list

Attribute Description

Table table name

Columns columns contained in the row

Attribute Description

Table table name

Attribute Description

Predicate filtering condition

Limit rows limit

Attribute Description

GroupBy columns or expressions used for aggregation

Aggregation aggregate function

Attribute Description

SortBy columns or expressions used for sorting

Attribute Description

TopSortBy columns or expressions used for sorting

Limit rows limit

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_query_plans_upsert
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_query_plans_delete
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_query_plans_join
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_query_plans_filter
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_query_plans_aggregate
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_query_plans_sort
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_query_plans_topsort


Top

Returns the first N elements that are less or equal to the N+1 element if the entire sequence were sorted.

Limit

Limit on the number of rows.

Offset

Offset, allowing to skip the first N elements of a given set of rows.

Union

Concatenate the results of two or more subqueries into a single row set.

Iterator

Iterates through a given set of rows. Typically uses a precompute as an argument.

PartitionByKey

Partitioning by key. Typically uses a precompute.

Connection

Data dependencies between stages.

UI representation

Each stage is executed as a certain number of tasks. For example, a reading stage may be executed in N tasks, where N is the number of table
shards. The method of transferring data between stages depends on the type of connection. Below is a description of different connections.

UnionAll

Combines the results of all producer stage tasks and sends them as a single result to a single consumer stage task.

Merge

This is a special case of UnionAll . The results of the producer stage are sorted by a specified set of columns and merged into a result that is also
sorted.

Broadcast

Sends the result of a single producer stage task to all consumer stage tasks.

Map

Implements 1-to-1 relationships between tasks of stages, the producer and consumer stages should have the same number of tasks.

Attribute Description

TopBy columns or expressions by which the first N rows will be taken

Limit rows limit

Attribute Description

Limit limit value

Attribute Description

Offset offset value

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_query_plans_top
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_query_plans_limit
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_query_plans_offset
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_query_plans_union
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_query_plans_iterator
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_query_plans_partitionbykey
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_query_plans_connection
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_query_plans_ui-representation1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_query_plans_unionall
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_query_plans_merge
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_query_plans_broadcast
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_query_plans_map
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_query_plans_precompute
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_query_plans_precompute


HashShuffle

Sends the results of producer stage tasks to consumer stage tasks based on a certain rule for specified columns. The rule is defined in the code,
but the list of columns is specified in the connection.

ResultSet

The query execution result.

UI representation

Precompute

Materialized intermediate result.

UI representation

Stages that depend on precomputes should be executed after the precompute has been completed.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_query_plans_hashshuffle
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_query_plans_resultset
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_query_plans_ui-representation2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_query_plans_precompute
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_query_plans_ui-representation3


YQL data types
This section contains articles on YQL data types:

Simple/Primitive types

Optional types

Containers

Special types

Type casting

Text representation of data types

Data representation in JSON format

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_primitive
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_optional
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_containers
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_special
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_cast
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_type_string
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_json


Primitive data types
The terms "simple", "primitive", and "elementary" data types are used synonymously.

Numeric types

String types

Type Description Notes

Bool Boolean value. —

Int8 A signed integer.
Acceptable values: from -27 to 27–1.

—

Int16 A signed integer.
Acceptable values: from –215 to 215–1.

—

Int32 A signed integer.
Acceptable values: from –231 to 231–1.

—

Int64 A signed integer.
Acceptable values: from –263 to 263–1.

—

Uint8 An unsigned integer.
Acceptable values: from 0 to 28–1.

—

Uint16 An unsigned integer.
Acceptable values: from 0 to 216–1.

—

Uint32 An unsigned integer.
Acceptable values: from 0 to 232–1.

—

Uint64 An unsigned integer.
Acceptable values: from 0 to 264–1.

—

Float A real number with variable precision, 4 bytes in size. Can't be used in the primary key

Double A real number with variable precision, 8 bytes in size. Can't be used in the primary key

Decimal A real number with the specified precision, up to 35 decimal digits When used in table columns, the 
precision is fixed: Decimal(22,9)

DyNumber A binary representation of a real number with an accuracy of up to 38 
digits.
Acceptable values: positive numbers from 1×10-130 up to 1×10126–1, 
negative numbers from -1×10126–1 to -1×10-130, and 0.
Compatible with the Number  type in AWS DynamoDB. It's not 
recommended for ydb-native applications.

—

Type Description Notes

String A string that can contain any binary data —

Utf8 Text encoded in UTF-8 —

Json JSON represented as text Doesn't support matching, can't be used in the primary key

JsonDocument JSON in an indexed binary representation Doesn't support matching, can't be used in the primary key

Yson YSON in a textual or binary representation. Doesn't support matching, can't be used in the primary key

Uuid Universally unique identifier UUID —

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_primitive
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_primitive_numeric
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_primitive_string
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_yson
https://tools.ietf.org/html/rfc4122


Cell size restrictions

The maximum value size for a non-key column cell with any string data type is 8 MB.

Unlike the JSON  data type that stores the original text representation passed by the user, JsonDocument  uses an indexed binary representation.
An important difference from the point of view of semantics is that JsonDocument  doesn't preserve formatting, the order of keys in objects, or their
duplicates.

Thanks to the indexed view, JsonDocument  lets you bypass the document model using JsonPath  without the need to parse the full content. This
helps efficiently perform operations from the JSON API, reducing delays and cost of user queries. Execution of JsonDocument  queries can be up
to several times more efficient depending on the type of load.

Due to the added redundancy, JsonDocument  is less effective in storage. The additional storage overhead depends on the specific content, but is
20-30% of the original volume on average. Saving data in JsonDocument  format requires additional conversion from the textual representation,
which makes writing it less efficient. However, for most read-intensive scenarios that involve processing data from JSON, this data type is preferred
and recommended.

Warning

To store numbers (JSON Number) in JsonDocument , as well as for arithmetic operations on them in the JSON API, the Double type is
used. Precision might be lost when non-standard representations of numbers are used in the source JSON document.

Date and time

Supporting types with a time zone label

Time zone label for the TzDate , TzDatetime , TzTimestamp  types is an attribute that is used:

When converting (CAST, DateTime::Parse, DateTime::Format) to a string and from a string.
In DateTime::Split, a timezone component is added to Resource<TM> .

The point in time for these types is stored in UTC, and the timezone label doesn't participate in any other calculations in any way. For example:

SELECT -- these expressions are always true for any timezones: the timezone doesn't affect the point in time.
    AddTimezone(CurrentUtcDate(), "Europe/Moscow") ==
        AddTimezone(CurrentUtcDate(), "America/New_York"),
    AddTimezone(CurrentUtcDatetime(), "Europe/Moscow") ==
        AddTimezone(CurrentUtcDatetime(), "America/New_York");

Type Description Notes

Date Date, precision to the day Range of values for all time types except Interval : From 00:00 01.01.1970 
to 00:00 01.01.2106. Internal Date  representation: Unsigned 16-bit integer

Datetime Date/time, precision to the second Internal representation: Unsigned 32-bit integer

Timestamp Date/time, precision to the 
microsecond

Internal representation: Unsigned 64-bit integer

Interval Time interval (signed), precision to 
microseconds

Value range: From -136 years to +136 years. Internal representation: Signed 
64-bit integer. Can't be used in the primary key

TzDate Date with time zone label, 
precision to the day

Not supported in table columns

TzDateTime Date/time with time zone label, 
precision to the second

Not supported in table columns

TzTimestamp Date/time with time zone label, 
precision to the microsecond

Not supported in table columns

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_primitive_datetime
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_primitive_supporting-types-with-a-time-zone-label
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_cast
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_parse
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_format
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_split


Keep in mind that when converting between TzDate  and TzDatetime , or TzTimestamp  the date's midnight doesn't follow the local time zone,
but midnight in UTC for the date in UTC.

Casting between data types

Explicit casting

Explicit casting using CAST:

Casting to numeric types

1 True  is converted to 1  and False  to 0 .
2 Any value other than 0  is converted to True , 0  is converted to False .
3 Possible only in case of a non-negative value.
4 Possible only within the valid range.
5 Using the built-in function Yson::ConvertTo.

Converting to date and time data types

Type Bool Int8 Int16 Int32 Int64 Uint8 Uint16 Uint32 Uint64 Float Double Decimal

Bool — Yes1 Yes1 Yes1 Yes1 Yes1 Yes1 Yes1 Yes1 Yes1 Yes1 No

Int8 Yes2 — Yes Yes Yes Yes3 Yes3 Yes3 Yes3 Yes Yes Yes

Int16 Yes2 Yes4 — Yes Yes Yes3,4 Yes3 Yes3 Yes3 Yes Yes Yes

Int32 Yes2 Yes4 Yes4 — Yes Yes3,4 Yes3,4 Yes3 Yes3 Yes Yes Yes

Int64 Yes2 Yes4 Yes4 Yes4 — Yes3,4 Yes3,4 Yes3,4 Yes3 Yes Yes Yes

Uint8 Yes2 Yes4 Yes Yes Yes — Yes Yes Yes Yes Yes Yes

Uint16 Yes2 Yes4 Yes4 Yes Yes Yes4 — Yes Yes Yes Yes Yes

Uint32 Yes2 Yes4 Yes4 Yes4 Yes Yes4 Yes4 — Yes Yes Yes Yes

Uint64 Yes2 Yes4 Yes4 Yes4 Yes4 Yes4 Yes4 Yes4 — Yes Yes Yes

Float Yes2 Yes4 Yes4 Yes4 Yes4 Yes3,4 Yes3,4 Yes3,4 Yes3,4 — Yes No

Double Yes2 Yes4 Yes4 Yes4 Yes4 Yes3,4 Yes3,4 Yes3,4 Yes3,4 Yes — No

Decimal No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes —

String Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Utf8 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Json No No No No No No No No No No No No

Yson Yes5 Yes5 Yes5 Yes5 Yes5 Yes5 Yes5 Yes5 Yes5 Yes5 Yes5 No

Uuid No No No No No No No No No No No No

Date No Yes4 Yes4 Yes Yes Yes4 Yes Yes Yes Yes Yes No

Datetime No Yes4 Yes4 Yes4 Yes Yes4 Yes4 Yes Yes Yes Yes No

Timestamp No Yes4 Yes4 Yes4 Yes4 Yes4 Yes4 Yes4 Yes Yes Yes No

Interval No Yes4 Yes4 Yes4 Yes Yes3,4 Yes3,4 Yes3,4 Yes3 Yes Yes No

Type Date Datetime Timestamp Interval

Bool No No No No

INT Yes Yes Yes Yes

Uint Yes Yes Yes Yes

Float No No No No

Double No No No No

Decimal No No No No

String Yes Yes Yes Yes

Utf8 Yes Yes Yes Yes

Json No No No No

Yson No No No No

Uuid No No No No

Date — Yes Yes No

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_primitive_cast
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_primitive_explicit-cast
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_primitive_casting-to-numeric-types
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_primitive_converting-to-date-and-time-data-types
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_cast
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_yson_ysonconvertto


Conversion to other data types

4 Using the built-in function Yson::ConvertTo.

Examples

Implicit casting

Implicit type casting that occurs in basic operations ( +-*/) between different data types. The table cells specify the operation result type, if the
operation is possible:

Numeric types

SELECT
    CAST("12345" AS Double),                -- 12345.0
    CAST(1.2345 AS Uint8),                  -- 1
    CAST(12345 AS String),                  -- "12345"
    CAST("1.2345" AS Decimal(5, 2)),        -- 1.23
    CAST("xyz" AS Uint64) IS NULL,          -- true, because it failed
    CAST(-1 AS Uint16) IS NULL, -- true, a negative integer cast to an unsigned integer
    CAST([-1, 0, 1] AS List<Uint8?>),             -- [null, 0, 1]
        --The item type is optional: the failed item is cast to null.
    CAST(["3.14", "bad", "42"] AS List<Float>),   -- [3.14, 42]
        --The item type is not optional: the failed item has been deleted.
    CAST(255 AS Uint8),                     -- 255
    CAST(256 AS Uint8) IS NULL -- true, out of range

Datetime Yes — Yes No

Timestamp Yes Yes — No

Interval No No No —

Type String Utf8 Json Yson Uuid

Bool Yes No No No No

INT Yes No No No No

Uint Yes No No No No

Float Yes No No No No

Double Yes No No No No

Decimal Yes No No No No

String — Yes Yes Yes Yes

Utf8 Yes — No No No

Json Yes Yes — No No

Yson Yes4 No No No No

Uuid Yes Yes No No —

Date Yes Yes No No No

Datetime Yes Yes No No No

Timestamp Yes Yes No No No

Interval Yes Yes No No No

Type Int Uint Float Double

INT — INT Float Double

Uint INT — Float Double

Float Float Float — Double

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_primitive_conversion-to-other-data-types
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_primitive_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_primitive_implicit-cast
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_primitive_numeric-types
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_yson_ysonconvertto


Date and time types

Double Double Double Double —

Type Date Datetime Timestamp Interval TzDate TzDatetime TzTimestamp

Date — — — Date — — —

Datetime — — — Datetime — — —

Timestamp — — — Timestamp — — —

Interval Date Datetime Timestamp — TzDate TzDatetime TzTimestamp

TzDate — — — TzDate — — —

TzDatetime — — — TzDatetime — — —

TzTimestamp — — — TzTimestamp — — —

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_primitive_date-and-time-types


Data types accepting NULL
Any typed data in YQL, including table columns, can be either non-nullable (guaranteed value) or nullable (empty value denoted as NULL ). Data
types that can include NULL  values are called optional or, in SQL terms, nullable.

Optional data types in the text format use the question mark at the end (for example, String? ) or the notation Optional<...> .
The following operations are most often performed on optional data types:

IS NULL: Matching an empty value

COALESCE: Leave the filled values unchanged and replace NULL  with the default value that follows

UNWRAP: Extract the value of the original type from the optional data type, T? . is converted to T

JUST: Add optionality to the current type, T  is converted to T? .

NOTHING: Create an empty value with the specified type.

Optional  (nullable) isn't a property of a data type or column, but a container type where containers can be arbitrarily nested into each other. For
example, a column with the type Optional<Optional<Boolean>>  can accept 4 values: NULL  of the whole container, NULL  of the inner container,
TRUE , and FALSE . The above-declared type differs from List<List<Boolean>> , because it uses NULL  as an empty list, and you can't put more

than one non-null element in it. In addition, Optional<Optional<T>>  type values are returned as results when searching by the key in the
Dict(k,v)  dictionary with Optional<T>  type values. Using this type of result data, you can distinguish between a NULL  value in the dictionary

and a situation when the key is missing.

Note

Container types (including Optional<T>  containers and more complex types derived from them) can't currently be used as column
data types when creating YDB tables.
YQL queries can return values of container types and accept them as input parameters.

Example

Result:

Logical and arithmetic operations with NULL

The NULL  literal has a separate singular Null  type and can be implicitly converted to any optional type (for example, the nested type
Optional<Optional<...Optional<T>...>> ). In ANSI SQL, NULL  means "an unknown value", that's why logical and arithmetic operations

involving NULL  or empty Optional  have certain specifics.

Examples

Data types that do not allow NULL values

Primitive types in YQL cannot hold a NULL  value: the container described above, Optional , is intended for storing NULL . In SQL terms, primitive
types in YQL are non-nullable types.

In YQL, there is no implicit type conversion from Optional to T, so the enforceability of the NOT NULL constraint on a table column is ensured at the
query compilation stage in YDB.

You can create a non-nullable column in a YDB table using the CREATE TABLE operation with the keyword NOT NULL :

$dict = {"a":1, "b":null};
$found = $dict["b"];
select if($found is not null, unwrap($found), -1);

# column0
null

SELECT
    True OR NULL,        -- Just(True) (works the same way as True OR <unknown value of type Bool>)
    False AND NULL,      -- Just(False)
    True AND NULL,       -- NULL   (more precise than Nothing<Bool?> – <unknown value of type Bool>)
    NULL OR NOT NULL,    -- NULL   (all NULLs are "different")
    1 + NULL,            -- NULL   (Nothing<Int32?>) - the result of adding 1 together with
                         --         unknown value of type Int)
    1 == NULL,           -- NULL   (the result of adding 1 together with unknown value of type Int)
    (1, NULL) == (1, 2), -- NULL   (composite elements are compared by component
                         --         through `AND`)
    (2, NULL) == (1, 3), -- Just(False) (expression is equivalent to 2 == 1 AND NULL == 3)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_optional_data-types-accepting-null
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_optional
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_optional_example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_optional_null_expr
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_optional_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_optional_notnull
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_type_string
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_is-null
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_coalesce
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_optional-ops
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_optional-ops
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_optional-ops
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_containers
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_primitive
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_index


After that, write operations to table t  will only be executed if the values to be inserted into the key  and value  columns do not contain NULL
values.

Example of the interaction between the NOT NULL constraint and YQL functions

Many of the YQL functions have optional types as return values. Since YQL is a strongly-typed language, a query like

cannot be executed. The reason for this is the type mismatch between the column c , which has the type Utf8 , and the result of the CAST
function, which has the type Optional<Utf8> . To make the query work correctly in such scenarios, it is necessary to use the COALESCE function,
whose argument can specify a fallback value to insert into the table in case the function (in the example, CAST) returns an empty Optional . If, in
the case of an empty Optional , the insertion should not be performed and an error should be returned, the UNWRAP function can be used to
unpack the contents of the optional type.

CREATE TABLE t (
    Key Uint64 NOT NULL,
    Value String NOT NULL,
    PRIMARY KEY (Key))

CREATE TABLE t (
    c Utf8 NOT NULL,
    PRIMARY KEY (c)
);
INSERT INTO t(c)
SELECT CAST('q' AS Utf8);

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_optional_example-of-the-interaction-between-the-not-null-constraint-and-yql-functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_coalesce
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_optional-ops


Containers
YQL supports container types to define complex data structures organized in various ways.
Values of container types can be passed to YQL queries as input parameters or returned from YQL queries as columns of the set of results.
Container types can't be used as column data types for YDB tables.

If necessary, you can nest containers in any combination, for example, List<Tuple<Int32,Int32>> .

In certain contexts, optional values can also be considered a container type ( Optional<Type> ) that behaves like a list of length 0 or 1.

To create literals of list containers, dictionary containers, set containers, tuple containers, or structure containers, you can use the operator notation.
To create a variant literal over a tuple or structure, use the function Variant.
To create an enumeration literal, use the function Enum.

To access the container elements, use a dot or square brackets, depending on the container type.

Type
Declaration,
example

Description

List List<Type> ,
List<Int32>

A variable-length sequence consisting of same-type elements.

Dictionary Dict<KeyType, ValueType> ,
Dict<String,Int32>

Set of key-value pairs with a fixed type of keys and values.

Set Set<KeyType> ,
Set<String>

A set of elements with a fixed type is a special case of a 
dictionary with the Void  value type.

Tuple Tuple<Type1, ..., TypeN> ,
Tuple<Int32,Double>

Set of unnamed fixed-length elements with types specified for all 
elements.

Structure Struct<Name1:Type1, ..., NameN:TypeN> ,
 Struct<Name:String,Age:Int32>

A set of named fields with specified value types, fixed at query 
start (must be data-independent).

Stream Stream<Type> ,
 Stream<Int32>

Single-pass iterator by same-type values, not serializable

Variant on tuple Variant<Type1, Type2> ,
 Variant<Int32,String>

A tuple known to have exactly one element filled

Variant on 
structure

Variant<Name1:Type1, Name2:Type2> ,
Variant<value:Int32,error:String>

A structure known to have exactly one element filled

Enumeration Enum<Name1, Name2> ,
Enum<value,error>

A container with exactly one enumeration element selected and 
defined only by its name.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_containers
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_optional
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_containerliteral
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_variant
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_enum
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_items-access


Special data types

Type Description

Callable A callable value that can be executed by passing arguments in parentheses in YQL SQL syntax.

Resource Resource is an opaque pointer to a resource you can pass between the user defined functions (UDF). The type of the 
returned and accepted resource is declared inside a function using a string label. When passing a resource, YQL checks 
for label matching to prevent passing of resources between incompatible functions. If the labels mismatch, a type error 
occurs.

Tagged Tagged is the option to assign an application name to any other type.

Generic The data type used for data types.

Unit Unit is the data type used for non-enumerable entities (data sources and data sinks, atoms, etc. ).

Null Void is a singular data type with the only possible null value. It's the type of the NULL  literal and can be converted to any 
Optional  type.

Void Void is a singular data type with the only possible "null"  value.

EmptyList A singular data type with the only possible [] value. It's the type of the []  literal and can be converted to any List  type.

EmptyDict A singular data type with the only possible {} value. It's a type of the {}  literal and can be converted to any Dict  or Set  
type.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_special


Rules for type casting using the operator CAST

Rules for casting primitive data types

When casting primitive data types, some of the source information may be discarded unless contained in the target type. For example:

The Float / Double  fractional part, when casting to integer types.

The Datetime / Timestamp  time, when casting to Date .

The timezone, when casting from timezone types to date/time types without a timezone.

If, in a certain combination of the source and target type, casting can't be performed for all possible values of the source type, then, if the
casting fails, CAST  returns NULL . In such cases, one Optional  level is added to the return value type, unless already present. For example,
the constructs: CAST("3.14" AS Float?)  and CAST("3.14" AS Float)  are fully equivalent and return Float? .

If casting is possible for all values of the source type, then adding '?' works the same way as Just  on top: CAST(3.14 AS Utf8?)  is same
as Just(CAST(3.14 AS Utf8)) .

All combinations of primitive data types for which CAST  can be used are described here.

Casting rules for containers

Rules for Optional

If a higher Optional  level is set for the target type than for the source type, it's same as adding Just  on top of CAST  with a lower
Optional  level.

If the source type has a higher level of Optional  for the source type, then NULL  at any level higher than the target level results in NULL .

At equal levels of Optional , the NULL  value preserves the same level.

Rules for List/Dict

To create a list, CAST  is applied to each item in the source list to cast it to the target type.

If the target item type is non-optional and CAST  on the item might fail, then such casting is discarded. In this case, the resulting list might be
shorter or even empty if every casting failed.

For dictionaries, the casting is totally similar to lists, with CAST  being applied to keys and values.

Rules for Struct/Tuple

A structure or tuple is created by applying CAST  to each item of the source type to cast it to an item with the same name or target type index.

If some field is missing in the target type, it's simply discarded.

If some field is missing in the source value type, then it can be added only if it's optional and accepts the NULL  value.

If some field is non-optional in the target type, but its casting might fail, then CAST  adds Optional to the structure or tuple level and might
return NULL  for the entire result.

Rules for Variant

A variant with a specific name or index is cast to a variant with the same name or index.

If casting of a variant might fail and the type of this variant is non-optional, then CAST  adds Optional to the top level and can return NULL .

SELECT
    CAST(1 AS Int32?),                  -- is equivalent to Just(1)
    CAST(Just(2/1) AS Float??),         -- [2]
    CAST(Just(3/0) AS Float??) IS NULL; -- false: the result is Just(NULL)

SELECT
    CAST([-1, 0, 1] AS List<Uint8?>),             -- [null, 0, 1]
    CAST(["3.14", "bad", "42"] AS List<Float>),   -- [3.14, 42]

    CAST({-1:3.14, 7:1.6} AS Dict<Uint8, Utf8>),  -- {7: "1.6"}
    CAST({-1:3.14, 7:1.6} AS Dict<Uint8?, Utf8>); -- {7: "1.6", null:"3.14"}

SELECT
    CAST((-1, 0, 1) AS Tuple<Uint16?, Uint16?, Utf8>), -- (null, 0, "1")
    CAST((-2, 0) AS Tuple<Uint16, Utf8>),              -- null
    CAST((3, 4) AS Tuple<Uint16, String>),             -- (3, "4"): the type is Tuple<Uint16, String>?
    CAST(("4",) AS Tuple<Uint16, String?>),            -- (4, null)
    CAST((5, 6, null) AS Tuple<Uint8?>);               -- (5,): the items were removed.

SELECT -- One field was removed and one field was added: ("three":null, "two": "42")
    CAST(<|one:"8912", two:42|> AS Struct<two:Utf8, three:Date?>);

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_cast
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_cast_rules-for-casting-primitive-data-types
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_cast_casting-rules-for-containers
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_cast_rules-for-optional
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_cast_rules-for-list/dict
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_cast_rules-for-struct/tuple
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_cast_rules-for-variant
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_cast
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_primitive


If some variant is missing in the target type, then CAST  adds Optional to the top level and returns NULL  for such a value.

Nested containers

All of the above rules are applied recursively for nested containers.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_cast_nested-containers


Text representation of data types

Introduction

Since YQL is a strongly typed language, the data type is important for many of its aspects. To make data type management easy, YQL has a data
type definition convention in text format. It's mentioned in many places in the documentation. There's also a library that provides functions for
building a data type based on a text description (for example, when manually defining the signature for the called value) or for serializing the data
type into a string for debugging purposes.

Functions for data types are described in the article. Below is the format of text representation of data types.

General conventions

Primitive data types are represented in text format simply by referencing their name.

A complex data type is composed of other data types. If you depict this structure as a tree, it has primitive data types as leaves and containers
as other nodes. You may treat special data types as exceptions, because they can function as both.

The text representation repeats the structure of this tree from the root to the leaves: each node of the tree specifies the name of the current
data type, and proceeding to a deeper level is denoted by different types of brackets.

Feel free to use spaces and line breaks if they improve readability.

If the ID contains something else except the Latin letters and numbers, put it in single quotes and use C-escaping.

Containers

Use angle brackets to specify the types of container elements.

Example: List<Int32> .

If a container can hold multiple heterogeneous elements, they are listed inside angle brackets with a comma.

Example: Tuple<Int32, String> .

If a container can hold named elements, use comma-separated name-type pairs with a colon in-between instead of comma-separated data
types.

Example: Struct<a:Int32, b:String> .

The underlying Variant  container type is chosen based on the presence of names in arguments.

Example: Variant<Int32, String>  is a variant on tuple, Variant<a:Int32, b:String>  is a variant on structure.

Types that allow NULL

They are called Optional  in YQL terms, or nullable in the classic SQL terms.

Formally, this type is a container. So, you may declare it as Optional<...> , but the shortcut notation of a question mark suffix is usually used
instead.

Example: String? .

Called values

The basic form of the called values looks as follows: (arg1, arg2, ...) -> result .

An example of declaring a function signature that accepts two strings and returns a number: (String, String) -> Int64 .

The called values can return the called values: in this case, they make up a chain of the required length.

Example: (String, String) -> (String, String) -> Int64 .

Optional arguments must have the Optional  type at the top level and be enclosed in square brackets.

Example: (String, [String?, Double?]) -> Int64 .

The arguments of the called values can contain flags.

Currently, the only possible flag is AutoMap . It means that if NULL is passed to this argument, the result must also be set to NULL without
running the function.

Example: (String{Flags: AutoMap}) -> Int64 .

Use this particular format if you need Optional<Callable...> , because the trailing question mark refers to the result of the called value.

Resources

Unlike containers, a resource isn't parameterized by the element type (it's a pointer in memory and YQL knows nothing about its contents).
Instead, a resource is parameterized by a string label that can safeguard against passing resources between incompatible functions.

Example: Resource<Foo> .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_type_string
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_type_string_intro
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_type_string_rules
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_type_string_containers
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_type_string_optional
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_type_string_callable
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_type_string_resources
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_primitive
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_primitive
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_containers
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_special


Data representation in JSON format

Bool

Boolean value.

Type in JSON: bool .

Sample YDB value: true .

Sample JSON value: true .

Int8, Int16, Int32, Int64

Signed integer types.

Type in JSON: number .

Sample YDB value: 123456 , -123456 .

Sample JSON value: 123456 , -123456 .

Uint8, Uint16, Uint32, Uint64

Unsigned integer types.

Type in JSON: number .

Sample YDB value: 123456 .

Sample JSON value: 123456 .

Float

Real 4-byte number.

Type in JSON: number .

Sample YDB value: 0.12345679 .

Sample JSON value: 0.12345679 .

Double

Real 8-byte number.

Type in JSON: number .

Sample YDB value: 0.12345678901234568 .

Sample JSON value: 0.12345678901234568 .

Decimal

Fixed-precision number. Only Decimal(22, 9) is supported.

Type in JSON: string .

Sample YDB value: -320.789 .

Sample JSON value: "-320.789" .

String, Yson

Binary strings. Encoding algorithm depending on the byte value:

[0-31] — \u00XX  (6 characters denoting the Unicode character code).

[32-126] — as is. These are readable single-byte characters that don't need to be escaped.

[127-255] — \u00XX .

Decoding is a reverse process. Character codes in \u00XX , maximum 255.

Type in JSON: string .

Sample YDB value: A sequence of 4 bytes:

5 0x05 : A control character.

10 0x0a : The \n  newline character.

107 0x6b : The k  character.

255 0xff : The ÿ  character in Unicode.

Sample JSON value: "\u0005\nk\u00FF" .

Utf8, Json, Uuid

String types in UTF-8. Such strings are represented in JSON as strings with JSON characters escaped: \\ , \" , \n , \r , \t , \f .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_json
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_json_bool
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_json_int
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_json_uint
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_json_float
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_json_double
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_json_decimal
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_json_string
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_json_utf


Type in JSON: string .

Sample YDB value: C++ code:

Sample JSON value: "Escaped characters: \\ \" \f \b \t \r\nNon-escaped characters: / ' < > & []() " .

Date

Date. Uint64, unix time days.

Type in JSON: string .

Sample YDB value: 18367 .

Sample JSON value: "2020-04-15" .

Datetime

Date and time. Uint64, unix time seconds.

Type in JSON: string .

Sample YDB value: 1586966302 .

Sample JSON value: "2020-04-15T15:58:22Z" .

Timestamp

Date and time. Uint64, unix time microseconds.

Type in JSON: string .

Sample YDB value: 1586966302504185 .

Sample JSON value: "2020-04-15T15:58:22.504185Z" .

Interval

Time interval. Int64, precision to the microsecond, the interval values must not exceed 24 hours.

Type in JSON: number .

Sample YDB value: 123456 , -123456 .

Sample JSON value: 123456 , -123456 .

Optional

Means that the value can be null . If the value is null , then in JSON it's also null . If the value is not null , then the JSON value is expressed
as if the type isn't Optional .

Type in JSON is missing.

Sample YDB value: null .

Sample JSON value: null .

List

List. An ordered set of values of a given type.

Type in JSON: array .

Sample YDB value:

Type: List<Int32> .

Value: 1, 10, 100 .

Sample JSON value: [1,10,100] .

Stream

Stream. Single-pass iterator by same-type values,

Type in JSON: array .

Sample YDB value:

Type: Stream<Int32> .

Value: 1, 10, 100 .

Sample JSON value: [1,10,100] .

"Escaped characters: "
"\\ \" \f \b \t \r\n"
"Non-escaped characters: "
"/ ' < > & []() ".

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_json_date
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_json_datetime
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_json_timestamp
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_json_interval
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_json_optional
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_json_list
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_json_stream


Struct

Structure. An unordered set of values with the specified names and type.

Type in JSON: object .

Sample YDB value:

Type: Struct<'Id':Uint32,'Name':String,'Value':Int32,'Description':Utf8?> ;

Value: "Id":1,"Name":"Anna","Value":-100,"Description":null .

Sample JSON value: {"Id":1,"Name":"Anna","Value":-100,"Description":null} .

Tuple

Tuple. An ordered set of values of the set types.

Type in JSON: array .

Sample YDB value:

Type: Tuple<Int32??,Int64???,String??,Utf8???> ;

Value: 10,-1,null,"Some string" .

Sample JSON value: [10,-1,null,"Some string"] .

Dict

Dictionary. An unordered set of key-value pairs. The type is set both for the key and the value. It's written in JSON to an array of arrays including
two items.

Type in JSON: array .

Sample YDB value:

Type: Dict<Int64,String> .

Value: 1:"Value1",2:"Value2" .

Sample JSON value: [[1,"Value1"],[2,"Value2"]] .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_json_struct
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_json_tuple
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_json_dict


List of articles on YQL syntax
Lexical structure

Expressions

SELECT

VALUES

CREATE TABLE

DROP TABLE

INSERT
ALTER TABLE

UPDATE

DELETE

REPLACE

UPSERT

GROUP BY

JOIN

WINDOW

FLATTEN

ACTION

INTO RESULT

PRAGMA

DECLARE

CREATE ASYNC REPLICATION

ALTER ASYNC REPLICATION

DROP ASYNC REPLICATION

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_lexer
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_values
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_drop_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_insert_into
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_update
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_delete
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_replace_into
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_upsert_into
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_join
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_window
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_flatten
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_action
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_into_result
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_declare
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-async-replication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-async-replication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_drop-async-replication


Lexical structure
The query in the YQL language is a valid UTF-8 text consisting of statements separated by semicolons ( ; ).
The last semicolon can be omitted.
Each command is a sequence of tokens that are valid for this command.
Tokens can be keywords, identifiers, literals, and so on.
Tokens are separated by whitespace characters (space, tab, line feed) or comments. The comment is not a part of the command and is
syntactically equivalent to a space character.

Syntax compatibility modes

Two syntax compatibility modes are supported:

Advanced C++ (default)

ANSI SQL

ANSI SQL mode is enabled with a special comment --!ansi_lexer , which must be in the beginning of the query.

Specifics of interpretation of lexical elements in different compatibility modes are described below.

Comments

The following types of comments are supported:

Single-line comment: starts with --  (two minus characters following one another) and continues to the end of the line

Multiline comment: starts with /*  and ends with */

In C++ syntax compatibility mode (default), a multiline comment ends with the nearest */ .
The ANSI SQL syntax compatibility mode accounts for nesting of multiline comments:

Keywords and identifiers

Keywords are tokens that have a fixed value in the YQL language. Examples of keywords: SELECT , INSERT , FROM , ACTION , and so on.
Keywords are case-insensitive, that is, SELECT  and SeLEcT  are equivalent to each other.
The list of keywords is not fixed and is going to expand as the language develops. A keyword can't contain numbers and begin or end with an
underscore.

Identifiers are tokens that identify the names of tables, columns, and other objects in YQL. Identifiers in YQL are always case-sensitive.
An identifier can be written in the body of the program without any special formatting, if the identifier:

Is not a keyword

Begins with a Latin letter or underscore

Is followed by a Latin letter, an underscore, or a number

To include an arbitrary ID in the body of a query, the ID is enclosed in backticks:

IDs in backticks are never interpreted as keywords:

When using backticks, you can use the standard C escaping:

In ANSI SQL syntax compatibility mode, arbitrary IDs can also be enclosed in double quotes. To include a double quote in a quoted ID, use two
double quotes:

SELECT 1; -- A single-line comment
/*
   Some multi-line comment
*/

--!ansi_lexer
SELECT * FROM T; /* this is a comment /* this is a nested comment, without ansi_lexer it raises an error  */ */

SELECT my_column FROM my_table; -- my_column and my_table are identifiers

SELECT `column with space` from T;
SELECT * FROM `my_dir/my_table`

SELECT `select` FROM T; -- select - Column name in the T table

SELECT 1 as `column with\n newline, \x0a newline and \` backtick `;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_lexer
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_lexer_lexer-modes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_lexer_comments
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_lexer_keywords-and-ids


SQL hints

SQL hints are special settings with which a user can modify a query execution plan
(for example, enable/disable specific optimizations or force the JOIN execution strategy).
Unlike PRAGMA, SQL hints act locally – they are linked to a specific point in the YQL query (normally, after the keyword)
and affect only the corresponding statement or even a part of it.
SQL hints are a set of settings "name-value list" and defined inside special comments —
comments with SQL hints must have +  as the first character:

An SQL hint name must be comprised of ASCII alphanumeric characters and start with a letter. Hint names are case insensitive.
A hint name must be followed by a custom number of space-separated values. A value can be a custom set of characters.
If there's a space or parenthesis in a set of characters, single quotation marks must be used:

To escape a single quotation within a value, double it:

If there're two or more hints with the same name in the list, the latter is used:

Unknown SQL hint names (or syntactically incorrect hints) never result in errors, they're simply ignored:

Thanks to this behavior, previous valid YQL queries with comments that look like hints remain intact.
Syntactically correct SQL hints in a place unexpected for YQL result in a warning:

What's important is that SQL hints are hints for an optimizer, so:

Hints never affect search results.

As YQL optimizers improve, a situation is possible when a hint becomes outdated and is ignored (for example, the algorithm based on a given
hint completely changes or the optimizer becomes so sophisticated that it can be expected to choose the best solution, so some manual
settings are likely to interfere).

String literals

A string literal (constant) is expressed as a sequence of characters enclosed in single quotes. Inside a string literal, you can use the C-style
escaping rules:

In the C++ syntax compatibility mode (default), you can use double quotes instead of single quotes:

In ASNI SQL compatibility mode, double quotes are used for IDs, and the only escaping that can be used for string literals is a pair of single quotes:

--!ansi_lexer
SELECT 1 as "column with "" double quote"; -- column name will be: column with " double quote

--+ Name1(Value1 Value2 Value3) Name2(Value4) ...

--+ foo('value with space and paren)')

--+ foo('value1' value2)
-- equivalent to
--+ foo(value1 value2)

--+ foo('value with single quote '' inside')

--+ foo(v1 v2) bar(v3) foo()
-- equivalent to
--+ bar(v3) foo()

--+ foo(value1) bar(value2  baz(value3)
-- due to a missing closing parenthesis in bar, is equivalent to
--+ foo(value1)

-- presently, hints after SELECT are not supported
SELECT /*+ foo(123) */ 1; -- warning 'Hint foo will not be used'

SELECT 'string with\n newline, \x0a newline and \' backtick ';

SELECT "string with\n newline, \x0a newline and \" backtick ";

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_lexer_sql-hints
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_lexer_string-literals
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma


Based on string literals, simple literals can be obtained.

Multi-line string literals

A multiline string literal is expressed as an arbitrary set of characters enclosed in double at signs @@ :

If you need to use double at signs in your text, duplicate them:

Typed string literals

For string literals, including multi-string ones, the String  type is used by default (see also PRAGMA UnicodeLiterals).

You can use the following suffixes to explicitly control the literal type:

s  — String

u  — Utf8

y  — Yson

j  — Json

Example

Numeric literals

Integer literals have the default type Int32 , if they fit within the Int32 range. Otherwise, they automatically expand to Int64 .

You can use the following suffixes to explicitly control the literal type:

l : Int64

s : Int16

t : Int8

Add the suffix u  to convert a type to its corresponding unsigned type:

ul : Uint64

u : Uint32

us : Uint16

ut : Uint8

You can also use hexadecimal, octal, and binary format for integer literals using the prefixes 0x , 0o  and 0b , respectively. You can arbitrarily
combine them with the above-mentioned suffixes.

Floating point literals have the Double  type by default, but you can use the suffix f  to narrow it down to Float .

--!ansi_lexer
SELECT 'string with '' quote'; -- result: string with ' quote

$text = @@some
multiline
text@@;
SELECT LENGTH($text);

$text = @@some
multiline with double at: @@@@
text@@;
SELECT $text;

SELECT "foo"u, '[1;2]'y, @@{"a":null}@@j;

SELECT
  123l AS `Int64`,
  0b01u AS `Uint32`,
  0xfful AS `Uint64`,
  0o7ut AS `Uint8`,
  456s AS `Int16`,
  1.2345f AS `Float`;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_lexer_multiline-string-literals
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_lexer_typed-string-literals
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_lexer_example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_lexer_literal-numbers
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_builtins_basic_data-type-literals
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_lexer_multiline-string-literals
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_UnicodeLiterals


Expressions

String concatenation

Executed using the binary operator || .

As with other binary operators, if the data on either side is NULL , the result is also NULL .

Don't confuse this operator with a logical "or": in SQL, it's denoted by the OR  keyword. It's also not worth doing concatenation using + .

Examples

Matching a string by pattern

REGEXP  and RLIKE  are aliases used to call Re2::Grep. MATCH : Same for Re2::Match.

LIKE  works as follows:

Patterns can include two special characters:

% : Zero or more of any characters.

_ : Exactly one of any character.

All other characters are literals that represent themselves.

As opposed to REGEXP , LIKE  must be matched exactly. For example, to search a substring, add %  at the beginning and end of the pattern.

ILIKE  is a case-insensitive version of LIKE .

If LIKE  is applied to the key column of the sorted table and the pattern doesn't start with a special character, filtering by prefix drills down
directly to the cluster level, which in some cases lets you avoid the full table scan. This optimization is disabled for ILIKE .

To escape special characters, specify the escaped character after the pattern using the ESCAPE '?'  keyword. Instead of ?  you can use any
character except % , _  and \ . For example, if you use a question mark as an escape character, the expressions ?% , ?_  and ??  will
match their second character in the template: percent, underscore, and question mark, respectively. The escape character is undefined by
default.

The most popular way to use the LIKE  and REGEXP  keywords is to filter a table using the statements with the WHERE  clause. However, there are
no restrictions on using templates in this context: you can use them in most of contexts involving strings, for example, with concatenation by using
|| .

Examples

Operators

Arithmetic operators

The operators + , - , * , / , %  are defined for primitive data types that are variations of numbers.

For the Decimal data type, bankers rounding is used (to the nearest even integer).

SELECT "fo" || "o";

SELECT * FROM my_table
WHERE string_column REGEXP '\\d+';
-- the second slash is required because
-- all the standard string literals in SQL
-- can accept C-escaped strings

SELECT
    string_column LIKE '___!_!_!_!!!!!!' ESCAPE '!'
    -- searches for a string of exactly 9 characters:
    --   3 arbitrary characters
    --   followed by 3 underscores
    --  and 3 exclamation marks
FROM my_table;

SELECT * FROM my_table
WHERE key LIKE 'foo%bar';
-- if the table is sorted by key, it will only scan the keys,
-- starting with "foo", and then, among them,
-- will leave only those that end in "bar"

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_concatenation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_check-match
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_examples1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_operators
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_math-operators
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_re2_match
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_re2_match
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_primitive


Examples

Comparison operators

The operators = , == , != , <> , > , <  are defined for:

Primitive data types except Yson and Json.

Tuples and structures with the same set of fields. No order is defined for structures, but you can check for (non-)equality. Tuples are compared
element-by-element left to right.

Examples

Logical operators

Use the operators AND , OR , XOR  for logical operations on Boolean values ( Bool ).

Examples*

Bitwise operators

Bitwise operations on numbers:

& , | , ^ : AND, OR, and XOR, respectively. Don't confuse bitwise operations with the related keywords. The keywords AND , OR , and XOR
are used for Boolean values only, but not for numbers.

~ : A negation.

< , > : Left or right shifts.

|< , >| : Circular left or right shifts.

Examples

Precedence and associativity of operators

Operator precedence determines the order of evaluation of an expression that contains different operators.
For example, the expression 1 + 2 * 3  is evaluated as 1 + (2 * 3)  because the multiplication operator has a higher precedence than the
addition operator.

Associativity determines the order of evaluating expressions containing operators of the same type.
For example, the expression 1 + 2 + 3  is evaluated as (1 + 2) + 3  because the addition operator is left-associative.
On the other hand, the expression a ?? b ?? c  is evaluated as a ?? (b ?? c)  because the ??  operator is right-associative

The table below shows precedence and associativity of YQL operators.
The operators in the table are listed in descending order of precedence.

SELECT 2 + 2;

SELECT 0.0 / 0.0;

SELECT 2 > 1;

SELECT 3 > 0 AND false;

SELECT
    key << 10 AS key,
    ~value AS value
FROM my_table;

Priority Operator Description Associativity

1 a[], a.foo, a() Accessing a container item, calling a function Left

2 +a, -a, ~a, NOT a Unary operators: plus, minus, bitwise and logical 
negation

Right

3 a||b String concatenation Left

4 a*b, a/b, a%b Multiplication, division, remainder of division Left

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_examples2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_comparison-operators
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_examples3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_logic-operators
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_examples4
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_bit-operators
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_examples5
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_operator-priority
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_concatenation


IS [NOT]NULL

Matching an empty value ( NULL ). Since NULL  is a special value equal to nothing, the ordinary comparison operators can't be used to match it.

Examples

IS [NOT]DISTINCT FROM

Comparing of two values. Unlike the regular comparison operators, NULLs are treated as equal to each other.
More precisely, the comparison is carried out according to the following rules:

1. The operators IS DISTINCT FROM / IS NOT DISTINCT FROM  are defined for those and only for those arguments for which the operators !=
and =  are defined.

2. The result of IS NOT DISTINCT FROM  is equal to the logical negation of the IS DISTINCT FROM  result for these arguments.

3. If the result of the ==  operator is not equal to zero for some arguments, then it is equal to the result of the IS NOT DISTINCT FROM  operator
for the same arguments.

4. If both arguments are empty Optional  or NULL s, then the value of IS NOT DISTINCT FROM  is True .

5. The result of IS NOT DISTINCT FROM  for an empty Optional  or NULL  and filled-in Optional  or non- Optional  value is False .

For values of composite types, these rules are used recursively.

BETWEEN

Checking whether a value is in a range. It's equivalent to two conditions with >=  and <=  (range boundaries are included). Can be used with the
NOT  prefix to support inversion.

Examples

IN

Checking whether a value is inside of a set of values. It's logically equivalent to a chain of equality comparisons using OR  but implemented more
efficiently.

Warning

Unlike a similar keyword in Python, in YQL IN  DOES NOT search for a substring inside a string. To search for a substring, use the
function String::Contains or LIKE/REGEXP mentioned above.

SELECT key FROM my_table
WHERE value IS NOT NULL;

SELECT * FROM my_table
WHERE key BETWEEN 10 AND 20;

5 a+b, a-b Addition/Subtraction Left

6 a ?? b Operator notation for NVL/COALESCE Right

7 a<b, a>b, a|<b, a>|b,  a|b, a^b, a&b Shift operators and logical bit operators Left

8 a<b, a=b, a=b, a>b Comparison Left

9 a IN b Occurrence of an element in a set Left

9 a==b, a=b, a!=b, a<>b,  
a is (not) distinct from b

Comparison for (non-)equality Left

10 a XOR b Logical XOR Left

11 a AND b Logical AND Left

12 a OR b Logical OR Left

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_is-null
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_examples6
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_is-distinct-from
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_between
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_examples7
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_in
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_optional_null_expr
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_comparison-operators
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_comparison-operators
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_string
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_check-match
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_coalesce


Immediately after IN , you can specify the COMPACT  modifier.
If COMPACT  is not specified, then IN  with a subquery is executed as a relevant JOIN  ( LEFT SEMI  for IN  and LEFT ONLY  for NOT IN ), if
possible.
Using the COMPACT  modifier forces the in-memory execution strategy: a hash table is immediately built from the contents of the right IN  part in-
memory, and then the left part is filtered.

The COMPACT  modifier must be used with care. Since the hash table is built in-memory, the query may fail if the right part of IN  contains many
large or different elements.

Examples

AS

Can be used in the following scenarios:

Adding a short name (alias) for columns or tables within the query.

Using named arguments in function calls.
To specify the target type in the case of explicit type casting, see CAST.

Examples

CAST

Tries to cast the value to the specified type. The attempt may fail and return NULL . When used with numbers, it may lose precision or most
significant bits.

For the Decimal parametric data type, two additional arguments are specified:

Total number of decimal places (up to 35, inclusive).

Number of places after the decimal point (out of the total number, meaning it can't be larger than the previous argument).

Examples

SELECT column IN (1, 2, 3)
FROM my_table;

SELECT * FROM my_table
WHERE string_column IN ("a", "b", "c");

$foo = AsList(1, 2, 3);
SELECT 1 IN $foo;

$values = (SELECT column + 1 FROM table);
SELECT * FROM my_table WHERE
    -- filtering by an in-memory hash table for one_table
    column1 IN COMPACT $values AND
    -- followed by LEFT ONLY JOIN with other_table
    column2 NOT IN (SELECT other_column FROM other_table);

SELECT key AS k FROM my_table;

SELECT t.key FROM my_table AS t;

SELECT
    MyFunction(key, 123 AS my_optional_arg)
FROM my_table;

SELECT
    CAST("12345" AS Double),                -- 12345.0
    CAST(1.2345 AS Uint8),                  -- 1
    CAST(12345 AS String),                  -- "12345"
    CAST("1.2345" AS Decimal(5, 2)),        -- 1.23
    CAST("xyz" AS Uint64) IS NULL,          -- true, because it failed
    CAST(-1 AS Uint16) IS NULL, -- true, a negative integer cast to an unsigned integer
    CAST([-1, 0, 1] AS List<Uint8?>),             -- [null, 0, 1]
        --The item type is optional: the failed item is cast to null.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_examples8
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_as
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_examples9
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_cast
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_examples10
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_cast


BITCAST

Performs a bitwise conversion of an integer value to the specified integer type. The conversion is always successful, but may lose precision or high-
order bits.

Examples

CASE

Conditional expressions and branching. It's similar to if , switch  and ternary operators in the imperative programming languages.
If the result of the WHEN  expression is true , the value of the CASE  expression becomes the result following the condition, and the rest of the
CASE  expression isn't calculated. If the condition is not met, all the WHEN  clauses that follow are checked. If none of the WHEN  clauses are met,

the CASE  value is assigned the result from the ELSE  clause.
The ELSE  branch is mandatory in the CASE  expression. Expressions in WHEN  are checked sequentially, from top to bottom.

Since its syntax is quite sophisticated, it's often more convenient to use the built-in function IF.

Examples

Named expressions

Complex queries may be sophisticated, containing lots of nested levels and/or repeating parts. In YQL, you can use named expressions to assign a
name to an arbitrary expression or subquery. Named expressions can be referenced in other expressions or subqueries. In this case, the original
expression/subquery is actually substituted at point of use.

A named expression is defined as follows:

Here <named-expr>  consists of a $ character and an arbitrary non-empty identifier (for example, $foo ).

If the expression on the right is a tuple, you can automatically unpack it by specifying several named expressions separated by commas on the left:

In this case, the number of expressions must match the tuple size.

Each named expression has a scope. It starts immediately after the definition of a named expression and ends at the end of the nearest enclosed
namescope (for example, at the end of the query or at the end of the body of the lambda function, ACTION).
Redefining a named expression with the same name hides the previous expression from the current scope.

If the named expression has never been used, a warning is issued. To avoid such a warning, use the underscore as the first character in the ID (for
example, $_foo ).

    CAST(["3.14", "bad", "42"] AS List<Float>),   -- [3.14, 42]
        --The item type is not optional: the failed item has been deleted.
    CAST(255 AS Uint8),                     -- 255
    CAST(256 AS Uint8) IS NULL -- true, out of range

SELECT
    BITCAST(100000ul AS Uint32),     -- 100000
    BITCAST(100000ul AS Int16),      -- -31072
    BITCAST(100000ul AS Uint16),     -- 34464
    BITCAST(-1 AS Int16),            -- -1
    BITCAST(-1 AS Uint16);           -- 65535

SELECT
  CASE
    WHEN value > 0
    THEN "positive"
    ELSE "negative"
  END
FROM my_table;

SELECT
  CASE value
    WHEN 0 THEN "zero"
    WHEN 1 THEN "one"
    ELSE "not zero or one"
  END
FROM my_table;

<named-expr> = <expression> | <subquery>;

<named-expr1>, <named-expr2>, <named-expr3> ... = <expression-returning-tuple>;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_bitcast
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_examples11
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_case
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_examples12
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_named-nodes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_if
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_lambda
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_action_define-action


The named expression $_  is called an anonymous named expression and is processed in a special way: it works as if $_  would be automatically
replaced by $_<some_uniq_name> .
Anonymous named expressions are convenient when you don't need the expression value. For example, to fetch the second element from a tuple
of three elements, you can write:

An attempt to reference an anonymous named expression results in an error:

Anonymous argument names are also supported for lambda functions, ACTION.

Note

If named expression substitution results in completely identical subgraphs in the query execution graph, the graphs are combined to
execute a subgraph only once.

Examples

Table expressions

A table expression is an expression that returns a table. Table expressions in YQL are as follows:

Subqueries: (SELECT key, subkey FROM T)

Named subqueries: $foo = SELECT * FROM T;  (in this case, $foo  is also a table expression)

Semantics of a table expression depends on the context where it is used. In YQL, table expressions can be used in the following contexts:

Table context: after FROM. In this case, table expressions work as expected: for example, $input = SELECT a, b, c FROM T; SELECT * 
FROM $input  returns a table with three columns. The table context also occurs after UNION ALL, JOIN;

Vector context: after IN. In this context, the table expression must contain exactly one column (the name of this column doesn't affect the
expression result in any way). A table expression in a vector context is typed as a list (the type of the list element is the same as the column
type in this case). Example: SELECT * FROM T WHERE key IN (SELECT k FROM T1) ;

A scalar context arises in all the other cases. As in a vector context, a table expression must contain exactly one column, but the value of the
table expression is a scalar, that is, an arbitrarily selected value of this column (if no rows are returned, the result is NULL ). Example: $count 
= SELECT COUNT(*) FROM T; SELECT * FROM T ORDER BY key LIMIT $count / 2 ;

$_, $second, $_ = AsTuple(1, 2, 3);
select $second;

$_ = 1;
select $_; --- error: Unable to reference anonymous name $_
export $_; --- An error: Can not export anonymous name $_

$multiplier = 712;
SELECT
  a * $multiplier, -- $multiplier is 712
  b * $multiplier,
  (a + b) * $multiplier
FROM abc_table;
$multiplier = c;
SELECT
  a * $multiplier -- $multiplier is column c
FROM abc_table;

$intermediate = (
  SELECT
    value * value AS square,
    value
  FROM my_table
);
SELECT a.square * b.value
FROM $intermediate AS a
INNER JOIN $intermediate AS b
ON a.value == b.square;

$a, $_, $c = AsTuple(1, 5u, "test"); -- unpack a tuple
SELECT $a, $c;

$x, $y = AsTuple($y, $x); -- swap expression values

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_examples13
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_table-contexts
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_lambda
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_action_define-action
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_named-nodes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_from
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_union_unionall
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_join_join
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_in


The order of rows in a table context, the order of elements in a vector context, and the rule for selecting a value from a scalar context (if multiple
values are returned), aren't defined. This order also cannot be affected by ORDER BY : ORDER BY  without LIMIT  is ignored in table expressions
with a warning, and ORDER BY  with LIMIT  defines a set of elements rather than the order within that set.

Lambda functions

Let you combine multiple expressions into a single callable value.

List arguments in round brackets, following them by the arrow and lambda function body. The lambda function body includes either an expression in
round brackets or curly brackets around an optional chain of named expressions assignments and the call result after the RETURN  keyword in the
last expression.

The scope for the lambda body: first the local named expressions, then arguments, then named expressions defined above by the lambda function
at the top level of the query.

Only use pure expressions inside the lambda body (those might also be other lambdas, possibly passed through arguments). However, you can't
use SELECT, INSERT INTO, or other top-level expressions.

One or more of the last lambda parameters can be marked with a question mark as optional: if they haven't been specified when calling lambda,
they are assigned the NULL  value.

Examples

Accessing containers

For accessing the values inside containers:

Struct<> , Tuple<>  and Variant<> , use a dot. The set of keys (for the tuple and the corresponding variant — indexes) is known at the
query compilation time. The key is validated before beginning the query execution.

List<>  and Dict<> , use square brackets. The set of keys (set of indexes for keys) is known only at the query execution time. The key is
not validated before beginning the query execution. If no value is found, an empty value (NULL) is returned.

Description and list of available containers.

When using this syntax to access containers within table columns, be sure to specify the full column name, including the table name or table alias
separated by a dot (see the first example below).

Examples

$f = ($y) -> {
    $prefix = "x";
    RETURN $prefix || $y;
};

$g = ($y) -> ("x" || $y);

$h = ($x, $y?) -> ($x + ($y ?? 0));

SELECT $f("y"), $g("z"), $h(1), $h(2, 3); -- "xy", "xz", 1, 5

-- if the lambda result is calculated by a single expression, then you can use a more compact syntax:
$f = ($x, $_) -> ($x || "suffix"); -- the second argument is not used
SELECT $f("prefix_", "whatever");

SELECT
  t.struct.member,
  t.tuple.7,
  t.dict["key"],
  t.list[7]
FROM my_table AS t;

SELECT
  Sample::ReturnsStruct().member;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_lambda
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_examples14
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_items-access
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_examples15
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_named-nodes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_insert_into
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_containers


ACTION

DEFINE ACTION

Specifies a named action that is a parameterizable block of multiple top-level expressions.

Syntax

1. DEFINE ACTION : action definition.

2. Action name that will be used to access the defined action further in the query.

3. The values of parameter names are listed in parentheses.

4. AS  keyword.

5. List of top-level expressions.

6. END DEFINE : The marker of the last expression inside the action.

One or more of the last parameters can be marked with a question mark ?  as optional. If they are omitted during the call, they will be assigned the
NULL  value.

DO

Executes an ACTION  with the specified parameters.

Syntax

1. DO : Executing an action.

2. The named expression for which the action is defined.

3. The values to be used as parameters are listed in parentheses.

EMPTY_ACTION : An action that does nothing.

Example

BEGIN .. END DO

Performing an action without declaring it (anonymous action).

Syntax

1. BEGIN .

2. List of top-level expressions.

3. END DO .

An anonymous action can't include any parameters.

Example

DEFINE ACTION $hello_world($name, $suffix?) AS
    $name = $name ?? ($suffix ?? "world");
    SELECT "Hello, " || $name || "!";
END DEFINE;

DO EMPTY_ACTION();
DO $hello_world(NULL);
DO $hello_world("John");
DO $hello_world(NULL, "Earth");

DO BEGIN
    SELECT 1;
    SELECT 2 -- here and in the previous example, you might omit ';' before END
END DO

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_action
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_action_define-action
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_action_syntax
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_action_do
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_action_syntax1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_action_example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_action_begin
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_action_syntax2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_action_example1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_named-nodes


ALTER ASYNC REPLICATION
The ALTER ASYNC REPLICATION  statement modifies the status and parameters of an asynchronous replication instance.

Syntax

Parameters

name  — a name of the asynchronous replication instance.

SET (option = value [, ...])  — asynchronous replication parameters:

STATE  — the state of asynchronous replication. This parameter can only be used in combination with the FAILOVER_MODE  parameter
(see below). Valid values are:

DONE  — completion of the asynchronous replication process.

FAILOVER_MODE  — the mode for changing the replication state. This parameter can only be used in combination with the STATE
parameter. Valid values are:

FORCE  — forced failover.

Examples

The following statement forces the asynchronous replication process to complete:

See also

CREATE ASYNC REPLICATION

DROP ASYNC REPLICATION

ALTER ASYNC REPLICATION <name> SET (option = value [, ...])

ALTER ASYNC REPLICATION my_replication SET (STATE = "DONE", FAILOVER_MODE = "FORCE");

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-async-replication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-async-replication_syntax
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-async-replication_params
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-async-replication_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-async-replication_see-also
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_async-replication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_async-replication_done
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-async-replication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_drop-async-replication


ALTER GROUP
Adds/removes the group to/from a specific user. You can list multiple users under one operator.

Syntax:

role_name : The name of the group.

user_name : The name of the user.

Built-in groups

The YDB cluster has built-in groups providing predefined role sets:

By default, all users are included in the USERS  group, and the root  user is included in the ADMINS  group.

Below is a diagram demonstrating how groups inherit permissions from each other. For example, DATA-WRITERS  includes all permissions of DATA-
READERS :

ADMINSADMINS

DATABASE-ADMINS

ALTER GROUP role_name ADD USER user_name [, ... ]
ALTER GROUP role_name DROP USER user_name [, ... ]

Group Description

ADMINS Unlimited rights over the entire cluster schema

DATABASE-ADMINS Rights to create and delete databases ( CreateDatabase , DropDatabase )

ACCESS-ADMINS Rights to manage other users' permissions ( GrantAccessRights )

DDL-ADMINS Rights to alter database schemas ( CreateDirectory , CreateTable , WriteAttributes , AlterSchema , 
RemoveSchema )

DATA-WRITERS Rights to modify data ( UpdateRow , EraseRow )

DATA-READERS Rights to read data ( SelectRow )

METADATA-READERS Rights to read metadata, without access to data ( DescribeSchema  and ReadAttributes )

USERS Rights to connect to databases ( ConnectDatabase )

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-group_builtin


DATABASE-ADMINS

ACCESS-ADMINSACCESS-ADMINS

DDL-ADMINSDDL-ADMINS

DATA-WRITERSDATA-WRITERS

DATA-READERSDATA-READERS

METADATA-READERSMETADATA-READERS

USERSUSERSViewer does not support full SVG 1.1



ALTER VIEW
ALTER VIEW  changes the definition of a view.

Warning

This feature is not supported yet.

Instead, you can redefine a view by dropping it and recreating it with a different query or options:

Please note that the two statements are executed separately, unlike a single ALTER VIEW  statement. If a view is recreated in this way, it might be
possible to observe the view in a deleted state for a brief moment.

See also

CREATE VIEW

DROP VIEW

DROP VIEW redefined_view;
CREATE VIEW redefined_view ...;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-view
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-view_see-also
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_concepts_datamodel_view
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-view
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_drop-view


ALTER TOPIC
You can use the ALTER TOPIC  command to change the topic settings, as well as add, update, or delete its consumers.

Here is the general format of the ALTER TOPIC  command:

action  is one of the alter actions described below.

Updating a set of consumers

ADD CONSUMER : Adds a consumer to a topic.

The following example will add a consumer with default settings to the topic.

When adding consumers, you can specify their settings, for example:

Full list of available topic consumer settings

important : Defines an important consumer. No data will be deleted from the topic until all the important consumers read them. Value type:
boolean , default value: false .

read_from : Sets up the message write time starting from which the consumer will receive data. Data written before this time will not be read.
Value type: Datetime  OR Timestamp  OR integer  (unix-timestamp in the numeric format). Default value: 0  (read from the earliest
available message).

DROP CONSUMER : Deletes the consumer from the topic.

Updating consumer settings

ALTER CONSUMER : Adds a consumer for a topic.

Here is the general syntax for ALTER CONSUMER :

Supports the following types of consumer_action :

SET : Sets consumer settings

The following example will assign the important  parameter to the consumer.

You can specify several ALTER CONSUMER  statements for a consumer. However, the settings applied by them shouldn't
repeat.

This is a valid statement:

But this statement will raise an error.

Updating topic settings

ALTER TOPIC topic_path action1, action2, ..., actionN;

ALTER TOPIC `my_topic` ADD CONSUMER new_consumer;

ALTER TOPIC `my_topic` ADD CONSUMER new_consumer2 WITH (important = false);

ALTER TOPIC `my_topic` DROP CONSUMER old_consumer;

ALTER TOPIC `topic_name` ALTER CONSUMER consumer_name consumer_action;

ALTER TOPIC `my_topic` ALTER CONSUMER my_consumer SET (important = true);

ALTER TOPIC `my_topic`
    ALTER CONSUMER my_consumer SET (important = true)
    ALTER CONSUMER my_consumer SET (read_from = 0);

ALTER TOPIC `my_topic`
    ALTER CONSUMER my_consumer SET (important = true)
    ALTER CONSUMER my_consumer SET (important = false);

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-topic_updating-a-set-of-consumers
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-topic_full-list-of-available-topic-consumer-settings
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-topic_updating-consumer-settings
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-topic_updating-topic-settings
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_consumer


Using the SET (option = value[, ...])  action, you can update your topic settings.

The example below will change the retention period for the topic and the writing quota per partition:

Full list of available topic settings

min_active_partitions : Minimum number of topic partitions. During automatic load balancing, the number of active partitions will not
decrease below this value. Value type: integer , default value: 1 .

partition_count_limit : Maximum number of active partitions in the topic. 0  is interpreted as unlimited. Value type: integer , default
value: 0 .

retention_period : Data retention period in the topic. Value type: Interval , default value: 18h .

retention_storage_mb : Limit on the maximum disk space occupied by the topic data. When this value is exceeded, the older data is
cleared, like under a retention policy. 0  is interpreted as unlimited. Value type: integer , default value: 0

partition_write_speed_bytes_per_second : Maximum allowed write speed per partition. If a write speed for a given partition exceeds this
value, the write speed will be capped. Value type: integer , default value: 2097152  (2MB).

partition_write_burst_bytes : Write quota allocated for write bursts. When set to zero, the actual write_burst value is equalled to the quota
value (this allows write bursts of up to one second). Value type: integer , default value: 0 .

metering_mode : Resource metering mode ( RESERVED_CAPACITY  - based on the allocated resources or REQUEST_UNITS  - based on actual
usage). This option applies to topics in serverless databases. Value type: String .

Change autopartitioning strategies for the topic

The following command sets the autopartitioning strategy to UP :

The following command pauses the topic autopartitioning:

The following command unpauses the topic autopartitioning:

ALTER TOPIC `my_topic` SET (
    retention_period = Interval('PT36H'),
    partition_write_speed_bytes_per_second = 3000000
);

ALTER TOPIC `my_topic` SET (
    min_active_partitions = 1,
    max_active_partitions = 5,
    auto_partitioning_strategy = 'scale_up'
);

ALTER TOPIC `my_topic` SET (
    auto_partitioning_strategy = 'paused'
);

ALTER TOPIC `my_topic` SET (
    auto_partitioning_strategy = 'scale_up'
);

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-topic_full-list-of-available-topic-settings
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-topic_autopartitioning
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_autopartitioning
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_autopartitioning
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_autopartitioning


ALTER USER
Changes the user password.

Syntax

user_name : The name of the user.

option  — The command option:

PASSWORD 'password'  — changes the password to password .

PASSWORD NULL  — sets an empty password.

NOLOGIN  - disallows user login (user lockout).

LOGIN  - allows user login (user unlocking).

ALTER USER user_name [ WITH ] option [ ... ]

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-user_syntax


ANALYZE
ANALYZE  forces the collection of statistics for YDB cost-based optimizer.

Syntax

This command forces the synchronous collection of table statistics and column statistics for the specified columns or for all columns if none are
specified. ANALYZE  returns once all the requested statistics have been collected and are up to date.

path_to_table  — the path to the table for which statistics should be collected.

column_name  — collect column statistics only for the specified columns of the table.

The current set of statistics is described in Statistics for the Cost-Based Optimizer.

ANALYZE <path_to_table> [ (<column_name> [, ...]) ]

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_analyze
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_analyze_syntax
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_optimizer
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_optimizer_statistics


CREATE ASYNC REPLICATION
The CREATE ASYNC REPLICATION  statement creates an asynchronous replication instance.

Syntax

Parameters

name  — a name of the asynchronous replication instance.

remote_path  — a relative or absolute path to a table or directory in the source database.

local_path  — a relative or absolute path to a target table or directory in the local database.

WITH (option = value [, ...])  — asynchronous replication parameters:

CONNECTION_STRING  — a connection string for the source database (mandatory).

Authentication details for the source database (mandatory) depending on the authentication method:

Access token:

TOKEN_SECRET_NAME  — the name of the secret that contains the token.

Login and password:

USER  — a database user name.

PASSWORD_SECRET_NAME  — the name of the secret that contains the password for the source database user.

Examples

Tip

Before creating an asynchronous replication instance, you must create a secret with authentication credentials for the source database
or ensure that you have access to an existing secret.

The following statement creates an asynchronous replication instance to synchronize the original_table  source table in the
/Root/another_database  database to the replica_table  target table in the local database:

The statement above uses the token from the my_secret  secret for authentication and the grpcs://example.com:2135  endpoint to connect to
the /Root/another_database  database.

The following statement creates an asynchronous replication instance to replicate the source tables original_table_1  and original_table_2
to the target tables replica_table_1  and replica_table_2 :

The following statement creates an asynchronous replication instance for the objects in the original_dir  directory:

The following statement creates an asynchronous replication instance for the objects in the /Root/another_database  database:

CREATE ASYNC REPLICATION <name>
FOR <remote_path> AS <local_path> [, <another_remote_path> AS <another_local_path>]
WITH (option = value [, ...])

CREATE ASYNC REPLICATION my_replication_for_single_table
FOR original_table AS replica_table
WITH (
    CONNECTION_STRING = 'grpcs://example.com:2135/?database=/Root/another_database',
    TOKEN_SECRET_NAME = 'my_secret'
);

CREATE ASYNC REPLICATION my_replication_for_multiple_tables
FOR original_table_1 AS replica_table_1, original_table_2 AS replica_table_2
WITH (
    CONNECTION_STRING = 'grpcs://example.com:2135/?database=/Root/another_database',
    TOKEN_SECRET_NAME = 'my_secret'
);

CREATE ASYNC REPLICATION my_replication_for_dir
FOR original_dir AS replica_dir
WITH (
    CONNECTION_STRING = 'grpcs://example.com:2135/?database=/Root/another_database',
    TOKEN_SECRET_NAME = 'my_secret'
);

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-async-replication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-async-replication_syntax
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-async-replication_params
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-async-replication_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_async-replication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_connect_connection_string
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_auth-access-token
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_secrets
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_auth-static
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_secrets
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-object-type-secret
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_connect_endpoint


See also

ALTER ASYNC REPLICATION

DROP ASYNC REPLICATION

CREATE ASYNC REPLICATION my_replication_for_database
FOR `/Root/another_database` AS `/Root/my_database`
WITH (
    CONNECTION_STRING = 'grpcs://example.com:2135/?database=/Root/another_database',
    TOKEN_SECRET_NAME = 'my_secret'
);

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-async-replication_see-also
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-async-replication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_drop-async-replication


CREATE GROUP
Creates a group with the specified name. Optionally, you can specify a list of users to add to the group.

Syntax

Parameters

group_name : The name of the group. It may contain lowercase Latin letters and digits.

user_name : The name of the user who will become a member of the group after its creation. It may contain lowercase Latin letters and digits.

Examples

CREATE GROUP group_name [ WITH USER user_name [ , user_name [ ... ]] [ , ] ]

CREATE GROUP group1;

CREATE GROUP group2 WITH USER user1;

CREATE GROUP group3 WITH USER user1, user2,;

CREATE GROUP group4 WITH USER user1, user3, user2;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-group_syntax
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-group_parameters
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-group_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-user


CREATE OBJECT (TYPE SECRET)

Warning

The syntax for managing secrets will change in future YDB releases.

The CREATE OBJECT (TYPE SECRET)  statement creates a secret.

Syntax

Parameters

secret_name  - the name of the secret.

secret_value  - the contents of the secret.

Example

The following statement creates a secret named MySecretName  with MySecretData  as a value.

CREATE OBJECT <secret_name> (TYPE SECRET) WITH value="<secret_value>";

CREATE OBJECT MySecretName (TYPE SECRET) WITH value="MySecretData";

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-object-type-secret
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-object-type-secret_syntax
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-object-type-secret_parameters
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-object-type-secret_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_secrets


CREATE VIEW
CREATE VIEW  defines a view with a given query.

A view logically represents a table formed by a given query. The view does not physically store the table but executes the query to produce the data
whenever the view is accessed.

Syntax

Parameters

IF NOT EXISTS  - when specified, the statement does not return an error if a view with the given name already exists.

name  - the name of the view to be created. The name must be distinct from the names of all other schema objects.

query  - the SELECT  query, which will be used to produce the logical table the view represents.

WITH ( <view_option_name> [= <view_option_value>] [, ... ] )  specifies optional parameters for a view. The following parameters
are supported:

security_invoker  (Bool) causes the underlying base relations to be checked against the privileges of the user of the view rather than
the view owner.

Database Object Naming Rules

Every scheme object in YDB has a name. In YQL statements, object names are specified by identifiers that can be enclosed in backticks or not. For
more information on identifiers, refer to Keywords and identifiers.

Scheme object names in YDB must meet the following requirements:

Object names can include the following characters:

Uppercase Latin characters

Lowercase Latin characters

Digits

Special characters: . , - , and _

Object name length must not exceed 255 characters.

Objects cannot be created in folders which names start with a dot, such as .sys , .metadata , and .sys_health .

Notes

The security_invoker  option must always be set to true because the default behavior for views is to execute the query on behalf of the view's
creator, which is not supported yet.

The execution context of the view's query differs from the context of the enclosing SELECT . It does not see previously defined PRAGMA s, named
expressions, etc. Most importantly, users must specify the tables (or views) they select from in the view's query by their schema-qualified names.
You can see in the examples that the absolute path like /domain/database/path/to/underlying_table  is used to specify the table from which a
view reads data. The particular context of the view's query compilation might change in the upcoming releases.

If you wish to specify column names that you would like to see in the output of the view, you might do so by modifying the view's query:

Asterisk ( * ) expansion in the view's query happens each time you read from the view. The list of columns returned by the following statement:

will change if the list of columns of the underlying_table  is altered.

Examples

CREATE VIEW [IF NOT EXISTS] <name>
[ WITH ( <view_option_name> [= <view_option_value>] [, ... ] ) ]
AS <query>

CREATE VIEW view_with_a_renamed_column WITH (security_invoker = TRUE) AS
SELECT
    original_column_name AS custom_column_name
FROM `/domain/database/path/to/underlying_table`;

/*
CREATE VIEW view_with_an_asterisk WITH (security_invoker = TRUE) AS
SELECT
    *
FROM `/domain/database/path/to/underlying_table`;
*/

SELECT * FROM view_with_an_asterisk;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-view
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-view_syntax
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-view_parameters
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-view_object-naming-rules
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-view_notes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-view_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_concepts_datamodel_view
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_scheme-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_lexer_keywords-and-ids
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-view_examples


Create a view that will list only recent series from the series  table:

Create a view that will list the titles of the first episodes of the recent series:

See also

ALTER VIEW

DROP VIEW

CREATE VIEW recent_series WITH (security_invoker = TRUE) AS
SELECT
    *
FROM `/domain/database/path/to/series`
WHERE
    release_date > Date("2020-01-01");

CREATE VIEW recent_series_first_episodes_titles WITH (security_invoker = TRUE) AS
SELECT
    episodes.title AS first_episode
FROM `/domain/database/path/to/recent_series`
    AS recent_series
JOIN `/domain/database/path/to/episodes`
    AS episodes
USING(series_id)
WHERE episodes.season_id = 1 AND episodes.episode_id = 1;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-view_see-also
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-view
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_drop-view


CREATE TOPIC
The CREATE TOPIC  call creates a topic.

When creating a topic, you can add topic consumers to it and topic settings.

All the parameters except the topic name are optional. By default, a topic is created without consumers. All
the omitted settings are also set by default (both for the topic and its consumers).

Database Object Naming Rules

Every scheme object in YDB has a name. In YQL statements, object names are specified by identifiers that can be enclosed in backticks or not. For
more information on identifiers, refer to Keywords and identifiers.

Scheme object names in YDB must meet the following requirements:

Object names can include the following characters:

Uppercase Latin characters

Lowercase Latin characters

Digits

Special characters: . , - , and _

Object name length must not exceed 255 characters.

Objects cannot be created in folders which names start with a dot, such as .sys , .metadata , and .sys_health .

Examples

Creating a topic without consumers with default settings:

Creating a topic with a single consumer and the important option enabled:

Full list of available topic consumer settings

important : Defines an important consumer. No data will be deleted from the topic until all the important consumers read them. Value type:
boolean , default value: false .

read_from : Sets up the message write time starting from which the consumer will receive data. Data written before this time will not be read.
Value type: Datetime  OR Timestamp  OR integer  (unix-timestamp in the numeric format). Default value: 0  (read from the earliest
available message).

Creating a topic with the retention period of one day:

Full list of available topic settings

min_active_partitions : Minimum number of topic partitions. During automatic load balancing, the number of active partitions will not
decrease below this value. Value type: integer , default value: 1 .

partition_count_limit : Maximum number of active partitions in the topic. 0  is interpreted as unlimited. Value type: integer , default
value: 0 .

retention_period : Data retention period in the topic. Value type: Interval , default value: 18h .

retention_storage_mb : Limit on the maximum disk space occupied by the topic data. When this value is exceeded, the older data is
cleared, like under a retention policy. 0  is interpreted as unlimited. Value type: integer , default value: 0

partition_write_speed_bytes_per_second : Maximum allowed write speed per partition. If a write speed for a given partition exceeds this
value, the write speed will be capped. Value type: integer , default value: 2097152  (2MB).

CREATE TOPIC topic_path (
    CONSUMER consumer1,
    CONSUMER consumer2 WITH (setting1 = value1)
) WITH (
    topic_setting2 = value2
);

CREATE TOPIC `my_topic`;

CREATE TOPIC `my_topic` (
    CONSUMER my_consumer WITH (important = true)
);

CREATE TOPIC `my_topic` WITH(
    retention_period = Interval('P1D')
);

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-topic_object-naming-rules
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-topic_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-topic_full-list-of-available-topic-consumer-settings
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-topic_full-list-of-available-topic-settings
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_concepts_topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_concepts_topic_consumer
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_scheme-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_lexer_keywords-and-ids


partition_write_burst_bytes : Write quota allocated for write bursts. When set to zero, the actual write_burst value is equalled to the quota
value (this allows write bursts of up to one second). Value type: integer , default value: 0 .

metering_mode : Resource metering mode ( RESERVED_CAPACITY  - based on the allocated resources or REQUEST_UNITS  - based on actual
usage). This option applies to topics in serverless databases. Value type: String .



CREATE USER
Creates a user with the specified name and password.

Syntax:

user_name : The name of the user. It may contain lowercase Latin letters and digits.

option  — command option:

PASSWORD 'password'  — creates a user with the password password .

PASSWORD NULL  — creates a user with an empty password (default).

NOLOGIN  - disallows user login (user lockout).

LOGIN  - allows user login (default).

Note

The scope of the commands CREATE USER , ALTER USER , and DROP USER  does not extend to external user directories. Keep this in
mind if users with third-party authentication (e.g., LDAP) are connecting to YDB. For example, the CREATE USER  command does not
create a user in the LDAP directory. Learn more about YDB's interaction with the LDAP directory.

CREATE USER user_name [option]

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_security_authentication_ldap-auth-provider


COMMIT
By default, the entire YQL query is executed within a single transaction, and independent parts inside it are executed in parallel, if possible.
Using the COMMIT;  keyword you can add a barrier to the execution process to delay execution of expressions that follow until all the preceding
expressions have completed.

To commit in the same way automatically after each expression in the query, you can use PRAGMA autocommit; .

Examples

INSERT INTO result1 SELECT * FROM my_table;
INSERT INTO result2 SELECT * FROM my_table;
COMMIT;
-- result2 will already include the SELECT contents from the second line:
INSERT INTO result3 SELECT * FROM result2;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_commit
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_commit_examples


DECLARE
Declares a typed named expression whose value will be passed separately from the query text. With parameterization, you can separately develop
an analytical solution and then launch it sequentially with different input values.

In the case of transactional load, parameters let you avoid recompilation of queries when repeating calls of the same type. This way you can reduce
server utilization and exclude compilation time from the total time of query execution.

Passing of parameters is supported in the SDK, CLI, and graphical interfaces.

Syntax

1. DECLARE  keyword.

2. $named-node : The name by which you can access the passed value. It must start with $ .

3. AS  keyword.

4. data_type  is the data type represented as a string in the accepted format.

Only serializable data types are allowed:

Primitive types.

Optional types.

Containers, except Stream<Type> .

Void  and Null  are the supported special types.

Example

DECLARE $named-node AS data_type;

DECLARE $x AS String;
DECLARE $y AS String?;
DECLARE $z AS List<String>;

SELECT $x, $y, $z;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_declare
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_declare_syntax
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_declare_example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_named-nodes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_type_string
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_primitive
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_optional
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_containers
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_special


DELETE FROM

Warning

Supported only for row-oriented tables. Support for column-oriented tables is currently under development.

Instead of using DELETE FROM  to delete data from colum-oriented tables, you can use the mechanism of deleting rows by time — TTL.
TTL can be set when creating the table via CREATE TABLE  or modified later via ALTER TABLE .

Deletes rows that match the WHERE  clause, from the table.

Example

DELETE FROM ... ON

Deletes rows based on the results of a subquery. The set of columns returned by the subquery must be a subset of the table's columns being
updated, and all columns of the table's primary key must be present in the returned columns. The data types of the columns returned by the
subquery must match the data types of the corresponding columns in the table.

The primary key value is used to search for rows to be deleted from the table. The presence of other (non-key) columns of the table in the output of
the subquery does not affect the results of the deletion operation.

Example

DELETE FROM my_table
WHERE Key1 == 1 AND Key2 >= "One";

$to_delete = (
    SELECT Key, SubKey FROM my_table WHERE Value = "ToDelete" LIMIT 100
);

DELETE FROM my_table ON
SELECT * FROM $to_delete;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_delete
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_delete_example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_delete_delete-on
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_delete_example1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_ttl
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_index


DROP ASYNC REPLICATION
The DROP ASYNC REPLICATION  statement deletes an asynchronous replication instance. When an asynchronous replication instance is deleted,
the following objects are also deleted:

automatically created streams of changes

replicas (optionally)

Syntax

Parameters

name  — the name of the asynchronous replication instance.

CASCADE  — cascaded deletion of the replicas that were created for a given asynchronous replication instance.

Examples

This section contains examples of YQL statements that drop the asynchronous replication instance created with the following expression:

The following statement drops an asynchronous replication instance and the automatically created stream of changes for the original_table
table, but the replica_table  table is not deleted:

The following statement drops an asynchronous replication instance, the automatically created stream of changes for the original_table  table,
and the replica_table  table:

See also

CREATE ASYNC REPLICATION

ALTER ASYNC REPLICATION

DROP ASYNC REPLICATION <name> [CASCADE]

CREATE ASYNC REPLICATION my_replication
FOR original_table AS replica_table
WITH (
    CONNECTION_STRING = 'grpcs://example.com:2135/?database=/Root/another_database',
    TOKEN_SECRET_NAME = 'my_secret'
);

DROP ASYNC REPLICATION my_replication;

DROP ASYNC REPLICATION my_replication CASCADE;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_drop-async-replication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_drop-async-replication_syntax
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_drop-async-replication_parameters
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_drop-async-replication_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_drop-async-replication_see-also
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_async-replication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_async-replication_drop
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_changefeed
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_replica-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-async-replication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-async-replication


DROP GROUP
Deletes the specified group. You can list multiple groups under one operator.

Syntax:

IF EXISTS : Suppress an error if the group doesn't exist.

group_name : The name of the group to be deleted.

DROP GROUP [ IF EXISTS ] group_name [, ...]

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_drop-group


DROP TABLE
Deletes the specified table.

If there is no such table, an error is returned.

Examples

DROP TABLE my_table;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_drop_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_drop_table_examples


DROP VIEW
DROP VIEW  deletes an existing view.

Syntax

Parameters

IF EXISTS  - when specified, the statement does not return an error if a view with the given name does not exist.

name  - the name of the view to be deleted.

Examples

The following command will drop the view named recent_series :

See also

CREATE VIEW

ALTER VIEW

DROP VIEW [IF EXISTS] <name>

DROP VIEW recent_series;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_drop-view
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_drop-view_syntax
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_drop-view_parameters
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_drop-view_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_drop-view_see-also
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_concepts_datamodel_view
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-view
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-view


DROP USER
Deletes the specified user. You can list multiple users under one operator.

Syntax:

IF EXISTS : Suppress an error if the user doesn't exist.

user_name : The name of the user to be deleted. It also supports the ability to set a comma-separated list of users, for example: DROP USER 
user1, user2, user3;

DROP USER [ IF EXISTS ] user_name [, ...]

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_drop-user


GRANT
The GRANT  command allows setting access rights to schema objects for a user or group of users.

Syntax:

permission_name  - the name of the access right to schema objects that needs to be assigned.

path_to_scheme_object  - the path to the schema object to which rights are granted.

role_name  - the name of the user or group for which rights to the schema object are granted.

WITH GRANT OPTION  - using this clause gives the user or group the right to manage access rights - to grant or revoke specific rights. The clause
functions similarly to granting the "ydb.access.grant"  right or GRANT .
A subject with the ydb.access.grant  right cannot grant rights broader than they themselves have on the access object
path_to_scheme_object .

Access rights

As names of access rights, you can use either the names of YDB rights or the corresponding YQL keywords.
The possible names of rights are listed in the table below.

GRANT {{permission_name} [, ...] | ALL [PRIVILEGES]} ON {path_to_scheme_object [, ...]} TO {role_name [, ...]} [WITH 
GRANT OPTION]

YDB right YQL keyword Description

Database-level rights

ydb.database.connect CONNECT The right to connect to a database

ydb.database.create CREATE The right to create new databases in the cluster

ydb.database.drop DROP The right to delete databases in the cluster

Elementary rights for database 
objects

ydb.granular.select_row SELECT ROW The right to read rows from a table (select), read messages from topics

ydb.granular.update_row UPDATE ROW The right to update rows in a table (insert, update, upsert, replace), 
write messages to topics

ydb.granular.erase_row ERASE ROW The right to delete rows from a table (delete)

ydb.granular.create_directory CREATE DIRECTORY The right to create and delete directories, including existing and nested 
ones

ydb.granular.create_table CREATE TABLE The right to create tables (including index, external, columnar), views, 
sequences

ydb.granular.create_queue CREATE QUEUE The right to create topics

ydb.granular.remove_schema REMOVE SCHEMA The right to delete objects (directories, tables, topics) that were created 
using rights

ydb.granular.describe_schema DESCRIBE SCHEMA The right to view existing access rights (ACL) on an access object, 
view descriptions of access objects (directories, tables, topics)

ydb.granular.alter_schema ALTER SCHEMA The right to modify access objects (directories, tables, topics), including 
users' rights to access objects

Additional flags

ydb.access.grant GRANT The right to grant or revoke rights from other users to the extent not 
exceeding the current scope of the user's rights on the access object

ydb.tables.modify MODIFY TABLES ydb.granular.update_row  + ydb.granular.erase_row

ydb.tables.read SELECT TABLES Alias for ydb.granular.select_row

ydb.generic.list LIST Alias for ydb.granular.describe_schema

ydb.generic.read SELECT ydb.granular.select_row  + ydb.generic.list

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_grant
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_grant_permissions-list


ALL [PRIVILEGES]  is used to specify all possible rights on schema objects for users or groups. PRIVILEGES  is an optional keyword needed
for compatibility with the SQL standard.

Note

Rights ydb.database.connect , ydb.granular.describe_schema , ydb.granular.select_row , and ydb.granular.update_row
should be considered as layers of rights.

For example, to update rows, you need not only the right ydb.granular.update_row , but also all the overlying rights.

Examples

Assign the ydb.generic.read  right to the table /shop_db/orders  for the user user1 :

The same command, using the keyword:

Assign the rights ydb.database.connect  and ydb.generic.list  to the root of the database /shop_db  for user user2  and group
group1 :

Assign the ydb.generic.use  right to the tables /shop_db/orders  and /shop_db/sellers  for users user1@domain  and user2@domain :

GRANT 'ydb.generic.read' ON `/shop_db/orders` TO user1;

GRANT SELECT ON `/shop_db/orders` TO user1;

GRANT LIST, CONNECT ON `/shop_db` TO user2, group1;

GRANT 'ydb.generic.use' ON `/shop_db/orders`, `/shop_db/sellers` TO `user1@domain`, `user2@domain`;

ydb.generic.write INSERT ydb.granular.update_row  + ydb.granular.erase_row  + 
ydb.granular.create_directory  + ydb.granular.create_table  

+ ydb.granular.create_queue  + ydb.granular.remove_schema  + 
ydb.granular.alter_schema

ydb.generic.use_legacy USE LEGACY ydb.generic.read  + ydb.generic.write  + ydb.access.grant

ydb.generic.use USE ydb.generic.use_legacy  + ydb.database.connect

ydb.generic.manage MANAGE ydb.database.create  + ydb.database.drop

ydb.generic.full_legacy FULL LEGACY ydb.generic.use_legacy  + ydb.generic.manage

ydb.generic.full FULL ydb.generic.use  + ydb.generic.manage

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_grant_examples


Grant all rights to the table /shop_db/sellers  for the user admin_user :

GRANT ALL ON `/shop_db/sellers` TO admin_user;



GROUP BY
Group the SELECT  results by the values of the specified columns or expressions. GROUP BY  is often combined with aggregate functions ( COUNT ,
MAX , MIN , SUM , AVG ) to perform calculations in each group.

If GROUP BY  is present in the query, then when selecting columns (between SELECT ... FROM ), you can use the following constructs:

1. Columns by which grouping is performed (included in the GROUP BY  argument).

2. Aggregate functions (see the next section). Columns that are not used for grouping can only be included as arguments for an aggregate
function.

3. Functions that return the start and end times of the current window ( HOP_START  and HOP_END ).

4. Arbitrary calculations combining items 1–3.

You can group by the result of an arbitrary expression computed from the source columns. In this case, to access the result of this expression, we
recommend assigning a name to it using AS . See the second example.

Syntax

The query in the format SELECT * FROM table GROUP BY k1, k2, ...  returns all columns listed in GROUP BY, i.e., is equivalent to SELECT 
DISTINCT k1, k2, ... FROM table .

An asterisk can also be used as an argument for the COUNT  aggregate function. COUNT(*)  means "the count of rows in the group".

Note

Aggregate functions ignore NULL  in their arguments, except for COUNT .

YQL also provides aggregation factories implemented by the functions AGGREGATION_FACTORY  and AGGREGATE_BY .

Examples

SELECT                             -- In SELECT, you can use:
    column1,                       -- key columns specified in GROUP BY
    key_n,                         -- named expressions specified in GROUP BY
    column1 + key_n,               -- arbitrary non-aggregate functions on them
    Aggr_Func1( column2 ),         -- aggregate functions containing any columns as arguments,
    Aggr_Func2( key_n + column2 ), -- including named expressions specified in GROUP BY
    ...
FROM table
GROUP BY
    column1, column2, ...,
    <expr> AS key_n           -- When grouping by expression, you can set a name for it using AS,
                              -- and use it in SELECT

SELECT key, COUNT(*) FROM my_table
GROUP BY key;

SELECT double_key, COUNT(*) FROM my_table
GROUP BY key + key AS double_key;

SELECT
   double_key,                           -- OK: A key column
   COUNT(*) AS group_size,               -- OK: COUNT(*)
   SUM(key + subkey) AS sum1,            -- OK: An aggregate function
   CAST(SUM(1 + 2) AS String) AS sum2,   -- OK: An aggregate function with a constant argument
   SUM(SUM(1) + key) AS sum3,            -- ERROR: Nested aggregations are not allowed
   key AS k1,                            -- ERROR: Using a non-key column named key without aggregation
   key * 2 AS dk1,                       -- ERROR in YQL: using a non-key column named key without aggregation
FROM my_table
GROUP BY
  key * 2 AS double_key,
  subkey as sk,

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by_group-by
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by_syntax
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_aggregationfactory
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_aggregateby


Warning

Specifying a name for a column or expression in GROUP BY .. AS foo  it is an extension on top of YQL. Such a name becomes
visible in WHERE  despite the fact that filtering by WHERE  is executed before the grouping. For example, if the T  table includes two
columns, foo  and bar , then the query SELECT foo FROM T WHERE foo > 0 GROUP BY bar AS foo  would actually filter data by the
bar  column from the source table.

GROUP BY ... SessionWindow()

YQL supports grouping by session. To standard expressions in GROUP BY , you can add a special SessionWindow  function:

The following happens in this case:

1. The input table is partitioned by the grouping keys specified in GROUP BY , ignoring SessionWindow (in this case, it's based on user ).

If GROUP BY  includes nothing more than SessionWindow, then the input table gets into one partition.

2. Each partition is split into disjoint subsets of rows (sessions).

For this, the partition is sorted in the ascending order of the time_expr  expression.
The session limits are drawn between neighboring items of the partition, that differ in their time_expr  values by more than timeout_expr .

3. The sessions obtained in this way are the final partitions on which aggregate functions are calculated.

The SessionWindow()  key column (in the example, it's session_start ) has the value "the minimum time_expr  in the session".
If GROUP BY  includes SessionWindow(), you can use a special aggregate function
SessionStart.

An extended version of SessionWindow with four arguments is also supported:

SessionWindow(<order_expr>, <init_lambda>, <update_lambda>, <calculate_lambda>)

Where:

<order_expr> : An expression used to sort the source partition

<init_lambda> : A lambda function to initialize the state of session calculation. It has the signature (TableRow())->State . It's called once
for the first (following the sorting order) element of the source partition

<update_lambda> : A lambda function to update the status of session calculation and define the session limits. It has the signature
(TableRow(), State)->Tuple<Bool, State> . It's called for every item of the source partition, except the first one. The new value of state is

calculated based on the current row of the table and the previous state. If the first item in the return tuple is True , then a new session starts
from the current row. The key of the new session is obtained by applying <calculate_lambda>  to the second item in the tuple.

<calculate_lambda> : A lambda function for calculating the session key (the "value" of SessionWindow() that is also accessible via
SessionStart()). The function has the signature (TableRow(), State)->SessionKey . It's called for the first item in the partition (after
<init_lambda> ) and those items for which <update_lambda>  has returned True  in the first item in the tuple. Please note that to start a

new session, you should make sure that <calculate_lambda>  has returned a value different from the previous session key. Sessions having
the same keys are not merged. For example, if <calculate_lambda>  returns the sequence 0, 1, 0, 1 , then there will be four different
sessions.

Using the extended version of SessionWindow, you can, for example, do the following: divide a partition into sessions, as in the SessionWindow
use case with two arguments, but with the maximum session length limited by a certain constant:

Example

SELECT
  user,
  session_start,
  SessionStart() AS same_session_start, -- It's same as session_start
  COUNT(*) AS session_size,
  SUM(value) AS sum_over_session,
FROM my_table
GROUP BY user, SessionWindow(<time_expr>, <timeout_expr>) AS session_start

$max_len = 1000; -- is the maximum session length.
$timeout = 100; -- is the timeout (timeout_expr in a simplified version of SessionWindow).

$init = ($row) -> (AsTuple($row.ts, $row.ts)); -- is the session status: tuple from 1) value of the temporary column ts 
in the session's first line and 2) in the current line
$update = ($row, $state) -> {
  $is_end_session = $row.ts - $state.0 > $max_len OR $row.ts - $state.1 > $timeout;
  $new_state = AsTuple(IF($is_end_session, $row.ts, $state.0), $row.ts);
  return AsTuple($is_end_session, $new_state);
};
$calculate = ($row, $state) -> ($row.ts);
SELECT

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by_session-window
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by_example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_where
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_session-start


You can use SessionWindow  in GROUP BY  only once.

ROLLUP, CUBE, and GROUPING SETS

The results of calculating the aggregate function as subtotals for the groups and overall totals over individual columns or whole table.

Syntax

ROLLUP  groups the column values in the order they are listed in the arguments (strictly from left to right), generates subtotals for each group
and the overall total.

CUBE  groups the values for every possible combination of columns, generates the subtotals for each group and the overall total.

GROUPING SETS  sets the groups for subtotals.

You can combine ROLLUP , CUBE  and GROUPING SETS , separating them by commas.

GROUPING

The values of columns not used in calculations are replaced with NULL  in the subtotal. In the overall total, the values of all columns are replaced by
NULL . GROUPING : A function that allows you to distinguish the source NULL  values from the NULL  values added while calculating subtotals and

overall totals.

GROUPING  returns a bit mask:

0 : If NULL  is used for the original empty value.

1 : If NULL  is added for a subtotal or overall total.

Example

  user,
  session_start,
  SessionStart() AS same_session_start, -- It's same as session_start
  COUNT(*) AS session_size,
  SUM(value) AS sum_over_session,
FROM my_table
GROUP BY user, SessionWindow(ts, $init, $update, $calculate) AS session_start

SELECT
    c1, c2, -- the columns to group by

AGGREGATE_FUNCTION(c3) AS outcome_c  -- an aggregate function (SUM, AVG, MIN, MAX, COUNT)

FROM table_name

GROUP BY
    GROUP_BY_EXTENSION(c1, c2)       -- an extension of GROUP BY: ROLLUP, CUBE, or GROUPING SETS

SELECT
    column1,
    column2,
    column3,

    CASE GROUPING(
        column1,
        column2,
        column3,
    )
        WHEN 1  THEN "Subtotal: column1 and column2"
        WHEN 3  THEN "Subtotal: column1"
        WHEN 4  THEN "Subtotal: column2 and column3"
        WHEN 6  THEN "Subtotal: column3"
        WHEN 7  THEN "Grand total"
        ELSE         "Individual group"
    END AS subtotal,

    COUNT(*) AS rows_count

FROM my_table

GROUP BY
    ROLLUP(
        column1,
        column2,
        column3
    ),

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by_rollup
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by_syntax1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by_grouping
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by_example1


DISTINCT

Applying aggregate functions only to distinct values of the column.

Note

Applying DISTINCT  to calculated values is not currently implemented. For this purpose, you can use a subquery or the expression
GROUP BY ... AS ... .

Example

You can also use DISTINCT  to fetch distinct rows using SELECT DISTINCT .

GROUP COMPACT BY

Improves aggregation efficiency if the query author knows in advance that none of aggregation keys finds large amounts of data (i.e., with the order
of magnitude exceeding a gigabyte or a million of rows). If this assumption fails to materialize, then the operation may fail with Out of Memory error
or start running much slower compared to the non-COMPACT version.

Unlike the usual GROUP BY, the Map-side combiner stage and additional Reduce are disabled for each field with DISTINCT aggregation.

Example

GROUP BY ... HOP

Group the table by the values of the specified columns or expressions and subsets by time (the time window).

Among the columns used for grouping, make sure to use the HOP  construct to define the time window for grouping.

The implemented version of the time window is called the hopping window. This is a window that moves forward in discrete intervals (the hop
parameter). The total duration of the window is set by the interval  parameter. To determine the time of each input event, the time_extractor
parameter is used. This expression depends only on the input values of the columns and must have the Timestamp  type. It specifies where to
extract the time value from data.

The following happens in this case:

1. The input table is partitioned by the grouping keys specified in GROUP BY , ignoring HOP. If GROUP BY  includes nothing more than HOP, then
the input table gets into one partition.

2. Each partition is sorted in ascending order of the expression time_extractor .

3. Each partition is split into subsets of rows (possibly intersecting), on which aggregate functions are calculated.

In each partition defined by the values of all the grouping columns, the window moves forward independently of other streams. The advancement of
the window depends entirely on the latest event in the partition.

    GROUPING SETS(
        (column2, column3),
        (column3)
        -- if you add here (column2) as well, then together
        -- the ROLLUP and GROUPING SETS would produce a result
        -- similar to CUBE
    )
;

SELECT
  key,
  COUNT (DISTINCT value) AS count -- top 3 keys by the number of unique values
FROM my_table
GROUP BY key
ORDER BY count DESC
LIMIT 3;

SELECT
  key,
  COUNT (DISTINCT value) AS count -- top 3 keys by the number of unique values
FROM my_table
GROUP COMPACT BY key
ORDER BY count DESC
LIMIT 3;

HOP(time_extractor, hop, interval, delay)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by_distinct
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by_example2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by_group-compact-by
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by_example3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by_group-by-hop
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_from
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_distinct
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by_distinct


The interval  and delay  parameters must be multiples of the hop  parameter. Non-multiple intervals are prohibited in the current
implementation.
The interval  and hop  parameters must be positive.

The delay  parameter is ignored in the current implementation because the data in one partition is already sorted.

To set hop , interval , and delay , use a string expression compliant with ISO 8601. This format is used to construct the built-in Interval  type
from a string.

When selecting columns (between SELECT ... FROM ) you can use the HOP_START  and HOP_END  functions (without parameters), which return a
value of Timestamp  type, corresponding to the start and end of the current window.

The tumbling window, known in other systems, is a special case of a hopping window where interval  == hop .

Examples

HAVING

Filtering a SELECT  based on the calculation results of aggregate functions. The syntax is similar to WHERE.

Example

SELECT
    key,
    COUNT(*)
FROM my_table
GROUP BY
    HOP(CAST(subkey AS Timestamp), "PT10S", "PT1M", "PT30S"),
    key;
-- hop = 10 seconds
-- interval = 1 minute
-- delay = 30 seconds

SELECT
    double_key,
    HOP_END() as time,
    COUNT(*) as count
FROM my_table
GROUP BY
    key + key AS double_key,
    HOP(ts, "PT1M", "PT1M", "PT1M");

SELECT
    key
FROM my_table
GROUP BY key
HAVING COUNT(value) > 100;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by_examples1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by_having
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by_example4
https://en.wikipedia.org/wiki/ISO_8601
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_data-type-literals
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_where


FLATTEN

FLATTEN BY

Converts rows in the source table using vertical unpacking of containers of variable length (lists or dictionaries).

For example:

Source table:

The table resulting from FLATTEN BY  on the left column:

YDB tables don't support container types, so the FLATTEN BY function can only be applied to table-type variables created within a YQL query.

Example

This conversion can be convenient in the following cases:

When it is necessary to output statistics by cells from a container column (for example, via GROUP BY ).

When the cells in a container column store IDs from another table that you want to join with JOIN .

Syntax

FLATTEN BY  is specified after FROM , but before GROUP BY , if GROUP BY  is present in the query.

The type of the result column depends on the type of the source column:

By default, the result column replaces the source column. Use FLATTEN BY foo AS bar  to keep the source container. As a result, the source
container is still available as foo  and the output container is available as bar .

To build a Cartesian product of multiple container columns, use the clause FLATTEN BY (a, b, c) . Parentheses are mandatory to avoid
grammar conflicts.

Inside FLATTEN BY , you can only use column names from the input table. To apply FLATTEN BY  to the calculation result, use a subquery.

In FLATTEN BY  you can use both columns and arbitrary named expressions (unlike columns, AS  is required in this case). To avoid
grammatical ambiguities of the expression after FLATTEN BY , make sure to use parentheses with the following: ... FLATTEN BY 
(ListSkip(col, 1) AS col) ...

If the source column had nested containers, for example, List<DictX,Y> , FLATTEN BY  unpacks only the outer level. To completely unpack
the nested containers, use a subquery.

$sample = AsList(
    AsStruct(AsList('a','b','c') AS value, CAST(1 AS Uint32) AS id),
    AsStruct(AsList('d') AS value, CAST(2 AS Uint32) AS id),
    AsStruct(AsList() AS value, CAST(3 AS Uint32) AS id)
);

SELECT value, id FROM as_table($sample) FLATTEN BY (value);

[a, b, c] 1

[d] 2

[] 3

a 1

b 1

c 1

d 2

Container 
type

Result type Comments

List<X> X List cell type

Dict<X,Y> Tuple<X,Y> Tuple of two elements containing key-value pairs

Optional<X> X The result is almost equivalent to the clause WHERE foo IS NOT NULL , but the foo  column type is 
changed to X

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_flatten
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_flatten_flatten-by
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_flatten_example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_flatten_syntax
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_containers
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_join


Note

FLATTEN BY  interprets optional data types as lists of length 0 or 1. The table rows with NULL  are skipped, and the column type
changes to a similar non-optional type.

FLATTEN BY  makes only one conversion at a time, so use FLATTEN LIST BY  or FLATTEN OPTIONAL BY  on optional containers, for
example, Optional<List<String>> .

Specifying the container type

To specify the type of container to convert to, you can use:

FLATTEN LIST BY

For Optional<List<T>> , FLATTEN LIST BY  will unpack the list, treating NULL  as an empty list.

FLATTEN DICT BY

For Optional<Dict<T>> , FLATTEN DICT BY  will unpack the dictionary, interpreting NULL  as an empty dictionary.

FLATTEN OPTIONAL BY

To filter the NULL  values without serialization, specify the operation by using FLATTEN OPTIONAL BY .

Examples

Analogues of FLATTEN BY in other DBMS

PostgreSQL: unnest

Hive: LATERAL VIEW

MongoDB: unwind

Google BigQuery: FLATTEN

ClickHouse: ARRAY JOIN / arrayJoin

FLATTEN COLUMNS

Converts a table where all columns must be structures to a table with columns corresponding to each element of each structure from the source
columns.

The names of the source column structures are not used and not returned in the result. Be sure that the structure element names aren't repeated in
the source columns.

Example

SELECT
  t.item.0 AS key,
  t.item.1 AS value,
  t.dict_column AS original_dict,
  t.other_column AS other
FROM my_table AS t
FLATTEN DICT BY dict_column AS item;

SELECT * FROM (
    SELECT
        AsList(1, 2, 3) AS a,
        AsList("x", "y", "z") AS b
) FLATTEN LIST BY (a, b);

SELECT * FROM (
    SELECT
        "1;2;3" AS a,
        AsList("x", "y", "z") AS b
) FLATTEN LIST BY (String::SplitToList(a, ";") as a, b);

SELECT x, y, z
FROM (
  SELECT
    AsStruct(
        1 AS x,
        "foo" AS y),
    AsStruct(

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_flatten_flatten-by-specific-type
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_flatten_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_flatten_flatten-other-dmb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_flatten_flatten-columns
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_flatten_example1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_optional


        false AS z)
) FLATTEN COLUMNS;



INSERT INTO

Warning

Supported only for row-oriented tables. Support for column-oriented tables is currently under development.

Available methods for loading data into columnar tables:

YDB CLI

Bulk data upsert

Yandex Data Transfer

Adds rows to the table. If you try to insert a row into a table with an existing primary key value, the operation fails with the PRECONDITION_FAILED
error code and the Operation aborted due to constraint violation: insert_pk  message returned.

INSERT INTO  lets you perform the following operations:

Adding constant values using VALUES .

Saving the SELECT  result.

INSERT INTO my_table (Key1, Key2, Value1, Value2)
VALUES (345987,'ydb', 'Pied piper', 1414);
COMMIT;

INSERT INTO my_table (key, value)
VALUES ("foo", 1), ("bar", 2);

INSERT INTO my_table
SELECT Key AS Key1, "Empty" AS Key2, Value AS Value1
FROM my_table1;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_insert_into
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-file
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_bulk-upsert
https://yandex.cloud/ru/services/data-transfer
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_values


INTO RESULT
Lets you set a custom label for SELECT.

Examples

SELECT 1 INTO RESULT foo;

SELECT * FROM
my_table
WHERE value % 2 == 0
INTO RESULT `Result name`;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_into_result
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_into_result_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_index


JOIN
It lets you combine multiple data sources (subqueries or tables) by equality of values in the specified columns or expressions (the JOIN  keys).

Syntax

At each JOIN step, rules are used to establish correspondences between rows in the left and right data subqueries, creating a new subquery that
includes every combination of rows that meet the JOIN conditions.

Attention!

Since columns in YQL are identified by their names, and you can't have two columns with the same name in the subquery, SELECT * 
FROM ... JOIN ...  can't be executed if there are columns with identical names in the joined tables.

Types of join

INNER  (default): Rows from joined subqueries that don't match any rows on the other side won't be included in the result.

LEFT : If there's no value in the right subquery, it adds a row to the result with column values from the left subquery, using NULL  in columns
from the right subquery

RIGHT : If there's no value in the left subquery, it adds the row to the result, including column values from the right subquery, but using NULL
in columns from the left subquery

FULL  = LEFT  + RIGHT

LEFT/RIGHT SEMI : One side of the subquery is a whitelist of keys, its values are not available. The result includes columns from one table
only, no Cartesian product is created.

LEFT/RIGHT ONLY : Subtracting the sets by keys (blacklist). It's almost the same as adding IS NULL  to the key on the opposite side in the
regular LEFT/RIGHT  JOIN, but with no access to values: the same as SEMI  JOIN.

CROSS : A full Cartesian product of two tables without specifying key columns and no explicit ON/USING .

EXCLUSION : Both sides minus the intersection.

SELECT ...    FROM table_1
-- first JOIN step:
  <Join_Type> JOIN table_2 <Join_Condition>
  -- left subquery -- entries in table_1
  -- right subquery -- entries in table_2
-- next JOIN step:
  <Join_Type> JOIN table_n <Join_Condition>
  -- left subquery -- JOIN result in the previous step
  -- right subquery -- entries in table_n
-- JOIN can include the following steps
...
WHERE  ...

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_join
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_join_syntax
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_join_types-of-join


Note

NULL  is a special value to denote nothing. Hence, NULL  values on both sides are not treated as equal to each other. This eliminates
ambiguity in some types of JOIN  and avoids a giant Cartesian product otherwise created.

Conditions for joining

For CROSS JOIN , no join condition is specified. The result includes the Cartesian product of the left and right subquery, meaning it combines
everything with everything. The number of rows in the resulting subquery is the product of the number of rows in the left and right subqueries.

For any other JOIN types, specify the condition using one of the two methods:

1. USING (column_name) . Used if both the left and right subqueries share a column whose equality of values is a join condition.

2. ON (equality_conditions) . Lets you set a condition of equality for column values or expressions over columns in the left and right
subqueries or use several such conditions combined by and .

Examples

To make sure no full scan of the right joined table is required, a secondary index can be applied to the columns included in the Join condition.
Accessing a secondary index should be specified explicitly in JOIN table_name VIEW index_name AS table_alias  format.

For example, creating an index to use in the Join condition:

Using the created index:

SELECT    a.value as a_value, b.value as b_value
FROM      a_table AS a
FULL JOIN b_table AS b USING (key);

SELECT    a.value as a_value, b.value as b_value
FROM      a_table AS a
FULL JOIN b_table AS b ON a.key = b.key;

SELECT     a.value as a_value, b.value as b_value, c.column2
FROM       a_table AS a
CROSS JOIN b_table AS b
LEFT  JOIN c_table AS c ON c.ref = a.key and c.column1 = b.value;

ALTER TABLE b_table ADD INDEX b_index_ref GLOBAL ON(ref);

SELECT    a.value as a_value, b.value as b_value
FROM      a_table AS a
INNER JOIN b_table VIEW b_index_ref AS b ON a.ref = b.ref;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_join_conditions-for-joining
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_join_examples


PRAGMA

Definition

Redefinition of settings.

Syntax

PRAGMA x.y = "z";  or PRAGMA x.y("z", "z2", "z3"); :

x : (optional) The category of the setting.

y : The name of the setting.

z : (optional for flags) The value of the setting. The following suffixes are acceptable:

Kb , Mb , Gb : For the data amounts.

sec , min , h , d : For the time values.

Examples

With some exceptions, you can return the settings values to their default states using PRAGMA my_pragma = default; .

For the full list of available settings, see the table below.

Scope

Unless otherwise specified, a pragma affects all the subsequent expressions up to the end of the module where it's used. If necessary and logically
possible, you can change the value of this setting several times within a given query to make it different at different execution steps.

There are also special scoped pragmas with the scope defined by the same rules as the scope of named expressions. Unlike scoped pragmas,
regular pragmas can only be used in the global scope (not inside lambda functions, ACTION , etc.).

Global

AutoCommit

Automatically run COMMIT after every statement.

TablePathPrefix

Add the specified prefix to the cluster table paths. It uses standard file system path concatenation, supporting parent folder ..  referencing and
requiring no trailing slash. For example,

PRAGMA TablePathPrefix = "home/yql"; SELECT * FROM test;

The prefix is not added if the table name is an absolute path (starts with /).

UseTablePrefixForEach

EACH uses TablePathPrefix for each list item.

PRAGMA AutoCommit;

PRAGMA TablePathPrefix = "home/yql";

PRAGMA Warning("disable", "1101");

Value type Default

Flag false

Value type Default

String —

Value type Default

Flag false

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_definition
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_syntax
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_pragmascope
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_pragmas
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_autocommit
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_table-path-prefix
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_use-table-prefix-for-each
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_pragmas
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_named-nodes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_commit
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_table-path-prefix


Warning

Action:

disable : Disable.

error : Treat as an error.

default : Revert to the default behavior.

The warning code is returned with the text itself (it's displayed on the right side of the web interface).

Example

PRAGMA Warning("error", "*");

PRAGMA Warning("disable", "1101");

PRAGMA Warning("default", "4503");

In this case, all the warnings are treated as errors, except for the warning 1101  (that will be disabled) and 4503  (that will be processed by default,
that is, remain a warning). Since warnings may be added in new YQL releases, use PRAGMA Warning("error", "*");  with caution (at least cover
such queries with autotests).

SimpleColumns

SimpleColumns  / DisableSimpleColumns

When you use SELECT foo.* FROM ... AS foo , remove the foo.  prefix from the names of the result columns.

It can be also used with a JOIN, but in this case it may fail in the case of a name conflict (that can be resolved by using WITHOUT and renaming
columns). For JOIN in SimpleColumns mode, an implicit Coalesce is made for key columns: the query SELECT * FROM T1 AS a JOIN T2 AS b 
USING(key)  in the SimpleColumns mode works same as SELECT a.key ?? b.key AS key, ... FROM T1 AS a JOIN T2 AS b USING(key) .

CoalesceJoinKeysOnQualifiedAll

CoalesceJoinKeysOnQualifiedAll  / DisableCoalesceJoinKeysOnQualifiedAll

Controls implicit Coalesce for the key JOIN  columns in the SimpleColumns mode. If the flag is set, the Coalesce is made for key columns if there
is at least one expression in the format foo.*  or *  in SELECT: for example, SELECT a.* FROM T1 AS a JOIN T2 AS b USING(key) . If the flag
is not set, then Coalesce for JOIN keys is made only if there is an asterisk '*' after SELECT

StrictJoinKeyTypes

StrictJoinKeyTypes  / DisableStrictJoinKeyTypes

If the flag is set, then JOIN will require strict matching of key types.
By default, JOIN preconverts keys to a shared type, which might result in performance degradation.
StrictJoinKeyTypes is a scoped setting.

AnsiInForEmptyOrNullableItemsCollections

This pragma brings the behavior of the IN  operator in accordance with the standard when there's NULL  in the left or right side of IN . The
behavior of IN  when on the right side there is a Tuple with elements of different types also changed. Examples:

Value type Default

1. Action
2. Warning code or "*"

—

Value type Default

Flag true

Value type Default

Flag true

Value type Default

Flag false

Value type Default

Flag false

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_warning
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_simplecolumns
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_coalescejoinkeysonqualifiedall
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_strictjoinkeytypes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_ansiinforemptyornullableitemscollections
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_join
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_without
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_join
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_pragmascope


1 IN (2, 3, NULL) = NULL (was Just(False))

NULL IN () = Just(False) (was NULL)

(1, null) IN ((2, 2), (3, 3)) = Just(False) (was NULL)

For more information about the IN  behavior when operands include NULL s, see here. You can explicitly select the old behavior by specifying the
pragma DisableAnsiInForEmptyOrNullableItemsCollections . If no pragma is set, then a warning is issued and the old version works.

AnsiRankForNullableKeys

Aligns the RANK/DENSE_RANK behavior with the standard if there are optional types in the window sort keys or in the argument of such window
functions. It means that:

The result type is always Uint64 rather than Uint64?.

NULLs in keys are treated as equal to each other (the current implementation returns NULL).

You can explicitly select the old behavior by using the DisableAnsiRankForNullableKeys  pragma. If no pragma is set, then a warning is issued
and the old version works.

AnsiCurrentRow

Aligns the implicit setting of a window frame with the standard if there is ORDER BY.
If AnsiCurrentRow is not set, then the (ORDER BY key)  window is equivalent to (ORDER BY key ROWS BETWEEN UNBOUNDED PRECEDING AND 
CURRENT ROW) .
The standard also requires that this window behave as (ORDER BY key RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) .
The difference is in how CURRENT ROW  is interpreted. In ROWS  mode CURRENT ROW  is interpreted literally: the current row in a partition.
In RANGE  mode, the end of the CURRENT ROW  frame means "the last row in a partition with a sort key equal to the current row".

AnsiOrderByLimitInUnionAll

Aligns the UNION ALL behavior with the standard if there is ORDER BY/LIMIT/DISCARD/INSERT INTO  in the combined subqueries. It means that:

ORDER BY/LIMIT/INSERT INTO  are allowed only after the last subquery.

DISCARD  is allowed only before the first subquery.

The specified operators apply to the UNION ALL  result (unlike the current behavior when they apply only to the subquery).

To apply an operator to a subquery, enclose the subquery in parentheses.

You can explicitly select the old behavior by using the DisableAnsiOrderByLimitInUnionAll  pragma. If no pragma is set, then a warning is
issued and the old version works.

OrderedColumns

OrderedColumns / DisableOrderedColumns

Output the column order in SELECT/JOIN/UNION ALL and preserve it when writing the results. The order of columns is undefined by default.

PositionalUnionAll

Enable the standard column-by-column execution for UNION ALL. This automatically enables
ordered columns.

RegexUseRe2

Use Re2 UDF instead of Pcre to execute SQL the REGEX , MATCH , RLIKE  statements. Re2 UDF can properly handle Unicode characters, unlike
the default Pcre UDF.

Value type Default

Flag false

Value type Default

Flag false

Value type Default

Flag false

Value type Default

Flag false

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_ansirankfornullablekeys
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_ansicurrentrow
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_ansiorderbylimitinunionall
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_orderedcolumns
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_positionalunionall
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_regexusere2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_in
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_order_by
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_union_unionall
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_orderedcolumns


ClassicDivision

In the classical version, the result of integer division remains integer (by default).
If disabled, the result is always Double.
ClassicDivision is a scoped setting.

UnicodeLiterals

UnicodeLiterals / DisableUnicodeLiterals

When this mode is enabled, string literals without suffixes like "foo"/'bar'/@@multiline@@ will be of type Utf8 , when disabled - String .
UnicodeLiterals is a scoped setting.

WarnUntypedStringLiterals

WarnUntypedStringLiterals / DisableWarnUntypedStringLiterals

When this mode is enabled, a warning will be generated for string literals without suffixes like "foo"/'bar'/@@multiline@@. It can be suppressed by
explicitly choosing the suffix s  for the String  type, or u  for the Utf8  type.
WarnUntypedStringLiterals is a scoped setting.

AllowDotInAlias

Enable dot in names of result columns. This behavior is disabled by default, since the further use of such columns in JOIN is not fully implemented.

WarnUnnamedColumns

Generate a warning if a column name was automatically generated for an unnamed expression in SELECT  (in the format column[0-9]+ ).

GroupByLimit

Increasing the limit on the number of dimensions in GROUP BY.

GroupByCubeLimit

Increasing the limit on the number of dimensions in GROUP BY.

Use this option with care, because the computational complexity of the query grows exponentially with the number of dimensions.

Yson

Managing the default behavior of Yson UDF, for more information, see the documentation and, in particular, Yson::Options.

Value type Default

Flag true

Value type Default

Flag false

Value type Default

Flag false

Value type Default

Flag false

Value type Default

Flag false

Value type Default

Positive number 32

Value type Default

Positive number 5

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_classicdivision
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_unicodeliterals
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_warnuntypedstringliterals
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_allowdotinalias
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_warnunnamedcolumns
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_groupbylimit
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_groupbycubelimit
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_yson
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_pragmascope
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_pragmascope
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_pragmascope
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by_rollup-cube-group-sets
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_yson
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_yson_ysonoptions


yson.AutoConvert

Automatic conversion of values to the required data type in all Yson UDF calls, including implicit calls.

yson.Strict

Strict mode control in all Yson UDF calls, including implicit calls. If the value is omitted or is "true" , it enables the strict mode. If the value is
"false" , it disables the strict mode.

yson.DisableStrict

An inverted version of yson.Strict . If the value is omitted or is "true" , it disables the strict mode. If the value is "false" , it enables the strict
mode.

Value type Default

Flag false

Value type Default

Flag true

Value type Default

Flag false

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_ysonautoconvert
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_ysonstrict
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_ysondisablestrict


REPLACE INTO

Warning

Supported only for row-oriented tables. Support for column-oriented tables is currently under development.

Available methods for loading data into columnar tables:

YDB CLI

Bulk data upsert

Yandex Data Transfer

Saves data to a table, overwriting the rows based on the primary key. If the given primary key is missing, a new row is added to the table. If the
given PRIMARY_KEY  exists, the row is overwritten. The values of columns not involved in the operation are replaced by their default values.

Note

Unlike INSERT INTO  and UPDATE , the queries UPSERT INTO  and REPLACE INTO  don't need to pre-fetch the data, hence they run
faster.

Examples

Setting values for REPLACE INTO  using VALUES .

Fetching values for REPLACE INTO  using a SELECT .

REPLACE INTO my_table (Key1, Key2, Value2) VALUES
    (1u, "One", 101),
    (2u, "Two", 102);
COMMIT;

REPLACE INTO my_table
SELECT Key AS Key1, "Empty" AS Key2, Value AS Value1
FROM my_table1;
COMMIT;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_replace_into
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_replace_into_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-file
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_bulk-upsert
https://yandex.cloud/ru/services/data-transfer
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_insert_into
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_update
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_upsert_into


REVOKE
The REVOKE  command allows revoking access rights to schema objects for users or groups of users.

Syntax:

permission_name  - the name of the access right to schema objects that needs to be revoked.

path_to_scheme_object  - the path to the schema object from which rights are revoked.

role_name  - the name of the user or group from which rights to the schema object are revoked.

GRANT OPTION FOR  - using this clause revokes the right to manage access rights from the user or group. All rights previously granted by this user
remain in effect. The clause functions similarly to revoking the "ydb.access.grant"  right or GRANT .

Access rights

As names of access rights, you can use either the names of YDB rights or the corresponding YQL keywords.
The possible names of rights are listed in the table below.

REVOKE [GRANT OPTION FOR] {{permission_name} [, ...] | ALL [PRIVILEGES]} ON {path_to_scheme_object [, ...]} FROM 
{role_name [, ...]}

YDB right YQL keyword Description

Database-level rights

ydb.database.connect CONNECT The right to connect to a database

ydb.database.create CREATE The right to create new databases in the cluster

ydb.database.drop DROP The right to delete databases in the cluster

Elementary rights for database 
objects

ydb.granular.select_row SELECT ROW The right to read rows from a table (select), read messages from topics

ydb.granular.update_row UPDATE ROW The right to update rows in a table (insert, update, upsert, replace), 
write messages to topics

ydb.granular.erase_row ERASE ROW The right to delete rows from a table (delete)

ydb.granular.create_directory CREATE DIRECTORY The right to create and delete directories, including existing and nested 
ones

ydb.granular.create_table CREATE TABLE The right to create tables (including index, external, columnar), views, 
sequences

ydb.granular.create_queue CREATE QUEUE The right to create topics

ydb.granular.remove_schema REMOVE SCHEMA The right to delete objects (directories, tables, topics) that were created 
using rights

ydb.granular.describe_schema DESCRIBE SCHEMA The right to view existing access rights (ACL) on an access object, 
view descriptions of access objects (directories, tables, topics)

ydb.granular.alter_schema ALTER SCHEMA The right to modify access objects (directories, tables, topics), including 
users' rights to access objects

Additional flags

ydb.access.grant GRANT The right to grant or revoke rights from other users to the extent not 
exceeding the current scope of the user's rights on the access object

ydb.tables.modify MODIFY TABLES ydb.granular.update_row  + ydb.granular.erase_row

ydb.tables.read SELECT TABLES Alias for ydb.granular.select_row

ydb.generic.list LIST Alias for ydb.granular.describe_schema

ydb.generic.read SELECT ydb.granular.select_row  + ydb.generic.list

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_revoke
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_revoke_permissions-list


ALL [PRIVILEGES]  is used to specify all possible rights on schema objects for users or groups. PRIVILEGES  is an optional keyword needed
for compatibility with the SQL standard.

Note

Rights ydb.database.connect , ydb.granular.describe_schema , ydb.granular.select_row , and ydb.granular.update_row
should be considered as layers of rights.

For example, to update rows, you need not only the right ydb.granular.update_row , but also all the overlying rights.

Examples

Revoke the ydb.generic.read  right on the table /shop_db/orders  from user user1 :

The same command, using the keyword:

Revoke the rights ydb.database.connect , ydb.generic.list  on the root of the database /shop_db  from user user2  and group
group1 :

Revoke the ydb.generic.use  right on the tables /shop_db/orders  and /shop_db/sellers  from users user1@domain  and
user2@domain :

Revoke all rights on the table /shop_db/sellers  from user user :

REVOKE 'ydb.generic.read' ON `/shop_db/orders` FROM user1;

REVOKE SELECT ON `/shop_db/orders` FROM user1;

REVOKE LIST, CONNECT ON `/shop_db` FROM user2, group1;

REVOKE 'ydb.generic.use' ON `/shop_db/orders`, `/shop_db/sellers` FROM `user1@domain`, `user2@domain`;

ydb.generic.write INSERT ydb.granular.update_row  + ydb.granular.erase_row  + 
ydb.granular.create_directory  + ydb.granular.create_table  

+ ydb.granular.create_queue  + ydb.granular.remove_schema  + 
ydb.granular.alter_schema

ydb.generic.use_legacy USE LEGACY ydb.generic.read  + ydb.generic.write  + ydb.access.grant

ydb.generic.use USE ydb.generic.use_legacy  + ydb.database.connect

ydb.generic.manage MANAGE ydb.database.create  + ydb.database.drop

ydb.generic.full_legacy FULL LEGACY ydb.generic.use_legacy  + ydb.generic.manage

ydb.generic.full FULL ydb.generic.use  + ydb.generic.manage

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_revoke_examples


REVOKE ALL ON `/shop_db/sellers` FROM user;



UPDATE

Warning

Supported only for row-oriented tables. Support for column-oriented tables is currently under development.

Available methods for loading data into columnar tables:

YDB CLI

Bulk data upsert

Yandex Data Transfer

Updates the data in the table. After the SET  keyword, enter the columns where you want to update values and the new values themselves. The list
of rows is defined by the WHERE  clause. If WHERE  is omitted, the updates are applied to all the rows of the table.

UPDATE  can't change the value of the primary key columns.

Example

UPDATE ON

Updates the data in the table based on the results of a subquery. The set of columns returned by the subquery must be a subset of the table's
columns being updated, and all columns of the table's primary key must be present in the returned columns. The data types of the columns returned
by the subquery must match the data types of the corresponding columns in the table.

The primary key value is used to search for the rows being updated. For each row found, the values of the non-key columns is replaced with the
values returned in the corresponding row of the result of the subquery. The values of the table columns that are missing in the returned columns of
the subquery remain unchanged.

Example

UPDATE my_table
SET Value1 = YQL::ToString(Value2 + 1), Value2 = Value2 - 1
WHERE Key1 > 1;

$to_update = (
    SELECT Key, SubKey, "Updated" AS Value FROM my_table
    WHERE Key = 1
);

UPDATE my_table ON
SELECT * FROM $to_update;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_update
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_update_example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_update_update-on
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_update_example1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-file
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_bulk-upsert
https://yandex.cloud/ru/services/data-transfer


UPSERT INTO

Warning

Supported only for row-oriented tables. Support for column-oriented tables is currently under development.

Available methods for loading data into columnar tables:

YDB CLI

Bulk data upsert

Yandex Data Transfer

UPSERT (which stands for UPDATE or INSERT) updates or inserts multiple rows to a table based on a comparison by the primary key. Missing
rows are added. For the existing rows, the values of the specified columns are updated, but the values of the other columns are preserved.

UPSERT  and REPLACE  are data modification operations that don't require a prefetch and run faster and cheaper than other operations because of
that.

Column mapping when using UPSERT INTO ... SELECT  is done by names. Use AS  to fetch a column with the desired name in SELECT .

Examples

UPSERT INTO my_table
SELECT pk_column, data_column1, col24 as data_column3 FROM other_table

UPSERT INTO my_table ( pk_column1, pk_column2, data_column2, data_column5 )
VALUES ( 1, 10, 'Some text', Date('2021-10-07')),
       ( 2, 10, 'Some text', Date('2021-10-08'))

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_upsert_into
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_upsert_into_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-file
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_bulk-upsert
https://yandex.cloud/ru/services/data-transfer
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_replace_into


Basic VALUES syntax in YQL

VALUES as a top-level operator

It lets you create a table from specified values. For example, this statement creates a table of k columns and n rows:

This statement is totally equivalent to the following one:

Example

VALUES after FROM

VALUES can also be used in a subquery, after FROM. For example, the following two queries are equivalent:

In all the examples above, column names are assigned by YQL and have the format column0 ... columnN . To assign arbitrary column names,
you can use the following construct:

In this case, the columns will get the names x , y .

VALUES (expr_11, expr_12, ..., expr_1k),
       (expr_21, expr_22, ..., expr_2k),
       ....
       (expr_n1, expr_n2, ..., expr_nk);

SELECT expr_11, expr_12, ..., expr_1k UNION ALL
SELECT expr_21, expr_22, ..., expr_2k UNION ALL
....
SELECT expr_n1, expr_n2, ..., expr_nk;

VALUES (1,2), (3,4);

VALUES (1,2), (3,4);
SELECT * FROM (VALUES (1,2), (3,4));

SELECT * FROM (VALUES (1,2), (3,4)) as t(x,y);

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_values
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_values_values-as-a-top-level-operator
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_values_example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_values_values-after-from


OVER, PARTITION BY, and WINDOW
Window functions were introduced in the SQL:2003 standard and expanded in the SQL:2011 standard. They let you run calculations on a set of
table rows that are related to the current row in some way.

Unlike aggregate functions, window functions don't group rows into one output row: the number of rows in the resulting table is always the same as
in the source table.

If a query contains both aggregate and window functions, grouping is performed and aggregate function values are calculated first. The calculated
values of aggregate functions can be used as window function arguments (but not the other way around).

Syntax

General syntax for calling a window function is as follows

or

Here, window name ( window_name ) is an arbitrary ID that is unique within the query and expression  is an arbitrary expression that contains no
window function calls.

In the query, each window name must be mapped to the window definition ( window_definition ):

Here, the window_definition  is written as

You can set an optional frame definition ( frame_definition ) one of two ways:

ROWS frame_begin

ROWS BETWEEN frame_begin AND frame_end

The frame start ( frame_begin ) and frame end ( frame_end ) are set one of the following ways:

UNBOUNDED PRECEDING

offset PRECEDING

CURRENT ROW

offset FOLLOWING

UNBOUNDED FOLLOWING

Here, the frame offset  is a non-negative numeric literal. If the frame end isn't set, the CURRENT ROW  is assumed.

There should be no window function calls in any of the expressions inside the window definition.

Calculation algorithm

Partitioning

If PARTITION BY  is set, the source table rows are grouped into partitions, which are then handled independently of each other.
If PARTITION BY  isn't set, all rows in the source table are put in the same partition. If ORDER BY  is set, it determines the order of rows in a
partition.
Both in PARTITION BY  and GROUP BY you can use aliases and SessionWindow.

If ORDER BY  is omitted, the order of rows in the partition is undefined.

function_name([expression [, expression ...]]) OVER (window_definition)

function_name([expression [, expression ...]]) OVER window_name

SELECT
    F0(...) OVER (window_definition_0),
    F1(...) OVER w1,
    F2(...) OVER w2,
    ...
FROM my_table
WINDOW
    w1 AS (window_definition_1),
    ...
    w2 AS (window_definition_2)
;

[ PARTITION BY (expression AS column_identifier | column_identifier) [, ...] ]
[ ORDER BY expression [ASC | DESC] ]
[ frame_definition ]

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_window
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_window_syntax
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_window_calculation-algorithm
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_window_partition
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by_session-window


Frame

The frame_definition  specifies a set of partition rows that fall into the window frame associated with the current row.

In ROWS  mode (the only one that YQL currently supports), the window frame contains rows with the specified offsets relative to the current row in
the partition. For example, if ROWS BETWEEN 3 PRECEDING AND 5 FOLLOWING  is used, the window frame contains 3 rows preceding the current
one, the current row, and 5 rows following it.

The set of rows in the window frame may change depending on which row is the current one. For example, for the first row in the partition, the ROWS 
BETWEEN 3 PRECEDING AND 1 PRECEDING  window frame will have no rows.

Setting UNBOUNDED PRECEDING  as the frame start means "from the first partition row" and UNBOUNDED FOLLOWING  as the frame end — "up to the
last partition row". Setting CURRENT ROW  means "from/to the current row".

If no frame_definition  is specified, a set of rows to be included in the window frame depends on whether there is ORDER BY  in the
window_definition .

Namely, if there is ORDER BY , then ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW  is implicitly assumed. If none, then ROWS BETWEEN 
UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING .

Further, depending on the specific window function, it's calculated either based on the set of rows in the partition or the set of rows in the window
frame.

List of available window functions

Examples

Implementation specifics

Functions calculated on the ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING  or ROWS BETWEEN UNBOUNDED PRECEDING 
AND CURRENT ROW  window frame are implemented efficiently (do not require additional memory and their computation runs on a partition in
O(partition size) time).

For the ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING  window frame, you can choose the execution strategy in RAM by
specifying the COMPACT  hint after the PARTITION  keyword.

For example, PARTITION COMPACT BY key  or PARTITION COMPACT BY ()  (if PARTITION BY  was missing initially).

SELECT
    COUNT(*) OVER w AS rows_count_in_window,
    some_other_value -- access the current row
FROM `my_table`
WINDOW w AS (
    PARTITION BY partition_key_column
    ORDER BY int_column
);

SELECT
    LAG(my_column, 2) OVER w AS row_before_previous_one
FROM `my_table`
WINDOW w AS (
    PARTITION BY partition_key_column
);

SELECT
    -- AVG (like all aggregate functions used as window functions)
    -- is calculated on the window frame
    AVG(some_value) OVER w AS avg_of_prev_current_next,
    some_other_value -- access the current row
FROM my_table
WINDOW w AS (
    PARTITION BY partition_key_column
    ORDER BY int_column
    ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING
);

SELECT
    -- LAG doesn't depend on the window frame position
    LAG(my_column, 2) OVER w AS row_before_previous_one
FROM my_table
WINDOW w AS (
    PARTITION BY partition_key_column
    ORDER BY my_column
);

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_window_frame
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_window_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_window_implementation-specifics
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_window


If the COMPACT  hint is specified, this requires additional memory equal to O(partition size), but then no extra JOIN  operation is made.

If the window frame doesn't start with UNBOUNDED PRECEDING , calculating window functions on this window requires additional memory equal
to O(the maximum number of rows from the window boundaries to the current row), while the computation time is equal to
O(number_of_partition_rows * window_size).

For the window frame starting with UNBOUNDED PRECEDING  and ending with N , where N  is neither CURRENT ROW  nor UNBOUNDED 
FOLLOWING , additional memory equal to O(N) is required and the computation time is equal to O(N * number_of_partition_rows).

The LEAD(expr, N)  and LAG(expr, N)  functions always require O(N) of RAM.

Given the above, a query with ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING  should, if possible, be changed to ROWS BETWEEN 
UNBOUNDED PRECEDING AND CURRENT ROW  by reversing the ORDER BY  sorting order.



Classic SQL constructs not supported yet

[NOT] [EXISTS|INTERSECT|EXCEPT]

A syntactically available alternative is EXISTS , but it's not very useful as it doesn't support correlated subqueries. You can also rewrite it using
JOIN .

NATURAL JOIN

An alternative is to explicitly list the matching columns on both sides.

NOW() / CURRENT_TIME()

An alternative is to use the functions CurrentUtcDate, CurrentUtcDatetime and CurrentUtcTimestamp.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_not_yet_supported
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_not_yet_supported_not-exists
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_not_yet_supported_natural-join
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_not_yet_supported_now
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_current-utc


ALTER TABLE
Using the ALTER TABLE  command, you can modify the columns and additional parameters of row and column tables. Multiple actions can be
specified in a single command. Generally, the ALTER TABLE  command looks like this:

An action is any modification to the table, as described below:

Renaming the table.

Managing columns of row and column tables.

Adding or removing a changefeed.

Managing indexes.

Managing column groups of a row table.

Modifying additional table parameters.

ALTER TABLE table_name action1, action2, ..., actionN;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_rename
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_columns
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_changefeed
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_indexes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_family
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_set


Adding, removing, and renaming a index

Warning

Supported only for row-oriented tables. Support for column-oriented tables is currently under development.

Alert

The functionality of vector indexes is available in the test mode in main. This functionality will be fully available in version 25.1.

The following features are not supported:

modifying rows in tables with vector indexes

building an index for vectors with bit quantization

These limitations may be removed in future versions.

Adding an index

ADD INDEX : Adds an index with the specified name and type for a given set of columns. The code below adds a global index named
title_index  for the title  column.

You can specify any secondary index parameters from the CREATE TABLE  command.
You can specify any vector index parameters from the CREATE TABLE  command.

You can also add a secondary index using the YDB CLI table index command.

Altering an index

Indexes have type-specific parameters that can be tuned. Global indexes, whether synchronous or asynchronous, are implemented as hidden
tables, and their automatic partitioning and followers settings can be adjusted just like those of regular tables.

Note

Currently, specifying secondary index partitioning settings during index creation is not supported in either the ALTER TABLE ADD 
INDEX  or the CREATE TABLE INDEX  statements.

<table_name> : The name of the table whose index is to be modified.

<index_name> : The name of the index to be modified.

<setting_name> : The name of the setting to be modified, which should be one of the following:

AUTO_PARTITIONING_BY_SIZE

AUTO_PARTITIONING_BY_LOAD

AUTO_PARTITIONING_PARTITION_SIZE_MB
AUTO_PARTITIONING_MIN_PARTITIONS_COUNT

AUTO_PARTITIONING_MAX_PARTITIONS_COUNT

READ_REPLICAS_SETTINGS

Note

These settings cannot be reset.

<value> : The new value for the setting. Possible values include:

ENABLED  or DISABLED  for the AUTO_PARTITIONING_BY_SIZE  and AUTO_PARTITIONING_BY_LOAD  settings

"PER_AZ:<count>"  or "ANY_AZ:<count>"  where <count>  is the number of replicas for the READ_REPLICAS_SETTINGS

An integer of Uint64  type for the other settings

ALTER TABLE `series` ADD INDEX `title_index` GLOBAL ON (`title`);

ALTER TABLE <table_name> ALTER INDEX <index_name> SET <setting_name> <value>;
ALTER TABLE <table_name> ALTER INDEX <index_name> SET (<setting_name_1> = <value_1>, ...);

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_indexes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_indexes_add-index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_indexes_alter-index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_concepts_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_yql_reference_udf_list_knn_functions-convert
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_secondary-index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_secondary_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_vector-index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_vector_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_secondary_index_add
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_secondary_indexes_sync
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_secondary_indexes_async
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_indexes_add-index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_secondary_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_auto_partitioning_by_size
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_auto_partitioning_by_load
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_auto_partitioning_partition_size_mb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_auto_partitioning_min_partitions_count
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_auto_partitioning_max_partitions_count
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_read_only_replicas


Example

The query in the following example enables automatic partitioning by load for the index named title_index  of the table series , sets its
minimum partition count to 5, and enables one follower per AZ for every partition:

Deleting an index

DROP INDEX : Deletes the index with the specified name. The code below deletes the index named title_index .

You can also remove a index using the YDB CLI table index command.

Renaming an index

RENAME INDEX : Renames the index with the specified name.

If an index with the new name exists, an error is returned.

Replacement of atomic indexes under load is supported by the command ydb table index rename in the YDB CLI and by YDB SDK ad-hoc
methods.

Example of index renaming:

ALTER TABLE `series` ALTER INDEX `title_index` SET (
    AUTO_PARTITIONING_BY_LOAD = ENABLED,
    AUTO_PARTITIONING_MIN_PARTITIONS_COUNT = 5,
    READ_REPLICAS_SETTINGS = "PER_AZ:1"
);

ALTER TABLE `series` DROP INDEX `title_index`;

ALTER TABLE `series` RENAME INDEX `title_index` TO `title_index_new`;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_indexes_example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_indexes_drop-index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_indexes_rename-index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_secondary_index_drop
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_secondary_index_rename


Changing the composition of columns
YDB supports adding columns to row and column tables, as well as deleting non-key columns from tables.

ADD COLUMN  — adds a column with the specified name and type. The code below will add a column named views  with data type Uint64  to the
episodes  table.

DROP COLUMN  — deletes a column with the specified name. The code below will delete the column named views  from the episodes  table.

ALTER TABLE episodes ADD COLUMN views Uint64;

ALTER TABLE episodes DROP COLUMN views;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_columns
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_column-oriented-tables


Modifying additional table parameters
Most parameters of row and column tables in YDB, listed on the table description page, can be modified using the ALTER  command.

Generally, the command to modify any table parameter looks as follows:

key  — the name of the parameter, value  — its new value.

Example of modifying the TTL  parameter, which controls the time-to-live of records in a table:

Resetting Additional Table Parameters

Some table parameters in YDB, listed on the table description page, can be reset using the ALTER  command. The command to reset a table
parameter looks as follows:

key  — the name of the parameter.

For example, such a command will reset (remove) the TTL  settings for row or column tables:

ALTER TABLE table_name SET (key = value);

ALTER TABLE series SET (TTL = Interval("PT0S") ON expire_at);

ALTER TABLE table_name RESET (key);

ALTER TABLE series RESET (TTL);

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_set
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_set_additional-reset
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table


Adding or removing a changefeed

Warning

Supported only for row-oriented tables. Support for column-oriented tables is currently under development.

ADD CHANGEFEED <name> WITH (<option> = <value>[, ...]) : Adds a changefeed with the specified name and options.

Changefeed options

MODE : Operation mode. Specifies what to write to a changefeed each time table data is altered.

KEYS_ONLY : Only the primary key components and change flag are written.

UPDATES : Updated column values that result from updates are written.

NEW_IMAGE : Any column values resulting from updates are written.

OLD_IMAGE : Any column values before updates are written.

NEW_AND_OLD_IMAGES : A combination of NEW_IMAGE  and OLD_IMAGE  modes. Any column values prior to and resulting from updates are
written.

FORMAT : Data write format.

JSON : Write data in JSON format.

DEBEZIUM_JSON : Write data in the Debezium-like JSON format.

VIRTUAL_TIMESTAMPS : Enabling/disabling virtual timestamps. Disabled by default.

RETENTION_PERIOD : Record retention period. The value type is Interval  and the default value is 24 hours ( Interval('PT24H') ).

TOPIC_AUTO_PARTITIONING : Topic autopartitioning mode:

ENABLED  – An autopartitioned topic will be created for this changefeed. The number of partitions in such a topic increases automatically
as the table update rate increases. Topic autopartitioning parameters can be configured.

DISABLED  – A topic without autopartitioning will be created for this changefeed. This is the default value.

TOPIC_MIN_ACTIVE_PARTITIONS : The initial number of topic partitions. By default, the initial number of topic partitions is equal to the number
of table partitions. For autopartitioned topics, the number of partitions increases automatically as the table update rate increases.

INITIAL_SCAN : Enables/disables initial table scan. Disabled by default.

The code below adds a changefeed named updates_feed , where the values of updated table columns will be exported in JSON format:

Records in this changefeed will be stored for 24 hours (default value). The code in the following example will create a changefeed with a record
retention period of 12 hours:

The example of creating a changefeed with enabled virtual timestamps:

Example of creating a changefeed with initial scan:

Example of creating a changefeed with autopartitioning:

ALTER TABLE `series` ADD CHANGEFEED `updates_feed` WITH (
    FORMAT = 'JSON',
    MODE = 'UPDATES'
);

ALTER TABLE `series` ADD CHANGEFEED `updates_feed` WITH (
    FORMAT = 'JSON',
    MODE = 'UPDATES',
    RETENTION_PERIOD = Interval('PT12H')
);

ALTER TABLE `series` ADD CHANGEFEED `updates_feed` WITH (
    FORMAT = 'JSON',
    MODE = 'UPDATES',
    VIRTUAL_TIMESTAMPS = TRUE
);

ALTER TABLE `series` ADD CHANGEFEED `updates_feed` WITH (
    FORMAT = 'JSON',
    MODE = 'UPDATES',
    INITIAL_SCAN = TRUE
);

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_changefeed
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_changefeed_changefeed-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_concepts_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc_json-record-structure
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc_debezium-json-record-structure
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc_virtual-timestamps
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc_retention-period
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc_topic-partitions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_autopartitioning
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-topic_alter-topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_autopartitioning
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc_topic-partitions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc_initial-scan


DROP CHANGEFEED : Deletes the changefeed with the specified name. The code below deletes the updates_feed  changefeed:

ALTER TABLE `series` ADD CHANGEFEED `updates_feed` WITH (
    FORMAT = 'JSON',
    MODE = 'UPDATES',
    TOPIC_AUTO_PARTITIONING = 'ENABLED',
    TOPIC_MIN_ACTIVE_PARTITIONS = 2
);

ALTER TABLE `series` DROP CHANGEFEED `updates_feed`;



Renaming a table

Warning

Supported only for row-oriented tables. Support for column-oriented tables is currently under development.

Database Object Naming Rules

Every scheme object in YDB has a name. In YQL statements, object names are specified by identifiers that can be enclosed in backticks or
not. For more information on identifiers, refer to Keywords and identifiers.

Scheme object names in YDB must meet the following requirements:

Object names can include the following characters:

Uppercase Latin characters

Lowercase Latin characters

Digits

Special characters: . , - , and _

Object name length must not exceed 255 characters.

Objects cannot be created in folders which names start with a dot, such as .sys , .metadata , and .sys_health .

Column Naming Rules

Column names in YDB must meet the following requirements:

Column names can include the following characters:
Uppercase Latin characters

Lowercase Latin characters

Digits

Special characters: -  and _

Column names must not start with the system prefix __ydb_ .

If a table with the new name already exists, an error will be returned. The ability to transactionally replace a table under load is supported by
specialized methods in CLI and SDK.

Warning

If a YQL query contains multiple ALTER TABLE ... RENAME TO ...  commands, each will be executed in auto-commit mode in a
separate transaction. From the perspective of an external process, the tables will be renamed sequentially, one after another. To
rename multiple tables in a single transaction, use specialized methods available in CLI and SDK.

Renaming can be used to move a table from one directory within the database to another, for example:

ALTER TABLE old_table_name RENAME TO new_table_name;

See table and column naming rules

ALTER TABLE `table1` RENAME TO `/backup/table1`;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_rename
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_rename_object-naming-rules
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_rename_column-naming-rules
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_concepts_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_concepts_glossary_scheme-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_yql_reference_syntax_lexer_keywords-and-ids


Changing column groups
The mechanism of column groups allows for improved performance of partial row read operations by dividing the storage of table columns into
several groups. The most commonly used scenario is to organize the storage of infrequently used attributes into a separate column group.

Creating column groups

ADD FAMILY : Creates a new group of columns in the table. The code below creates the family_small  column group in the
series_with_families  table.

Modifying column groups

Using the ALTER COLUMN  command, you can change a column group for the specified column. The code below for the release_date  column in
the series_with_families  table changes the column group to family_small .

The two previous commands from listings 8 and 9 can be combined into one ALTER TABLE  call. The code below creates the family_small
column group and sets it for the release_date  column in the series_with_families  table.

Using the ALTER FAMILY  command, you can change the parameters of the column group.

Changing storage type

Alert

Supported only for row-oriented tables.

The code below changes the storage type to hdd  for the default  column group in the series_with_families  table:

Note

Available types of storage devices depend on the YDB cluster configuration.

Changing compression codec

The code below changes the compression codec to lz4  for the default  column group in the series_with_families  table:

Changing compression level of codec

Alert

Supported only for column-oriented tables.

The code below changes the compression level of codec if it supports different compression levels for the default  column group in the
series_with_families  table:

ALTER TABLE series_with_families ADD FAMILY family_small (
    DATA = "ssd",
    COMPRESSION = "off"
);

ALTER TABLE series_with_families ALTER COLUMN release_date SET FAMILY family_small;

ALTER TABLE series_with_families
    ADD FAMILY family_small (
        DATA = "ssd",
        COMPRESSION = "off"
    ),
    ALTER COLUMN release_date SET FAMILY family_small;

ALTER TABLE series_with_families ALTER FAMILY default SET DATA "hdd";

ALTER TABLE series_with_families ALTER FAMILY default SET COMPRESSION "lz4";

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_family
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_family_creating-column-groups
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_family_mod-column-groups
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_family_changing-storage-type
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_family_changing-compression-codec
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_family_changing-compression-level-of-codec
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_column-groups
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_concepts_datamodel_table_column-oriented-tables


You can specify any parameters of a group of columns from the CREATE TABLE  command.

ALTER TABLE series_with_families ALTER FAMILY default SET COMPRESSION_LEVEL 5;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_index


CREATE TABLE

CREATE TABLE syntax

The invocation of CREATE TABLE  creates a table with the specified data schema and primary key columns ( PRIMARY KEY ). It also allows defining
secondary indexes on the created table.

CREATE [TEMP | TEMPORARY] TABLE table_name (
    column1 type1,
    column2 type2 NOT NULL,
    ...
    columnN typeN,
    INDEX index1_name GLOBAL ON ( column ),
    INDEX index2_name GLOBAL ON ( column1, column2, ... ),
    PRIMARY KEY ( column, ... ),
    FAMILY column_family ( family_options, ... )
)
WITH ( key = value, ... )

YDB supports two types of tables:

Row-oriented tables.

Column-oriented tables.

The table type is specified by the STORE  parameter in the WITH  clause, where ROW  indicates a row-oriented table and COLUMN  indicates a
column-oriented table:

By default, if the STORE  parameter is not specified, a row-oriented table is created.

Database Object Naming Rules

Every scheme object in YDB has a name. In YQL statements, object names are specified by identifiers that can be enclosed in backticks or not. For
more information on identifiers, refer to Keywords and identifiers.

Scheme object names in YDB must meet the following requirements:

Object names can include the following characters:

Uppercase Latin characters

Lowercase Latin characters

Digits

Special characters: . , - , and _

Object name length must not exceed 255 characters.
Objects cannot be created in folders which names start with a dot, such as .sys , .metadata , and .sys_health .

Column Naming Rules

Column names in YDB must meet the following requirements:

Column names can include the following characters:

Uppercase Latin characters

Lowercase Latin characters

Digits

Special characters: -  and _

Column names must not start with the system prefix __ydb_ .

Examples of table creation

CREATE <table_name> (
  columns
  ...
)
WITH (
  STORE = COLUMN -- Default value ROW
)

Creating a row-oriented table

CREATE TABLE <table_name> (
  a Uint64,
  b Uint64,
  c Float,

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_index_create-table-syntax
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_index_object-naming-rules
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_index_column-naming-rules
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_index_examples-tables-creation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_concepts_glossary_scheme-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_yql_reference_syntax_lexer_keywords-and-ids


When creating row-oriented tables, it is possible to specify:

A secondary index.

A vector index.

Column groups.

Additional parameters.

When creating column-oriented tables, it is possible to specify:

Column groups.

Additional parameters.

For both key and non-key columns, only primitive data types are allowed.

Without additional modifiers, a column acquires an optional type and allows NULL  values. To designate a non-optional type, use the NOT NULL
constraint.

Specifying a PRIMARY KEY  with a non-empty list of columns is mandatory. These columns become part of the key in the order they are listed.

Example of creating a row-oriented table using partitioning options:

Such code will create a row-oriented table with automatic partitioning by partition size ( AUTO_PARTITIONING_BY_SIZE ) enabled, and with the
preferred size of each partition ( AUTO_PARTITIONING_PARTITION_SIZE_MB ) set to 512 megabytes. The full list of row-oriented table partitioning
options can be found in the Partitioning Row-Oriented Tables section.

  PRIMARY KEY (a, b)
);

CREATE TABLE <table_name> (
  a Uint64,
  b Uint64,
  c Float,
  PRIMARY KEY (a, b)
)
WITH (
  AUTO_PARTITIONING_BY_SIZE = ENABLED,
  AUTO_PARTITIONING_PARTITION_SIZE_MB = 512
);

Creating a column-oriented table

Example of creating a column-oriented table with an option to specify the minimum physical number of partitions for storing data:

This code will create a columnar table with 10 partitions. The full list of column-oriented table partitioning options can be found in the Partitioning
Column-Oriented Tables section.

CREATE TABLE table_name (
  a Uint64 NOT NULL,
  b Timestamp NOT NULL,
  c Float,
  PRIMARY KEY (a, b)
)
PARTITION BY HASH(b)
WITH (
  STORE = COLUMN
);

CREATE TABLE table_name (
  a Uint64 NOT NULL,
  b Timestamp NOT NULL,
  c Float,
  PRIMARY KEY (a, b)
)
PARTITION BY HASH(b)
WITH (
  STORE = COLUMN,
  AUTO_PARTITIONING_MIN_PARTITIONS_COUNT = 10
);

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_secondary_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_vector_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_family
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_with
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_family
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_with
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_primitive
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_optional
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_partitioning
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_olap-tables-partitioning


INDEX

Warning

Supported only for row-oriented tables. Support for column-oriented tables is currently under development.

The INDEX construct is used to define a secondary index in a row-oriented table:

Where:

Index_name is the unique name of the index to be used to access data.

SYNC/ASYNC indicates synchronous/asynchronous data writes to the index. If not specified, synchronous.

Index_type is the index type. Only secondary  is supported now.

UNIQUE indicates that the index should guarantee the uniqueness of the indexed column set, thereby enforcing the unique constraint.

Index_columns is a list of comma-separated names of columns in the created table to be used for a search in the index.

Cover_columns is a list of comma-separated names of columns in the created table, which will be stored in the index in addition to the search
columns, making it possible to fetch additional data without accessing the table for it.

Example

CREATE TABLE table_name (
    ...
    INDEX <index_name> GLOBAL [UNIQUE] [SYNC|ASYNC] [USING <index_type>] ON ( <index_columns> ) COVER ( <cover_columns> 
),
    ...
)

CREATE TABLE my_table (
    a Uint64,
    b Bool,
    c Utf8,
    d Date,
    INDEX idx_d GLOBAL ON (d),
    INDEX idx_ba GLOBAL ASYNC ON (b, a) COVER (c),
    INDEX idx_bc GLOBAL UNIQUE SYNC ON (b, c),
    PRIMARY KEY (a)
)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_secondary_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_secondary_index_example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_concepts_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_secondary_indexes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_row-oriented-tables


Vector index

Warning

Supported only for row-oriented tables. Support for column-oriented tables is currently under development.

Alert

The functionality of vector indexes is available in the test mode in main. This functionality will be fully available in version 25.1.

The following features are not supported:

modifying rows in tables with vector indexes

building an index for vectors with bit quantization

These limitations may be removed in future versions.

Warning

It makes no sense to create an empty table with a vector index, because for now we don't allow mutations in tables with vector
indexes.

You should use ALTER TABLE ... ADD INDEX  command) to add a vector index to an existing table.

The INDEX construct is used to define a vector index in a row-oriented table:

Where:

Index_name is the unique name of the index to be used to access data.

SYNC indicates synchronous data writes to the index. If not specified, synchronous.

Index_type is the index type. Only vector_kmeans_tree  is supported now.

Index_columns is a list of comma-separated column names in the created table to be used for a search in the index. The last column in the
list is used as embedding, the other columns are used as prefix columns.

Cover_columns is a list of comma-separated column names in the created table, which will be stored in the index in addition to the search
columns, making it possible to fetch additional data without accessing the table for it.

Index_parameters is a list of comma-separated key-value parameters:
parameters for any vector index_type:

vector_dimension  is a number of dimension in the indexed embedding (<= 16384)

vector_type  is a type of value in the indexed embedding, can be float , uint8 , int8 , bit

distance  is a type of the distance function which will be used for this index. Valid values: cosine , manhattan , euclidean .

similarity  is a type of the similarity function which will be used for this index. Valid values: inner_product , cosine .

parameters specific to vector_kmeans_tree :

clusters  is a k  in each kmeans used for tree (values > 1000 can affect performance)

levels  is a level count in the tree

Warning

The distance  and similarity  parameters can not be specified together.

Warning

The vector_type=bit  vector index is not supported yet.

CREATE TABLE table_name (
    ...
    INDEX <index_name> GLOBAL [SYNC] USING <index_type> ON ( <index_columns> ) COVER ( <cover_columns> ) WITH ( 
<index_parameters> ),
    ...
)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_vector_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_concepts_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_yql_reference_udf_list_knn_functions-convert
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_indexes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_vector-index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_row-oriented-tables


Example

CREATE TABLE user_articles (
    article_id Uint64,
    user String,
    title String,
    text String,
    embedding String,
    INDEX emb_cosine_idx GLOBAL SYNC USING vector_kmeans_tree 
    ON (user, embedding) COVER (title, text) 
    WITH (distance="cosine", vector_type="float", vector_dimension=512, clusters=128, levels=2),
    PRIMARY KEY (article_id)
)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_vector_index_example


Column groups
Columns of the same table can be grouped to set the following parameters:

DATA : A storage device type for the data in this column group. Acceptable values: ssd , rot .

Alert

Supported only for row-oriented tables.

COMPRESSION : A data compression codec. Acceptable values: off , lz4 , zstd .

Alert

Codec "zstd"  is supported only for column-oriented tables.

COMPRESSION_LEVEL  — compression level of codec if it supports different compression levels.

Alert

Supported only for column-oriented tables.

By default, all columns are in the same group named default . If necessary, the parameters of this group can also be redefined, if they are not
redefined, then predefined values are applied.

Example

In the example below, for the created table, the family_large  group of columns is added and set for the series_info  column, and the
parameters for the default group, which is set by default  for all other columns, are also redefined.

Creating a row-oriented table

CREATE TABLE series_with_families (
    series_id Uint64,
    title Utf8,
    series_info Utf8 FAMILY family_large,
    release_date Uint64,
    PRIMARY KEY (series_id),
    FAMILY default (
        DATA = "ssd",
        COMPRESSION = "off"
    ),
    FAMILY family_large (
        DATA = "rot",
        COMPRESSION = "lz4"
    )
);

Creating a column-oriented table

CREATE TABLE series_with_families (
    series_id Uint64,
    title Utf8,
    series_info Utf8 FAMILY family_large,
    release_date Uint64,
    PRIMARY KEY (series_id),
    FAMILY default (
        COMPRESSION = "lz4"
    ),
    FAMILY family_large (
        COMPRESSION = "zstd",
        COMPRESSION_LEVEL = 5
    )
) 
WITH (STORE = COLUMN);

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_family
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_family_example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_concepts_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_concepts_datamodel_table_column-oriented-tables


Note

Available types of storage devices depend on the YDB cluster configuration.



Creation of temporary tables (TEMPORARY)

Warning

Supported only for row-oriented tables. Support for column-oriented tables is currently under development.

TEMPORARY  / TEMP  – a temporary table that is automatically deleted at the end of the session. If this parameter is not set (left empty), a permanent
table is created. Any indexes created on a temporary table will also be deleted at the end of the session, which means that they are temporary as
well. A temporary table and a permanent table with the same name are allowed, in which case a temporary table will be selected.

 CREATE TEMPORARY TABLE table_name (
     ...
 );

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_temporary
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_concepts_datamodel_table_column-oriented-tables


Additional parameters (WITH)
You can also specify a number of YDB-specific parameters for the table. When you create a table, those parameters are listed in the WITH  clause:

Here, key  is the name of the parameter and value  is its value.

The list of allowable parameter names and their values is provided on the table description page YDB.

For example, such a query will create a string table with automatic partitioning enabled based on partition size and a preferred size of each partition
being 512 megabytes:

A colum-oriented table is created by specifying the parameter STORE = COLUMN  in the WITH  clause:

The properties and capabilities of columnar tables are described in the article Table, and the specifics of their creation through YQL are described
on the page CREATE TABLE.

Time to Live (TTL)

The TTL (Time to Live) — the lifespan of a row — can be specified in the WITH clause for row-based and columnar tables. TTL automatically
deletes rows or evicts them to external storage when the specified number of seconds has passed since the time recorded in the TTL column. TTL
can be specified when creating row-based and columnar tables or added later using the ALTER TABLE  command only for row-based tables.

The short form of the TTL value for specifying the time to delete rows:

The general form of the TTL value:

action  — the action performed when the TTL expression triggers. Allowed values:

DELETE  — delete the row;

TO EXTERNAL DATA SOURCE <path>  — evict the row to external storage specified by the external data source at the path <path> .

<unit>  — the unit of measurement, specified only for columns with a numeric type:

SECONDS ;

MILLISECONDS ;

MICROSECONDS ;

NANOSECONDS .

Example of creating a row-oriented and column-oriented tables with TTL:

CREATE TABLE table_name (...)
WITH (
    key1 = value1,
    key2 = value2,
    ...
)

CREATE TABLE my_table (
    id Uint64,
    title Utf8,
    PRIMARY KEY (id)
)
WITH (
    AUTO_PARTITIONING_BY_SIZE = ENABLED,
    AUTO_PARTITIONING_PARTITION_SIZE_MB = 512
);

 CREATE TABLE table_name (
    a Uint64 NOT NULL,
    b Timestamp NOT NULL,
    c Float,
    PRIMARY KEY (a, b)
  )
  PARTITION BY HASH(b)
  WITH (
    STORE = COLUMN
  );

Interval("<literal>") ON column [AS <unit>]

Interval("<literal1>") action1, ..., Interval("<literalN>") actionN ON column [AS <unit>]

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_with
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_with_time-to-live
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_ttl
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_external_data_source
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_ttl_restrictions


Example of creating a column-oriented table with eviction to external storage:

Warning

Supported only for column-oriented tables. Support for row-oriented tables is currently under development.

Creating row-oriented table with TTL

CREATE TABLE my_table (
    id Uint64,
    title Utf8,
    expire_at Timestamp,
    PRIMARY KEY (id)
)
WITH (
    TTL = Interval("PT0S") ON expire_at
);

Creating column-oriented table with TTL

CREATE TABLE table_name (
    a Uint64 NOT NULL,
    b Timestamp NOT NULL,
    c Float,
    PRIMARY KEY (a, b)
)
PARTITION BY HASH(b)
WITH (
    STORE = COLUMN,
    TTL = Interval("PT0S") ON b
);

CREATE TABLE table_name (
    a Uint64 NOT NULL,
    b Timestamp NOT NULL,
    c Float,
    PRIMARY KEY (a, b)
)
PARTITION BY HASH(b)
WITH (
    STORE = COLUMN,
    TTL =
        Interval("PT1D") TO EXTERNAL DATA SOURCE `/Root/s3`,
        Interval("P2D") DELETE
    ON b
);

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_concepts_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_concepts_datamodel_table_row-oriented-tables


SELECT
Returns the result of evaluating the expressions specified after SELECT .

It can be used in combination with other operations to obtain other effect.

Examples

SELECT execution procedure

The SELECT  query result is calculated as follows:

Determine the set of input tables by evaluating the FROM clauses.

Apply MATCH_RECOGNIZE to input tables.

Evaluate SAMPLE/TABLESAMPLE.

Execute FLATTEN COLUMNS or FLATTEN BY; aliases set in FLATTEN BY  become visible after this point.

Execute every JOIN.

Add to (or replace in) the data the columns listed in GROUP BY ... AS ....

Execute WHERE — Discard all the data mismatching the predicate.
Execute GROUP BY, evaluate aggregate functions.

Apply the filter HAVING.

Evaluate window functions;

Evaluate expressions in SELECT .

Assign names set by aliases to expressions in SELECT .

Apply top-level DISTINCT to the resulting columns.

Execute similarly every subquery inside UNION ALL, combine them (see PRAGMA AnsiOrderByLimitInUnionAll).

Perform sorting with ORDER BY.

Apply OFFSET and LIMIT to the result.

Column order in YQL

The standard SQL is sensitive to the order of columns in projections (that is, in SELECT ). While the order of columns must be preserved in the
query results or when writing data to a new table, some SQL constructs use this order.
This applies, for example, to UNION ALL and positional ORDER BY (ORDER BY ordinal).

The column order is ignored in YQL by default:

The order of columns in the output tables and query results is undefined

The data scheme of the UNION ALL  result is output by column names rather than positions

If you enable PRAGMA OrderedColumns; , the order of columns is preserved in the query results and is derived from the order of columns in the
input tables using the following rules:

SELECT : an explicit column enumeration dictates the result order.

SELECT  with an asterisk ( SELECT * FROM ... ) inherits the order from its input.

The order of columns after JOIN: First output the left-hand columns, then the right-hand ones. If the column order in any of the sides in the
JOIN  output is undefined, the column order in the result is also undefined.

The order in UNION ALL  depends on the UNION ALL execution mode.

The column order for AS_TABLE is undefined.

Warning

In the YT table schema, key columns always precede non-key columns. The order of key columns is determined by the order of the
composite key.
When PRAGMA OrderedColumns;  is enabled, non-key columns preserve their output order.

Combining queries

Results of several SELECT statements (or subqueries) can be combined using UNION  and UNION ALL  keywords.

SELECT "Hello, world!";

SELECT 2 + 2;

query1 UNION [ALL] query2 (UNION [ALL] query3 ...)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_index_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_index_selectexec
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_index_orderedcolumns
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_index_combining-queries
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_from
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_sample
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_sample
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_flatten_flatten-columns
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_flatten
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_join
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_where
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by_having
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_window
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_distinct
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_union_union_all
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_pragmas
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_order_by
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_limit_offset
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_union_union_all
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_order_by
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_join
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_union_union_all
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_from_as_table


Union of more than two queries is interpreted as a left-associative operation, that is

is interpreted as

If the underlying queries have one of the ORDER BY/LIMIT/DISCARD/INTO RESULT  operators, the following rules apply:

ORDER BY/LIMIT/INTO RESULT  is only allowed after the last query

DISCARD  is only allowed before the first query

the operators apply to the UNION [ALL]  as a whole, instead of referring to one of the queries

to apply the operator to one of the queries, enclose the query in parantheses

Clauses supported in SELECT

FROM

FROM AS_TABLE

FROM SELECT

DISTINCT

UNIQUE DISTINCT

UNION
WITH

WITHOUT

WHERE

ORDER BY

ASSUME ORDER BY

LIMIT OFFSET

SAMPLE

TABLESAMPLE

MATCH_RECOGNIZE

VIEW secondary_index

VIEW vector_index

query1 UNION query2 UNION ALL query3

(query1 UNION query2) UNION ALL query3

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_index_clauses-supported-in-select
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_from
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_from_as_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_from_select
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_distinct
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_unique_distinct_hints
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_union
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_with
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_without
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_where
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_order_by
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_assume_order_by
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_limit_offset
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_sample
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_sample
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_secondary_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_vector_index


FROM
Data source for SELECT . The argument can accept the table name, the result of another SELECT , or a named expression. Between SELECT  and
FROM , list the comma-separated column names from the source (or *  to select all columns).

Examples

SELECT key FROM my_table;

SELECT * FROM
  (SELECT value FROM my_table);

$table_name = "my_table";
SELECT * FROM $table_name;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_from_from
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_from
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_from_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_named-nodes


FROM AS_TABLE
Accessing named expressions as tables using the AS_TABLE  function.

AS_TABLE($variable)  lets you use the value of $variable  as the data source for the query. In this case, the variable $variable  must have
the type List<Struct<...>> .

Example

$data = AsList(
    AsStruct(1u AS Key, "v1" AS Value),
    AsStruct(2u AS Key, "v2" AS Value),
    AsStruct(3u AS Key, "v3" AS Value));

SELECT Key, Value FROM AS_TABLE($data);

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_from_as_table_as-table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_from_as_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_from_as_table_example


FROM ... SELECT ...
An inverted format, first specifying the data source and then the operation.

Examples

FROM my_table SELECT key, value;

FROM a_table AS a
JOIN b_table AS b
USING (key)
SELECT *;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_from_select_from-select
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_from_select
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_from_select_examples


DISTINCT
Selecting unique rows.

Note

Applying DISTINCT  to calculated values is not currently implemented. For this purpose, use a subquery or the clause GROUP BY ... 
AS ... .

Example

The DISTINCT  keyword can also be used to apply aggregate functions only to distinct values. For more information, see the documentation for
GROUP BY.

SELECT DISTINCT value -- only unique values from the table
FROM my_table;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_distinct
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_distinct_example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by


UNIQUE DISTINCT hints
Directly after SELECT , it is possible to add SQL hints unique  or distinct , which declare that this projection generates data containing unique
values in the specified set of columns of a row-based or columnar table. This can be used to optimize subsequent subqueries executed on this
projection, or for writing to table meta-attributes during INSERT  (currently not supported for columnar tables).

Columns are specified in the hint values, separated by spaces.

If the set of columns is not specified, uniqueness applies to the entire set of columns in this projection.

unique  - indicates unique or null  values. According to the SQL standard, each null is unique: NULL = NULL  -> NULL .

distinct  - indicates completely unique values including null: NULL IS DISTINCT FROM NULL  -> FALSE .

Multiple sets of columns can be specified in several hints for a single projection.

If the hint contains a column that is not in the projection, it will be ignored.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_unique_distinct_hints
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_lexer_sql-hints


Combining subquery results (UNION)

Warning

Supported only for row-oriented tables. Support for column-oriented tables is currently under development.

UNION

Union of the results of the underlying queries, with duplicates removed.
Behavior is identical to using UNION ALL  followed by SELECT DISTINCT * .
Refer to UNION ALL for more details.

Examples

UNION ALL

Concatenating results of multiple SELECT  statements (or subqueries).

Two UNION ALL  modes are supported: by column names (the default mode) and by column positions (corresponds to the ANSI SQL standard and
is enabled by the PRAGMA).

In the "by name" mode, the output of the resulting data schema uses the following rules:

The resulting table includes all columns that were found in at least one of the input tables.
If a column wasn't present in all the input tables, then it's automatically assigned the optional data type (that can accept NULL ).

If a column in different input tables had different types, then the shared type (the broadest one) is output.

If a column in different input tables had a heterogeneous type, for example, string and numeric, an error is raised.

The order of output columns in this mode is equal to the largest common prefix of the order of inputs, followed by all other columns in the alphabetic
order.
If the largest common prefix is empty (for example, if the order isn't specified for one of the inputs), then the output order is undefined.

In the "by position" mode, the output of the resulting data schema uses the following rules:

All inputs must have equal number of columns

The order of columns must be defined for all inputs

The names of the resulting columns must match the names of columns in the first table

The type of the resulting columns is output as a common (widest) type of input column types having the same positions

The order of the output columns in this mode is the same as the order of columns in the first input.

Examples

In the default mode, this query returns a selection with three columns x, y, and z. When PRAGMA PositionalUnionAll;  is enabled, the selection
only includes the x column.

SELECT key FROM T1
UNION
SELECT key FROM T2 -- returns the set of distinct keys in the tables

SELECT 1 AS x
UNION ALL
SELECT 2 AS y
UNION ALL
SELECT 3 AS z;

PRAGMA PositionalUnionAll;

SELECT 1 AS x, 2 as y
UNION ALL
SELECT * FROM AS_TABLE([<|x:3, y:4|>]); -- error: the order of columns in AS_TABLE is undefined

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_union
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_union_union
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_union_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_union_union-all
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_union_examples1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_concepts_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_union_union-all
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_positionalunionall
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_optional


VIEW (INDEX)

Warning

Supported only for row-oriented tables. Support for column-oriented tables is currently under development.

To make a SELECT  by secondary index of row-oriented table statement, use the following:

Examples

Select all the fields from the series  row-oriented table using the views_index  index with the views >=someValue  criteria:

JOIN  the series  and users  row-oriented tables on the userName  field using the users_index  and name_index  indexes, respectively:

SELECT *
    FROM TableName VIEW IndexName
    WHERE …

SELECT series_id, title, info, release_date, views, uploaded_user_id
    FROM series VIEW views_index
    WHERE views >= someValue

SELECT t1.series_id, t1.title
    FROM series VIEW users_index AS t1
    INNER JOIN users VIEW name_index AS t2
    ON t1.uploaded_user_id == t2.user_id
    WHERE t2.name == userName;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_secondary_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_secondary_index_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_concepts_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_join


VIEW (Vector index)

Warning

Supported only for row-oriented tables. Support for column-oriented tables is currently under development.

Alert

The functionality of vector indexes is available in the test mode in main. This functionality will be fully available in version
25.1.

The following features are not supported:

modifying rows in tables with vector indexes

building an index for vectors with bit quantization

These limitations may be removed in future versions.

To select data from a row-oriented table using a vector index, use the following statements:

Note

The vector index will not be automatically selected by the optimizer, so it must be specified explicitly using the expression `VIEW
IndexName'.

Examples

Select all the fields from the series  row-oriented table using the views_index  vector index created for embedding  and inner product
similarity:

Select all the fields from the series  row-oriented table using the views_index2  prefixed vector index created for embedding  and inner
product similarity with prefix column release_date :

SELECT ...
    FROM TableName VIEW IndexName
    WHERE ...
    ORDER BY Knn::SomeDistance(...)
    LIMIT ...

SELECT ...
    FROM TableName VIEW IndexName
    WHERE ...
    ORDER BY Knn::SomeSimilarity(...) DESC
    LIMIT ...

SELECT series_id, title, info, release_date, views, uploaded_user_id, Knn::InnerProductSimilarity(embedding, 
$target) as similarity
    FROM series VIEW views_index
    ORDER BY similarity DESC
    LIMIT 10

SELECT series_id, title, info, release_date, views, uploaded_user_id, Knn::InnerProductSimilarity(embedding, 
$target) as similarity
    FROM series VIEW views_index2
    WHERE release_date = "2025-03-31"
    ORDER BY Knn::InnerProductSimilarity(embedding, $TargetEmbedding) DESC
    LIMIT 10

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_vector_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_vector_index_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_concepts_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_yql_reference_udf_list_knn_functions-convert
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_vector-index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_optimizer


WITH
It's set after the data source in FROM  and is used for additional hints for row-oriented and column-oriented. You can't use hints for subqueries and
named expressions.

The following values are supported:

INFER_SCHEMA : Sets the flag for output of the table schema. The behavior is similar to the yt.inferSchema pragma, but for a specific data
source. You can specify the number of rows to output (from 1 to 1000).

FORCE_INFER_SCHEMA : Sets the flag for table schema output. The behavior is similar to the yt.ForceInferSchema pragma, but for a specific
data source. You can specify the number of rows to output (from 1 to 1000).

DIRECT_READ : Suppresses certain optimizers and enforces accessing table contents as is. The behavior is similar to the debug pragma
DirectRead, but for a specific data source.

INLINE : Hints that the table contents is small and you need to use its in-memory view to process the query. The actual size of the table is not
controlled in this case, and if it's large, the query might fail with an out-of-memory error.

UNORDERED : Suppresses original table sorting.

XLOCK : Hints that you need to lock the table exclusively. It's useful when you read a table at the stage of processing the query metaprogram,
and then update its contents in the main query. Avoids data loss if an external process managed to change the table between executing a
metaprogram phase and the main part of the query.

SCHEMA  type: Hints that the specified table schema must be used entirely, ignoring the schema in the metadata.

COLUMNS  type: Hints that the specified types should be used for columns whose names match the table's column names in the metadata, as
well as which columns are additionally present in the table.

IGNORETYPEV3 , IGNORE_TYPE_V3 : Sets the flag to ignore type_v3 types in the table. The behavior is similar to the yt.IgnoreTypeV3 pragma,
but for a specific data source.

When setting the SCHEMA  and COLUMNS  hints, the type must be a structure.

Examples

SELECT key FROM my_table WITH INFER_SCHEMA;
SELECT key FROM my_table WITH FORCE_INFER_SCHEMA="42";

$s = (SELECT COUNT(*) FROM my_table WITH XLOCK);

INSERT INTO my_table WITH TRUNCATE
SELECT EvaluateExpr($s) AS a;

SELECT key, value FROM my_table WITH SCHEMA Struct<key:String, value:Int32>;

SELECT key, value FROM my_table WITH COLUMNS Struct<value:Int32?>;

SELECT key, value FROM EACH($my_tables) WITH SCHEMA Struct<key:String, value:List<Int32>>;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_with
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_with_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_named-nodes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_inferschema
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_inferschema
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_debug
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_action
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_ignoretypev3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_containers


WITHOUT
Excluding columns from the result of SELECT * .

Examples

SELECT * WITHOUT foo, bar FROM my_table;

PRAGMA simplecolumns;
SELECT * WITHOUT t.foo FROM my_table AS t
CROSS JOIN (SELECT 1 AS foo) AS v;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_without
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_without_examples


WHERE
Filtering rows in the SELECT  result based on a condition in row-oriented or column-oriented.

Example

SELECT key FROM my_table
WHERE value > 0;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_where
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_where_example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_column-oriented-tables


ORDER BY
Sorting the SELECT  result using a comma-separated list of sorting criteria. As a criteria, you can use a column value or an expression on columns.
Ordering by column sequence number is not supported ( ORDER BY N  where N  is a number).

Each criteria can be followed by the sorting direction:

ASC : Sorting in the ascending order. Applied by default.

DESC : Sorting in the descending order.

Multiple sorting criteria will be applied left-to-right.

Example

You can also use ORDER BY  for window functions.

SELECT key, string_column
FROM my_table
ORDER BY key DESC, LENGTH(string_column) ASC;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_order_by
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_order_by_example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_window


ASSUME ORDER BY
Checking that the SELECT  result is sorted by the value in the specified column or multiple columns. The result of such a SELECT  statement is
treated as sorted, but without actually running a sort. Sort check is performed at the query execution stage.

As in case of ORDER BY , it supports setting the sort order using the keywords ASC  (ascending order) and DESC  (descending order). Expressions
are not supported in ASSUME ORDER BY .

Examples

SELECT key || "suffix" as key, -CAST(subkey as Int32) as subkey
FROM my_table
ASSUME ORDER BY key, subkey DESC;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_assume_order_by
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_assume_order_by_examples


LIMIT and OFFSET
LIMIT : limits the output to the specified number of rows. By default, the output is not restricted.

OFFSET : specifies the offset from the beginning (in rows). By default, it's zero.

Examples

SELECT key FROM my_table
LIMIT 7;

SELECT key FROM my_table
LIMIT 7 OFFSET 3;

SELECT key FROM my_table
LIMIT 3, 7; -- equivalent to the previous example

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_limit_offset
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_limit_offset_examples


TABLESAMPLE and SAMPLE

Warning

Supported only for row-oriented tables. Support for column-oriented tables is currently under development.

Building a random sample from the data source specified in FROM .

TABLESAMPLE  is part of the SQL standard and works as follows:

The operating mode is specified:

BERNOULLI  means "slowly, straightforwardly going through all the data, but in a truly random way".

SYSTEM  uses knowledge about the physical data storage of data to avoid full data scans, but somewhat sacrificing randomness of the
sample.

The data is split into sufficiently large blocks, and the whole data blocks are sampled. For applied calculations on sufficiently large tables, the result
may well be consistent.

The size of the random sample is indicated as a percentage after the operating mode, in parentheses.

To manage the block size in the SYSTEM  mode, use the yt.SamplingIoBlockSize  pragma.

Optionally, it can be followed by the REPEATABLE  keyword and an integer in parentheses to be used as a seed for a pseudorandom number
generator.

SAMPLE  is a shorter alias without sophisticated settings and sample size specified as a fraction. It currently corresponds to the BERNOULLI  mode.

Note

In the BERNOULLI  mode, if the REPEATABLE  keyword is added, the seed is mixed with the chunk ID for each chunk in the table. That's
why sampling from different tables with the same content might produce different results.

Examples

SELECT *
FROM my_table
TABLESAMPLE BERNOULLI(1.0) REPEATABLE(123); -- one percent of the table

SELECT *
FROM my_table
TABLESAMPLE SYSTEM(1.0); -- about one percent of the table

SELECT *
FROM my_table
SAMPLE 1.0 / 3; -- one-third of the table

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_sample
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_sample_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_concepts_datamodel_table_column-oriented-tables


MATCH_RECOGNIZE
The MATCH_RECOGNIZE  expression performs pattern recognition in a sequence of rows and returns the found results. This functionality is important
for various business areas, such as fraud detection, pricing analysis in finance, and sensor data processing. This area is known as Complex Event
Processing (CEP), and pattern recognition is a valuable tool for this. An example of how MATCH_RECOGNIZE  works is provided in the link.

Data processing algorithm

The MATCH_RECOGNIZE  expression performs the following actions:

1. The input table is divided into non-overlapping groups. Each group consists of a set of rows from the input table with identical values in the
columns listed after PARTITION BY .

2. Each group is ordered according to the ORDER BY  clause.

3. Recognition of pattern from PATTERN  is performed independently in each ordered group.

4. Pattern search in the sequence of rows is a step-by-step process: rows are checked one by one if they fit the pattern. Among all matches
starting in the earliest row, the one consisting of the largest number of rows is selected. If no matches were found starting in the earliest row,
the search continues starting from the next row.

5. After a match is found, the columns defined by expressions in the MEASURES  block are calculated.

6. Depending on the ROWS PER MATCH  mode, one or all rows for the found match are output.

7. The AFTER MATCH SKIP  mode determines from which row the pattern recognition will resume.

Syntax

Here is a brief description of the SQL syntax elements of the MATCH_RECOGNIZE  expression:

DEFINE : Block for declaring variables that describe the search pattern and the conditions that rows must meet for each variable.

PATTERN : Regular expressions describing the search pattern.

MEASURES : Defines the list of columns for the returned data. Each column is specified by an SQL expression for its computation.

ROWS PER MATCH : Determines the structure of the returned data and the number of rows for each match found.

AFTER MATCH SKIP : Defines the method of moving to the point of the next match search.

ORDER BY : Determines sorting of input data. Pattern search is performed within the data sorted according to the list of columns or expressions
listed in <sort_key_1> [ ... , <sort_key_N> ] .

PARTITION BY : Divides the input table according to the specified rules in accordance with <partition_1> [ ... , <partition_N> ] .
Pattern search is performed independently in each part.

DEFINE

DEFINE  declares variables that are used to describe the desired pattern defined in PATTERN . Variables are named SQL statements evaluated over
the input data. The syntax of the SQL statements in DEFINE  is the same as the SQL statements of the WHERE  predicate. For example, the button 
= 1  expression searches for rows with the value 1  in the button  column. Any SQL expressions that can be used to perform a search, including
aggregation functions ( LAST , FIRST ). For example, button > 2 AND zone_id < 12  or LAST(button) > 10 .

In the example below, the SQL statement A.button = 1  is declared as variable A .

Note

DEFINE  does not currently support aggregation functions (e.g., AVG , MIN , or MAX ) and PREV  and NEXT  functions.

When processing each row of data, all SQL statements describing variables in DEFINE  are calculated. When the SQL-expression describing the
corresponding variable from DEFINE  gets the TRUE  value, such a row is labeled with the DEFINE  variable name and added to the list of rows

MATCH_RECOGNIZE (
    [ PARTITION BY <partition_1> [ ... , <partition_N> ] ]
    [ ORDER BY <sort_key_1> [ ... , <sort_key_N> ] ]
    [ MEASURES <expression_1> AS <column_name_1> [ ... , <expression_N> AS <column_name_N> ] ]
    [ ROWS PER MATCH ]
    [ AFTER MATCH SKIP ]
    PATTERN (<search_pattern>)
    DEFINE <variable_1> AS <predicate_1> [ ... , <variable_N> AS <predicate_N> ]
)

DEFINE <variable_1> AS <predicate_1> [ ... , <variable_N> AS <predicate_N> ]

DEFINE
    A AS A.button = 1

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_data-processing-algorithm
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_syntax
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_define
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_define
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_pattern
https://en.wikipedia.org/wiki/Regular_expressions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_measures
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_rows_per_match
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_after_match_skip
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_order_by
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_partition_by
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_pattern


subject to pattern matching.

Example

When defining variables in SQL expressions, you can reference other variables:

An input data row will be computed as variable A  if it contains a button  column with value 1  and the last row of the set of previously matched
A  has a zone_id  column with value 12 . The row will be computed as variable B  if the data row contains a button  column with value 2  and

the first row of the set of previously matched variables A  has a zone_id  column with value 12 .

PATTERN

The PATTERN  keyword describes the search pattern in the format derived from variables in the DEFINE  section. The PATTERN  syntax is similar to
the one of regular expressions.

Warning

If a variable used in the PATTERN  section has not been previously described in the DEFINE  section, it is assumed that it is always
TRUE .

You can use quantifiers in PATTERN . In regular expressions, they determine the number of repetitions of an element or subsequence in the
matched pattern. Here is the list of supported quantifiers:

Supported pattern search sequences:

Example

DEFINE
    A AS A.button = 1 AND LAST(A.zone_id) = 12,
    B AS B.button = 2 AND FIRST(A.zone_id) = 12

PATTERN (<search_pattern>)

Quantifier Description

A+ One or more occurrences of A

A* Zero or more occurrences of A

A? Zero or one occurrence of A

B{n} Exactly n  occurrences of B

C{n, m} From n  to m  occurrences of C

D{n,} At least n  occurrences of D

(A|B) Occurrence of A  or B  in the data

(A|B){,m} From zero to m  occurrences of A  or B

Supported 
sequences

Syntax Description

Sequence A B+ C+ D+ The system searches for the exact specified sequence, the occurrence of other variables within 
the sequence is not allowed. The pattern search is performed in the order of the pattern 
variables.

One of A | B | C Variables are listed in any order with a pipe | between them. The search is performed for any 
variable from the specified list.

Grouping (A | B)+ | C Variables inside round brackets are considered a single group. In this case, quantifiers apply to 
the entire group.

Exclusion from 
result

{- A B+ C -} Rows found by the pattern in parentheses will be excluded from the result in 
ALL ROWS PER MATCH  mode

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_define-example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_pattern
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_pattern-example
https://en.wikipedia.org/wiki/Regular_expressions
https://en.wikipedia.org/wiki/Regular_expression#Quantification
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_rows_per_match


The DEFINE  section describes the B1 , B2 , and B3  variables, while it does not describe E . Such notation allows interpreting E  as any event,
so the following pattern will be searched: one button 1  click, one or more button 2  clicks, and one button 3  click. Meanwhile, between a
click of button 1  and button 2 , any number of any other events may occur.

MEASURES

MEASURES  describes the set of returned columns when a pattern is found. A set of returned columns should be represented by an SQL expression
with the aggregate functions over the variables declared in the DEFINE  statement.

Example

The input data for the example are:

Result:

The ids  column contains the list of zone_id * 10 + device_id  values counted among the rows matched with the B1  variable. The
count_zones  column contains the number of unique values of the zone_id  column among the rows matched with the B1  variable. Column
time_diff  contains the difference between the value of column ts  in the last row of the set of rows matched with variable B3  and the value of

column ts  in the first row of the set of rows matched with variable B1 . The meaning_of_life  column contains the constant 42 . Thus, an
expression in MEASURES  may contain aggregate functions over multiple variables, but there must be only one variable within a single aggregate
function.

ROWS PER MATCH

ROWS PER MATCH  determines the number of result rows for each match found, as well as the number of columns returned. The default mode is
ONE ROW PER MATCH .

ONE ROW PER MATCH  sets the ROWS PER MATCH  mode to output one row for the match found. The structure of the returned data corresponds to
the columns listed in PARTITION BY  and MEASURES .

ALL ROWS PER MATCH  sets the ROWS PER MATCH  mode to output all rows of the match found except explicitly excluded by parentheses. In addition
to the columns of the source table, the structure of the returned data includes the columns listed in the MEASURES .

Examples

The input data for all examples are:

PATTERN (B1 E* B2+ B3)
DEFINE
    B1 as B1.button = 1,
    B2 as B2.button = 2,
    B3 as B3.button = 3

MEASURES <expression_1> AS <column_name_1> [ ... , <expression_N> AS <column_name_N> ]

MEASURES
    AGGREGATE_LIST(B1.zone_id * 10 + B1.device_id) AS ids,
    COUNT(DISTINCT B1.zone_id) AS count_zones,
    LAST(B3.ts) - FIRST(B1.ts) AS time_diff,
    42 AS meaning_of_life
PATTERN (B1+ B2 B3)
DEFINE
    B1 AS B1.button = 1,
    B2 AS B2.button = 2,
    B3 AS B3.button = 3

ts button device_id zone_id

100 1 3 0

200 1 3 1

300 2 2 0

400 3 1 1

ids count_zones time_diff meaning_of_life

[3,13] 2 300 42

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_measures
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_measures-example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_rows_per_match
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_rows_per_match-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_define
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_partition_by
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_measures
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_measures


Example 1

Result:

Example 2

Result:

AFTER MATCH SKIP

AFTER MATCH SKIP  determines the method of transitioning from the found match to searching for the next one. In the AFTER MATCH SKIP TO NEXT 
ROW  mode, the search for the next match starts after the first row of the previous one, while in the AFTER MATCH SKIP PAST LAST ROW  mode it
starts after the last row of the previous match. The default mode is PAST LAST ROW .

Examples

The input data for all examples are:

MEASURES
    FIRST(B1.ts) AS first_ts,
    FIRST(B2.ts) AS mid_ts,
    LAST(B3.ts) AS last_ts
ONE ROW PER MATCH
PATTERN (B1 {- B2 -} B3)
DEFINE
    B1 AS B1.button = 1,
    B2 AS B2.button = 2,
    B3 AS B3.button = 3

MEASURES
    FIRST(B1.ts) AS first_ts,
    FIRST(B2.ts) AS mid_ts,
    LAST(B3.ts) AS last_ts
ALL ROWS PER MATCH
PATTERN (B1 {- B2 -} B3)
DEFINE
    B1 AS B1.button = 1,
    B2 AS B2.button = 2,
    B3 AS B3.button = 3

ts button

100 1

200 2

300 3

first_ts mid_ts last_ts

100 200 300

first_ts mid_ts last_ts button ts

100 200 300 1 100

100 200 300 3 300

ts button

100 1

200 1

300 2

400 3

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_rows_per_match-example1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_rows_per_match-example2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_after_match_skip
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_after_match_skip-examples


Example 1

Result:

Example 2

Result:

ORDER BY

ORDER BY  determines sorting of the input data. That is, before all pattern search operations are performed, the data will be pre-sorted according to
the specified keys or expressions. The syntax is similar to the ORDER BY  SQL expression.

Example

PARTITION BY

PARTITION BY  partitions the source data into multiple non-overlapping groups, each used for an independent pattern search. If the expression is
not specified, all data is processed as a single group. Records with the same values of the columns listed after PARTITION BY  fall into the same
group.

Example

MEASURES
    FIRST(B1.ts) AS first_ts,
    LAST(B3.ts) AS last_ts
AFTER MATCH SKIP TO NEXT ROW
PATTERN (B1+ B2 B3)
DEFINE
    B1 AS B1.button = 1,
    B2 AS B2.button = 2,
    B3 AS B3.button = 3

MEASURES
    FIRST(B1.ts) AS first_ts,
    LAST(B3.ts) AS last_ts
AFTER MATCH SKIP PAST LAST ROW
PATTERN (B1+ B2 B3)
DEFINE
    B1 AS B1.button = 1,
    B2 AS B2.button = 2,
    B3 AS B3.button = 3

ORDER BY <sort_key_1> [ ... , <sort_key_N> ]

<sort_key> ::= { <column_names> | <expression> }

ORDER BY CAST(ts AS Timestamp)

PARTITION BY <partition_1> [ ... , <partition_N> ]

<partition> ::= { <column_names> | <expression> }

PARTITION BY device_id, zone_id

first_ts last_ts

100 400

200 400

first_ts last_ts

100 400

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_after_match_skip-example1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_after_match_skip-example2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_order_by
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_order_by-example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_partition_by
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_partition_by-example


Limitations

Our support for the MATCH_RECOGNIZE  expression will eventually comply with SQL-2016; currently, however, the following limitations apply:

MEASURES . Functions PREV / NEXT  are not supported.

AFTER MATCH SKIP . Only the AFTER MATCH SKIP TO NEXT ROW  and AFTER MATCH SKIP PAST LAST ROW  modes are supported.

PATTERN . Union pattern variables are not implemented.

DEFINE . Aggregation functions are not supported.

Example of usage

Here is a hands-on example of pattern recognizing in a data table produced by an IoT device, where pressing its buttons triggers certain events.
Let's assume you need to find and process the following sequence of button clicks: button 1 , button 2 , and button 3 .

The structure of the data to transmit is as follows:

The body of the SQL query looks like this:

Result:

PRAGMA FeatureR010="prototype"; -- pragma for enabling MATCH_RECOGNIZE

SELECT * FROM input MATCH_RECOGNIZE ( -- Performing pattern matching from input
    PARTITION BY device_id, zone_id -- Partitioning the input data into groups by columns device_id and zone_id
    ORDER BY ts -- Viewing events based on the ts column data sorted ascending
    MEASURES
        LAST(B1.ts) AS b1, -- Going to get the latest timestamp of clicking button 1 in the query results
        LAST(B3.ts) AS b3  -- Going to get the latest timestamp of clicking button 3 in the query results
    ONE ROW PER MATCH            -- Going to get one result row per match hit
    AFTER MATCH SKIP TO NEXT ROW -- Going to move to the next row once the match is found
    PATTERN (B1 B2+ B3) -- Searching for a pattern that includes one button 1 click, one or more button 2 clicks, and 
one button 3 click
    DEFINE
        B1 AS B1.button = 1, -- Defining the B1 variable as event of clicking button 1 (the button field equals 1)
        B2 AS B2.button = 2, -- Defining the B2 variable as event of clicking button 2 (the button field equals 2)
        B3 AS B3.button = 3  -- Defining the B3 variable as event of clicking button 3 (the button field equals 3)
);

ts button device_id zone_id

600 3 17 3

500 3 4 2

400 2 17 3

300 2 4 2

200 1 17 3

100 1 4 2

b1 b3 device_id zone_id

100 500 4 2

200 600 17 3

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_limitations
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_example
https://en.wikipedia.org/wiki/SQL:2016
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_measures
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_after_match_skip
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_pattern
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_match_recognize_define


Built-in YQL functions
Basic

Aggregate

Window

For lists

For dictionaries

For structures

For types
For code generation

For JSON

C++ libraries

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_window
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_codegen
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_index


Basic built-in functions
Below are the general-purpose functions. For specialized functions, there are separate articles: aggregate functions, window functions, and
functions for lists, dictionaries, structures, data types, and code generation.

COALESCE

Iterates through the arguments from left to right and returns the first non-empty argument found. To be sure that the result is non-empty (not of an
optional type), the rightmost argument must be of this type (often a literal is used for this). With a single argument, returns this argument
unchanged.

Lets you pass potentially empty values to functions that can't handle them by themselves.

A short format using the low-priority ??  operator is available (lower than the Boolean operations). You can use the NVL  alias.

Examples

All three examples above are equivalent.

LENGTH

Returns the length of the string in bytes. This function is also available under the LEN  name .

Examples

Note

To calculate the length of a string in Unicode characters, you can use the function Unicode::GetLength.

To get the number of elements in the list, use the function ListLength.

SUBSTRING

Returns a substring.

Required arguments:

Source string;

Position: The offset from the beginning of the string in bytes (integer) or NULL  meaning "from the beginning".

Optional arguments:

Substring length: The number of bytes starting from the specified position (an integer, or the default NULL  meaning "up to the end of the
source string").

Indexing starts from zero. If the specified position and length are beyond the string, returns an empty string.
If the input string is optional, the result is also optional.

Examples

SELECT COALESCE(
  maybe_empty_column,
  "it's empty!"
) FROM my_table;

SELECT
  maybe_empty_column ?? "it's empty!"
FROM my_table;

SELECT NVL(
  maybe_empty_column,
  "it's empty!"
) FROM my_table;

SELECT LENGTH("foo");

SELECT LEN("bar");

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_coalesce
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_length
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_examples1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_substring
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_examples2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_window
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_codegen
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_optional
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_unicode
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listlength


FIND

Finding the position of a substring in a string.

Required arguments:

Source string;

The substring being searched for.

Optional arguments:

A position in bytes to start the search with (an integer or NULL  by default that means "from the beginning of the source string").

Returns the first substring position found or NULL  (meaning that the desired substring hasn't been found starting from the specified position).

Examples

RFIND

Reverse finding the position of a substring in a string, from the end to the beginning.

Required arguments:

Source string;
The substring being searched for.

Optional arguments:

A position in bytes to start the search with (an integer or NULL  by default, meaning "from the end of the source string").

Returns the first substring position found or NULL  (meaning that the desired substring hasn't been found starting from the specified position).

Examples

StartsWith, EndsWith

Checking for a prefix or suffix in a string.

Required arguments:

Source string;

The substring being searched for.

The arguments can be of the String  or Utf8  type and can be optional.

Examples

SELECT SUBSTRING("abcdefg", 3, 1); -- d

SELECT SUBSTRING("abcdefg", 3); -- defg

SELECT SUBSTRING("abcdefg", NULL, 3); -- abc

SELECT FIND("abcdefg_abcdefg", "abc"); -- 0

SELECT FIND("abcdefg_abcdefg", "abc", 1); -- 8

SELECT FIND("abcdefg_abcdefg", "abc", 9); -- null

SELECT RFIND("abcdefg_abcdefg", "bcd"); -- 9

SELECT RFIND("abcdefg_abcdefg", "bcd", 8); -- 1

SELECT RFIND("abcdefg_abcdefg", "bcd", 0); -- null

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_find
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_examples3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_rfind
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_examples4
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_starts_ends_with
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_examples5


IF

Checks the condition: IF(condition_expression, then_expression, else_expression) .

It's a simplified alternative for CASE WHEN ... THEN ... ELSE ... END.

You may omit the else_expression  argument. In this case, if the condition is false ( condition_expression  returned false ), an empty value is
returned with the type corresponding to then_expression  and allowing for NULL . Hence, the result will have an optional data type.

Examples

NANVL

Replaces the values of NaN  (not a number) in expressions like Float , Double , or Optional.

Arguments:

1. The expression where you want to make a replacement.

2. The value to replace NaN .

If one of the arguments is Double , the result is Double , otherwise, it's Float . If one of the arguments is Optional , then the result is
Optional .

Examples

Random...

Generates a pseudorandom number:

Random() : A floating point number (Double) from 0 to 1.

RandomNumber() : An integer from the complete Uint64 range.

RandomUuid() : Uuid version 4.

Signatures

No arguments are used for random number generation: they are only needed to control the time of the call. A new random number is returned at
each call. Therefore:

If Random is called again within a same query and with a same set of arguments does not guarantee getting the same sets of random
numbers. The values will be equal if the Random calls fall into the same execution phase.

Calling of Random with the same set of arguments in different queries returns different sets of random numbers.

SELECT StartsWith("abc_efg", "abc") AND EndsWith("abc_efg", "efg"); -- true

SELECT StartsWith("abc_efg", "efg") OR EndsWith("abc_efg", "abc"); -- false

SELECT StartsWith("abcd", NULL); -- null

SELECT EndsWith(NULL, Utf8("")); -- null

SELECT
  IF(foo > 0, bar, baz) AS bar_or_baz,
  IF(foo > 0, foo) AS only_positive_foo
FROM my_table;

SELECT
  NANVL(double_column, 0.0)
FROM my_table;

Random(T1[, T2, ...])->Double
RandomNumber(T1[, T2, ...])->Uint64
RandomUuid(T1[, T2, ...])->Uuid

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_if
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_examples6
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_nanvl
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_examples7
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_random
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_signatures
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_case
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_optional
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_optional
https://tools.ietf.org/html/rfc4122#section-4.4


Warning

If Random is used in named expressions, its one-time calculation is not guaranteed. Depending on the optimizers and runtime
environment, it can be counted both once and multiple times. To make sure it's only counted once, materialize a named expression into
a table.

Use cases:

SELECT RANDOM(1); : Get one random value for the entire query and use it multiple times (to get multiple random values, you can pass
various constants of any type).

SELECT RANDOM(1) FROM table; : The same random number for each row in the table.

SELECT RANDOM(1), RANDOM(2) FROM table; : Two random numbers for each row of the table, all the numbers in each of the columns are
the same.

SELECT RANDOM(some_column) FROM table; : Different random numbers for each row in the table.

SELECT RANDOM(some_column), RANDOM(some_column) FROM table; : Different random numbers for each row of the table, but two identical
numbers within the same row.

SELECT RANDOM(some_column), RANDOM(some_column + 1) FROM table;  or SELECT RANDOM(some_column), RANDOM(other_column) 
FROM table; : Two columns, with different numbers in both.

Examples

CurrentUtc...

CurrentUtcDate() , CurrentUtcDatetime()  and CurrentUtcTimestamp() : Getting the current date and/or time in UTC. The result data type is
specified at the end of the function name.

The arguments are optional and work same as RANDOM.

Examples

CurrentTz...

CurrentTzDate() , CurrentTzDatetime() , and CurrentTzTimestamp() : Get the current date and/or time in the IANA time zone specified in the
first argument. The result data type is specified at the end of the function name.

The arguments that follow are optional and work same as RANDOM.

Examples

SELECT
    Random(key) -- [0, 1)
FROM my_table;

SELECT
    RandomNumber(key) -- [0, Max<Uint64>)
FROM my_table;

SELECT
    RandomUuid(key) -- Uuid version 4
FROM my_table;

SELECT
    RANDOM(column) AS rand1,
    RANDOM(column) AS rand2, -- same as rand1
    RANDOM(column, 1) AS randAnd1, -- different from rand1/2
    RANDOM(column, 2) AS randAnd2 -- different from randAnd1
FROM my_table;

SELECT CurrentUtcDate();

SELECT CurrentUtcTimestamp(TableRow()) FROM my_table;

SELECT CurrentTzDate("Europe/Moscow");

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_examples8
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_current-utc
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_examples9
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_current-tz
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_examples10
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_named-nodes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_random
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_random


AddTimezone

Adding the time zone information to the date/time in UTC. In the result of SELECT  or after CAST , a String  will be subject to the time zone rules
used to calculate the time offset.

Arguments:

1. Date: the type is Date / Datetime / Timestamp .

2. The IANA name of the time zone.

Result type: TzDate / TzDatetime / TzTimestamp , depending on the input data type.

Examples

RemoveTimezone

Removing the time zone data and converting the value to date/time in UTC.

Arguments:

1. Date: the type is TzDate / TzDatetime / TzTimestamp .

Result type: Date / Datetime / Timestamp , depending on the input data type.

Examples

Version

Version()  returns a string describing the current version of the node processing the request. In some cases, such as during rolling upgrades, it
might return different strings depending on which node processes the request. It does not accept any arguments.

Examples

MAX_OF, MIN_OF, GREATEST, and LEAST

Returns the minimum or maximum among N arguments. Those functions let you replace the SQL standard statement CASE WHEN a < b THEN a 
ELSE b END  that would be too sophisticated for N more than two.

The argument types must be mutually castable and accept NULL .

GREATEST  is a synonym for MAX_OF  and LEAST  is a synonym for MIN_OF .

Examples

AsTuple, AsStruct, AsList, AsDict, AsSet, AsListStrict, AsDictStrict and AsSetStrict

Creates containers of the applicable types. For container literals, operator notation is also supported.

Specifics:

The container elements are passed in arguments. Hence, the number of elements in the resulting container is equal to the number of
arguments passed, except when the dictionary keys repeat.

AsTuple  and AsStruct  can be called without arguments, and also the arguments can have different types.

The field names in AsStruct  are set using AsStruct(field_value AS field_name) .

Creating a list requires at least one argument if you need to output the element types. To create an empty list with the given type of elements,
use the function ListCreate. You can create an empty list as an AsList()  call without arguments. In this case, this expression will have the
EmptyList  type.

Creating a dictionary requires at least one argument if you need to output the element types. To create an empty dictionary with the given type
of elements, use the function DictCreate. You can create an empty dictionary as an AsDict()  call without arguments, in this case, this

SELECT CurrentTzTimestamp("Europe/Moscow", TableRow()) FROM my_table;

SELECT AddTimezone(Datetime("2018-02-01T12:00:00Z"), "Europe/Moscow");

SELECT RemoveTimezone(TzDatetime("2018-02-01T12:00:00,Europe/Moscow"));

SELECT Version();

SELECT MIN_OF(1, 2, 3);

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_addtimezone
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_examples11
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_removetimezone
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_examples12
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_version
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_examples13
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_max-min
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_examples14
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_as-container
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_containerliteral
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listcreate
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict_dictcreate


expression will have the EmptyDict  type.

Creating a set requires at least one argument if you need to output element types. To create an empty set with the given type of elements, use
the function SetCreate. You can create an empty set as an AsSet()  call without arguments, in this case, this expression will have the
EmptySet  type.

AsList  outputs the common type of elements in the list. A type error is raised in the case of incompatible types.

AsDict  separately outputs the common types for keys and values. A type error is raised in the case of incompatible types.

AsSet  outputs common types for keys. A type error is raised in the case of incompatible types.

AsListStrict , AsDictStrict , AsSetStrict  require the same type for their arguments.

AsDict  and AsDictStrict  expect Tuple  of two elements as arguments (key and value, respectively). If the keys repeat, only the value for
the first key remains in the dictionary.

AsSet  and AsSetStrict  expect keys as arguments.

Examples

Container literals

Some containers support operator notation for their literal values:

Tuple: (value1, value2...) ;

Structure: <|name1: value1, name2: value2...|> ;

List: [value1, value2,...] ;

Dictionary: {key1: value1, key2: value2...} ;

Set: {key1, key2...} .

In every case, you can use an insignificant trailing comma. For a tuple with one element, this comma is required: (value1,) .
For field names in the structure literal, you can use an expression that can be calculated at evaluation time, for example, string literals or identifiers
(including those enclosed in backticks).

For nested lists, use AsList, for nested dictionaries, use AsDict, for nested sets, use AsSet, for nested tuples, use AsTuple, for nested structures,
use AsStruct.

Examples

Variant

Variant()  creates a variant value over a tuple or structure.

Arguments:

SELECT
  AsTuple(1, 2, "3") AS `tuple`,
  AsStruct(
    1 AS a,
    2 AS b,
    "3" AS c
  ) AS `struct`,
  AsList(1, 2, 3) AS `list`,
  AsDict(
    AsTuple("a", 1),
    AsTuple("b", 2),
    AsTuple("c", 3)
  ) AS `dict`,
  AsSet(1, 2, 3) AS `set`

$name = "computed " || "member name";
SELECT
  (1, 2, "3") AS `tuple`,
  <|
    `complex member name`: 2.3,
    b: 2,
    $name: "3",
    "inline " || "computed member name": false
  |> AS `struct`,
  [1, 2, 3] AS `list`,
  {
    "a": 1,
    "b": 2,
    "c": 3,
  } AS `dict`,
  {1, 2, 3} AS `set`

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_examples15
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_containerliteral
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_examples16
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_variant
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict_setcreate
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_as-container
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_as-container
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_as-container
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_as-container
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_as-container


Value

String with a field name or tuple index

Variant type

Example

AsVariant

AsVariant()  creates a value of a variant over a structure including one field. This value can be implicitly converted to any variant over a structure
that has a matching data type for this field name and might include more fields with other names.

Arguments:

Value

A string with the field name

Example

Visit, VisitOrDefault

Processes the possible values of a variant over a structure or tuple using the provided handler functions for each field/element of the variant.

Signature

Arguments

For a variant over structure: accepts the variant as the positional argument and named arguments (handlers) corresponding to each field of the
variant.

For a variant over tuple: accepts the variant and handlers for each element of the variant as positional arguments.

VisitOrDefault  includes an additional positional argument (on the second place) for the default value, enabling the omission of certain
handlers.

Example

VariantItem

Returns the value of a homogeneous variant (i.e., a variant containing fields/elements of the same type).

Signature

$var_type = Variant<foo: Int32, bar: Bool>;

SELECT
   Variant(6, "foo", $var_type) as Variant1Value,
   Variant(false, "bar", $var_type) as Variant2Value;

SELECT
   AsVariant(6, "foo") as VariantValue

Visit(Variant<key1: K1, key2: K2, ...>, K1->R AS key1, K2->R AS key2, ...)->R
Visit(Variant<K1, K2, ...>, K1->R, K2->R, ...)->R

VisitOrDefault(Variant<K1, K2, ...>{Flags:AutoMap}, R, [K1->R, [K2->R, ...]])->R
VisitOrDefault(Variant<key1: K1, key2: K2, ...>{Flags:AutoMap}, R, [K1->R AS key1, [K2->R AS key2, ...]])->R

$vartype = Variant<num: Int32, flag: Bool, str: String>;
$handle_num = ($x) -> { return 2 * $x; };
$handle_flag = ($x) -> { return If($x, 200, 10); };
$handle_str = ($x) -> { return Unwrap(CAST(LENGTH($x) AS Int32)); };

$visitor = ($var) -> { return Visit($var, $handle_num AS num, $handle_flag AS flag, $handle_str AS str); };
SELECT
    $visitor(Variant(5, "num", $vartype)),                -- 10
    $visitor(Just(Variant(True, "flag", $vartype))),      -- Just(200)
    $visitor(Just(Variant("somestr", "str", $vartype))),  -- Just(7)
    $visitor(Nothing(OptionalType($vartype))),            -- Nothing(Optional<Int32>)
    $visitor(NULL)                                        -- NULL
;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_asvariant
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_example1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_visit
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_signature
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_arguments
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_example2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_variantitem
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_signature1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_containers


Example

Way

Returns an active field (active index) of a variant over a struct (tuple).

Signature

Example

DynamicVariant

Creates a homogeneous variant instance (i.e. containing fields/elements of the same type), where the variant index or field can be set dynamically.
If the index or field name does not exist, NULL  will be returned.
The inverse function is VariantItem.

Signature

Example

Enum

Enum()  creates an enumeration value.

Arguments:

A string with the field name

Enumeration type

Example

VariantItem(Variant<key1: K, key2: K, ...>{Flags:AutoMap})->K
VariantItem(Variant<K, K, ...>{Flags:AutoMap})->K

$vartype1 = Variant<num1: Int32, num2: Int32, num3: Int32>;
SELECT
    VariantItem(Variant(7, "num2", $vartype1)),          -- 7
    VariantItem(Just(Variant(5, "num1", $vartype1))),    -- Just(5)
    VariantItem(Nothing(OptionalType($vartype1))),       -- Nothing(Optional<Int32>)
    VariantItem(NULL)                                    -- NULL
;

Way(Variant<key1: K1, key2: K2, ...>{Flags:AutoMap})->Utf8
Way(Variant<K1, K2, ...>{Flags:AutoMap})->Uint32

$vr = Variant(1, "0", Variant<Int32, String>);
$vrs = Variant(1, "a", Variant<a:Int32, b:String>);
SELECT Way($vr);  -- 0
SELECT Way($vrs); -- "a"

DynamicVariant(item:T,index:Uint32?,Variant<T, T, ...>)->Optional<Variant<T, T, ...>>
DynamicVariant(item:T,index:Utf8?,Variant<key1: T, key2: T, ...>)->Optional<Variant<key1: T, key2: T, ...>>

$dt = Int32;
$tvt = Variant<$dt,$dt>;
SELECT ListMap([(10,0u),(20,2u),(30,NULL)],($x)->(DynamicVariant($x.0,$x.1,$tvt))); -- [0: 10,NULL,NULL]

$dt = Int32;
$svt = Variant<x:$dt,y:$dt>;
SELECT ListMap([(10,'x'u),(20,'z'u),(30,NULL)],($x)->(DynamicVariant($x.0,$x.1,$svt))); -- [x: 10,NULL,NULL]

$enum_type = Enum<Foo, Bar>;
SELECT
   Enum("Foo", $enum_type) as Enum1Value,
   Enum("Bar", $enum_type) as Enum2Value;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_example3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_way
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_signature2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_example4
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_dynamic_variant
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_signature3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_example5
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_enum
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_example6
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_variantitem


AsEnum

AsEnum()  creates a value of enumeration including one element. This value can be implicitly cast to any enumeration containing such a name.

Arguments:

A string with the name of an enumeration item

Example

AsTagged, Untag

Wraps the value in the Tagged data type with the specified tag, preserving the physical data type. Untag : The reverse operation.

Required arguments:

1. Value of any type.

2. Tag name.

Returns a copy of the value from the first argument with the specified tag in the data type.

Examples of use cases:

Returns to the client's web interface the media files from BASE64-encoded strings.
Additional refinements at the level of returned columns types.

TableRow, JoinTableRow

Getting the entire table row as a structure. No arguments. JoinTableRow  in case of JOIN  always returns a structure with table prefixes.

Example

Ensure...

Checking for the user conditions:

Ensure() : Checking whether the predicate is true at query execution.

EnsureType() : Checking that the expression type exactly matches the specified type.

EnsureConvertibleTo() : A soft check of the expression type (with the same rules as for implicit type conversion).

If the check fails, the entire query fails.

Arguments:

1. An expression that will result from a function call if the check is successful. It's also checked for the data type in the corresponding functions.

2. Ensure uses a Boolean predicate that is checked for being true . The other functions use the data type that can be obtained using the
relevant functions, or a string literal with a text description of the type.

3. An optional string with an error comment to be included in the overall error message when the query is complete. The data itself can't be used
for type checks, since the data check is performed at query validation (or can be an arbitrary expression in the case of Ensure).

Examples

SELECT
   AsEnum("Foo");

SELECT TableRow() FROM my_table;

SELECT Ensure(
    value,
    value < 100,
    "value out or range"
) AS value FROM my_table;

SELECT EnsureType(
    value,
    TypeOf(other_value),
    "expected value and other_value to be of same type"
) AS value FROM my_table;

SELECT EnsureConvertibleTo(
    value,

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_asenum
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_example7
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_as-tagged
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_tablerow
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_example8
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_ensure
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_examples17
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_containers
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_special
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_type_string


EvaluateExpr, EvaluateAtom

Evaluate an expression before the start of the main calculation and input its result to the query as a literal (constant). In many contexts, where only
a constant would be expected in standard SQL (for example, in table names, in the number of rows in LIMIT, and so on), this functionality is
implicitly enabled automatically.

EvaluateExpr can be used where the grammar already expects an expression. For example, you can use it to:

Round the current time to days, weeks, or months and insert it into the query to ensure correct query caching, although usually when functions
are used to get the current time, query caching is completely disabled.

Run a heavy calculation with a small result once per query instead of once per job.

The only argument for both functions is the expression for calculation and substitution.

Restrictions:

The expression must not trigger MapReduce operations.

This functionality is fully locked in YQL over YDB.

Examples

Literals of primitive types

For primitive types, you can create literals based on string literals.

Syntax

<Primitive type>( <string>[, <additional attributes>] )

Unlike CAST("myString" AS MyType) :

The check for literal's castability to the desired type occurs at validation.

The result is non-optional.

For the data types Date , Datetime , Timestamp , and Interval , literals are supported only in the format corresponding to ISO 8601.
Interval  has the following differences from the standard:

It supports the negative sign for shifts to the past.

Microseconds can be expressed as fractional parts of seconds.

You can't use units of measurement exceeding one week.

The options with the beginning/end of the interval and with repetitions, are not supported.

For the data types TzDate , TzDatetime , TzTimestamp , literals are also set in the format meeting ISO 8601, but instead of the optional Z suffix,
they specify the IANA name of the time zone, separated by comma (for example, GMT or Europe/Moscow).

For the Decimal parametric data type, two additional arguments are specified:

Total number of decimal places (up to 35, inclusive).

Number of places after the decimal point (out of the total number, meaning it can't be larger than the previous argument).

Examples

    Double?,
    "expected value to be numeric"
) AS value FROM my_table;

$now = CurrentUtcDate();
SELECT EvaluateExpr(
    DateTime::MakeDate(DateTime::StartOfWeek($now)
    )
);

SELECT
  Bool("true"),
  Uint8("0"),
  Int32("-1"),
  Uint32("2"),
  Int64("-3"),
  Uint64("4"),
  Float("-5"),
  Double("6"),
  Decimal("1.23", 5, 2), -- up to 5 decimal digits, with 2 after the decimal point
  String("foo"),
  Utf8("Hello"),
  Yson("<a=1>[3;%false]"),

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_evaluate_expr_atom
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_examples18
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_data-type-literals
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_syntax
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_examples19
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_limit_offset
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_yt.querycachemode
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_current-utc
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones


ToBytes and FromBytes

Conversion of primitive data types to a string with their binary representation and back. Numbers are represented in the little endian format.

Examples

ByteAt

Getting the byte value inside a string at an index counted from the beginning of the string. If an invalid index is specified, NULL  is returned.

Arguments:

1. String: String  or Utf8 .

2. Index: Uint32 .

Examples

...Bit

TestBit() , ClearBit() , SetBit()  and FlipBit() : Test, clear, set, or flip a bit in an unsigned number using the specified bit sequence
number.

Arguments:

1. An unsigned number that's subject to the operation. TestBit is also implemented for strings.

2. Number of the bit.

TestBit returns true/false . The other functions return a copy of their first argument with the corresponding conversion.

Examples

Abs

The absolute value of the number.

Examples

Just

Just() : Change the value's data type to optional from the current data type (i.e., T  is converted to T? ).

The reverse operation is Unwrap.

  Json(@@{"a":1,"b":null}@@),
  Date("2017-11-27"),
  Datetime("2017-11-27T13:24:00Z"),
  Timestamp("2017-11-27T13:24:00.123456Z"),
  Interval("P1DT2H3M4.567890S"),
  TzDate("2017-11-27,Europe/Moscow"),
  TzDatetime("2017-11-27T13:24:00,America/Los_Angeles"),
  TzTimestamp("2017-11-27T13:24:00.123456,GMT"),
  Uuid("f9d5cc3f-f1dc-4d9c-b97e-766e57ca4ccb");

SELECT
    ToBytes(123), -- "\u0001\u0000\u0000\u0000"
    FromBytes(
        "\xd2\x02\x96\x49\x00\x00\x00\x00",
        Uint64
    ); -- 1234567890ul

SELECT
    ByteAt("foo", 0), -- 102
    ByteAt("foo", 1), -- 111
    ByteAt("foo", 9); -- NULL

SELECT
    TestBit(1u, 0), -- true
    SetBit(8u, 0); -- 9

SELECT Abs(-123); -- 123

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_to-from-bytes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_examples20
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_byteat
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_examples21
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_bitops
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_examples22
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_abs
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_examples23
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_optional-ops
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_primitive
https://en.wikipedia.org/wiki/Endianness#Little-endian
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_optional
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_optional-ops


Examples

Unwrap

Unwrap() : Converting the optional value of the data type to the relevant non-optional type, raising a runtime error if the data is NULL . This means
that T?  becomes T .

If the value isn't optional, then the function returns its first argument unchanged.

Arguments:

1. Value to be converted.

2. An optional string with a comment for the error text.

Reverse operation is Just.

Examples

Nothing

Nothing() : Create an empty value for the specified Optional data type.

Examples

Learn more about ParseType and other functions for data types.

Callable

Create a callable value with the specified signature from a lambda function. It's usually used to put callable values into containers.

Arguments:

1. Type.

2. Lambda function.

Examples

Pickle, Unpickle

Pickle()  and StablePickle()  serialize an arbitrary object into a sequence of bytes, if possible. Typical non-serializable objects are Callable
and Resource. The serialization format is not versioned and can be used within a single query. For the Dict type, the StablePickle function pre-sorts
the keys, and for Pickle, the order of dictionary elements in the serialized representation isn't defined.

Unpickle()  is the inverse operation (deserialization), where with the first argument being the data type of the result and the second argument is
the string with the result of Pickle()  or StablePickle() .

Examples

SELECT
  Just("my_string"); --  String?

$value = Just("value");

SELECT Unwrap($value, "Unexpected NULL for $value");

SELECT
  Nothing(String?); -- an empty (NULL) value with the String? type

$lambda = ($x) -> {
    RETURN CAST($x as String)
};

$callables = AsTuple(
    Callable(Callable<(Int32)->String>, $lambda),
    Callable(Callable<(Bool)->String>, $lambda),
);

SELECT $callables.0(10), $callables.1(true);

SELECT *
FROM my_table

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_examples24
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_unwrap
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_examples25
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_nothing
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_examples26
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_callable
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_examples27
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_pickle
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_examples28
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_optional
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_optional
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_optional-ops
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_optional
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types


StaticMap

Transforms a structure or tuple by applying a lambda function to each item.

Arguments:

Structure or tuple.

Lambda for processing items.

Result: a structure or tuple with the same number and naming of items as in the first argument, and with item data types determined by lambda
results.

Examples

StaticZip

Merges structures or tuples element-by-element. All arguments (one or more) must be either structures with the same set of fields or tuples of the
same length.
The result will be a structure or tuple, respectively.
Each item of the result is a tuple comprised of items taken from arguments.

Examples

StaticFold, StaticFold1

Left fold over struct/tuple elements.
The folding of tuples is done in order from the element with the lower index to the element with the larger one; for structures, the order is not
guaranteed.

obj  - object to fold

initVal  - (for StaticFold) initial fold state

initLambda  - (for StaticFold1) lambda that produces initial fold state from the first element

updateLambda  - lambda that produces the new state (arguments are the next element and the previous state)

StaticFold(<|key_1:$el_1, key_2:$el_2, ..., key_n:$el_n|>, $init, $f)  transforms into:

StaticFold1(<|key_1:$el_1, key_2:$el_2, ..., key_n:$el_n|>, $f0, $f) :

StaticFold1(<||>, $f0, $f)  returns NULL .

Works with tuples in the same way.

WHERE Digest::MurMurHash32(
        Pickle(TableRow())
    ) %10 ==0; -- actually, it is better to use TABLESAMPLE

$buf = Pickle(123);
SELECT Unpickle(Int32, $buf);

SELECT *
FROM (
    SELECT
        StaticMap(TableRow(), ($item) -> {
            return CAST($item AS String);
        })
    FROM my_table
) FLATTEN COLUMNS; -- converting all columns to rows

$one = <|k1:1, k2:2.0|>;
$two = <|k1:3.0, k2:4|>;

-- Adding two structures item-by-item
SELECT StaticMap(StaticZip($one, $two), ($tuple)->($tuple.0 + $tuple.1)) AS sum;

StaticFold(obj:Struct/Tuple, initVal, updateLambda)
StaticFold1(obj:Struct/Tuple, initLambda, updateLambda)

$f($el_n, ...$f($el_2, $f($init, el_1))...)

$f($el_n, ...$f($el_2, $f($f0($init), el_1))...)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_staticmap
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_examples29
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_staticzip
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_examples30
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_staticfold


AggregationFactory

Create a factory for aggregation functions to separately describe the methods of aggregation and data types subject to aggregation.

Arguments:

1. A string in double quotes with the name of an aggregate function, for example "MIN".

2. Optional parameters of the aggregate function that are data-independent. For example, the percentile value in PERCENTILE.

The resulting factory can be used as the second parameter of the function AGGREGATE_BY.
If the aggregate function is applied to two columns instead of one, as, for example, MIN_BY, then in AGGREGATE_BY, the first argument passes a
Tuple  of two values. See more details in the description of the applicable aggregate function.

Examples

AggregateTransformInput

AggregateTransformInput()  converts an aggregation factory, for example, obtained using the AggregationFactory function, to other factory, in
which the specified transformation of input items is performed before starting aggregation.

Arguments:

1. Aggregation factory.
2. A lambda function with one argument that converts an input item.

Examples

AggregateTransformOutput

AggregateTransformOutput()  converts an aggregation factory, for example, obtained using the AggregationFactory function, to other factory, in
which the specified transformation of the result is performed after ending aggregation.

Arguments:

1. Aggregation factory.

2. A lambda function with one argument that converts the result.

Examples

AggregateFlatten

Adapts a factory for aggregation functions, for example, obtained using the AggregationFactory function in a way that allows aggregation of list input
items. This operation is similar to FLATTEN LIST BY: Each list item is aggregated.

Arguments:

1. Aggregation factory.

Examples

$factory = AggregationFactory("MIN");
SELECT
    AGGREGATE_BY (value, $factory) AS min_value -- apply the MIN aggregation to the "value" column
FROM my_table;

$f = AggregationFactory("sum");
$g = AggregateTransformInput($f, ($x) -> (cast($x as Int32)));
$h = AggregateTransformInput($f, ($x) -> ($x * 2));
SELECT ListAggregate([1,2,3], $f); -- 6
SELECT ListAggregate(["1","2","3"], $g); -- 6
SELECT ListAggregate([1,2,3], $h); -- 12

$f = AggregationFactory("sum");
$g = AggregateTransformOutput($f, ($x) -> ($x * 2));
SELECT ListAggregate([1,2,3], $f); -- 6
SELECT ListAggregate([1,2,3], $g); -- 12

$i = AggregationFactory("AGGREGATE_LIST_DISTINCT");
$j = AggregateFlatten($i);
SELECT AggregateBy(x, $j) from (
   select [1,2] as x
   union all

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_aggregationfactory
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_examples31
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_aggregatetransform
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_examples32
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_aggregatetransformoutput
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_examples33
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_aggregateflatten
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_examples34
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_min
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_percentile
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_aggregate-by
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_minby
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_aggregate-by
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_aggregationfactory
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_aggregationfactory
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_aggregationfactory
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_flatten


   select [2,3] as x
); -- [1, 2, 3]



Aggregate functions

COUNT

Counting the number of rows in the table (if *  or constant is specified as the argument) or non-empty values in a table column (if the column name
is specified as an argument).

Like other aggregate functions, it can be combined with GROUP BY to get statistics on the parts of the table that correspond to the values in the
columns being grouped. Use the modifier DISTINCT to count distinct values.

Examples

MIN and MAX

Minimum or maximum value.

As an argument, you may use an arbitrary computable expression with a numeric result.

Examples

SUM

Sum of the numbers.

As an argument, you may use an arbitrary computable expression with a numeric result.

Integers are automatically expanded to 64 bits to reduce the risk of overflow.

AVG

Arithmetic average.

As an argument, you may use an arbitrary computable expression with a numeric result.

Integer values and time intervals are automatically converted to Double.

Examples

COUNT_IF

Number of rows for which the expression specified as the argument is true (the expression's calculation result is true).

The value NULL  is equated to false  (if the argument type is Bool? ).

The function does not do the implicit type casting to Boolean for strings and numbers.

Examples

SELECT COUNT(*) FROM my_table;

SELECT key, COUNT(value) FROM my_table GROUP BY key;

SELECT COUNT(DISTINCT value) FROM my_table;

SELECT MIN(value), MAX(value) FROM my_table;

SELECT SUM(value) FROM my_table;

SELECT AVG(value) FROM my_table;

SELECT
  COUNT_IF(value % 2 == 1) AS odd_count

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_count
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_min-max
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_examples1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_sum
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_avg
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_examples2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_count-if
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_examples3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by_distinct


Note

To count distinct values in rows meeting the condition, unlike other aggregate functions, you can't use the modifier DISTINCT because
arguments contain no values. To get this result, use in the subquery the built-in function IF with two arguments (to get NULL  in else),
and apply an outer COUNT(DISTINCT ...) to its result.

SUM_IF and AVG_IF

Sum or arithmetic average, but only for the rows that satisfy the condition passed by the second argument.

Therefore, SUM_IF(value, condition)  is a slightly shorter notation for SUM(IF(condition, value)) , same for AVG . The argument's data type
expansion is similar to the same-name functions without a suffix.

Examples

When you use aggregation factories, a Tuple  containing a value and a predicate is passed as the first AGGREGATE_BY argument.

SOME

Get the value for an expression specified as an argument, for one of the table rows. Gives no guarantee of which row is used. It's similar to the
any() function in ClickHouse.

Because of no guarantee, SOME  is computationally cheaper than MIN / MAX often used in similar situations.

Examples

Alert

When the aggregate function SOME  is called multiple times, it's not guaranteed that all the resulting values are taken from the same
row of the source table. To get this guarantee, pack the values into any container and pass it to SOME . For example, in the case of a
structure, you can apply AsStruct

CountDistinctEstimate, HyperLogLog, and HLL

Approximating the number of unique values using the HyperLogLog algorithm. Logically, it does the same thing as COUNT(DISTINCT ...), but runs
much faster at the cost of some error.

Arguments:

1. Estimated value

2. Accuracy (4 to 18 inclusive, 14 by default).

By selecting accuracy, you can trade added resource and RAM consumption for decreased error.

All the three functions are aliases at the moment, but CountDistinctEstimate  may start using a different algorithm in the future.

Examples

SELECT
    SUM_IF(value, value % 2 == 1) AS odd_sum,
    AVG_IF(value, value % 2 == 1) AS odd_avg,
FROM my_table;

$sum_if_factory = AggregationFactory("SUM_IF");
$avg_if_factory = AggregationFactory("AVG_IF");

SELECT
    AGGREGATE_BY(AsTuple(value, value % 2 == 1), $sum_if_factory) AS odd_sum,
    AGGREGATE_BY(AsTuple(value, value % 2 == 1), $avg_if_factory) AS odd_avg
FROM my_table;

SELECT
  SOME(value)
FROM my_table;

SELECT
  CountDistinctEstimate(my_column)
FROM my_table;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_sum-if
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_examples4
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_some
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_examples5
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_countdistinctestimate
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_examples6
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by_distinct
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_if
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_count
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_aggregationfactory
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_aggregate-by
https://clickhouse.com/docs/en/sql-reference/aggregate-functions/reference/any/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_min-max
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_asstruct
https://en.wikipedia.org/wiki/HyperLogLog
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_count


AGGREGATE_LIST

Get all column values as a list. When combined with DISTINCT,  it returns only distinct values. The optional second parameter sets the maximum
number of values to be returned. A zero limit value means unlimited.

If you know already that you have few distinct values, use the AGGREGATE_LIST_DISTINCT  aggregate function to build the same result in memory
(that might not be enough for a large number of distinct values).

The order of elements in the result list depends on the implementation and can't be set externally. To return an ordered list, sort the result, for
example, with ListSort.

To return a list of multiple values from one line, DO NOT use the AGGREGATE_LIST  function several times, but add all the needed values to a
container, for example, via AsList or AsTuple, then pass this container to a single AGGREGATE_LIST  call.

For example, you can combine it with DISTINCT  and the function String::JoinFromList (it's an equivalent of ','.join(list)  in Python) to output
to a string all the values found in the column after GROUP BY.

Examples

These functions also have a short notation: AGG_LIST  and AGG_LIST_DISTINCT .

Alert

Execution is NOT lazy, so when you use it, be sure that the list has a reasonable size (about a thousand items or less). To stay on the
safe side, better use a second optional numeric argument that limits the number of items in the list.

MAX_BY and MIN_BY

Return the value of the first argument for the table row where the second argument is minimum/maximum.

You can optionally specify the third argument N that affects behavior if the table has multiple rows with the same minimum or maximum value:

If N is omitted, the value of one of the rows is returned, and the other rows are discarded.

If N is specified, the list is returned with all values, but their number can't exceed N. All values after the number are discarded.

When choosing N, we recommend that you don't exceed several hundreds or thousands to avoid issues with the limited memory available on YDB
clusters.

If your task needs absolutely all values, and their number is measured in dozens of thousands or more, then instead of those aggregate functions
better use JOIN  on the source table with a subquery doing GROUP BY + MIN/MAX  on the desired columns of this table.

Attention

If the second argument is always NULL , the aggregation result is NULL .

When you use aggregation factories, a Tuple  containing a value and a key is passed as the first AGGREGATE_BY argument.

Examples

SELECT
  HyperLogLog(my_column, 4)
FROM my_table;

SELECT
   AGGREGATE_LIST( region ),
   AGGREGATE_LIST( region, 5 ),
   AGGREGATE_LIST( DISTINCT region ),
   AGGREGATE_LIST_DISTINCT( region ),
   AGGREGATE_LIST_DISTINCT( region, 5 )
FROM users

-- An equivalent of GROUP_CONCAT in MySQL
SELECT
    String::JoinFromList(CAST(AGGREGATE_LIST(region, 2) AS List<String>), ",")
FROM users

SELECT
  MIN_BY(value, LENGTH(value)),

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_agg-list
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_examples7
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_max-min-by
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_examples8
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listsort
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_aslist
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_astuple
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_string
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_aggregationfactory
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_aggregate-by


TOP and BOTTOM

Return a list of the maximum/minimum values of an expression. The first argument is an expression, the second argument limits the number of
items.

Examples

TOP_BY and BOTTOM_BY

Return a list of values of the first argument for the rows containing the maximum/minimum values of the second argument. The third argument limits
the number of items in the list.

When you use aggregation factories, a Tuple  containing a value and a key is passed as the first AGGREGATE_BY argument. In this case, the
limit for the number of items is passed by the second argument at factory creation.

Examples

TOPFREQ and MODE

Getting an approximate list of the most common values in a column with an estimation of their count. Returns a list of structures with two fields:

Value : the frequently occurring value that was found.

Frequency : An estimated value occurrence in the table.

Required argument: the value itself.

Optional arguments:

1. For TOPFREQ , the desired number of items in the result. MODE  is an alias to TOPFREQ  with this argument set to 1. For TOPFREQ , this
argument is also 1 by default.

2. The number of items in the buffer used: lets you trade memory consumption for accuracy. Default: 100.

Examples

  MAX_BY(value, key, 100)
FROM my_table;

$min_by_factory = AggregationFactory("MIN_BY");
$max_by_factory = AggregationFactory("MAX_BY", 100);

SELECT
    AGGREGATE_BY(AsTuple(value, LENGTH(value)), $min_by_factory),
    AGGREGATE_BY(AsTuple(value, key), $max_by_factory)
FROM my_table;

SELECT
    TOP(key, 3),
    BOTTOM(value, 3)
FROM my_table;

$top_factory = AggregationFactory("TOP", 3);
$bottom_factory = AggregationFactory("BOTTOM", 3);

SELECT
    AGGREGATE_BY(key, $top_factory),
    AGGREGATE_BY(value, $bottom_factory)
FROM my_table;

SELECT
    TOP_BY(value, LENGTH(value), 3),
    BOTTOM_BY(value, key, 3)
FROM my_table;

$top_by_factory = AggregationFactory("TOP_BY", 3);
$bottom_by_factory = AggregationFactory("BOTTOM_BY", 3);

SELECT
    AGGREGATE_BY(AsTuple(value, LENGTH(value)), $top_by_factory),
    AGGREGATE_BY(AsTuple(value, key), $bottom_by_factory)
FROM my_table;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_top-bottom
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_examples9
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_top-bottom-by
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_examples10
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_topfreq-mode
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_examples11
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_aggregationfactory
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_aggregate-by


STDDEV and VARIANCE

Standard deviation and variance in a column. Those functions use a single-pass parallel algorithm, whose result may differ from the more common
methods requiring two passes through the data.

By default, the sample variance and standard deviation are calculated. Several write methods are available:

with the POPULATION  suffix/prefix, for example: VARIANCE_POPULATION , POPULATION_VARIANCE  calculates the variance or standard
deviation for the population.

With the SAMPLE  suffix/prefix or without a suffix, for example, VARIANCE_SAMPLE , SAMPLE_VARIANCE , SAMPLE  calculate sample variance
and standard deviation.

Several abbreviated aliases are also defined, for example, VARPOP  or STDDEVSAMP .

If all the values passed are NULL , it returns NULL .

Examples

CORRELATION and COVARIANCE

Correlation and covariance between two columns.

Abbreviated versions are also available: CORR  or COVAR . For covariance, there are also versions with the SAMPLE / POPULATION  suffix that are
similar to VARIANCE above.

Unlike most other aggregate functions, they don't skip NULL , but accept it as 0.

When you use aggregation factories, a Tuple  containing two values is passed as the first AGGREGATE_BY argument.

Examples

PERCENTILE and MEDIAN

Calculating percentiles using the amortized version of the TDigest algorithm. MEDIAN : An alias for PERCENTILE(N, 0.5) .

Restriction

The first argument (N) must be a table column name. If you need to bypass this restriction, use a subquery. The restriction is
introduced to simplify calculations, since the implementation merges the calls with the same first argument (N) into a single pass.

HISTOGRAM

SELECT
    MODE(my_column),
    TOPFREQ(my_column, 5, 1000)
FROM my_table;

SELECT
  STDDEV(numeric_column),
  VARIANCE(numeric_column)
FROM my_table;

SELECT
  CORRELATION(numeric_column, another_numeric_column),
  COVARIANCE(numeric_column, another_numeric_column)
FROM my_table;

$corr_factory = AggregationFactory("CORRELATION");

SELECT
    AGGREGATE_BY(AsTuple(numeric_column, another_numeric_column), $corr_factory)
FROM my_table;

SELECT
    MEDIAN(numeric_column),
    PERCENTILE(numeric_column, 0.99)
FROM my_table;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_stddev-variance
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_examples12
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_correlation-covariance
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_examples13
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_percentile-median
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_histogram
https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Parallel_algorithm
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_stddev-variance
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_aggregationfactory
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_aggregate-by
https://github.com/tdunning/t-digest


Plotting an approximate histogram based on a numeric expression with automatic selection of buckets.

Auxiliary functions

Basic settings

You can limit the number of buckets using an optional argument. The default value is 100. Keep in mind that added accuracy costs you more
computing resources and may negatively affect the query execution time. In extreme cases, it may affect your query success.

Support for weights

You can specify a "weight" for each value used in the histogram. To do this, pass to the aggregate function the second argument with an expression
for calculating the weight. The weight of 1.0  is always used by default. If you use non-standard weights, you may also use the third argument to
limit the number of buckets.

If you pass two arguments, the meaning of the second argument is determined by its type (if it's an integer literal, it limits the number of buckets,
otherwise it's used as a weight).

If you need an accurate histogram

1. You can use the aggregate functions described below with fixed bucket grids: LinearHistogram or LogarithmicHistogram.

2. You can calculate the bucket number for each row and apply to it GROUP BY.

When you use aggregation factories, a Tuple  containing a value and a weight is passed as the first AGGREGATE_BY argument.

Examples

LinearHistogram, LogarithmicHistogram, and LogHistogram

Plotting a histogram based on an explicitly specified fixed bucket scale.

Arguments:

1. Expression used to plot the histogram. All the following arguments are optional.

2. Spacing between the LinearHistogram  buckets or the logarithm base for LogarithmicHistogram / LogHistogram  (those are aliases). In
both cases, the default value is 10.

3. Minimum value. By default, it's minus infinity.

4. Maximum value. By default, it's plus infinity.

The format of the result is totally similar to adaptive histograms, so you can use the same set of auxiliary functions.

If the spread of input values is uncontrollably large, we recommend that you specify the minimum and maximum values to prevent potential failures
due to high memory consumption.

Examples

BOOL_AND, BOOL_OR and BOOL_XOR

Signature

SELECT
    HISTOGRAM(numeric_column)
FROM my_table;

SELECT
    Histogram::Print(
        HISTOGRAM(numeric_column, 10),
        50
    )
FROM my_table;

$hist_factory = AggregationFactory("HISTOGRAM");

SELECT
    AGGREGATE_BY(AsTuple(numeric_column, 1.0), $hist_factory)
FROM my_table;

SELECT
    LogarithmicHistogram(numeric_column, 2)
FROM my_table;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_basic-settings
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_support-for-weights
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_if-you-need-an-accurate-histogram
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_examples14
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_linearhistogram
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_examples15
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_bool-and-or-xor
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_signature
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_histogram
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_linearhistogram
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_linearhistogram
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_aggregationfactory
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_aggregate-by
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_histogram
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_histogram


Apply the relevant logical operation ( AND / OR / XOR ) to all values in a Boolean column or expression.

Unlike most other aggregate functions, these functions don't skip NULL  during aggregation and use the following rules:

true AND null == null

false OR null == null

For BOOL_AND :

If at least one NULL  value is present, the result is NULL  regardless of true  values in the expression.

If at least one false  value is present, the result changes to false  regardless of NULL  values in the expression.

For BOOL_OR :

If at least one NULL  value is present, the result changes to NULL  regardless of false  values in the expression.

If at least one true  value is present, the result changes to true  regardless of NULL  values in the expression.

For BOOL_XOR :

The result is NULL  if any NULL  is found.

Examples of such behavior can be found below.

To skip NULL  values during aggregation, use the MIN / MAX  or BIT_AND / BIT_OR / BIT_XOR  functions.

Examples

BIT_AND, BIT_OR and BIT_XOR

Apply the relevant bitwise operation to all values of a numeric column or expression.

Examples

SessionStart

No arguments. It's allowed only if there is SessionWindow in GROUP BY / PARTITION BY.
Returns the value of the SessionWindow  key column. If SessionWindow  has two arguments, it returns the minimum value of the first argument
within the group/section.
In the case of the expanded version SessionWindow , it returns the value of the second element from the tuple returned by <calculate_lambda> ,
for which the first tuple element is True .

AGGREGATE_BY and MULTI_AGGREGATE_BY

BOOL_AND(Bool?)->Bool?
BOOL_OR(Bool?)->Bool?
BOOL_XOR(Bool?)->Bool?

$data = [
    <|nonNull: true, nonFalse: true, nonTrue: NULL, anyVal: true|>,
    <|nonNull: false, nonFalse: NULL, nonTrue: NULL, anyVal: NULL|>,
    <|nonNull: false, nonFalse: NULL, nonTrue: false, anyVal: false|>,
];

SELECT
    BOOL_AND(nonNull) as nonNullAnd,      -- false
    BOOL_AND(nonFalse) as nonFalseAnd,    -- NULL
    BOOL_AND(nonTrue) as nonTrueAnd,      -- false
    BOOL_AND(anyVal) as anyAnd,           -- false
    BOOL_OR(nonNull) as nonNullOr,        -- true
    BOOL_OR(nonFalse) as nonFalseOr,      -- true
    BOOL_OR(nonTrue) as nonTrueOr,        -- NULL
    BOOL_OR(anyVal) as anyOr,             -- true
    BOOL_XOR(nonNull) as nonNullXor,      -- true
    BOOL_XOR(nonFalse) as nonFalseXor,    -- NULL
    BOOL_XOR(nonTrue) as nonTrueXor,      -- NULL
    BOOL_XOR(anyVal) as anyXor,           -- NULL
FROM AS_TABLE($data);

SELECT
    BIT_XOR(unsigned_numeric_value)
FROM my_table;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_examples16
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_bit-and-or-xor
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_examples17
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_session-start
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_aggregate-by
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by_session-window
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_window_partition


Applying an aggregation factory to all values of a column or expression. The MULTI_AGGREGATE_BY  function requires that the value of a column or
expression has a structure, tuple, or list, and applies the factory to each individual element, placing the result in a container of the same format. If
different values of a column or expression contain lists of different length, the resulting list will have the smallest of the source lengths.

1. Column, DISTINCT  column or expression.

2. Factory.

Examples

$count_factory = AggregationFactory("COUNT");

SELECT
    AGGREGATE_BY(DISTINCT column, $count_factory) as uniq_count
FROM my_table;

SELECT
    MULTI_AGGREGATE_BY(nums, AggregationFactory("count")) as count,
    MULTI_AGGREGATE_BY(nums, AggregationFactory("min")) as min,
    MULTI_AGGREGATE_BY(nums, AggregationFactory("max")) as max,
    MULTI_AGGREGATE_BY(nums, AggregationFactory("avg")) as avg,
    MULTI_AGGREGATE_BY(nums, AggregationFactory("percentile", 0.9)) as p90
FROM my_table;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation_examples18
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_aggregationfactory


List of window functions in YQL
The syntax for calling window functions is detailed in a separate article.

Aggregate functions

All aggregate functions can also be used as window functions.
In this case, each row includes an aggregation result obtained on a set of rows from the window frame.

Examples

ROW_NUMBER

Row number within a partition. No arguments.

Signature

Examples

LAG / LEAD

Accessing a value from a row in the section that lags behind ( LAG ) or leads ( LEAD ) the current row by a fixed number. The first argument specifies
the expression to be accessed, and the second argument specifies the offset in rows. You may omit the offset. By default, the neighbor row is used:
the previous or next, respectively (hence, 1 is assumed by default). For the rows having no neighbors at a given distance (for example, LAG(expr, 
3)  NULL  is returned in the first and second rows of the section).

Signature

Examples

SELECT
    SUM(int_column) OVER w1 AS running_total,
    SUM(int_column) OVER w2 AS total,
FROM my_table
WINDOW
    w1 AS (ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW),
    w2 AS ();

ROW_NUMBER()->Uint64

SELECT
    ROW_NUMBER() OVER w AS row_num
FROM my_table
WINDOW w AS (ORDER BY key);

LEAD(T[,Int32])->T?
LAG(T[,Int32])->T?

SELECT
   int_value - LAG(int_value) OVER w AS int_value_diff
FROM my_table
WINDOW w AS (ORDER BY key);

SELECT item, odd, LAG(item, 1) OVER w as lag1 FROM (
    SELECT item, item % 2 as odd FROM (
        SELECT AsList(1, 2, 3, 4, 5, 6, 7) as item
    )
    FLATTEN BY item
)
WINDOW w As (
    PARTITION BY odd
    ORDER BY item
);

/* Output:
item  odd  lag1
--------------------

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_window
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_window_aggregate-functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_window_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_window_row_number
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_window_signature
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_window_examples1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_window_lag-lead
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_window_signature1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_window_examples2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_window
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_window_frame
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_window_partition
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_window_partition


FIRST_VALUE / LAST_VALUE

Access values from the first and last rows (using the ORDER BY  clause for the window) of the window frame. The only argument is the expression
that you need to access.

Optionally, OVER  can be preceded by the additional modifier IGNORE NULLS . It changes the behavior of functions to the first or last non-empty
(i.e., non- NULL ) value among the window frame rows. The antonym of this modifier is RESPECT NULLS : it's the default behavior that can be
omitted.

Signature

Examples

NTH_VALUE

Access a value from a row specified by position in the window's ORDER BY  order within window frame. Arguments - the expression to access and
the row number, starting with 1.

Optionally, the IGNORE NULLS  modifier can be specified before OVER , which causes rows with NULL  in the first argument's value to be skipped.
The antonym of this modifier is RESPECT NULLS , which is the default behavior and may be skipped.

Signature

Examples

RANK / DENSE_RANK / PERCENT_RANK

Number the groups of neighboring rows in the partition with the same expression value in the argument. DENSE_RANK  numbers the groups one by
one, and RANK  skips (N - 1)  values, with N  being the number of rows in the previous group. PERCENT_RANK  returns the relative rank of the
current row: .

If there is no argument, it uses the order specified in the ORDER BY  section in the window definition.
If the argument is omitted and ORDER BY  is not specified, then all rows are considered equal to each other.

2  0  NULL
4  0  2
6  0  4
1  1  NULL
3  1  1
5  1  3
7  1  5
*/

FIRST_VALUE(T)->T?
LAST_VALUE(T)->T?

SELECT
   FIRST_VALUE(my_column) OVER w
FROM my_table
WINDOW w AS (ORDER BY key);

SELECT
   LAST_VALUE(my_column) IGNORE NULLS OVER w
FROM my_table
WINDOW w AS (ORDER BY key);

NTH_VALUE(T,N)->T?

SELECT
   NTH_VALUE(my_column, 2) OVER w
FROM my_table
WINDOW w AS (ORDER BY key);

SELECT
   NTH_VALUE(my_column, 3) IGNORE NULLS OVER w
FROM my_table
WINDOW w AS (ORDER BY key);

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_window_first_value-/-last_value
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_window_signature2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_window_examples3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_window_nth_value
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_window_signature3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_window_examples4
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_window_rank
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_window_frame
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_window_frame
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_window_partition


Note

Passing an argument to RANK / DENSE_RANK / PERCENT_RANK  is a non-standard extension in YQL.

Signature

Examples

NTILE

Distributes the rows of an ordered partition into a specified number of groups. The groups are numbered starting with one. For each row, the
NTILE  function returns the number of the group to which the row belongs.

Signature

Examples

CUME_DIST

Returns the relative position (> 0 and <= 1) of a row within a partition. No arguments.

Signature

Examples

SessionState()

A non-standard window function SessionState()  (without arguments) lets you get the session calculation status from SessionWindow for the
current row.

RANK([T])->Uint64
DENSE_RANK([T])->Uint64
PERCENT_RANK([T])->Double

SELECT
   RANK(my_column) OVER w
FROM my_table
WINDOW w AS (ORDER BY key);

SELECT
   DENSE_RANK() OVER w
FROM my_table
WINDOW w AS (ORDER BY my_column);

SELECT
   PERCENT_RANK() OVER w
FROM my_table
WINDOW w AS (ORDER BY my_column);

NTILE(Uint64)->Uint64

SELECT
    NTILE(10) OVER w AS group_num
FROM my_table
WINDOW w AS (ORDER BY key);

CUME_DIST()->Double

SELECT
    CUME_DIST() OVER w AS dist
FROM my_table
WINDOW w AS (ORDER BY key);

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_window_signature4
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_window_examples5
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_window_ntile
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_window_signature5
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_window_examples6
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_window_cume_dist
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_window_signature6
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_window_examples7
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_window_session-state
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_window_partition
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_window_partition
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_group_by_session-window


It's allowed only if SessionWindow()  is present in the PARTITION BY  section in the window definition.



Functions for lists

ListCreate

Construct an empty list. The only argument specifies a string describing the data type of the list cell, or the type itself obtained using relevant
functions. YQL doesn't support lists with an unknown cell type.

Documentation for the type definition format.

Examples

AsList and AsListStrict

Construct a list based on one or more arguments. The argument types must be compatible in the case of AsList  and strictly match in the case of
AsListStrict .

Examples

ListLength

The count of items in the list.

Examples

ListHasItems

Check that the list contains at least one item.

Examples

ListCollect

Convert a lazy list (it can be built by such functions as ListFilter, ListMap, ListFlatMap) to an eager list. In contrast to a lazy list, where each new
pass re-calculates the list contents, in an eager list the content is built at once by consuming more memory.

Examples

ListSort, ListSortAsc, and ListSortDesc

Sort the list. By default, the ascending sorting order is applied ( ListSort  is an alias for ListSortAsc ).

Arguments:

1. List.

2. An optional expression to get the sort key from a list element (it's the element itself by default).

Examples

Note

The example used a lambda function.

SELECT ListCreate(Tuple<String,Double?>);

SELECT ListCreate(OptionalType(DataType("String")));

SELECT AsList(1, 2, 3, 4, 5);

$list = AsList(
    AsTuple("x", 3),
    AsTuple("xx", 1),
    AsTuple("a", 2)
);

SELECT ListSort($list, ($x) -> {
    RETURN $x.1;
});

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_list-create
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_aslist
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_examples1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listlength
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_examples2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listhasitems
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_examples3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listcollect
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_examples4
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listsort
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_examples5
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_type_string
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listmap
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listmap
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listmap
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_lambda


ListExtend and ListExtendStrict

Sequentially join lists (concatenation of lists). The arguments can be lists, optional lists, and NULL .
The types of list items must be compatible in the case of ListExtend  and strictly match in the case of ListExtendStrict .
If at least one of the lists is optional, then the result is also optional.
If at least one argument is NULL , then the result type is NULL .

ListUnionAll

Sequentially join lists of structures (concatenation of lists). A field is added to the output list of structures if it exists in at least one source list, but if
there is no such field in any list, it is added as NULL. In the case when a field is present in two or more lists, the output field is cast to the common
type.

If at least one of the lists is optional, then the result is also optional.

ListZip and ListZipAll

Based on the input lists, build a list of pairs containing the list items with matching indexes
( List<Tuplefirst_list_element_type,second_list_element_type> ).

The length of the returned list is determined by the shortest list for ListZip and the longest list for ListZipAll.
When the shorter list is exhausted, a NULL  value of a relevant optional type is paired with the elements of the longer list.

ListEnumerate

Build a list of pairs (Tuple) containing the element number and the element itself ( List<TupleUint64,list_element_type> ).

ListReverse

Reverse the list.

ListSkip

Returns a copy of the list, skipping the specified number of its first elements.

The first argument specifies the source list and the second argument specifies how many elements to skip.

ListTake

Returns a copy of the list containing a limited number of elements from the second list.

The first argument specifies the source list and the second argument specifies the maximum number of elements to be taken from the beginning of
the list.

ListSample and ListSampleN

Returns a sample without replacement from the list.

ListSample  chooses elements independently with the specified probability.

ListSampleN  chooses a sample of the specified size (if the length of the list is less than the sample size, returns the original list).

If the probability/sample size is NULL, returns the original list.

An optional argument is used to control randomness, see documentation for Random .

Examples

ListShuffle

Returns a shuffled copy of the list. An optional argument is used to control randomness, see documentation for Random .

Examples

ListSample(List<T>, Double?[, U])->List<T>
ListSample(List<T>?, Double?[, U])->List<T>?

ListSampleN(List<T>, Uint64?[, U])->List<T>
ListSampleN(List<T>?, Uint64?[, U])->List<T>?

$list = AsList(1, 2, 3, 4, 5);

SELECT ListSample($list, 0.5);  -- [1, 2, 5]
SELECT ListSampleN($list, 2);  -- [4, 2]

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listextend
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listunionall
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listzip
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listenumerate
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listreverse
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listskip
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listtake
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listsample
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_examples6
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listshuffle
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_examples7
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_optional
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_random
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_random


ListIndexOf

Searches the list for an element with the specified value and returns its index at the first occurrence. Indexes count from 0. If such element is
missing, it returns NULL .

ListMap, ListFilter, and ListFlatMap

Apply the function specified as the second argument to each list element. The functions differ in their returned result:

ListMap  returns a list with results.

ListFlatMap  returns a list with results, combining and expanding the first level of results (lists or optional values) for each item.

ListFilter  leaves only those elements where the function returned true .

Note

In ListFlatMap , using optional values in function results is deprecated, use the combination of ListNotNull  and ListMap  instead.

Arguments:

1. Source list.

2. Functions for processing list elements, such as:

Lambda function.

Module::Function  - C++ UDF.

ListNotNull

Applies transformation to the source list, skipping empty optional items and strengthening the item type to non-optional. For a list with non-optional
items, it returns the unchanged source list.

If the source list is optional, then the output list is also optional.

Examples

ListFlatten

Expands the list of lists into a flat list, preserving the order of items. As the top-level list item you can use an optional list that is interpreted as an
empty list in the case of NULL .

If the source list is optional, then the output list is also optional.

Examples

ListUniq

Returns a copy of the list containing only distinct elements.

ListAny and ListAll

Returns true  for a list of Boolean values, if:

ListAny : At least one element is true .

ListAll : All elements are true .

Otherwise, it returns false.

ListShuffle(List<T>[, U])->List<T>
ListShuffle(List<T>?[, U])->List<T>?

$list = AsList(1, 2, 3, 4, 5);

SELECT ListShuffle($list);  -- [1, 3, 5, 2, 4]

SELECT ListNotNull([1,2]),   -- [1,2]
    ListNotNull([3,null,4]); -- [3,4]

SELECT ListFlatten([[1,2],[3,4]]),   -- [1,2,3,4]
    ListFlatten([null,[3,4],[5,6]]); -- [3,4,5,6]

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listindexof
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listmap
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listnotnull
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_examples8
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listflatten
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_examples9
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listuniq
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listany
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listnotnull
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_lambda


ListHas

Show whether the list contains the specified element. In this case, NULL  values are considered equal to each other, and with a NULL  input list, the
result is always false .

ListHead, ListLast

Returns the first and last item of the list.

ListMin, ListMax, ListSum and ListAvg

Apply the appropriate aggregate function to all elements of the numeric list.

ListFold, ListFold1

Folding a list.

Arguments:

1. List

2. Initial state U  for ListFold , initLambda(item:T)->U  for ListFold1

3. updateLambda(item:T, state:U)->U

Type returned:
U  for ListFold , U?  for ListFold1 .

ListFoldMap, ListFold1Map

Converts each list item i by calling the handler(i, state).

Arguments:

1. List

2. Initial state S  for ListFoldMap , initLambda(item:T)->tuple (U S)  for ListFold1Map

3. handler(item:T, state:S)->tuple (U S)

Type returned: List  of U  items.

Examples

ListFromRange

Generate a sequence of numbers with the specified step. It's similar to xrange  in Python 2, but additionally supports floats.

Arguments:

1. Start

2. End

3. Step (optional, 1 by default)

Specifics:

The end is not included, i.e. ListFromRange(1,3) == AsList(1,2) .

$l = [1, 4, 7, 2];
$y = ($x, $y) -> { RETURN $x + $y; };
$z = ($x) -> { RETURN 4 * $x; };

SELECT
    ListFold($l, 6, $y) AS fold,                       -- 20
    ListFold([], 3, $y) AS fold_empty,                 -- 3
    ListFold1($l, $z, $y) AS fold1,                    -- 17
    ListFold1([], $z, $y) AS fold1_empty;              -- Null

$l = [1, 4, 7, 2];
$x = ($i, $s) -> { RETURN ($i * $s, $i + $s); };
$t = ($i) -> { RETURN ($i + 1, $i + 2); };

SELECT
    ListFoldMap([], 1, $x),                -- []
    ListFoldMap($l, 1, $x),                -- [1, 8, 42, 26]
    ListFold1Map([], $t, $x),              -- []
    ListFold1Map($l, $t, $x);              -- [2, 12, 49, 28]

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listhas
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listheadlast
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listminy
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listfold
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listfoldmap
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_examples10
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listfromrange


The type for the resulting elements is selected as the broadest from the argument types. For example, ListFromRange(1, 2, 0.5)  results in
a Double  list.

If the start and the end is one of the date representing type, the step has to be Interval .

The list is "lazy", but if it's used incorrectly, it can still consume a lot of RAM.

If the step is positive and the end is less than or equal to the start, the result list is empty.

If the step is negative and the end is greater than or equal to the start, the result list is empty.

If the step is neither positive nor negative (0 or NaN), the result list is empty.

If any of the parameters is optional, the result list is optional.

If any of the parameters is NULL , the result is NULL .

Examples

Signature

ListReplicate

Creates a list containing multiple copies of the specified value.

Required arguments:

1. Value.

2. Number of copies.

Examples

ListConcat

Concatenates a list of strings into a single string.
You can set a separator as the second parameter.

ListExtract

For a list of structures, it returns a list of contained fields having the specified name.

ListTakeWhile, ListSkipWhile

ListTakeWhile  returns a list from the beginning while the predicate is true, then the list ends.

ListSkipWhile  skips the list segment from the beginning while the predicate is true, then returns the rest of the list ignoring the predicate.
ListTakeWhileInclusive  returns a list from the beginning while the predicate is true. Then the list ends, but it also includes the item on which the

stopping predicate triggered.
ListSkipWhileInclusive  skips a list segment from the beginning while the predicate is true, then returns the rest of the list disregarding the

predicate, but excluding the element that matched the predicate and starting with the next element after it.

Required arguments:

1. List.

2. Predicate.

If the input list is optional, then the result is also optional.

Examples

SELECT
    ListFromRange(-2, 2), -- [-2, -1, 0, 1]
    ListFromRange(2, 1, -0.5); -- [2.0, 1.5]

ListFromRange(T{Flags:AutoMap}, T{Flags:AutoMap}, T?)->LazyList<T> -- T — numeric type
ListFromRange(T{Flags:AutoMap}, T{Flags:AutoMap}, I?)->LazyList<T> -- T — type, representing date/time, I — interval

SELECT ListReplicate(true, 3); -- [true, true, true]

$data = AsList(1, 2, 5, 1, 2, 7);

SELECT
    ListTakeWhile($data, ($x) -> {return $x <= 3}), -- [1, 2]
    ListSkipWhile($data, ($x) -> {return $x <= 3}), -- [5, 1, 2, 7]
    ListTakeWhileInclusive($data, ($x) -> {return $x <= 3}), -- [1, 2, 5]
    ListSkipWhileInclusive($data, ($x) -> {return $x <= 3}); -- [1, 2, 7]

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_examples11
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_signature
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listreplicate
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_examples12
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listconcat
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listextract
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listtakewhile
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_examples13


ListAggregate

Apply the aggregation factory to the passed list.
If the passed list is empty, the aggregation result is the same as for an empty table: 0 for the COUNT  function and NULL  for other functions.
If the passed list is optional and NULL , the result is also NULL .

Arguments:

1. List.

2. Aggregation factory.

Examples

ToDict and ToMultiDict

Convert a list of tuples containing key-value pairs to a dictionary. In case of conflicting keys in the input list, ToDict  leaves the first value and
ToMultiDict  builds a list of all the values.

It means that:

ToDict  converts List<TupleK, V="">  to Dict<K, V="">

ToMultiDict  converts List<TupleK, V>  to Dict<K, List<V>>

Optional lists are also supported, resulting in an optional dictionary.

ToSet

Converts a list to a dictionary where the keys are unique elements of this list, and values are omitted and have the type Void . For the List<T>
list, the result type is Dict<T, Void=""> .
An optional list is also supported, resulting in an optional dictionary.

Inverse function: get a list of keys for the DictKeys dictionary.

ListTop, ListTopAsc, ListTopDesc, ListTopSort, ListTopSortAsc и ListTopSortDesc

Select top values from the list. ListTopSort*  additionally sorts the returned values. The smallest values are selected by default. Thus, the
functions without a suffix are the aliases to *Asc  functions, while *Desc  functions return the largest values.

ListTopSort  is more effective than consecutive ListTop  and ListSort  because ListTop  can partially sort the list to find needed values.
However, ListTop  is more effective than ListTopSort  when the result order is unimportant.

Arguments:

1. List.

2. Size of selection.

3. An optional expression to get the sort key from a list element (it's the element itself by default).

Examples

The signatures of other functions are the same.

SELECT ListAggregate(AsList(1, 2, 3), AggregationFactory("Sum")); -- 6

ListTop(List<T>{Flags:AutoMap}, N)->List<T>
ListTop(List<T>{Flags:AutoMap}, N, (T)->U)->List<T>

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listaggregate
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_examples14
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_todict
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_toset
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_listtop
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list_examples15
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_aggregationfactory
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_aggregationfactory
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict_dictkeys


Functions for dictionaries

DictCreate

Construct an empty dictionary. Two arguments are passed: for a key and a value. Each argument specifies a string with the data type declaration or
the type itself built by type functions. There are no dictionaries with an unknown key or value type in YQL. As a key, you can set a primitive data
type, except for Yson  and Json  that may be optional or a tuple of them of a length of at least two.

Documentation for the type definition format.

Examples

SetCreate

Construct an empty set. An argument is passed: the key type that can be built by type functions. There are no sets with an unknown key type in
YQL. As a key, you can set a primitive data type, except for Yson  and Json  that may be optional or a tuple of them of a length of at least two.

Documentation for the type definition format.

Examples

DictLength

The count of items in the dictionary.

Examples

DictHasItems

Check that the dictionary contains at least one item.

Examples

DictItems

Get dictionary contents as a list of tuples including key-value pairs ( List<Tuplekey_type,value_type> ).

Examples

DictKeys

Get a list of dictionary keys.

Examples

DictPayloads

SELECT DictCreate(String, Tuple<String,Double?>);

SELECT DictCreate(Tuple<Int32?,String>, OptionalType(DataType("String")));

SELECT SetCreate(String);

SELECT SetCreate(Tuple<Int32?,String>);

SELECT DictLength(AsDict(AsTuple(1, AsList("foo", "bar"))));

SELECT DictHasItems(AsDict(AsTuple(1, AsList("foo", "bar")))) FROM my_table;

SELECT DictItems(AsDict(AsTuple(1, AsList("foo", "bar"))));
-- [ ( 1, [ "foo", "bar" ] ) ]

SELECT DictKeys(AsDict(AsTuple(1, AsList("foo", "bar"))));
-- [ 1 ]

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict_dictcreate
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict_setcreate
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict_examples1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict_dictlength
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict_examples2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict_dicthasitems
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict_examples3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict_dictitems
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict_examples4
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict_dictkeys
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict_examples5
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict_dictpayloads
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_primitive
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_optional
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_type_string
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_primitive
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_optional
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_type_string


Get a list of dictionary values.

Examples

DictLookup

Get a dictionary element by its key.

Examples

DictContains

Checking if an element in the dictionary using its key. Returns true or false.

Examples

DictAggregate

Apply aggregation factory to the passed dictionary where each value is a list. The factory is applied separately inside each key.
If the list is empty, the aggregation result is the same as for an empty table: 0 for the COUNT  function and NULL  for other functions.
If the list under a certain key is empty in the passed dictionary, such a key is removed from the result.
If the passed dictionary is optional and contains NULL , the result is also NULL .

Arguments:

1. Dictionary.

2. Aggregation factory.

Examples

SetIsDisjoint

Check that the dictionary doesn't intersect by keys with a list or another dictionary.

So there are two options to make a call:

With the Dict<K,V1>  and List<K>  arguments.

With the Dict<K,V1>  and Dict<K,V2>  arguments.

Examples

SetIntersection

Construct intersection between two dictionaries based on keys.

Arguments:

SELECT DictPayloads(AsDict(AsTuple(1, AsList("foo", "bar"))));
-- [ [ "foo", "bar" ] ]

SELECT DictLookup(AsDict(
    AsTuple(1, AsList("foo", "bar")),
    AsTuple(2, AsList("bar", "baz"))
), 1);
-- [ "foo", "bar" ]

SELECT DictContains(AsDict(
    AsTuple(1, AsList("foo", "bar")),
    AsTuple(2, AsList("bar", "baz"))
), 42);
-- false

SELECT DictAggregate(AsDict(
    AsTuple(1, AsList("foo", "bar")),
    AsTuple(2, AsList("baz", "qwe"))),
    AggregationFactory("Max"));
-- {1 : "foo", 2 : "qwe" }

SELECT SetIsDisjoint(ToSet(AsList(1, 2, 3)), AsList(7, 4)); -- true
SELECT SetIsDisjoint(ToSet(AsList(1, 2, 3)), ToSet(AsList(3, 4))); -- false

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict_examples6
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict_dictlookup
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict_examples7
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict_dictcontains
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict_examples8
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict_dictaggregate
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict_examples9
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict_setisjoint
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict_examples10
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict_setintersection
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_aggregationfactory
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_aggregationfactory


Two dictionaries: Dict<K,V1>  and Dict<K,V2> .

An optional function that combines the values from the source dictionaries to construct the values of the output dictionary. If such a function
has the (K,V1,V2) -> U  type, the result type is Dict<K,U> . If the function is not specified, the result type is Dict<K,Void> , and the values
from the source dictionaries are ignored.

Examples

SetIncludes

Checking that the keys of the specified dictionary include all the elements of the list or the keys of the second dictionary.

So there are two options to make a call:

With the Dict<K,V1>  and List<K>  arguments.

With the Dict<K,V1>  and Dict<K,V2>  arguments.

Examples

SetUnion

Constructs a union of two dictionaries based on keys.

Arguments:

Two dictionaries: Dict<K,V1>  and Dict<K,V2> .

An optional function that combines the values from the source dictionaries to construct the values of the output dictionary. If such a function
has the (K,V1?,V2?) -> U  type, the result type is Dict<K,U> . If the function is not specified, the result type is Dict<K,Void> , and the
values from the source dictionaries are ignored.

Examples

SetDifference

Construct a dictionary containing all the keys with their values in the first dictionary with no matching key in the second dictionary.

Examples

SetSymmetricDifference

Construct a symmetric difference between two dictionaries based on keys.

Arguments:

Two dictionaries: Dict<K,V1>  and Dict<K,V2> .

An optional function that combines the values from the source dictionaries to construct the values of the output dictionary. If such a function
has the (K,V1?,V2?) -> U  type, the result type is Dict<K,U> . If the function is not specified, the result type is Dict<K,Void> , and the
values from the source dictionaries are ignored.

SELECT SetIntersection(ToSet(AsList(1, 2, 3)), ToSet(AsList(3, 4))); -- { 3 }
SELECT SetIntersection(
    AsDict(AsTuple(1, "foo"), AsTuple(3, "bar")),
    AsDict(AsTuple(1, "baz"), AsTuple(2, "qwe")),
    ($k, $a, $b) -> { RETURN AsTuple($a, $b) });
-- { 1 : ("foo", "baz") }

SELECT SetIncludes(ToSet(AsList(1, 2, 3)), AsList(3, 4)); -- false
SELECT SetIncludes(ToSet(AsList(1, 2, 3)), ToSet(AsList(2, 3))); -- true

SELECT SetUnion(ToSet(AsList(1, 2, 3)), ToSet(AsList(3, 4))); -- { 1, 2, 3, 4 }
SELECT SetUnion(
    AsDict(AsTuple(1, "foo"), AsTuple(3, "bar")),
    AsDict(AsTuple(1, "baz"), AsTuple(2, "qwe")),
    ($k, $a, $b) -> { RETURN AsTuple($a, $b) });
-- { 1 : ("foo", "baz"), 2 : (null, "qwe"), 3 : ("bar", null) }

SELECT SetDifference(ToSet(AsList(1, 2, 3)), ToSet(AsList(3, 4))); -- { 1, 2 }
SELECT SetDifference(
    AsDict(AsTuple(1, "foo"), AsTuple(2, "bar")),
    ToSet(AsList(2, 3)));
-- { 1 : "foo" }

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict_examples11
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict_setincludes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict_examples12
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict_setunion
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict_examples13
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict_setdifference
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict_examples14
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict_setsymmetricdifference


Examples

SELECT SetSymmetricDifference(ToSet(AsList(1, 2, 3)), ToSet(AsList(3, 4))); -- { 1, 2, 4 }
SELECT SetSymmetricDifference(
    AsDict(AsTuple(1, "foo"), AsTuple(3, "bar")),
    AsDict(AsTuple(1, "baz"), AsTuple(2, "qwe")),
    ($k, $a, $b) -> { RETURN AsTuple($a, $b) });
-- { 2 : (null, "qwe"), 3 : ("bar", null) }

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict_examples15


Functions for structures

TryMember

Trying to get a field from the structure. If it's not found among the fields or null in the structure value, use the default value.

Arguments:

1. Structure.

2. Field name.

3. Default value.

ExpandStruct

Adding one or more new fields to the structure.

If the field set contains duplicate values, an error is returned.

Arguments:

The first argument passes the source structure to be expanded.

All the other arguments must be named, each argument adds a new field and the argument's name is used as the field's name (as in
AsStruct).

Examples

AddMember

Adding one new field to the structure. If you need to add multiple fields, better use ExpandStruct.

If the field set contains duplicate values, an error is returned.

Arguments:

1. Source structure.

2. Name of the new field.

3. Value of the new field.

Examples

RemoveMember

Removing a field from the structure.

$struct = <|a:1|>;
SELECT
  TryMember(
    $struct,
    "a",
    123
  ) AS a, -- 1
  TryMember(
    $struct,
    "b",
    123
  ) AS b; -- 123

$struct = <|a:1|>;
SELECT
  ExpandStruct(
    $struct,
    2 AS b,
    "3" AS c
  ) AS abc;

$struct = <|a:1|>;
SELECT
  AddMember(
    $struct,
    "b",
    2
  ) AS ab;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct_trymember
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct_expandstruct
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct_addmember
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct_examples1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct_removemember
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_asstruct
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct_expandstruct


If the entered field hasn't existed, an error is returned.

Arguments:

1. Source structure.

2. Field name.

Examples

ForceRemoveMember

Removing a field from the structure.

If the entered field hasn't existed, unlike RemoveMember, the error is not returned.

Arguments:

1. Source structure.
2. Field name.

Examples

ChooseMembers

Selecting fields with specified names from the structure.

If any of the fields haven't existed, an error is returned.

Arguments:

1. Source structure.

2. List of field names.

Examples

RemoveMembers

Excluding fields with specified names from the structure.

If any of the fields haven't existed, an error is returned.

Arguments:

1. Source structure.

2. List of field names.

Examples

$struct = <|a:1, b:2|>;
SELECT
  RemoveMember(
    $struct,
    "b"
  ) AS a;

$struct = <|a:1, b:2|>;
SELECT
  ForceRemoveMember(
    $struct,
    "c"
  ) AS ab;

$struct = <|a:1, b:2, c:3|>;
SELECT
  ChooseMembers(
    $struct,
    ["a", "b"]
  ) AS ab;

$struct = <|a:1, b:2, c:3|>;
SELECT
  RemoveMembers(
    $struct,

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct_examples2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct_forceremovemember
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct_examples3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct_choosemembers
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct_examples4
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct_removemembers
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct_examples5
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct_removemember


ForceRemoveMembers

Excluding fields with specified names from the structure.

If any of the fields haven't existed, it is ignored.

Arguments:

1. Source structure.

2. List of field names.

Examples

CombineMembers

Combining the fields from multiple structures into a new structure.

If the resulting field set contains duplicate values, an error is returned.

Arguments: two or more structures.

Examples

FlattenMembers

Combining the fields from multiple new structures into another new structure with prefix support.

If the resulting field set contains duplicate values, an error is returned.

Arguments: two or more tuples of two items: prefix and structure.

Examples

StructMembers

Returns an unordered list of field names (possibly removing one Optional level) for a single argument that is a structure. For the NULL  argument,
an empty list of strings is returned.

Argument: structure

Examples

    ["a", "b"]
  ) AS c;

$struct = <|a:1, b:2, c:3|>;
SELECT
  ForceRemoveMembers(
    $struct,
    ["a", "b", "z"]
  ) AS c;

$struct1 = <|a:1, b:2|>;
$struct2 = <|c:3|>;
SELECT
  CombineMembers(
    $struct1,
    $struct2
  ) AS abc;

$struct1 = <|a:1, b:2|>;
$struct2 = <|c:3|>;
SELECT
  FlattenMembers(
    AsTuple("foo", $struct1), -- fooa, foob
    AsTuple("bar", $struct2)  -- barc
  ) AS abc;

$struct = <|a:1, b:2|>;
SELECT
  StructMembers($struct); -- ['a', 'b']

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct_forceremovemembers
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct_examples6
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct_combinemembers
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct_examples7
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct_flattenmembers
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct_examples8
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct_structmembers
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct_examples9


RenameMembers

Renames the fields in the structure passed. In this case, you can rename a source field into multiple target fields. All fields not mentioned in the
renaming as source names are moved to the result structure. If some source field is omitted in the rename list, an error is returned. For an Optional
structure or NULL , the result has the same type.

Arguments:

1. Source structure.

2. A tuple of field names: the original name, the new name.

Examples

ForceRenameMembers

Renames the fields in the structure passed. In this case, you can rename a source field into multiple target fields. All fields not mentioned in the
renaming as source names are moved to the result structure. If some source field is omitted in the rename list, the name is ignored. For an Optional
structure or NULL , the result has the same type.

Arguments:

1. Source structure.
2. A tuple of field names: the original name, the new name.

Examples

GatherMembers

Returns an unordered list of tuples including the field name and value. For the NULL  argument, EmptyList  is returned. It can be used only in the
cases when the types of items in the structure are the same or compatible. Returns an optional list for an optional structure.

Argument: structure

Examples

SpreadMembers

Creates a structure with a specified list of fields and applies a specified list of edits to it in the format (field name, field value). All types of fields in
the resulting structure are the same and equal to the type of values in the update list with added Optional (unless they are optional already). If the
field wasn't mentioned among the list of updated fields, it's returned as NULL . Among all updates for a field, the latest one is written. If the update
list is Optional or NULL , the result has the same type. If the list of edits includes a field that is not in the list of expected fields, an error is returned.

Arguments:

1. List of tuples: field name, field value.

2. A list of all possible field names in the structure.

Examples

ForceSpreadMembers

Creates a structure with a specified list of fields and applies to it the specified list of updates in the format (field name, field value). All types of fields
in the resulting structure are the same and equal to the type of values in the update list with added Optional (unless they are optional already). If the
field wasn't mentioned among the list of updated fields, it's returned as NULL . Among all updates for a field, the latest one is written. If the update
list is optional or equal to NULL , the result has the same type. If the list of updates includes a field that is not in the list of expected fields, this edit is
ignored.

$struct = <|a:1, b:2|>;
SELECT
  RenameMembers($struct, [('a', 'c'), ('a', 'e')]); -- (b:2, c:1, e:1)

$struct = <|a:1, b:2|>;
SELECT
  ForceRenameMembers($struct, [('a', 'c'), ('d', 'e')]); -- (b:2, c:1)

$struct = <|a:1, b:2|>;
SELECT
  GatherMembers($struct); -- [('a', 1), ('b', 2)]

SELECT
  SpreadMembers([('a',1),('a',2)],['a','b']); -- (a: 2, b: null)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct_renamemembers
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct_examples10
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct_forecerenamemembers
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct_examples11
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct_gathermembers
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct_examples12
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct_spreadmembers
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct_examples13
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct_forcespreadmembers


Arguments:

1. List of tuples: field name, field value.

2. A list of all possible field names in the structure.

Examples

StructUnion, StructIntersection, StructDifference, StructSymmetricDifference

Combine two structures using one of the four methods (using the provided lambda to merge fields with the same name):

StructUnion  adds all fields of both of the structures to the result.

StructIntersection  adds only the fields which are present in both of the structures.

StructDifference  adds only the fields of left , which are absent in right .

StructSymmetricDifference  adds all fields that are present in exactly one of the structures.

Signatures

Arguments:

1. left  - first structure.

2. right  - second structure.

3. mergeLambda  - (optional) function to merge fields with the same name (arguments: field name, Optional  field value of the first struct,
Optional  field value of the second struct - arguments are Nothing<T?>  in case of absence of the corresponding struct field). By default, if

present, the first structure's field value is used; otherwise, the second one's value is used.

Examples

SELECT
  ForceSpreadMembers([('a',1),('a',2),('c',100)],['a','b']); -- (a: 2, b: null)

StructUnion(left:Struct<...>, right:Struct<...>[, mergeLambda:(name:String, l:T1?, r:T2?)->T])->Struct<...>
StructIntersection(left:Struct<...>, right:Struct<...>[, mergeLambda:(name:String, l:T1?, r:T2?)->T])->Struct<...>
StructDifference(left:Struct<...>, right:Struct<...>)->Struct<...>
StructSymmetricDifference(left:Struct<...>, right:Struct<...>)->Struct<...>

$merge = ($name, $l, $r) -> {
    return ($l ?? 0) + ($r ?? 0);
};
$left = <|a: 1, b: 2, c: 3|>;
$right = <|c: 1, d: 2, e: 3|>;

SELECT
    StructUnion($left, $right),                 -- <|a: 1, b: 2, c: 3, d: 2, e: 3|>
    StructUnion($left, $right, $merge),         -- <|a: 1, b: 2, c: 4, d: 2, e: 3|>
    StructIntersection($left, $right, $merge),  -- <|c: 4|>
    StructDifference($left, $right),            -- <|a: 1, b: 1|>
    StructSymmetricDifference($left, $right)    -- <|a: 1, b: 2, d: 2, e: 3|>
;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct_examples14
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct_structunion,-structintersection,-structdifference,-structsymmetricdifference
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct_signatures
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_struct_examples15


Functions for data types

FormatType

Serializing a type or a handle type to a human-readable string. This helps at debugging and will also be used in the next examples of this section.
Documentation for the format.

ParseType

Building a type from a string with description. Documentation for its format.

Examples

TypeOf

Getting the type of value passed to the argument.

Examples

InstanceOf

Returns an instance of the specified type that can only be used to get the type of the result of an expression that uses this type.

If this instance remains in the computation graph by the end of optimization, the operation fails.

Examples

DataType

Returns a type for primitive data types based on type name.

Examples

OptionalType

Adds the option to assign NULL  to the passed type.

Examples

ListType and StreamType

Builds a list type or stream type based on the passed element type.

Examples

DictType

SELECT FormatType(ParseType("List<Int32>"));  -- List<int32>

SELECT FormatType(TypeOf("foo"));  -- String

SELECT FormatType(TypeOf(AsTuple(1, 1u))); -- Tuple<Int32,Uint32>

SELECT FormatType(TypeOf(
    InstanceOf(ParseType("Int32")) +
    InstanceOf(ParseType("Double"))
)); -- Double, because "Int32 + Double" returns Double

SELECT FormatType(DataType("Bool")); -- Bool
SELECT FormatType(DataType("Decimal","5","1")); -- Decimal(5,1)

SELECT FormatType(OptionalType(DataType("Bool"))); -- Bool?

SELECT FormatType(ListType(DataType("Bool"))); -- List<Bool>

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_formattype
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_parsetype
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_typeof
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_instanceof
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_datatype
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_optionaltype
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples4
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_listtype
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples5
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_dicttype
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_type_string
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_type_string
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_primitive


Builds a dictionary type based on the passed key types (first argument) and value types (second argument).

Examples

TupleType

Builds the tuple type from the passed element types.

Examples

StructType

Builds the structure type based on the passed element types. The standard syntax of named arguments is used to specify the element names.

Examples

VariantType

Returns the type of a variant based on the underlying type (structure or tuple).

Examples

ResourceType

Returns the type of the resource based on the passed string label.

Examples

CallableType

Constructs the type of the called value using the following arguments:

1. Number of optional arguments (if all arguments are required — 0).

2. Result type.

3. All the next arguments of CallableType are treated as types of arguments of the callable value, but with a shift for two required arguments (for
example, the third argument of the CallableType describes the type of the first argument in the callable value).

Examples

SELECT FormatType(DictType(
    DataType("String"),
    DataType("Double")
)); -- Dict<String,Double>

SELECT FormatType(TupleType(
    DataType("String"),
    DataType("Double"),
    OptionalType(DataType("Bool"))
)); -- Tuple<String,Double,Bool?>

SELECT FormatType(StructType(
    DataType("Bool") AS MyBool,
    ListType(DataType("String")) AS StringList
)); -- Struct<'MyBool':Bool,'StringList':List<String>>

SELECT FormatType(VariantType(
  ParseType("Struct<foo:Int32,bar:Double>")
)); -- Variant<'bar':Double,'foo':Int32>

SELECT FormatType(ResourceType("Foo")); -- Resource<'Foo'>

SELECT FormatType(CallableType(
  1, -- optional args count
  DataType("Double"), -- result type
  DataType("String"), -- arg #1 type
  OptionalType(DataType("Int64")) -- arg #2 type
)); -- Callable<(String,[Int64?])->Double>

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples6
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_tupletype
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples7
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_structtype
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples8
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_varianttype
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples9
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_resourcetype
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples10
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_callabletype
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples11
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_special


GenericType, UnitType, and VoidType

Return the same-name special data types. They have no arguments because they are not parameterized.

Examples

OptionalItemType, ListItemType and StreamItemType

If a type is passed to these functions, then they perform the action reverse to OptionalType, ListType, and StreamType: return the item type based
on its container type.

If a type handle is passed to these functions, then they perform the action reverse to OptionalTypeHandle, ListTypeHandle, and StreamTypeHandle:
they return the handle of the element type based on the type handle of its container.

Examples

DictKeyType and DictPayloadType

Returns the type of the key or value based on the dictionary type.

Examples

TupleElementType

Returns the tuple's element type based on the tuple type and the element index (index starts from zero).

Examples

StructMemberType

Returns the type of the structure element based on the structure type and element name.

Examples

CallableResultType and CallableArgumentType

CallableResultType  returns the result type based on the type of the called value. CallableArgumentType  returns the argument type based on
the called value type and its index (index starts from zero).

Examples

SELECT FormatType(VoidType()); -- Void

SELECT FormatType(ListItemType(
  ParseType("List<Int32>")
)); -- Int32

SELECT FormatType(ListItemType(
  ParseTypeHandle("List<Int32>")
)); -- Int32

SELECT FormatType(DictKeyType(
  ParseType("Dict<Int32,String>")
)); -- Int32

SELECT FormatType(TupleElementType(
  ParseType("Tuple<Int32,Double>"), "1"
)); -- Double

SELECT FormatType(StructMemberType(
  ParseType("Struct<foo:Int32,bar:Double>"), "foo"
)); -- Int32

$callable_type = ParseType("(String,Bool)->Double");

SELECT FormatType(CallableResultType(
    $callable_type

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_generictype
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples12
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_optionalitemtype
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples13
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_dictkeytype
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples14
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_tupleelementtype
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples15
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_structmembertype
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples16
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_callableresulttype
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples17
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_special
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_optionaltype
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_listtype
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_listtype
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_optionaltypehandle
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_list-stream-typehandle
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_list-stream-typehandle


VariantUnderlyingType

If a type is passed to this function, then it an action reverse to VariantType: it returns the underlying type based on the variant type.

If a type handle is passed to this function, it performs the action reverse to VariantTypeHandle: returns the handle of the underlying type based on
the handle of the variant type.

Examples

Functions for data types during calculations

To work with data types during calculations, use handle types: these are resources that contain an opaque type definition. After constructing the
type handle, you can revert to the regular type using the EvaluateType function. For debug purposes, you can convert a handle type to a string
using the FormatType function.

TypeHandle

Getting a type handle from the type passed to the argument.

Examples

EvaluateType

Getting the type from the type handle passed to the argument. The function is evaluated before the start of the main calculation, as well as
EvaluateExpr.

Examples

ParseTypeHandle

Building a type handle from a string with description. Documentation for its format.

Examples

TypeKind

Getting the top-level type name from the type handle passed to the argument.

Examples

)), -- Double
FormatType(CallableArgumentType(
    $callable_type, 1
)); -- Bool

SELECT FormatType(VariantUnderlyingType(
  ParseType("Variant<foo:Int32,bar:Double>")
)), -- Struct<'bar':Double,'foo':Int32>
FormatType(VariantUnderlyingType(
  ParseType("Variant<Int32,Double>")
)); -- Tuple<Int32,Double>

SELECT FormatType(VariantUnderlyingType(
  ParseTypeHandle("Variant<foo:Int32,bar:Double>")
)), -- Struct<'bar':Double,'foo':Int32>
FormatType(VariantUnderlyingType(
  ParseTypeHandle("Variant<Int32,Double>")
)); -- Tuple<Int32,Double>

SELECT FormatType(TypeHandle(TypeOf("foo")));  -- String

SELECT FormatType(EvaluateType(TypeHandle(TypeOf("foo"))));  -- String

SELECT FormatType(ParseTypeHandle("List<Int32>"));  -- List<int32>

SELECT TypeKind(TypeHandle(TypeOf("foo")));  -- Data
SELECT TypeKind(ParseTypeHandle("List<Int32>"));  -- List

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_variantunderlyingtype
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples18
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_functions-for-data-types-during-calculations
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_typehandle
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples19
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_evaluatetype
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples20
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_parsetypehandle
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples21
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_typekind
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples22
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_varianttype
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_varianttypehandle
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_special
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_evaluatetype
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_formattype
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_evaluate_expr_atom
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_type_string


DataTypeComponents

Getting the name and parameters for a primitive data type from the primitive type handle passed to the argument. Reverse function:
DataTypeHandle.

Examples

DataTypeHandle

Constructing a handle for a primitive data type from its name and parameters passed to the argument as a list. Reverse function:
DataTypeComponents.

Examples

OptionalTypeHandle

Adds the option to assign NULL  to the passed type handle.

Examples

PgTypeName

Getting the name of the PostgreSQL type from the type handle passed to the argument. Inverse function: PgTypeHandle.

Examples

PgTypeHandle

Builds a type handle based on the passed name of the PostgreSQL type. Inverse function: PgTypeName.

Examples

ListTypeHandle and StreamTypeHandle

Builds a list type handle or stream type handle based on the passed element type handle.

Examples

EmptyListTypeHandle and EmptyDictTypeHandle

Constructs a handle for an empty list or dictionary.

Examples

SELECT DataTypeComponents(TypeHandle(TypeOf("foo")));  -- ["String"]
SELECT DataTypeComponents(ParseTypeHandle("Decimal(4,1)"));  -- ["Decimal", "4", "1"]

SELECT FormatType(DataTypeHandle(
    AsList("String")
)); -- String

SELECT FormatType(DataTypeHandle(
    AsList("Decimal", "4", "1")
)); -- Decimal(4,1)

SELECT FormatType(OptionalTypeHandle(
    TypeHandle(DataType("Bool"))
)); -- Bool?

SELECT PgTypeName(ParseTypeHandle("pgint4")); -- int4

SELECT FormatType(PgTypeHandle("int4")); -- pgint4

SELECT FormatType(ListTypeHandle(
    TypeHandle(DataType("Bool"))
)); -- List<Bool>

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_datatypecomponents
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples23
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_datatypehandle
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples24
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_optionaltypehandle
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples25
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_pgtypename
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples26
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_pgtypehandle
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples27
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_list-stream-typehandle
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples28
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_emptylisttypehandle-and-emptydicttypehandle
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples29
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_primitive
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_datatypehandle
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_primitive
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_datatypecomponents
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_pgtypehandle
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_pgtypename


TupleTypeComponents

Getting a list of element type handles from the tuple type handle passed to the argument. Inverse function: TupleTypeHandle.

Examples

TupleTypeHandle

Building a tuple type handle from handles of element types passed as a list to the argument. Inverse function: TupleTypeComponents.

Examples

StructTypeComponents

Getting a list of element type handles and their names from the structure type handle passed to the argument. Inverse function: StructTypeHandle.

Examples

StructTypeHandle

Building a structure type handle from handles of element types and names passed as a list to the argument. Inverse function:
StructTypeComponents.

Examples

DictTypeComponents

Getting a key-type handle and a value-type handle from the dictionary-type handle passed to the argument. Inverse function: DictTypeHandle.

SELECT FormatType(EmptyListTypeHandle()); -- EmptyList

SELECT ListMap(
   TupleTypeComponents(
       ParseTypeHandle("Tuple<Int32, String>")
   ),
   ($x)->{
       return FormatType($x)
   }
); -- ["Int32", "String"]

SELECT FormatType(
    TupleTypeHandle(
        AsList(
            ParseTypeHandle("Int32"),
            ParseTypeHandle("String")
        )
    )
); -- Tuple<Int32,String>

SELECT ListMap(
    StructTypeComponents(
        ParseTypeHandle("Struct<a:Int32, b:String>")
    ),
    ($x) -> {
        return AsTuple(
            FormatType($x.Type),
            $x.Name
        )
    }
); -- [("Int32","a"), ("String","b")]

SELECT FormatType(
    StructTypeHandle(
        AsList(
            AsStruct(ParseTypeHandle("Int32") as Type,"a" as Name),
            AsStruct(ParseTypeHandle("String") as Type, "b" as Name)
        )
    )
); -- Struct<'a':Int32,'b':String>

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_tupletypecomponents
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples30
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_tupletypehandle
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples31
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_structtypecomponents
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples32
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_structtypehandle
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples33
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_dicttypecomponents
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_tupletypehandle
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_tupletypecomponents
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_structtypehandle
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_structtypecomponents
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_dicttypehandle


Examples

DictTypeHandle

Building a dictionary-type handle from a key-type handle and a value-type handle passed to arguments. Inverse function: DictTypeComponents.

Examples

ResourceTypeTag

Getting the tag from the resource type handle passed to the argument. Inverse function: ResourceTypeHandle.

Examples

ResourceTypeHandle

Building a resource-type handle from the tag value passed to the argument. Inverse function: ResourceTypeTag.

Examples

TaggedTypeComponents

Getting the tag and the basic type from the decorated type handle passed to the argument. Inverse function: TaggedTypeHandle.

Examples

TaggedTypeHandle

Constructing a decorated type handle based on the base type handle and the tag name passed in arguments. Inverse function:
TaggedTypeComponents.

Examples

VariantTypeHandle

Building a variant-type handle from the handle of the underlying type passed to the argument. Inverse function: VariantUnderlyingType.

Examples

$d = DictTypeComponents(ParseTypeHandle("Dict<Int32,String>"));

SELECT
    FormatType($d.Key),     -- Int32
    FormatType($d.Payload); -- String

SELECT FormatType(
    DictTypeHandle(
        ParseTypeHandle("Int32"),
        ParseTypeHandle("String")
    )
); -- Dict<Int32, String>

SELECT ResourceTypeTag(ParseTypeHandle("Resource<foo>")); -- foo

SELECT FormatType(ResourceTypeHandle("foo")); -- Resource<'foo'>

$t = TaggedTypeComponents(ParseTypeHandle("Tagged<Int32,foo>"));

SELECT FormatType($t.Base), $t.Tag; -- Int32, foo

SELECT FormatType(TaggedTypeHandle(
    ParseTypeHandle("Int32"), "foo"
)); -- Tagged<Int32, 'foo'>

SELECT FormatType(VariantTypeHandle(
    ParseTypeHandle("Tuple<Int32, String>")

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples34
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_dicttypehandle
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples35
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_resourcetypetag
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples36
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_resourcetypehandle
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples37
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_taggedtypecomponents
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples38
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_taggedtypehandle
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples39
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_varianttypehandle
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples40
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_dicttypecomponents
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_resourcetypehandle
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_resourcetypetag
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_taggedtypehandle
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_taggedtypecomponents
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_variantunderlyingtype


VoidTypeHandle and NullTypeHandle

Constructing a handle for Void and Null types, respectively.

Examples

CallableTypeComponents

Getting the handle description for the type of callable value passed to the argument. Inverse function: CallableTypeHandle.

Examples

CallableArgument

Packing the description of the argument of the callable value into the structure to be passed to the CallableTypeHandle function with the following
arguments:

1. Argument type handle.

2. Optional argument name. The default value is an empty string.

3. A list of strings with optional argument flags. The default value is an empty list. Supported flags are "AutoMap".

CallableTypeHandle

Constructing the type handle of the called value using the following arguments:

1. Handle of the return value type.

2. List of descriptions of arguments received using the CallableArgument function.

3. Optional number of optional arguments in the callable value. The default value is 0.

4. An optional label for the called value type. The default value is an empty string.

Inverse function: CallableTypeComponents.

Examples

)); -- Variant<Int32, String>

SELECT FormatType(VoidTypeHandle()); -- Void
SELECT FormatType(NullTypeHandle()); -- Null

$formatArgument = ($x) -> {
    return AsStruct(
        FormatType($x.Type) as Type,
        $x.Name as Name,
        $x.Flags as Flags
    )
};

$formatCallable = ($x) -> {
    return AsStruct(
        $x.OptionalArgumentsCount as OptionalArgumentsCount,
        $x.Payload as Payload,
        FormatType($x.Result) as Result,
        ListMap($x.Arguments, $formatArgument) as Arguments
    )
};

SELECT $formatCallable(
    CallableTypeComponents(
        ParseTypeHandle("(Int32,[bar:Double?{Flags:AutoMap}])->String")
    )
);  -- (OptionalArgumentsCount: 1, Payload: "", Result: "String", Arguments: [
    --   (Type: "Int32", Name: "", Flags: []),
    --   (Type: "Double?", Name: "bar", Flags: ["AutoMap"]),
    -- ])

SELECT FormatType(
    CallableTypeHandle(
        ParseTypeHandle("String"),
        AsList(
            CallableArgument(ParseTypeHandle("Int32")),
            CallableArgument(ParseTypeHandle("Double?"), "bar", AsList("AutoMap"))
        ),

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_voidtypehandle-and-nulltypehandle
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples41
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_callabletypecomponents
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples42
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_callableargument
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_callabletypehandle
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples43
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_callabletypehandle
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_callabletypehandle
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_callableargument
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_callabletypecomponents


LambdaArgumentsCount

Getting the number of arguments in a lambda function.

Examples

        1
    )
);  -- Callable<(Int32,['bar':Double?{Flags:AutoMap}])->String>

SELECT LambdaArgumentsCount(($x, $y)->($x+$y))
; -- 2

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_lambdaargumentscount
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_types_examples44


Functions for code generation
When running calculations, you can generate the code including S-expressions nodes. This uses a mechanism for packing the code in the
resource. After building the code, you can insert it into the main program using the EvaluateCode function. For debugging purposes, you can
convert the code to a string using the FormatCode function.

Possible node types in S-expressions that can be used for code generation:

An atom is an untyped string of zero or more characters.

A list is a sequence of zero or more nodes. It corresponds to the tuple  type in SQL.

A call of a built-in function consists of a name expressed by an atom and a sequence of zero or more nodes that are arguments to this
function.

Lambda function declaration consists of declaring the names of arguments and a node that is the root of the body for this lambda function.

The lambda function argument is a node that can only be used inside the body of the lambda function.

World is a special node that labels I/O operations.

The S-expressions nodes form a directed graph. Atoms are always leaf nodes, because they cannot contain child nodes.

In the text representation, S-expressions have the following format:

Atom: '"foo" . The apostrophe character (') denotes quoting of the next line that is usually enclosed in quotation marks.

List: '("foo" "bar") . The apostrophe character (') denotes that there will be no function call in parentheses.

Calling the built-in function: (foo "bar") . The first item inside the brackets is the mandatory name of the function followed by the function
arguments.

Declaring a lambda function: (lambda '(x y) (+ x y)) . The lambda  keyword is followed by a list of argument names and then by the
body of the lambda function.

The lambda function argument is x . Unlike an atom, a string without an apostrophe character (') references a name in the current scope.
When declaring a lambda function, the names of arguments are added to the body's visibility scope, and, if needed, the name is hidden from
the global scope.

The world .

FormatCode

Serializing the code as S-expressions. The code must not contain free arguments of functions, hence, to serialize the lambda function code, you
must pass it completely, avoiding passing individual expressions that might contain lambda function arguments.

Examples

WorldCode

Build a code node with the world  type.

Examples

AtomCode

Build a code node with the atom  type from a string passed to the argument.

Examples

ListCode

Build a code node with the list  type from a set of nodes or lists of code nodes passed to arguments. In this case, lists of arguments are built in
as separately listed code nodes.

SELECT FormatCode(AtomCode("foo"));
-- (
-- (return '"foo")
-- )

SELECT FormatCode(WorldCode());
-- (
-- (return world)
-- )

SELECT FormatCode(AtomCode("foo"));
-- (
-- (return '"foo")
-- )

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_codegen
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_codegen_formatcode
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_codegen_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_codegen_worldcode
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_codegen_examples1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_codegen_atomcode
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_codegen_examples2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_codegen_listcode
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_docs_s_expressions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_special
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_codegen_evaluatecode
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_codegen_formatcode
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_docs_s_expressions


Examples

FuncCode

Build a code node with the built-in function call  from a string with the function name and a set of nodes or lists of code nodes passed to
arguments. In this case, lists of arguments are built in as separately listed code nodes.

Examples

LambdaCode

You can build a code node with the lambda function declaration  type from:

a Lambda function, if you know the number of arguments in advance. In this case, the nodes of the argument  type will be passed as
arguments to this lambda function.

The number of arguments and a lambda function with one argument. In this case, a list of nodes of the argument type will be passed as an
argument to this lambda function.

Examples

EvaluateCode

Substituting the code node passed in the argument, into the main program code.

Examples

SELECT FormatCode(ListCode(
    AtomCode("foo"),
    AtomCode("bar")));
-- (
-- (return '('"foo" '"bar"))
-- );

SELECT FormatCode(ListCode(AsList(
    AtomCode("foo"),
    AtomCode("bar"))));
-- (
-- (return '('"foo" '"bar"))
-- )

SELECT FormatCode(FuncCode(
    "Baz",
    AtomCode("foo"),
    AtomCode("bar")));
-- (
-- (return (Baz '"foo" '"bar"))
-- )

SELECT FormatCode(FuncCode(
    "Baz",
    AsList(
        AtomCode("foo"),
        AtomCode("bar"))));
-- (
-- (return (Baz '"foo" '"bar"))
-- )

SELECT FormatCode(LambdaCode(($x, $y) -> {
    RETURN FuncCode("+", $x, $y);
}));
-- (
-- (return (lambda '($1 $2) (+ $1 $2)))
-- )

SELECT FormatCode(LambdaCode(2, ($args) -> {
    RETURN FuncCode("*", Unwrap($args[0]), Unwrap($args[1]));
}));
-- (
-- (return (lambda '($1 $2) (* $1 $2)))
-- )

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_codegen_examples3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_codegen_funccode
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_codegen_examples4
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_codegen_lambdacode
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_codegen_examples5
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_codegen_evaluatecode
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_codegen_examples6
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_lambda
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_lambda


ReprCode

Substituting the code node representing the result of evaluating an expression passed in the argument, into the main program.

Examples

QuoteCode

Substituting into the main program the code node that represents an expression or a lambda function passed in the argument. If free arguments of
lambda functions were found during the substitution, they are calculated and substituted into the code as in the ReprCode function.

Examples

SELECT EvaluateCode(FuncCode("Int32", AtomCode("1"))); -- 1

$lambda = EvaluateCode(LambdaCode(($x, $y) -> {
    RETURN FuncCode("+", $x, $y);
}));
SELECT $lambda(1, 2); -- 3

$add3 = EvaluateCode(LambdaCode(($x) -> {
    RETURN FuncCode("+", $x, ReprCode(1 + 2));
}));
SELECT $add3(1); -- 4

$lambda = ($x, $y) -> { RETURN $x + $y };
$makeClosure = ($y) -> {
    RETURN EvaluateCode(LambdaCode(($x) -> {
        RETURN FuncCode("Apply", QuoteCode($lambda), $x, ReprCode($y))
    }))
};

$closure = $makeClosure(2);
SELECT $closure(1); -- 3

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_codegen_reprcode
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_codegen_examples7
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_codegen_quotecode
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_codegen_examples8
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_lambda
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_codegen_reprcode


Functions for JSON
JSON is a lightweight data-interchange format. In YQL, it's represented by the Json  type. Unlike relational tables, JSON can store data with no
schema defined. Here is an example of a valid JSON object:

Despite the fact that the age  field in the first object is of the Number  type ( "age": 21 ) and in the second object its type is String  ( "age": 
"twenty years old" ), this is a fully valid JSON object.

To work with JSON, YQL implements a subset of the SQL support for JavaScript Object Notation (JSON) standard, which is part of the common
ANSI SQL standard.

JsonPath

Values inside JSON objects are accessed using a query language called JsonPath. All functions for JSON accept a JsonPath query as an
argument.

Let's look at an example. Suppose we have a JSON object like:

Then, to get the text of the second comment, we can write the following JsonPath query:

In this query:

1. $  is a way to access the entire JSON object.

2. $.comments  accesses the comments  key of the JSON object.

3. $.comments[1]  accesses the second element of the JSON array (element numbering starts from 0).

4. $.comments[1].text  accesses the text  key of the JSON object.

5. Query execution result: "My life has become a single, ongoing revelation that I haven’t been cynical enough."

Quick reference

[
    {
        "name": "Jim Holden",
        "age": 30
    },
    {
        "name": "Naomi Nagata",
        "age": "twenty years old"
    }
]

{
    "comments": [
        {
            "id": 123,
            "text": "A whisper will do, if it's all that you can manage."
        },
        {
            "id": 456,
            "text": "My life has become a single, ongoing revelation that I haven’t been cynical enough."
        }
    ]
}

$.comments[1].text

Operation Example

Retrieving a JSON object key $.key

Retrieving all JSON object keys $.*

Accessing an array element $[25]

Retrieving an array subsegment $[2 to 5]

Accessing the last array element $[last]

Accessing all array elements $[*]

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_jsonpath
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_quick-reference
https://www.json.org/
https://www.iso.org/standard/67367.html


Data model

The result of executing all JsonPath expressions is a sequence of JSON values. For example:

The result of executing the "Bobbie"  expression is a sequence with the only element "Bobbie" . Its length is 1.

The result of executing the $  expression (that takes the entire JSON object) in JSON [1, 2, 3]  is [1, 2, 3] . A sequence of 1 element of
the array [1, 2, 3]

The result of executing the $[*]  expression (retrieving all array elements) in JSON [1, 2, 3]  is 1, 2, 3 . A sequence of three items: 1 ,
2 , and 3

If the input sequence consists of multiple values, some operations are performed for each element (for example, accessing a JSON object key).
However, other operations require a sequence of one element as input (for example, binary arithmetic operations).

The behavior of a specific operation is described in the corresponding section of the documentation.

Execution mode

JsonPath supports two execution modes, lax  and strict . Setting the mode is optional. By default, lax . The mode is specified at the beginning
of a query. For example, strict $.key .

The behavior for each mode is described in the corresponding sections with JsonPath operations.

Auto unpacking of arrays

When accessing a JSON object key in lax  mode, arrays are automatically unpacked.

Example

The lax $.key  query is successful and returns 123, 456 . As $  is an array, it's automatically unpacked and accessing the key of the $.key
JSON object is executed for each element in the array.

[
    {
        "key": 123
    },
    {
        "key": 456
    }
]

Unary operations - 1

Binary operations (12 * 3) % 4 + 8

Accessing a variable $variable

Logical operations `(1 > 2) || (3 <= 4) && ("string" == "another")|

Matching a regular expression $.name like_regex "^[A-Za-z]+$"

Checking the string prefix $.name starts with "Bobbie"

Checking if a path exists exists ($.profile.name)

Checking a Boolean expression for null ($.age > 20) is unknown

Filtering values $.friends ? (@.age >= 18 && @.gender == "male")

Getting the value type $.name.type()

Getting the array size $.friends.size()

Converting a string to a number $.number.double()

Rounding up a number $.number.ceiling()

Rounding down a number $.number.floor()

Returning the absolute value $.number.abs()

Getting key-value pairs from an object $.profile.keyvalue()

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_data-model
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_execution-mode
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_auto-unpacking-of-arrays
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_example


The strict $.key  query returns an error. In strict  mode, there is no support for auto unpacking of arrays. Since $  is an array and not an
object, accessing the $.key  object key is impossible. You can fix this by writing strict $[*].key .

Unpacking is only 1 level deep. In the event of nested arrays, only the outermost one is unpacked.

Wrapping values in arrays

When accessing an array element in lax  mode, JSON values are automatically wrapped in an array.

Example

The lax $[0].name  query is successful and returns "Avasarala" . As $  isn't an array, it's automatically wrapped in an array of length 1.
Accessing the first element $[0]  returns the source JSON object where the name  key is taken.

The strict $[0].name  query returns an error. In strict  mode, values aren't wrapped in an array automatically. Since $  is an object and not
an array, accessing the $[0]  element is impossible. You can fix this by writing strict $.name .

Handling errors

Some errors are converted to an empty result when a query is executed in lax  mode.

Literals

Values of some types can be specified in a JsonPath query using literals:

Accessing JSON object keys

JsonPath supports accessing JSON object keys, such as $.session.user.name .

Note

Accessing keys without quotes is only supported for keys that start with an English letter or underscore and only contain English
letters, underscores, numbers, and a dollar sign. Use quotes for all other keys. For example, $.profile."this string has spaces"
or $.user."42 is the answer"

For each value from the input sequence:

1. If the value is an array, it's automatically unpacked in lax  mode.

2. If the value isn't a JSON object or if it is and the specified key is missing from this JSON object, a query executed in strict  mode fails. In
lax  mode, an empty result is returned for this value.

The expression execution result is the concatenation of the results for each value from the input sequence.

Example

{
    "name": "Avasarala"
}

{
    "name": "Amos",
    "friends": [
        {
            "name": "Jim"
        },
        {
            "name": "Alex"
        }

Type Example

Numbers 42 , -1.23e-5

Boolean values false , true

Null Null

Stings "Belt"

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_wrapping-values-in-arrays
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_example1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_handling-errors
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_literals
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_accessing-json-object-keys
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_example2


Accessing all JSON object keys

JsonPath supports accessing all JSON object keys at once: $.* .

For each value from the input sequence:

1. If the value is an array, it's automatically unpacked in lax  mode.

2. If the value isn't a JSON object, a query executed in strict  mode fails. In lax  mode, an empty result is returned for this value.

The expression execution result is the concatenation of the results for each value from the input sequence.

Example

Accessing an array element

JsonPath supports accessing array elements: $.friends[1, 3 to last - 1] .

For each value from the input sequence:

1. If the value isn't an array, a query executed in strict  mode fails. In lax  mode, values are automatically wrapped in an array.

2. The last  keyword is replaced with the array's last index. Using last  outside of accessing the array is an error in both modes.

3. The specified indexes are calculated. Each of them must be a single number, otherwise the query fails in both modes.

4. If the index is a fractional number, it's rounded down.

5. If the index goes beyond the array boundaries, the query executed in strict  mode fails. In lax  mode, this index is ignored.

6. If a segment is specified and its start index is greater than the end index (for example, $[20 to 1] ), the query fails in strict  mode. In
lax  mode, this segment is ignored.

7. All elements by the specified indexes are added to the result. Segments include both ends.

Examples

    ]
}

{
    "profile": {
        "id": 123,
        "name": "Amos"
    },
    "friends": [
        {
            "name": "Jim"
        },
        {
            "name": "Alex"
        }
    ]
}

[
    {
        "name": "Camina",
        "surname": "Drummer"
    },
    {
        "name": "Josephus",

lax strict

$.name "Amos" "Amos"

$.surname Empty result Error

$.friends.name "Jim", "Alex" Error

lax strict

$.profile.* 123, "Amos" 123, "Amos"

$.friends.* "Jim", "Alex" Error

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_accessing-all-json-object-keys
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_example3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_accessing-an-array-element
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_examples


Accessing all array elements

JsonPath supports accessing all array elements at once: $[*] .

For each value from the input sequence:

1. If the value isn't an array, a query executed in strict  mode fails. In lax  mode, values are automatically wrapped in an array.

2. All elements of the current array are added to the result.

Examples

Let's analyze the last example step by step:

1. $[0]  returns the first element of the array, that is {"class": "Station", "title": "Medina"}

2. $[0][*]  expects an array for input, but an object was input instead. It's automatically wrapped in an array as [ {"class": "Station", 
"title": "Medina"} ]

3. Now, $[0][*]  can be executed and returns all elements of the array, that is {"class": "Station", "title": "Medina"}

4. $[0][*].class  returns the class  field value: "Station" .

Arithmetic operations

Note

All arithmetic operations work with numbers as with Double. Calculations are made with potential loss of accuracy.

Unary operations

JsonPath supports unary +  and - .

        "surname": "Miller"
    },
    {
        "name": "Bobbie",
        "surname": "Draper"
    },
    {
        "name": "Julie",
        "surname": "Mao"
    }
]

[
    {
        "class": "Station",
        "title": "Medina"
    },
    {
        "class": "Corvette",
        "title": "Rocinante"
    }
]

lax strict

$[0].name "Camina" "Camina"

$[1, 2 to 3].name "Josephus", "Bobbie", "Julie" "Josephus", "Bobbie", "Julie"

$[last - 2].name "Josephus" "Josephus"

$[2, last + 200 to 50].name "Bobbie" Error

$[50].name Empty result Error

lax strict

$[*].title "Medina", "Rocinante" "Medina", "Rocinante"

lax $[0][*].class "Station" Error

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_accessing-all-array-elements
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_examples1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_arithmetic-operations
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_unary-operations
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html


A unary operation applies to all values from the input sequence. If a unary operation's input is a value that isn't a number, a query fails in both
modes.

Example

The strict -$[*]  query is successful and returns -1, -2, -3, -4 .

The lax -$  query fails as $  is an array and not a number.

Binary operations

JsonPath supports binary arithmetic operations (in descending order of priority):

1. Multiplication * , dividing floating-point numbers / , and taking the remainder %  (works as the MOD  function in SQL ).

2. Addition + , subtraction - .

You can change the order of operations using parentheses.

If each argument of a binary operation is not a single number or a number is divided by 0, the query fails in both modes.

Examples

(1 + 2) * 3  returns 9

1 / 2  returns 0.5

5 % 2  returns 1

1 / 0  fails

If JSON is [-32.4, 5.2] , the $[0] % $[1]  query returns -1.2

If JSON is [1, 2, 3, 4] , the lax $[*] + $[*]  query fails as the $[*]  expression execution result is 1, 2, 3, 4 , that is multiple
numbers. A binary operation only requires one number for each of its arguments.

Boolean values

Unlike some other programming languages, Boolean values in JsonPath are not only true  and false , but also null  (uncertainty).

JsonPath considers any values received from a JSON document to be non-Boolean. For example, a query like ! $.is_valid_user  (a logical
negation applied to the is_valid_user ) field is syntactically invalid because the is_valid_user  field value is not Boolean (even when it actually
stores true  or false ). The correct way to write this kind of query is to explicitly use a comparison with a Boolean value, such as
$.is_valid_user == false .

Logical operations

JsonPath supports some logical operations for Boolean values.

The arguments of any logical operation must be a single Boolean value.
All logical operations return a Boolean value.

Logical negation, !

Truth table:

Logical AND, &&

In the truth table, the first column is the left argument, the first row is the right argument, and each cell is the result of using the Logical AND both
with the left and right arguments:

[1, 2, 3, 4]

x !x

true false

false true

Null Null

&& true false Null

true true false Null

false false false false

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_example4
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_binary-operations
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_examples2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_boolean-values
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_logical-operations
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_logical-negation,
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_logical-and,-andand


Logical OR, ||

In the truth table, the first column is the left argument, the first row is the right argument, and each cell is the result of using the logical OR with both
the left and right arguments:

Examples

! (true == true) , the result is false

(true == true) && (true == false) , the result is false

(true == true) || (true == false) , the result is true

Comparison operators

JsonPath implements comparison operators for values:

Equality, ==

Inequality, != and <>

Less than and less than or equal to, <  and =

Greater than and greater than or equal to, >  and >=

All comparison operators return a Boolean value. Both operator arguments support multiple values.

If an error occurs when calculating the operator arguments, it returns null . In this case, the JsonPath query execution continues.

The arrays of each of the arguments are automatically unpacked. After that, for each pair where the first element is taken from the sequence of the
left argument and the second one from the sequence of the right argument:

1. The elements of the pair are compared

2. If an error occurs during the comparison, the ERROR  flag is set.

3. If the comparison result is true, the flag set is FOUND

4. If either the ERROR  or FOUND  flag is set and the query is executed in lax  mode, no more pairs are analyzed.

If the pair analysis results in:

1. The ERROR  flag is set, the operator returns null

2. The FOUND  flag is set, the operator returns true

3. Otherwise, it returns false

We can say that this algorithm considers all pairs from the Cartesian product of the left and right arguments, trying to find the pair whose
comparison returns true.

Elements in a pair are compared according to the following rules:

1. If the left or right argument is an array or object, the comparison fails.

2. null == null  returns true

3. In all other cases, if one of the arguments is null , false is returned.

4. If the left and right arguments are of different types, the comparison fails.

5. Strings are compared byte by byte.

6. true  is considered greater than false

7. Numbers are compared with the accuracy of 1e-20

Example

Let's take a JSON document as an example

{
    "left": [1, 2],
    "right": [4, "Inaros"]
}

Null Null false Null

|| true false Null

true true true true

false true false Null

Null true Null Null

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_logical-or,-oror
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_examples3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_comparison-operators
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_example5


and analyze the steps for executing the lax $.left < $.right  query:

1. Auto unpacking of arrays in the left and right arguments. As a result, the left argument is the sequence 1, 2  and the right argument is 4, 
"Iranos"

2. Let's take the pair (1, 4) . The comparison is successful as 1 < 4  is true. Set the flag FOUND

3. Since the query is executed in lax  mode and the FOUND  flag is set, we aren't analyzing any more pairs.

4. Since we have the FOUND  flag set, the operator returns true.

Let's take the same query in a different execution mode: strict $.left < $.right :

1. Auto unpacking of arrays in the left and right arguments. As a result, the left argument is the sequence 1, 2  and the right argument is 4, 
"Iranos"

2. Let's take the pair (1, 4) . The comparison is successful as 1 < 4  is true. Set the flag FOUND

3. Let's take the pair (2, 4) . The comparison is successful as 2 < 4  is true. Set the flag FOUND

4. Let's take the pair (1, "Iranos") . The comparison fails as a number can't be compared with a string. Set the flag ERROR

5. Let's take the pair (2, "Iranos") . The comparison fails as a number can't be compared with a string. Set the flag ERROR

6. Since we have the ERROR  flag set, the operator returns null

Predicates

JsonPath supports predicates which are expressions that return a Boolean value and check a certain condition. You can use them, for example, in
filters.

like_regex

The like_regex  predicate lets you check if a string matches a regular expression. The syntax of regular expressions is the same as in Hyperscan
UDF and REGEXP.

Syntax

Where:

1. <expression>  is a JsonPath expression with strings to be checked for matching the regular expression.

2. <regexp string>  is a string with the regular expression.

3. flag <flag string>  is an optional section where <flag string>  is a string with regular expression execution flags.

Supported flags:

i : Disable the case sensitivity.

Execution

Before the check, the input sequence arrays are automatically unpacked.

After that, for each element of the input sequence:

1. A check is made to find out if a string matches a regular expression.

2. If the element isn't a string, the ERROR  flag is set.

3. If the check result is true, the FOUND  flag is set.

4. If either the ERROR  or FOUND  flag is set and the query is executed in lax  mode, no more pairs are analyzed.

If the pair analysis results in:

1. Setting the ERROR  flag, the predicate returns null

2. Setting the FOUND  flag, the predicate returns true

3. Otherwise, the predicate returns false

Examples

1. "123456" like_regex "^[0-9]+$"  returns true

2. "123abcd456" like_regex "^[0-9]+$"  returns false

3. "Naomi Nagata" like_regex "nag"  returns false

4. "Naomi Nagata" like_regex "nag" flag "i"  returns true

starts with

The starts with  predicate lets you check if one string is a prefix of another.

<expression> like_regex <regexp string> [flag <flag string>]

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_predicates
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_like_regex
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_syntax
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_execution
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_examples4
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_starts-with
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_hyperscan
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_regexp


Syntax

Where:

1. <string expression>  is a JsonPath expression with the string to check.

2. <prefix expression>  is a JsonPath expression with a prefix string.

This means that the predicate will check that the <string expression>  starts with the <prefix expression>  string.

Execution

The first argument of the predicate must be a single string.

The second argument of the predicate must be a sequence of (possibly, multiple) strings.

For each element in a sequence of prefix strings:

1. A check is made for whether "an element is a prefix of an input string"

2. If the element isn't a string, the ERROR  flag is set.

3. If the check result is true, the FOUND  flag is set.

4. If either the ERROR  or FOUND  flag is set and the query is executed in lax  mode, no more pairs are analyzed.

If the pair analysis results in:

1. Setting the ERROR  flag, the predicate returns null

2. Setting the FOUND  flag, the predicate returns true

3. Otherwise, the predicate returns false

Examples

1. "James Holden" starts with "James"  returns true

2. "James Holden" starts with "Amos"  returns false

exists

The exists  predicate lets you check whether a JsonPath expression returns at least one element.

Syntax

Where <expression>  is the JsonPath expression to be checked. Parentheses around the expression are required.

Execution

1. The passed JsonPath expression is executed

2. If an error occurs, the predicate returns null

3. If an empty sequence is obtained as a result of the execution, the predicate returns false

4. Otherwise, the predicate returns true

Examples

Let's take a JSON document:

1. exists ($.profile.name)  returns true

2. exists ($.friends.profile.name)  returns false

3. strict exists ($.friends.profile.name)  returns null , because accessing non-existent object keys in strict  mode is an error.

is unknown

The is unknown  predicate lets you check if a Boolean value is null .

<string expression> starts with <prefix expression>

exists (<expression>)

{
    "profile": {
        "name": "Josephus",
        "surname": "Miller"
    }
}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_syntax1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_execution1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_examples5
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_exists
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_syntax2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_execution2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_examples6
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_is-unknown


Syntax

Where <expression>  is the JsonPath expression to be checked. Only expressions that return a Boolean value are allowed. Parentheses around
the expression are required.

Execution

1. If the passed expression returns null , the predicate returns true

2. Otherwise, the predicate returns false

Examples

1. (1 == 2) is unknown  returns false . The 1 == 2  expression returned false , which is not null

2. (1 == "string") is unknown  returns true . The 1 == "string"  expression returned null , because strings and numbers can't be
compared in JsonPath.

Filters

JsonPath lets you filter values obtained during query execution.

An expression in a filter must return a Boolean value.
Before filtering, the input sequence arrays are automatically unpacked.

For each element of the input sequence:

1. The value of the current filtered @  object becomes equal to the current element of the input sequence.

2. Executing the expression in the filter

3. If an error occurs during the expression execution, the current element of the input sequence is skipped.

4. If the expression execution result is the only true  value, the current element is added to the filter result.

Example

Suppose we have a JSON document describing the user's friends

and we want to get a list of friends who are over 32 years old using a JsonPath query. To do this, you can write the following query:

Let's analyze the query in parts:

$.friends  accesses the friends  array in the JSON document.

? ( ... )  is the filter syntax. An expression inside the parentheses is called a predicate.

`` accesses the currently filtered object. In our example, it's the object describing a friend of the user.

.age  accesses the age  field of the currently filtered object.

.age > 32  compares the age  field with the value 32. As a result of the query, only the values for which this predicate returned true remain.

The query only returns the first friend from the array of user's friends.

Like many other JsonPath operators, filters can be arranged in chains. Let's take a more complex query that selects the names of friends who are
older than 20 and have less than 400 currency units:

Let's analyze the query in parts:

(<expression>) is unknown

{
    "friends": [
        {
            "name": "James Holden",
            "age": 35,
            "money": 500
        },
        {
            "name": "Naomi Nagata",
            "age": 30,
            "money": 345
        }
    ]
}

$.friends ? (@.age > 32)

$.friends ? (@.age > 20) ? (@.money < 400) . name

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_syntax3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_execution3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_examples7
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_filters
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_example6


$.friends  accesses the friends  array in the JSON document.

? (@.age > 20)  is the first filter. Since all friends are over 20, it just returns all the elements of the friends  array.

? (@.money < 400)  is the second filter. It only returns the second element of the friends  array, since only its money  field value is less
than 400.

.name  accesses the name  field of filtered objects.

The query returns a sequence of a single element: "Naomi Nagata" .

In practice, it's recommended to combine multiple filters into one if possible. The above query is equivalent to $.friends ? (@.age > 20 && 
@.money < 400) . name .

Methods

JsonPath supports methods that are functions converting one sequence of values to another. The syntax for calling a method is similar to accessing
the object key:

Just like in the case of accessing object keys, method calls can be arranged in chains:

type

The type  method returns a string with the type of the passed value.

For each element of the input sequence, the method adds this string to the output sequence according to the table below:

Examples

1. "Naomi".type()  returns "string"

2. false.type()  returns "boolean"

size

The size  method returns the size of the array.

For each element of the input sequence, the method adds the following to the output sequence:

1. The size of the array if the element type is an array.

2. For all other types (including objects), it adds 1

Examples

Let's take a JSON document:

And queries to it:

$.friends.size()

$.numbers.double().floor()

{
    "array": [1, 2, 3],
    "object": {
        "a": 1,
        "b": 2
    },
    "scalar": "string"
}

Value type String with type

Null "null"

Boolean value "boolean"

Number "number"

String "string"

Array "array"

Object "object"

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_methods
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_type
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_examples8
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_size
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_examples9


1. $.array.size()  returns 3

2. $.object.size()  returns 1

3. $.scalar.size()  returns 1

Double

The double  method converts strings to numbers.

Before its execution, the input sequence arrays are automatically unpacked.

All elements in the input sequence must be strings that contain decimal numbers. It's allowed to specify the fractional part and exponent.

Examples

1. "125".double()  returns 125

2. "125.456".double()  returns 125.456

3. "125.456e-3".double()  returns 0.125456

ceiling

The ceiling  method rounds up a number.

Before its execution, the input sequence arrays are automatically unpacked.

All elements in the input sequence must be numbers.

Examples

1. (1.3).ceiling()  returns 2

2. (1.8).ceiling()  returns 2

3. (1.5).ceiling()  returns 2

4. (1.0).ceiling()  returns 1

floor

The floor  method rounds down a number.

Before its execution, the input sequence arrays are automatically unpacked.

All elements in the input sequence must be numbers.

Examples

1. (1.3).floor()  returns 1

2. (1.8).floor()  returns 1

3. (1.5).floor()  returns 1

4. (1.0).floor()  returns 1

abs

The abs  method calculates the absolute value of a number (removes the sign).

Before its execution, the input sequence arrays are automatically unpacked.

All elements in the input sequence must be numbers.

Examples

1. (0.0).abs()  returns 0

2. (1.0).abs()  returns 1

3. (-1.0).abs()  returns 1

keyvalue

The keyvalue  method converts an object to a sequence of key-value pairs.

Before its execution, the input sequence arrays are automatically unpacked.

All elements in the input sequence must be objects.

For each element of the input sequence:

1. Each key-value pair in the element is analyzed.

2. For each key-value pair, an object is generated with the keys name  and value .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_double
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_examples10
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_ceiling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_examples11
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_floor
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_examples12
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_abs
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_examples13
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_keyvalue


3. name  stores a string with the name of the key from the pair.

4. value  stores the value from the pair.

5. All objects for this element are added to the output sequence.

Examples

Let's take a JSON document:

The $.keyvalue()  query returns the following sequence for it:

Variables

Functions using JsonPath can pass values into a query. They are called variables. To access a variable, write the $  character and the variable
name: $variable .

Example

Let the planet  variable be equal to

Then the strict $planet.name  query returns "Mars" .

Unlike many programming languages, JsonPath doesn't support creating new variables or modifying existing ones.

Common arguments

All functions for JSON accept:

1. A JSON value (can be an arbitrary Json  or Json?  expression)

2. A JsonPath query (must be explicitly specified with a string literal)

3. (Optional) PASSING  section

PASSING section

Lets you pass values to a JsonPath query as variables.

Syntax

<expression>  can have the following types:

Numbers, Date , DateTime , and Timestamp  (a CAST  into Double  will be made before passing a value to JsonPath)

Utf8 , Bool , and Json

{
    "name": "Chrisjen",
    "surname": "Avasarala",
    "age": 70
}

{
    "name": "age",
    "value": 70
},
{
    "name": "name",
    "value": "Chrisjen"
},
{
    "name": "surname",
    "value": "Avasarala"
}

{
    "name": "Mars",
    "gravity": 0.376
}

PASSING
    <expression 1> AS <variable name 1>,
    <expression 2> AS <variable name 2>,
    ...

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_examples14
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_variables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_example7
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_common-arguments
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_passing-section
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_syntax4


You can set a <variable name>  in several ways:

As an SQL name like variable

In quotes, for example, "variable"

Example

JSON_EXISTS

The JSON_EXISTS  function checks if a JSON value meets the specified JsonPath.

Syntax

Return value: Bool?

Default value: If the ON ERROR  section isn't specified, the used section is FALSE ON ERROR

Behavior

1. If <JSON expression>  is NULL  or an empty Json? , it returns an empty Bool?

2. If an error occurs during JsonPath execution, the returned value depends on the ON ERROR  section:

TRUE : Return True

FALSE : Return False

UNKNOWN : Return an empty Bool?

ERROR : Abort the entire query

3. If the result of JsonPath execution is one or more values, the return value is True .

4. Otherwise, False  is returned.

Examples

JSON_VALUE

JSON_VALUE(
    $json,
    "$.timestamp - $Now + $Hour"
    PASSING
        24 * 60 as Hour,
        CurrentUtcTimestamp() as "Now"
)

JSON_EXISTS(
    <JSON expression>,
    <JsonPath query>,
    [<PASSING clause>]
    [{TRUE | FALSE | UNKNOWN | ERROR} ON ERROR]
)

$json = CAST(@@{
    "title": "Rocinante",
    "crew": [
        "James Holden",
        "Naomi Nagata",
        "Alex Kamai",
        "Amos Burton"
    ]
}@@ as Json);

SELECT
    JSON_EXISTS($json, "$.title"), -- True
    JSON_EXISTS($json, "$.crew[*]"), -- True
    JSON_EXISTS($json, "$.nonexistent"); -- False, as JsonPath returns an empty result

SELECT
    -- JsonPath error, False is returned because the default section used is FALSE ON ERROR
    JSON_EXISTS($json, "strict $.nonexistent");

SELECT
    -- JsonPath error, the entire YQL query fails.
    JSON_EXISTS($json, "strict $.nonexistent" ERROR ON ERROR);

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_example8
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_json_exists
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_syntax5
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_examples15
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_json_value


The JSON_VALUE  function retrieves a scalar value from JSON (anything that isn't an array or object).

Syntax

Return value: <type>?

Default values:

1. If the ON EMPTY  section isn't specified, the section used is NULL ON EMPTY

2. If the ON ERROR  section isn't specified, the section used is NULL ON ERROR

3. If the RETURNING  section isn't specified, then for <type> , the type used is Utf8

Behavior:

1. If <JSON expression>  is NULL  or an empty Json? , it returns an empty <type>?

2. If an error occurs, the returned value depends on the ON ERROR  section:

NULL : Return an empty <type>?

ERROR : Abort the entire query

DEFAULT <expr> : Return <expr>  after running the CAST  function to convert the data type to <type>? . If the CAST  fails, the entire
query fails, too.

3. If the JsonPath execution result is empty, the returned value depends on the ON EMPTY  section:

NULL : Return an empty <type>?

ERROR : Abort the entire query

DEFAULT <expr> : Return <expr>  after running the CAST  function to convert the data type to <type>? . If the CAST  fails, the behavior
matches the ON ERROR  section.

4. If the result of JsonPath execution is a single value, then:

If the RETURNING  section isn't specified, the value is converted to Utf8 .

Otherwise, the CAST  function is run to convert the value to <type> . If the CAST  fails, the behavior matches the ON ERROR  section. In
this case, the value from JSON must match the <type>  type.

5. Return the result

Correlation between JSON and YQL types:

JSON Number: Numeric types, Date , DateTime , and Timestamp

JSON Bool: Bool

JSON String: Utf8  and String

Errors executing JSON_VALUE  are as follows:

Errors evaluating JsonPath

The result of JsonPath execution is a number of values or a non-scalar value.
The type of value returned by JSON doesn't match the expected one.

The RETURNING  section supports such types as numbers, Date , DateTime , Timestamp , Utf8 , String , and Bool .

Examples

JSON_VALUE(
    <JSON expression>,
    <JsonPath query>,
    [<PASSING clause>]
    [RETURNING <type>]
    [{ERROR | NULL | DEFAULT <expr>} ON EMPTY]
    [{ERROR | NULL | DEFAULT <expr>} ON ERROR]
)

$json = CAST(@@{
    "friends": [
        {
            "name": "James Holden",
            "age": 35
        },
        {
            "name": "Naomi Nagata",
            "age": 30
        }
    ]
}@@ as Json);

SELECT
    JSON_VALUE($json, "$.friends[0].age"), -- "35" (type Utf8?)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_syntax6
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_examples16


JSON_QUERY

The JSON_QUERY  function lets you retrieve arrays and objects from JSON.

Syntax

Return value: Json?

Default values:

1. If the ON EMPTY  section isn't specified, the section used is NULL ON EMPTY

2. If the ON ERROR  section isn't specified, the section used is NULL ON ERROR

3. If the WRAPPER  section isn't specified, the section used is WITHOUT WRAPPER

4. If the WITH WRAPPER  section is specified but CONDITIONAL  or UNCONDITIONAL  is omitted, then the section used is UNCONDITIONAL

Behavior:

Note

You can't specify the WITH ... WRAPPER  and ON EMPTY  sections at the same time.

1. If <JSON expression>  is NULL  or an empty Json? , it returns an empty Json?

2. If the WRAPPER  section is specified, then:

WITHOUT WRAPPER  or WITHOUT ARRAY WRAPPER : Don't convert the result of JsonPath execution in any way.

WITH UNCONDITIONAL WRAPPER  or WITH UNCONDITIONAL ARRAY WRAPPER : Wrap the result of JsonPath execution in an array.

WITH CONDITIONAL WRAPPER  or WITH CONDITIONAL ARRAY WRAPPER : Wrap the result of JsonPath execution in an array if it isn't the
only array or object.

3. If the JsonPath execution result is empty, the returned value depends on the ON EMPTY  section:

NULL : Return an empty Json?

ERROR : Abort the entire query

EMPTY ARRAY : Return an empty JSON array, []

EMPTY OBJECT : Return an empty JSON object, {}

4. If an error occurs, the returned value depends on the ON ERROR  section:

NULL : Return an empty Json?

    JSON_VALUE($json, "$.friends[0].age" RETURNING Uint64), -- 35 (type Uint64?)
    JSON_VALUE($json, "$.friends[0].age" RETURNING Utf8); -- an empty Utf8? due to an error. The JSON's Number type 
doesn't match the string Utf8 type.

SELECT
    -- "empty" (type String?)
    JSON_VALUE(
        $json,
        "$.friends[50].name"
        RETURNING String
        DEFAULT "empty" ON EMPTY
    );

SELECT
    -- 20 (type Uint64?). The result of JsonPath execution is empty, but the
    -- default value from the ON EMPTY section can't be cast to Uint64.
    -- That's why the value from ON ERROR is used.
    JSON_VALUE(
        $json,
        "$.friends[50].age"
        RETURNING Uint64
        DEFAULT -1 ON EMPTY
        DEFAULT 20 ON ERROR
    );

JSON_QUERY(
    <JSON expression>,
    <JsonPath query>,
    [<PASSING clause>]
    [WITHOUT [ARRAY] | WITH [CONDITIONAL | UNCONDITIONAL] [ARRAY] WRAPPER]
    [{ERROR | NULL | EMPTY ARRAY | EMPTY OBJECT} ON EMPTY]
    [{ERROR | NULL | EMPTY ARRAY | EMPTY OBJECT} ON ERROR]
)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_json_query
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_syntax7


ERROR : Abort the entire query

EMPTY ARRAY : Return an empty JSON array, []

EMPTY OBJECT : Return an empty JSON object, {}

5. Return the result

Errors running a JSON_QUERY :

Errors evaluating JsonPath

The result of JsonPath execution is a number of values (even after using the WRAPPER  section) or a scalar value.

Examples

See also

Accessing values inside JSON with YQL

Modifying JSON with YQL

$json = CAST(@@{
    "friends": [
        {
            "name": "James Holden",
            "age": 35
        },
        {
            "name": "Naomi Nagata",
            "age": 30
        }
    ]
}@@ as Json);

SELECT
    JSON_QUERY($json, "$.friends[0]"); -- {"name": "James Holden", "age": 35}

SELECT
    JSON_QUERY($json, "$.friends.name" WITH UNCONDITIONAL WRAPPER); -- ["James Holden", "Naomi Nagata"]

SELECT
    JSON_QUERY($json, "$.friends[0]" WITH CONDITIONAL WRAPPER), -- {"name": "James Holden", "age": 35}
    JSON_QUERY($json, "$.friends.name" WITH CONDITIONAL WRAPPER); -- ["James Holden", "Naomi Nagata"]

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_examples17
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json_see-also
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_recipes_accessing-json
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_recipes_modifying-json


Functions of built-in C++ libraries
Many application functions that on the one hand are too specific to become part of the YQL core, and on the other hand might be useful to a wide
range of users, are available through built-in C++ libraries.

DateTime

Digest

Histogram

Hyperscan

Ip

Knn

Math
Pcre

Pire

Re2

Roaring

String

Unicode

Url

Yson

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_digest
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_histogram
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_hyperscan
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_ip
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_knn
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_math
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_pcre
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_pire
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_re2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_roaring
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_string
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_unicode
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_url
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_yson


DateTime
In the DateTime module, the main internal representation format is Resource<TM> , which stores the following date components:

Year (12 bits).

Month (4 bits).

Day (5 bits).

Hour (5 bits).

Minute (6 bits).

Second (6 bits).

Microsecond (20 bits).
TimezoneId (16 bits).

DayOfYear (9 bits): Day since the beginning of the year.

WeekOfYear (6 bits): Week since the beginning of the year, January 1 is always in week 1.

WeekOfYearIso8601 (6 bits): Week of the year according to ISO 8601 (the first week is the one that includes January 4).

DayOfWeek (3 bits): Day of the week.

If the timezone is not GMT, the components store the local time for the relevant timezone.

Split

Conversion from a primitive type to an internal representation. It's always successful on a non-empty input.

List of functions

DateTime::Split(Date{Flags:AutoMap}) -> Resource<TM>

DateTime::Split(Datetime{Flags:AutoMap}) -> Resource<TM>

DateTime::Split(Timestamp{Flags:AutoMap}) -> Resource<TM>

DateTime::Split(TzDate{Flags:AutoMap}) -> Resource<TM>

DateTime::Split(TzDatetime{Flags:AutoMap}) -> Resource<TM>

DateTime::Split(TzTimestamp{Flags:AutoMap}) -> Resource<TM>

Functions that accept Resource<TM>  as input, can be called directly from the primitive date/time type. An implicit conversion will be made in this
case by calling a relevant Split  function.

Make...

Making a primitive type from an internal representation. It's always successful on a non-empty input.

List of functions

DateTime::MakeDate(Resource<TM>{Flags:AutoMap}) -> Date

DateTime::MakeDatetime(Resource<TM>{Flags:AutoMap}) -> Datetime

DateTime::MakeTimestamp(Resource<TM>{Flags:AutoMap}) -> Timestamp

DateTime::MakeTzDate(Resource<TM>{Flags:AutoMap}) -> TzDate

DateTime::MakeTzDatetime(Resource<TM>{Flags:AutoMap}) -> TzDatetime

DateTime::MakeTzTimestamp(Resource<TM>{Flags:AutoMap}) -> TzTimestamp

Examples

Get...

Extracting a component from an internal representation.

List of functions

DateTime::GetYear(Resource<TM>{Flags:AutoMap}) -> Uint16

DateTime::GetDayOfYear(Resource<TM>{Flags:AutoMap}) -> Uint16

SELECT
    DateTime::MakeTimestamp(DateTime::Split(Datetime("2019-01-01T15:30:00Z"))),
      -- 2019-01-01T15:30:00.000000Z
    DateTime::MakeDate(Datetime("2019-01-01T15:30:00Z")),
      -- 2019-01-01
    DateTime::MakeTimestamp(DateTime::Split(TzDatetime("2019-01-01T00:00:00,Europe/Moscow"))),
      -- 2018-12-31T21:00:00Z (conversion to UTC)
    DateTime::MakeDate(TzDatetime("2019-01-01T12:00:00,GMT"))
      -- 2019-01-01 (Datetime -> Date with implicit Split)>

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_split
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_list-of-functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_make
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_list-of-functions1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_get
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_list-of-functions2


DateTime::GetMonth(Resource<TM>{Flags:AutoMap}) -> Uint8

DateTime::GetMonthName(Resource<TM>{Flags:AutoMap}) -> String

DateTime::GetWeekOfYear(Resource<TM>{Flags:AutoMap}) -> Uint8

DateTime::GetWeekOfYearIso8601(Resource<TM>{Flags:AutoMap}) -> Uint8

DateTime::GetDayOfMonth(Resource<TM>{Flags:AutoMap}) -> Uint8

DateTime::GetDayOfWeek(Resource<TM>{Flags:AutoMap}) -> Uint8

DateTime::GetDayOfWeekName(Resource<TM>{Flags:AutoMap}) -> String

DateTime::GetHour(Resource<TM>{Flags:AutoMap}) -> Uint8

DateTime::GetMinute(Resource<TM>{Flags:AutoMap}) -> Uint8

DateTime::GetSecond(Resource<TM>{Flags:AutoMap}) -> Uint8

DateTime::GetMillisecondOfSecond(Resource<TM>{Flags:AutoMap}) -> Uint32

DateTime::GetMicrosecondOfSecond(Resource<TM>{Flags:AutoMap}) -> Uint32

DateTime::GetTimezoneId(Resource<TM>{Flags:AutoMap}) -> Uint16

DateTime::GetTimezoneName(Resource<TM>{Flags:AutoMap}) -> String

Examples

Update

Updating one or more components in the internal representation. Returns either an updated copy or NULL, if an update produces an invalid date or
other inconsistencies.

List of functions

Examples

From...

Getting a Timestamp from the number of seconds/milliseconds/microseconds since the UTC epoch. When the Timestamp limits are exceeded,
NULL is returned.

List of functions

DateTime::FromSeconds(Uint32{Flags:AutoMap}) -> Timestamp

DateTime::FromMilliseconds(Uint64{Flags:AutoMap}) -> Timestamp

DateTime::FromMicroseconds(Uint64{Flags:AutoMap}) -> Timestamp

To...

Getting a number of seconds/milliseconds/microseconds since the UTC Epoch from a primitive type.

$tm = DateTime::Split(TzDatetime("2019-01-09T00:00:00,Europe/Moscow"));

SELECT
    DateTime::GetDayOfMonth($tm) as Day, -- 9
    DateTime::GetMonthName($tm) as Month, -- "January"
    DateTime::GetYear($tm) as Year, -- 2019
    DateTime::GetTimezoneName($tm) as TzName, -- "Europe/Moscow"
    DateTime::GetDayOfWeekName($tm) as WeekDay; -- "Wednesday"

DateTime::Update( Resource<TM>{Flags:AutoMap}, [ Year:Uint16?, Month:Uint8?, Day:Uint8?, Hour:Uint8?, Minute:Uint8?, 
Second:Uint8?, Microsecond:Uint32?, Timezone:String? ]) -> Resource<TM>?

$tm = DateTime::Split(Timestamp("2019-01-01T01:02:03.456789Z"));

SELECT
    DateTime::MakeDate(DateTime::Update($tm, 2012)), -- 2012-01-01
    DateTime::MakeDate(DateTime::Update($tm, 2000, 6, 6)), -- 2000-06-06
    DateTime::MakeDate(DateTime::Update($tm, NULL, 2, 30)), -- NULL (February 30)
    DateTime::MakeDatetime(DateTime::Update($tm, NULL, NULL, 31)), -- 2019-01-31T01:02:03Z
    DateTime::MakeDatetime(DateTime::Update($tm, 15 as Hour, 30 as Minute)), -- 2019-01-01T15:30:03Z
    DateTime::MakeTimestamp(DateTime::Update($tm, 999999 as Microsecond)), -- 2019-01-01T01:02:03.999999Z
    DateTime::MakeTimestamp(DateTime::Update($tm, "Europe/Moscow" as Timezone)), -- 2018-12-31T22:02:03.456789Z 
(conversion to UTC)
    DateTime::MakeTzTimestamp(DateTime::Update($tm, "Europe/Moscow" as Timezone)); -- 2019-01-
01T01:02:03.456789,Europe/Moscow

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_examples1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_update
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_list-of-functions3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_examples2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_from
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_list-of-functions4
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_to


List of functions

DateTime::ToSeconds(Date/DateTime/Timestamp/TzDate/TzDatetime/TzTimestamp{Flags:AutoMap}) -> Uint32

DateTime::ToMilliseconds(Date/DateTime/Timestamp/TzDate/TzDatetime/TzTimestamp{Flags:AutoMap}) -> Uint64

DateTime::ToMicroseconds(Date/DateTime/Timestamp/TzDate/TzDatetime/TzTimestamp{Flags:AutoMap}) -> Uint64

Examples

Interval...

Conversions between Interval  and various time units.

List of functions

DateTime::ToDays(Interval{Flags:AutoMap}) -> Int16

DateTime::ToHours(Interval{Flags:AutoMap}) -> Int32

DateTime::ToMinutes(Interval{Flags:AutoMap}) -> Int32

DateTime::ToSeconds(Interval{Flags:AutoMap}) -> Int32

DateTime::ToMilliseconds(Interval{Flags:AutoMap}) -> Int64

DateTime::ToMicroseconds(Interval{Flags:AutoMap}) -> Int64

DateTime::IntervalFromDays(Int16{Flags:AutoMap}) -> Interval

DateTime::IntervalFromHours(Int32{Flags:AutoMap}) -> Interval

DateTime::IntervalFromMinutes(Int32{Flags:AutoMap}) -> Interval

DateTime::IntervalFromSeconds(Int32{Flags:AutoMap}) -> Interval

DateTime::IntervalFromMilliseconds(Int64{Flags:AutoMap}) -> Interval

DateTime::IntervalFromMicroseconds(Int64{Flags:AutoMap}) -> Interval

AddTimezone doesn't affect the output of ToSeconds() in any way, because ToSeconds() always returns GMT time.

You can also create an Interval from a string literal in the format ISO 8601. Time units up to a week are supported, inclusive.

Examples

StartOf... / EndOf... / TimeOfDay

Get the start (end) of the period including the date/time. If the result is invalid, NULL is returned. If the timezone is different from GMT, then the
period start (end) is in the specified time zone.

List of functions

DateTime::StartOfYear(Resource<TM>{Flags:AutoMap}) -> Resource<TM>?

DateTime::EndOfYear(Resource<TM>{Flags:AutoMap}) -> Resource<TM>?

DateTime::StartOfQuarter(Resource<TM>{Flags:AutoMap}) -> Resource<TM>?

DateTime::EndOfQuarter(Resource<TM>{Flags:AutoMap}) -> Resource<TM>?

DateTime::StartOfMonth(Resource<TM>{Flags:AutoMap}) -> Resource<TM>?

DateTime::EndOfMonth(Resource<TM>{Flags:AutoMap}) -> Resource<TM>?

DateTime::StartOfWeek(Resource<TM>{Flags:AutoMap}) -> Resource<TM>?

DateTime::EndOfWeek(Resource<TM>{Flags:AutoMap}) -> Resource<TM>?

DateTime::StartOfDay(Resource<TM>{Flags:AutoMap}) -> Resource<TM>?

DateTime::EndOfDay(Resource<TM>{Flags:AutoMap}) -> Resource<TM>?

DateTime::StartOf(Resource<TM>{Flags:AutoMap}, Interval{Flags:AutoMap}) -> Resource<TM>?

DateTime::EndOf(Resource<TM>{Flags:AutoMap}, Interval{Flags:AutoMap}) -> Resource<TM>?

The StartOf / EndOf  functions are intended for grouping by an arbitrary period within a day. The result differs from the input value only by time
components. A period exceeding one day is treated as a day (an equivalent of StartOfDay / EndOfDay ). If a day doesn't include an integer number
of periods, the number is rounded to the nearest time from the beginning of the day that is a multiple of the specified period. When the interval is
zero, the output is same as the input. A negative interval is treated as a positive one.

SELECT
    DateTime::FromSeconds(1546304523), -- 2019-01-01T01:02:03.000000Z
    DateTime::ToMicroseconds(Timestamp("2019-01-01T01:02:03.456789Z")); -- 1546304523456789

SELECT
    DateTime::ToDays(Interval("PT3000M")), -- 2
    DateTime::IntervalFromSeconds(1000000), -- 11 days 13 hours 46 minutes 40 seconds
    DateTime::ToDays(cast('2018-01-01' as date) - cast('2017-12-31' as date)); --1

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_list-of-functions5
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_examples3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_interval
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_list-of-functions6
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_examples4
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_startof
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_list-of-functions7
https://en.wikipedia.org/wiki/ISO_8601%23Durations


The EndOf...  functions are intended for obtaining the latest moment in the same period of time as the specified one.

The functions treat periods longer than one day in a different manner than the same-name functions in the old library. The time components are
always reset to zero (this makes sense, because these functions are mainly used for grouping by the period). You can also specify a time period
within a day:

DateTime::TimeOfDay(Resource<TM>{Flags:AutoMap}) -> Interval

Examples

Shift...

Add/subtract the specified number of units to/from the component in the internal representation and update the other fields.
Returns either an updated copy or NULL, if an update produces an invalid date or other inconsistencies.

List of functions

DateTime::ShiftYears(Resource<TM>{Flags:AutoMap}, Int32) -> Resource<TM>?

DateTime::ShiftQuarters(Resource<TM>{Flags:AutoMap}, Int32) -> Resource<TM>?

DateTime::ShiftMonths(Resource<TM>{Flags:AutoMap}, Int32) -> Resource<TM>?

If the resulting number of the day in the month exceeds the maximum allowed, then the Day  field will accept the last day of the month without
changing the time (see examples).

Examples

Format

Get a string representation of a time using an arbitrary formatting string.

List of functions

DateTime::Format(String, alwaysWriteFractionalSeconds:Bool?) -> (Resource<TM>{Flags:AutoMap}) -> String

A set of specifiers is implemented for the formatting string:

%% : % character.

%Y : 4-digit year.

SELECT
    DateTime::MakeDate(DateTime::StartOfYear(Date("2019-06-06"))),
      -- 2019-01-01 (implicit Split here and below)
    DateTime::MakeDatetime(DateTime::StartOfQuarter(Datetime("2019-06-06T01:02:03Z"))),
      -- 2019-04-01T00:00:00Z (time components are reset to zero)
    DateTime::MakeDate(DateTime::StartOfMonth(Timestamp("2019-06-06T01:02:03.456789Z"))),
      -- 2019-06-01
    DateTime::MakeDate(DateTime::StartOfWeek(Date("1970-01-01"))),
      -- NULL (the beginning of the epoch is Thursday, the beginning of the week is 1969-12-29 that is beyond the 
limits)
    DateTime::MakeTimestamp(DateTime::StartOfWeek(Date("2019-01-01"))),
      -- 2018-12-31T00:00:00Z
    DateTime::MakeDatetime(DateTime::StartOfDay(Datetime("2019-06-06T01:02:03Z"))),
      -- 2019-06-06T00:00:00Z
    DateTime::MakeTzDatetime(DateTime::StartOfDay(TzDatetime("1970-01-01T05:00:00,Europe/Moscow"))),
      -- NULL (beyond the epoch in GMT)
    DateTime::MakeTzTimestamp(DateTime::StartOfDay(TzTimestamp("1970-01-02T05:00:00.000000,Europe/Moscow"))),
      -- 1970-01-02T00:00:00,Europe/Moscow (the beginning of the day in Moscow)
    DateTime::MakeDatetime(DateTime::StartOf(Datetime("2019-06-06T23:45:00Z"), Interval("PT7H"))),
      -- 2019-06-06T21:00:00Z
    DateTime::MakeDatetime(DateTime::StartOf(Datetime("2019-06-06T23:45:00Z"), Interval("PT20M"))),
      -- 2019-06-06T23:40:00Z
    DateTime::TimeOfDay(Timestamp("2019-02-14T01:02:03.456789Z"));
      -- 1 hour 2 minutes 3 seconds 456789 microseconds

$tm1 = DateTime::Split(DateTime("2019-01-31T01:01:01Z"));
$tm2 = DateTime::Split(TzDatetime("2049-05-20T12:34:50,Europe/Moscow"));

SELECT
    DateTime::MakeDate(DateTime::ShiftYears($tm1, 10)), -- 2029-01-31T01:01:01
    DateTime::MakeDate(DateTime::ShiftYears($tm2, -10000)), -- NULL (beyond the limits)
    DateTime::MakeDate(DateTime::ShiftQuarters($tm2, 0)), -- 2049-05-20T12:34:50,Europe/Moscow
    DateTime::MakeDate(DateTime::ShiftQuarters($tm1, -3)), -- 2018-04-30T01:01:01
    DateTime::MakeDate(DateTime::ShiftMonths($tm1, 1)), -- 2019-02-28T01:01:01
    DateTime::MakeDate(DateTime::ShiftMonths($tm1, -35)), -- 2016-02-29T01:01:01

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_examples5
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_shift
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_list-of-functions8
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_examples6
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_format
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_list-of-functions9


%m : 2-digit month.

%d : 2-digit day.

%H : 2-digit hour.

%M : 2-digit minutes.

%S : 2-digit seconds -- or xx.xxxxxx in the case of non-empty microseconds (only if alwaysWriteFractionalSeconds  is not set to True ).

%z : +hhmm or -hhmm.

%Z : IANA name of the timezone.

%b : A short three-letter English name of the month (Jan).

%B : A full English name of the month (January).

All other characters in the format string are passed on without changes.

Examples

Parse

Parse a string into an internal representation using an arbitrary formatting string. Default values are used for empty fields. If errors are raised, NULL
is returned.

List of functions

DateTime::Parse(String) -> (String{Flags:AutoMap}) -> Resource<TM>?

Implemented specifiers:

%% : the % character.

%Y : 4-digit year (1970).

%m : 2-digit month (1).

%d : 2-digit day (1).

%H : 2-digit hour (0).

%M : 2-digit minutes (0).

%S : Seconds (0), can also accept microseconds in the formats from xx. up to xx.xxxxxx

%Z : The IANA name of the timezone (GMT).

%b : A short three-letter case-insensitive English name of the month (Jan).

%B : A full case-insensitive English name of the month (January).

Examples

For the common formats, wrappers around the corresponding util methods are supported. You can only get TM with components in the UTC
timezone.

Parse specific formats

List of functions

DateTime::ParseRfc822(String{Flags:AutoMap}) -> Resource<TM>?

DateTime::ParseIso8601(String{Flags:AutoMap}) -> Resource<TM>?

DateTime::ParseHttp(String{Flags:AutoMap}) -> Resource<TM>?

DateTime::ParseX509(String{Flags:AutoMap}) -> Resource<TM>?

$format = DateTime::Format("%Y-%m-%d %H:%M:%S %Z");

SELECT
    $format(DateTime::Split(TzDatetime("2019-01-01T01:02:03,Europe/Moscow")));
      -- "2019-01-01 01:02:03 Europe/Moscow"

$parse1 = DateTime::Parse("%H:%M:%S");
$parse2 = DateTime::Parse("%S");
$parse3 = DateTime::Parse("%m/%d/%Y");
$parse4 = DateTime::Parse("%Z");

SELECT
    DateTime::MakeDatetime($parse1("01:02:03")), -- 1970-01-01T01:02:03Z
    DateTime::MakeTimestamp($parse2("12.3456")), -- 1970-01-01T00:00:12.345600Z
    DateTime::MakeTimestamp($parse3("02/30/2000")), -- NULL (Feb 30)
    DateTime::MakeTimestamp($parse4("Canada/Central")); -- 1970-01-01T06:00:00Z (conversion to UTC)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_examples7
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_parse
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_list-of-functions10
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_examples8
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_parse-specific-formats
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_list-of-functions11


Examples

Standard scenarios

Conversions between strings and seconds

Converting a string date (in the Moscow timezone) to seconds (in GMT timezone):

Converting a string date (in the Moscow timezone) to seconds (in the Moscow timezone). DateTime::ToSeconds() exports only to GMT. That's why
we should put timezones aside for a while and use only GMT (as if we assumed for a while that Moscow is in GMT):

Converting seconds (in the GMT timezone) to a string date (in the Moscow timezone):

Converting seconds (in the Moscow timezone) to a string date (in the Moscow timezone). In this case, the %Z timezone is output for reference:
usually, it's not needed because it's "GMT" and might mislead you.

Converting seconds (in the GMT timezone) to three-letter days of the week (in the Moscow timezone):

Date and time formatting

SELECT
    DateTime::MakeTimestamp(DateTime::ParseRfc822("Fri, 4 Mar 2005 19:34:45 EST")),
      -- 2005-03-05T00:34:45Z
    DateTime::MakeTimestamp(DateTime::ParseIso8601("2009-02-14T02:31:30+0300")),
      -- 2009-02-13T23:31:30Z
    DateTime::MakeTimestamp(DateTime::ParseHttp("Sunday, 06-Nov-94 08:49:37 GMT")),
      -- 1994-11-06T08:49:37Z
    DateTime::MakeTimestamp(DateTime::ParseX509("20091014165533Z"))
      -- 2009-10-14T16:55:33Z

$datetime_parse = DateTime::Parse("%Y-%m-%d %H:%M:%S");
$datetime_parse_tz = DateTime::Parse("%Y-%m-%d %H:%M:%S %Z");

SELECT
    DateTime::ToSeconds(TzDateTime("2019-09-16T00:00:00,Europe/Moscow")) AS md_us1, -- 1568581200
    DateTime::ToSeconds(DateTime::MakeDatetime($datetime_parse_tz("2019-09-16 00:00:00" || " Europe/Moscow"))),  -- 
1568581200
    DateTime::ToSeconds(DateTime::MakeDatetime(DateTime::Update($datetime_parse("2019-09-16 00:00:00"), "Europe/Moscow" 
as Timezone))), -- 1568581200

    -- INCORRECT (Date imports time as GMT, but AddTimezone has no effect on ToSeconds that always returns GMT time)
    DateTime::ToSeconds(AddTimezone(Date("2019-09-16"), 'Europe/Moscow')) AS md_us2, -- 1568592000

$date_parse = DateTime::Parse("%Y-%m-%d");
$datetime_parse = DateTime::Parse("%Y-%m-%d %H:%M:%S");
$datetime_parse_tz = DateTime::Parse("%Y-%m-%d %H:%M:%S %Z");

SELECT
    DateTime::ToSeconds(Datetime("2019-09-16T00:00:00Z")) AS md_ms1, -- 1568592000
    DateTime::ToSeconds(Date("2019-09-16")) AS md_ms2, -- 1568592000
    DateTime::ToSeconds(DateTime::MakeDatetime($date_parse("2019-09-16"))) AS md_ms3, -- 1568592000
    DateTime::ToSeconds(DateTime::MakeDatetime($datetime_parse("2019-09-16 00:00:00"))) AS md_ms4, -- 1568592000
    DateTime::ToSeconds(DateTime::MakeDatetime($datetime_parse_tz("2019-09-16 00:00:00 GMT"))) AS md_ms5, -- 1568592000

    -- INCORRECT (imports the time in the Moscow timezone, but RemoveTimezone doesn't affect ToSeconds in any way)
    DateTime::ToSeconds(RemoveTimezone(TzDatetime("2019-09-16T00:00:00,Europe/Moscow"))) AS md_ms6, -- 1568581200
    DateTime::ToSeconds(DateTime::MakeDatetime($datetime_parse_tz("2019-09-16 00:00:00 Europe/Moscow"))) AS md_ms7 -- 
1568581200

$date_format = DateTime::Format("%Y-%m-%d %H:%M:%S %Z");
SELECT
    $date_format(AddTimezone(DateTime::FromSeconds(1568592000), 'Europe/Moscow')) -- "2019-09-16 03:00:00 Europe/Moscow"

$date_format = DateTime::Format("%Y-%m-%d %H:%M:%S %Z");
SELECT
    $date_format(DateTime::FromSeconds(1568592000)) -- "2019-09-16 00:00:00 GMT"

SELECT
    SUBSTRING(DateTime::GetDayOfWeekName(AddTimezone(DateTime::FromSeconds(1568581200), "Europe/Moscow")), 0, 3) -- 
"Mon"

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_examples9
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_standard-scenarios
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_conversions-between-strings-and-seconds
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_date-and-time-formatting


Usually a separate named expression is used to format time, but you can do without it:

Converting types

This way, you can convert only constants:

But this way, you can convert a constant, a named expression, or a table field:

Converting time to date

A CAST to Date or TzDate outputs a GMT date for a midnight, local time (for example, for Moscow time 2019-10-22 00:00:00, the date 2019-10-21
is returned). To get a date in the local timezone, you can use DateTime::Format.

It's worth mentioning that several TzDatetime  or TzTimestamp  values with a positive timezone offset cannot be cast to TzDate . Consider the
example below:

Starting from the Unix epoch, there is no valid value representing midnight on 01/01/1970 for the Europe/Moscow timezone. As a result, such a cast
is impossible and fails at runtime.

At the same time, values with a negative timezone offset are converted correctly:

Daylight saving time

Please note that daylight saving time depends on the year:

$date_format = DateTime::Format("%Y-%m-%d %H:%M:%S %Z");

SELECT

   -- A variant with a named expression

   $date_format(AddTimezone(DateTime::FromSeconds(1568592000), 'Europe/Moscow')),

   -- A variant without a named expression

   DateTime::Format("%Y-%m-%d %H:%M:%S %Z")
       (AddTimezone(DateTime::FromSeconds(1568592000), 'Europe/Moscow'))
;

SELECT
    TzDateTime("2019-09-16T00:00:00,Europe/Moscow"), -- 2019-09-16T00:00:00,Europe/Moscow
    Date("2019-09-16") -- 2019-09-16

SELECT
    CAST("2019-09-16T00:00:00,Europe/Moscow" AS TzDateTime), -- 2019-09-16T00:00:00,Europe/Moscow
    CAST("2019-09-16" AS Date) -- 2019-09-16

$x = DateTime("2019-10-21T21:00:00Z");
SELECT
    AddTimezone($x, "Europe/Moscow"), -- 2019-10-22T00:00:00,Europe/Moscow
    cast($x as TzDate), -- 2019-10-21,GMT
    cast(AddTimezone($x, "Europe/Moscow") as TzDate), -- 2019-10-21,Europe/Moscow
    cast(AddTimezone($x, "Europe/Moscow") as Date), -- 2019-10-21
  DateTime::Format("%Y-%m-%d %Z")(AddTimezone($x, "Europe/Moscow")), -- 2019-10-22 Europe/Moscow

SELECT CAST(TzDatetime("1970-01-01T23:59:59,Europe/Moscow") as TzDate);
/* Fatal: Timestamp 1970-01-01T23:59:59.000000,Europe/Moscow cannot be casted to TzDate */

SELECT CAST(TzDatetime("1970-01-01T23:59:59,America/Los_Angeles") as TzDate);
/* 1970-01-01,America/Los_Angeles */

SELECT
    RemoveTimezone(TzDatetime("2019-09-16T10:00:00,Europe/Moscow")) as DST1, -- 2019-09-16T07:00:00Z
    RemoveTimezone(TzDatetime("2008-12-03T10:00:00,Europe/Moscow")) as DST2, -- 2008-12-03T07:00:00Z
    RemoveTimezone(TzDatetime("2008-07-03T10:00:00,Europe/Moscow")) as DST3, -- 2008-07-03T06:00:00Z (DST)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_converting-types
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_converting-time-to-date
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_datetime_daylight-saving-time


Digest
A set of commonly used hash functions.

List of functions

Digest::Crc32c(String{Flags::AutoMap}) -> Uint32

Digest::Crc64(String{Flags::AutoMap}, [Init:Uint64?]) -> Uint64

Digest::Fnv32(String{Flags::AutoMap}, [Init:Uint32?]) -> Uint32

Digest::Fnv64(String{Flags::AutoMap}, [Init:Uint64?]) -> Uint64

Digest::MurMurHash(String{Flags:AutoMap}, [Init:Uint64?]) -> Uint64

Digest::MurMurHash32(String{Flags:AutoMap}, [Init:Uint32?]) -> Uint32

Digest::MurMurHash2A(String{Flags:AutoMap}, [Init:Uint64?]) -> Uint64

Digest::MurMurHash2A32(String{Flags:AutoMap}, [Init:Uint32?]) -> Uint32

Digest::CityHash(String{Flags:AutoMap}, [Init:Uint64?]) -> Uint64

Digest::CityHash128(String{Flags:AutoMap}) -> Tuple<Uint64,Uint64>

Digest::NumericHash(Uint64{Flags:AutoMap}) -> Uint64

Digest::Md5Hex(String{Flags:AutoMap}) -> String

Digest::Md5Raw(String{Flags:AutoMap}) -> String

Digest::Md5HalfMix(String{Flags:AutoMap}) -> Uint64 : MD5 coarsening option (yabs_md5)

Digest::Argon2(String{Flags:AutoMap},String{Flags:AutoMap}) -> String : The second argument is the salt

Digest::Blake2B(String{Flags:AutoMap},[String?]) -> String : The second optional argument is the key

Digest::SipHash(Uint64,Uint64,String{Flags:AutoMap}) -> Uint64

Digest::HighwayHash(Uint64,Uint64,Uint64,Uint64,String{Flags:AutoMap}) -> Uint64

Digest::FarmHashFingerprint(Uint64{Flags:AutoMap}) -> Uint64

Digest::FarmHashFingerprint2(Uint64{Flags:AutoMap}, Uint64{Flags:AutoMap}) -> Uint64

Digest::FarmHashFingerprint32(String{Flags:AutoMap}) -> Uint32

Digest::FarmHashFingerprint64(String{Flags:AutoMap}) -> Uint64

Digest::FarmHashFingerprint128(String{Flags:AutoMap}) -> Tuple<Uint64,Uint64>

Digest::SuperFastHash(String{Flags:AutoMap}) -> Uint32

Digest::Sha1(String{Flags:AutoMap}) -> String

Digest::Sha256(String{Flags:AutoMap}) -> String

Digest::IntHash64(Uint64{Flags:AutoMap}) -> Uint64

Digest::XXH3(String{Flags:AutoMap}) -> Uint64

Digest::XXH3_128(String{Flags:AutoMap}) -> Tuple<Uint64,Uint64>

The functions for the hashes that support the initialization parameter (seed) accept its value in the optional named argument Init .

Examples

SELECT Digest::Md5Hex("YQL");  -- "1a0c1b56e9d617688ee345da4030da3c"
SELECT Digest::NumericHash(123456789); -- 1734215268924325803

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_digest
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_digest_list-of-functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_digest_examples


Histogram
Set of auxiliary functions for the HISTOGRAM aggregate function. In the signature description below, HistogramStruct refers to the result of the
aggregate function HISTOGRAM , LinearHistogram  or LogarithmicHistogram  being a structure of a certain type.

List of functions

Histogram::Print(HistogramStruct{Flags:AutoMap}, Byte?) -> String

Histogram::Normalize(HistogramStruct{Flags:AutoMap}, [Double?]) -> HistogramStruct : The second argument specifies the
desired area of the histogram, 100 by default.

Histogram::ToCumulativeDistributionFunction(HistogramStruct{Flags:AutoMap}) -> HistogramStruct

Histogram::GetSumAboveBound(HistogramStruct{Flags:AutoMap}, Double) -> Double

Histogram::GetSumBelowBound(HistogramStruct{Flags:AutoMap}, Double) -> Double

Histogram::GetSumInRange(HistogramStruct{Flags:AutoMap}, Double, Double) -> Double

Histogram::CalcUpperBound(HistogramStruct{Flags:AutoMap}, Double) -> Double

Histogram::CalcLowerBound(HistogramStruct{Flags:AutoMap}, Double) -> Double

Histogram::CalcUpperBoundSafe(HistogramStruct{Flags:AutoMap}, Double) -> Double

Histogram::CalcLowerBoundSafe(HistogramStruct{Flags:AutoMap}, Double) -> Double

Histogram::Print  has an optional numeric argument that sets the maximum length of the histogram columns (the length is in characters, since
the histogram is rendered in ASCII art). Default: 25. This function is primarily intended for viewing histograms in the console.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_histogram
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_histogram_list-of-functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_aggregation


Hyperscan
Hyperscan is an opensource library for regular expression matching developed by Intel.

The library includes 4 implementations that use different sets of processor instructions (SSE3, SSE4.2, AVX2, and AVX512), with the needed
instruction automatically selected based on the current processor.

By default, all functions work in the single-byte mode. However, if the regular expression is a valid UTF-8 string but is not a valid ASCII string, the
UTF-8 mode is enabled automatically.

List of functions

Hyperscan::Grep(pattern:String) -> (string:String?) -> Bool

Hyperscan::Match(pattern:String) -> (string:String?) -> Bool

Hyperscan::BacktrackingGrep(pattern:String) -> (string:String?) -> Bool

Hyperscan::BacktrackingMatch(pattern:String) -> (string:String?) -> Bool

Hyperscan::MultiGrep(pattern:String) -> (string:String?) -> Tuple<Bool, Bool, ...>

Hyperscan::MultiMatch(pattern:String) -> (string:String?) -> Tuple<Bool, Bool, ...>

Hyperscan::Capture(pattern:String) -> (string:String?) -> String?

Hyperscan::Replace(pattern:String) -> (string:String?, replacement:String) -> String?

Call syntax

To avoid compiling a regular expression at each table row at direct call, wrap the function call by a named expression:

Note

Please note escaping of special characters in regular expressions. Be sure to use the second slash, since all the standard string
literals in SQL can accept C-escaped strings, and the \d  sequence is not valid sequence (even if it were, it wouldn't search for
numbers as intended).

You can enable the case-insensitive mode by specifying, at the beginning of the regular expression, the flag (?i) .

Grep

Matches the regular expression with a part of the string (arbitrary substring).

Match

Matches the whole string against the regular expression.

To get a result similar to Grep  (where substring matching is included), enclose the regular expression in .*  ( .*foo.*  instead of foo ).
However, in terms of code readability, it's usually better to change the function.

BacktrackingGrep/BacktrackingMatch

The functions are identical to the same-name functions without the Backtracking  prefix. However, they support a broader range of regular
expressions. This is due to the fact that if a specific regular expression is not fully supported by Hyperscan, the library switches to the prefilter
mode. In this case, it responds not by "Yes" or "No", but by "Definitely not" or "Maybe yes". The "Maybe yes" responses are then automatically
rechecked using a slower, but more functional, library libpcre.

MultiGrep/MultiMatch

Hyperscan lets you match against multiple regular expressions in a single pass through the text, and get a separate response for each match.

However, if you want to match a string against any of the listed expressions (the results would be joined with "or"), it would be more efficient to
combine the query parts in a single regular expression with |  and match it with regular Grep  or Match .

When you call MultiGrep / MultiMatch , regular expressions are passed one per line using multiline string literals:

Example

$re = Hyperscan::Grep("\\d+");      -- create a callable value to match a specific regular expression
SELECT * FROM table WHERE $re(key); -- use it to filter the table

$multi_match = Hyperscan::MultiMatch(@@a.*
.*x.*
.*axa.*@@);

SELECT

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_hyperscan
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_hyperscan_list-of-functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_hyperscan_syntax
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_hyperscan_grep
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_hyperscan_match
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_hyperscan_backtrackinggrep
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_hyperscan_multigrep
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_hyperscan_example
https://www.hyperscan.io/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_named-nodes
https://www.pcre.org/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_named-nodes


Capture and Replace

Hyperscan::Capture  if a string matches the specified regular expression, it returns the last substring matching the regular expression.
Hyperscan::Replace  replaces all occurrences of the specified regular expression with the specified string.

Hyperscan doesn't support advanced functionality for such operations. Although Hyperscan::Capture  and Hyperscan::Replace  are
implemented for consistency, it's better to use the same-name functions from the Re2 library for any non-trivial capture and replace:

Re2::Capture;

Re2::Replace.

Usage example

    $multi_match("a") AS a,     -- (true, false, false)
    $multi_match("axa") AS axa; -- (true, true, true)

$value = "xaaxaaXaa";

$match = Hyperscan::Match("a.*");
$grep = Hyperscan::Grep("axa");
$insensitive_grep = Hyperscan::Grep("(?i)axaa$");
$multi_match = Hyperscan::MultiMatch(@@a.*
.*a.*
.*a
.*axa.*@@);

$capture = Hyperscan::Capture(".*a{2}.*");
$capture_many = Hyperscan::Capture(".*x(a+).*");
$replace = Hyperscan::Replace("xa");

SELECT
    $match($value) AS match,                        -- false
    $grep($value) AS grep,                          -- true
    $insensitive_grep($value) AS insensitive_grep,  -- true
    $multi_match($value) AS multi_match,            -- (false, true, true, true)
    $multi_match($value).0 AS some_multi_match,     -- false
    $capture($value) AS capture,                    -- "xaa"
    $capture_many($value) AS capture_many,          -- "xa"
    $replace($value, "b") AS replace                -- "babaXaa"
;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_hyperscan_capture
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_hyperscan_usage-example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_re2_capture
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_re2_replace


Ip
The Ip  module supports both the IPv4 and IPv6 addresses. By default, they are represented as binary strings of 4 and 16 bytes, respectively.

List of functions

Ip::FromString(String{Flags:AutoMap}) -> String?  - From a human-readable representation to a binary representation.

Ip::SubnetFromString(String{Flags:AutoMap}) -> String?  - From a human-readable representation of subnet to a binary
representation.

Ip::ToString(String{Flags:AutoMap}) -> String?  - From a binary representation to a human-readable representation.

Ip::SubnetToString(String{Flags:AutoMap}) -> String?  - From a binary representation of subnet to a human-readable representation.

Ip::IsIPv4(String?) -> Bool

Ip::IsIPv6(String?) -> Bool

Ip::IsEmbeddedIPv4(String?) -> Bool

Ip::ConvertToIPv6(String{Flags:AutoMap}) -> String : IPv6 remains unchanged, and IPv4 becomes embedded in IPv6

Ip::GetSubnet(String{Flags:AutoMap}, [Uint8?]) -> String : The second argument is the subnet size, by default it's 24 for IPv4 and
64 for IPv6

Ip::GetSubnetByMask(String{Flags:AutoMap}, String{Flags:AutoMap}) -> String : The first argument is the base address, the second
argument is the bit mask of a desired subnet.

Ip::SubnetMatch(String{Flags:AutoMap}, String{Flags:AutoMap}) -> Bool : The first argument is a subnet, the second argument is a
subnet or an address.

Examples

SELECT Ip::IsEmbeddedIPv4(
  Ip::FromString("::ffff:77.75.155.3")
); -- true

SELECT
  Ip::ToString(
    Ip::GetSubnet(
      Ip::FromString("213.180.193.3")
    )
  ); -- "213.180.193.0"

SELECT
  Ip::SubnetMatch(
    Ip::SubnetFromString("192.168.0.1/16"),
    Ip::FromString("192.168.1.14"),
  ); -- true

SELECT
  Ip::ToString(
    Ip::GetSubnetByMask(
      Ip::FromString("192.168.0.1"),
      Ip::FromString("255.255.0.0")
    )
  ); -- "192.168.0.0"

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_ip
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_ip_list-of-functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_ip_examples


KNN

Introduction

One specific case of vector search is the k-NN problem, where it is required to find the k  nearest points to the query point. This can be useful in
various applications such as image classification, recommendation systems, etc.

The k-NN problem solution is divided into two major subclasses of methods: exact and approximate.

Exact method

The foundation of the exact method is the calculation of the distance from the query vector to all the vectors in the dataset. This algorithm, also
known as the naive approach or brute force method, has a runtime of O(dn) , where n  is the number of vectors in the dataset, and d  is their
dimensionality.

Exact vector search is best utilized if the complete enumeration of the vectors occurs within acceptable time limits. This includes cases where they
can be pre-filtered based on some condition, such as a user identifier. In such instances, the exact method may perform faster than the current
implementation of vector indexes.

Main advantages:

No need for additional data structures, such as specialized vector indexes.
Full support for transactions, including in strict consistency mode.

Instant execution of data modification operations: insertion, update, deletion.

Approximate methods

Approximate methods do not perform a complete enumeration of the initial data. This allows significantly speeding up the search process, although
it might lead to some reduction in the quality of the results.

Scalar Quantization is a method of reducing vector dimensionality, where a set of coordinates is mapped into a space of smaller dimensions.

YDB supports vector searching for vector types Float , Int8 , Uint8 , and Bit . Consequently, it is possible to apply scalar quantization to
transform data from Float  to any of these types.

Scalar quantization reduces the time required for reading and writing data by decreasing the number of bytes. For example, when quantizing from
Float  to Bit , each vector is reduced by 32 times.

Approximate vector search without an index uses a very simple additional data structure - a set of vectors with other quantization. This allows the
use of a simple search algorithm: first, a rough preliminary search is performed on the compressed vectors, followed by refining the results on the
original vectors.

Main advantages:

Full support for transactions, including in strict consistency mode.

Instant application of data modification operations: insertion, update, deletion.

Note

It is recommended to measure if such quantization provides sufficient accuracy/recall.

Data types

In mathematics, a vector of real or integer numbers is used to store points.
In this module, vectors are stored in the String  data type, which is a binary serialized representation of a vector.

Functions

Vector functions are implemented as user-defined functions (UDF) in the Knn  module.

Functions for converting between vector and binary representations

Conversion functions are needed to serialize vectors into an internal binary representation and vice versa.

All serialization functions wrap returned String  data into Tagged types.

The binary representation of the vector can be stored in the YDB table column.

Note

Currently YDB does not support storing Tagged , so before storing binary representation vectors you must call Untag.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_knn
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_knn_introduction
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_knn_exact-method
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_knn_approximate-methods
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_knn_data-types
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_knn_functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_knn_functions-convert
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_vector_search
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_udf_list_knn_exact-vector-search-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_dev_vector-indexes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_concepts_glossary_vector-index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_concepts_glossary_transactions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_udf_list_knn_approximate-vector-search-scalar-quantization
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_udf_list_knn_approximate-vector-search-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_concepts_glossary_transactions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_special
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_as-tagged


Note

Currently YDB does not support building an index for vectors with bit quantization BitVector .

Function signatures

Implementation details

The ToBinaryStringBit  function maps coordinates that are greater than 0  to 1 . All other coordinates are mapped to 0 .

Distance and similarity functions

The distance and similarity functions take two lists of real numbers as input and return the distance/similarity between them.

Note

Distance functions return small values for close vectors, while similarity functions return large values for close vectors. This should be
taken into account when defining the sorting order.

Similarity functions:

inner product InnerProductSimilarity , it's the dot product, also known as the scalar product (sum of products of coordinates)

cosine similarity CosineSimilarity  (dot product divided by product of vector lengths)

Distance functions:

cosine distance CosineDistance  (1 - cosine similarity)

manhattan distance ManhattanDistance , also known as L1 distance  (sum of modules of coordinate differences)

euclidean distance EuclideanDistance , also known as L2 distance  (square root of the sum of squares of coordinate differences)

Function signatures

In case of mismatched lengths or formats, these functions return NULL .

Note

All distance and similarity functions support overloads when first or second arguments are Tagged<String, "FloatVector"> ,
Tagged<String, "Uint8Vector"> , Tagged<String, "Int8Vector"> , Tagged<String, "BitVector"> .

If both arguments are Tagged , tag values should match, or the query will raise an error.

Example:

Exact search examples

Creating a table

Knn::ToBinaryStringFloat(List<Float>{Flags:AutoMap})->Tagged<String, "FloatVector">
Knn::ToBinaryStringUint8(List<Uint8>{Flags:AutoMap})->Tagged<String, "Uint8Vector">
Knn::ToBinaryStringInt8(List<Int8>{Flags:AutoMap})->Tagged<String, "Int8Vector">
Knn::ToBinaryStringBit(List<Double>{Flags:AutoMap})->Tagged<String, "BitVector">
Knn::ToBinaryStringBit(List<Float>{Flags:AutoMap})->Tagged<String, "BitVector">
Knn::ToBinaryStringBit(List<Uint8>{Flags:AutoMap})->Tagged<String, "BitVector">
Knn::ToBinaryStringBit(List<Int8>{Flags:AutoMap})->Tagged<String, "BitVector">
Knn::FloatFromBinaryString(String{Flags:AutoMap})->List<Float>?

Knn::InnerProductSimilarity(String{Flags:AutoMap}, String{Flags:AutoMap})->Float?
Knn::CosineSimilarity(String{Flags:AutoMap}, String{Flags:AutoMap})->Float?
Knn::CosineDistance(String{Flags:AutoMap}, String{Flags:AutoMap})->Float?
Knn::ManhattanDistance(String{Flags:AutoMap}, String{Flags:AutoMap})->Float?
Knn::EuclideanDistance(String{Flags:AutoMap}, String{Flags:AutoMap})->Float?

Error: Failed to find UDF function: Knn.CosineDistance, reason: Error: Module: Knn, function: CosineDistance, 
error: Arguments should have same tags, but 'FloatVector' is not equal to 'Uint8Vector'

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_knn_functions-convert-signature
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_knn_functions-convert-details
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_knn_functions-distance
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_knn_functions-distance-signatures
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_knn_exact-vector-search-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_knn_exact-vector-search-examples-create


Adding vectors

Exact search of K nearest vectors

Exact search of vectors in radius R

Approximate search examples

This example differs from the exact search example by using bit quantization.

This allows to first do a approximate preliminary search by the embedding_bit  column, and then refine the results by the original vector column
embegging .

Creating a table

Adding vectors

Scalar quantization

An ML model can do quantization, or it can be done manually with YQL.

Below there is a quantization example in YQL.

Float -> Int8

CREATE TABLE Facts (
    id Uint64,        -- Id of fact
    user Utf8,        -- User name
    fact Utf8,        -- Human-readable description of a user fact
    embedding String, -- Binary representation of embedding vector (result of Knn::ToBinaryStringFloat)
    PRIMARY KEY (id)
);

$vector = [1.f, 2.f, 3.f, 4.f];
UPSERT INTO Facts (id, user, fact, embedding)
VALUES (123, "Williams", "Full name is John Williams", Untag(Knn::ToBinaryStringFloat($vector), "FloatVector"));

$K = 10;
$TargetEmbedding = Knn::ToBinaryStringFloat([1.2f, 2.3f, 3.4f, 4.5f]);

SELECT * FROM Facts
WHERE user="Williams"
ORDER BY Knn::CosineDistance(embedding, $TargetEmbedding)
LIMIT $K;

$R = 0.1f;
$TargetEmbedding = Knn::ToBinaryStringFloat([1.2f, 2.3f, 3.4f, 4.5f]);

SELECT * FROM Facts
WHERE Knn::CosineDistance(embedding, $TargetEmbedding) < $R;

CREATE TABLE Facts (
    id Uint64,            -- Id of fact
    user Utf8,            -- User name
    fact Utf8,            -- Human-readable description of a user fact
    embedding String,     -- Binary representation of embedding vector (result of Knn::ToBinaryStringFloat)
    embedding_bit String, -- Binary representation of embedding vector (result of Knn::ToBinaryStringBit)
    PRIMARY KEY (id)
);

$vector = [1.f, 2.f, 3.f, 4.f];
UPSERT INTO Facts (id, user, fact, embedding, embedding_bit)
VALUES (123, "Williams", "Full name is John Williams", Untag(Knn::ToBinaryStringFloat($vector), "FloatVector"), 
Untag(Knn::ToBinaryStringBit($vector), "BitVector"));

$MapInt8 = ($x) -> {
    $min = -5.0f;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_knn_exact-vector-search-examples-upsert
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_knn_exact-vector-search-k-nearest
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_knn_exact-vector-search-radius
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_knn_approximate-vector-search-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_knn_approximate-vector-search-examples-create
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_knn_approximate-vector-search-examples-upsert
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_knn_approximate-vector-search-scalar-quantization
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_knn_approximate-vector-search-scalar-quantization-map
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_knn_exact-vector-search-examples


Approximate search of K nearest vectors: bit quantization

Approximate search algorithm:

an approximate search is performed using bit quantization;

an approximate list of vectors is obtained;
we search this list without using quantization.

    $max =  5.0f;
    $range = $max - $min;
  RETURN CAST(Math::Round(IF($x < $min, -127, IF($x > $max, 127, ($x / $range) * 255))) As Int8)
};

$FloatList = [-1.2f, 2.3f, 3.4f, -4.7f];
SELECT ListMap($FloatList, $MapInt8);

$K = 10;
$Target = [1.2f, 2.3f, 3.4f, 4.5f];
$TargetEmbeddingBit = Knn::ToBinaryStringBit($Target);
$TargetEmbeddingFloat = Knn::ToBinaryStringFloat($Target);

$Ids = SELECT id FROM Facts
ORDER BY Knn::CosineDistance(embedding_bit, $TargetEmbeddingBit)
LIMIT $K * 10;

SELECT * FROM Facts
WHERE id IN $Ids
ORDER BY Knn::CosineDistance(embedding, $TargetEmbeddingFloat)
LIMIT $K;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_knn_approximate-vector-search-scalar-quantization-example


Math
A set of wrappers around the functions from the libm library and the Yandex utilities.

Constants

List of functions

Math::Pi() -> Double

Math::E() -> Double

Math::Eps() -> Double

Examples

(Double) -> Bool

List of functions

Math::IsInf(Double{Flags:AutoMap}) -> Bool

Math::IsNaN(Double{Flags:AutoMap}) -> Bool

Math::IsFinite(Double{Flags:AutoMap}) -> Bool

Examples

(Double) -> Double

List of functions

Math::Abs(Double{Flags:AutoMap}) -> Double

Math::Acos(Double{Flags:AutoMap}) -> Double

Math::Asin(Double{Flags:AutoMap}) -> Double

Math::Asinh(Double{Flags:AutoMap}) -> Double

Math::Atan(Double{Flags:AutoMap}) -> Double

Math::Cbrt(Double{Flags:AutoMap}) -> Double

Math::Ceil(Double{Flags:AutoMap}) -> Double

Math::Cos(Double{Flags:AutoMap}) -> Double

Math::Cosh(Double{Flags:AutoMap}) -> Double

Math::Erf(Double{Flags:AutoMap}) -> Double

Math::ErfInv(Double{Flags:AutoMap}) -> Double

Math::ErfcInv(Double{Flags:AutoMap}) -> Double

Math::Exp(Double{Flags:AutoMap}) -> Double

Math::Exp2(Double{Flags:AutoMap}) -> Double

Math::Fabs(Double{Flags:AutoMap}) -> Double

Math::Floor(Double{Flags:AutoMap}) -> Double

Math::Lgamma(Double{Flags:AutoMap}) -> Double

Math::Rint(Double{Flags:AutoMap}) -> Double

Math::Sigmoid(Double{Flags:AutoMap}) -> Double

Math::Sin(Double{Flags:AutoMap}) -> Double

Math::Sinh(Double{Flags:AutoMap}) -> Double

Math::Sqrt(Double{Flags:AutoMap}) -> Double

Math::Tan(Double{Flags:AutoMap}) -> Double

Math::Tanh(Double{Flags:AutoMap}) -> Double

Math::Tgamma(Double{Flags:AutoMap}) -> Double

Math::Trunc(Double{Flags:AutoMap}) -> Double

Math::Log(Double{Flags:AutoMap}) -> Double

SELECT Math::Pi();  -- 3.141592654
SELECT Math::E();   -- 2.718281828
SELECT Math::Eps(); -- 2.220446049250313e-16

SELECT Math::IsNaN(0.0/0.0);    -- true
SELECT Math::IsFinite(1.0/0.0); -- false

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_math
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_math_constants
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_math_list-of-functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_math_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_math_double-bool
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_math_list-of-functions1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_math_examples1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_math_double-double
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_math_list-of-functions2


Math::Log2(Double{Flags:AutoMap}) -> Double

Math::Log10(Double{Flags:AutoMap}) -> Double

Examples

(Double, Double) -> Double

List of functions

Math::Atan2(Double{Flags:AutoMap}, Double{Flags:AutoMap}) -> Double

Math::Fmod(Double{Flags:AutoMap}, Double{Flags:AutoMap}) -> Double

Math::Hypot(Double{Flags:AutoMap}, Double{Flags:AutoMap}) -> Double

Math::Pow(Double{Flags:AutoMap}, Double{Flags:AutoMap}) -> Double

Math::Remainder(Double{Flags:AutoMap}, Double{Flags:AutoMap}) -> Double

Examples

(Double, Int32) -> Double

List of functions

Math::Ldexp(Double{Flags:AutoMap}, Int32{Flags:AutoMap}) -> Double

Math::Round(Double{Flags:AutoMap}, [Int32?]) -> Double : The second argument indicates the power of 10 to which we round (it's
negative for decimal digits and positive for rounding to tens, thousands, or millions); the default value is 0

Examples

(Double, Double, [Double?]) -> Bool

List of functions

Math::FuzzyEquals(Double{Flags:AutoMap}, Double{Flags:AutoMap}, [Double?]) -> Bool : Compares two Doubles for being inside
the neighborhood specified by the third argument; the default value is 1.0e-13

Examples

Functions for computing remainders

List of functions

Math::Mod(Int64{Flags:AutoMap}, Int64) -> Int64?

Math::Rem(Int64{Flags:AutoMap}, Int64) -> Int64?

These functions behave similarly to the built-in % operator in the case of non-negative arguments. The differences are noticeable in the case of
negative arguments:

Math::Mod  preserves the sign of the second argument (the denominator).

Math::Rem  preserves the sign of the first argument (the numerator).

Functions return null if the divisor is zero.

Examples

SELECT Math::Sqrt(256);     -- 16
SELECT Math::Trunc(1.2345); -- 1

SELECT Math::Atan2(1, 0);       -- 1.570796327
SELECT Math::Remainder(2.1, 2); -- 0.1

SELECT Math::Pow(2, 10);        -- 1024
SELECT Math::Round(1.2345, -2); -- 1.23

SELECT Math::FuzzyEquals(1.01, 1.0, 0.05); -- true

SELECT Math::Mod(-1, 7);        -- 6

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_math_examples2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_math_doubledouble-double
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_math_list-of-functions3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_math_examples3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_math_doubleint32-double
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_math_list-of-functions4
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_math_examples4
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_math_doubledouble-bool
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_math_list-of-functions5
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_math_examples5
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_math_functions-for-computing-remainders
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_math_list-of-functions6
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_math_examples6


SELECT Math::Rem(-1, 7);        -- -1



Pcre
The Pcre library is currently an alias to Hyperscan.

Currently available engines:

Hyperscan (Intel)

Pire (Yandex)

Re2 (Google)

All three modules provide approximately the same set of functions with an identical interface. This lets you switch between them with minimal
changes to a query.

Inside Hyperscan, there are several implementations that use different sets of processor instructions, with the relevant instruction automatically
selected based on the current processor. In HyperScan, some functions support backtracking (referencing the previously found part of the string).
Those functions are implemented through hybrid use of the two libraries: Hyperscan and libpcre.

Pire (Perl Incompatible Regular Expressions) is a very fast library of regular expressions developed by Yandex. At the lower level, it scans the input
string once, without any lookaheads or rollbacks, spending 5 machine instructions per character (on x86 and x86_64). However, since the library
almost hasn't been developed since 2011-2013 and its name says "Perl incompatible", you may need to adapt your regular expressions a bit.

Hyperscan and Pire are best-suited for Grep and Match.

The Re2 module uses google::RE2 that offers a wide range of features (see the official documentation). The main benefit of the Re2 is its advanced
Capture and Replace functionality. Use this library, if you need those functions.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_pcre
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_hyperscan
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_hyperscan
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_pire
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_re2
https://github.com/yandex/pire
https://github.com/google/re2
https://github.com/google/re2/wiki/Syntax


Pire

List of functions

Pire::Grep(pattern:String) -> (string:String?) -> Bool

Pire::Match(pattern:String) -> (string:String?) -> Bool

Pire::MultiGrep(pattern:String) -> (string:String?) -> Tuple<Bool, Bool, ...>

Pire::MultiMatch(pattern:String) -> (string:String?) -> Tuple<Bool, Bool, ...>

Pire::Capture(pattern:String) -> (string:String?) -> String?

Pire::Replace(pattern:String) -> (string:String?, replacement:String) -> String?

One of the options to match regular expressions in YQL is to use Pire (Perl Incompatible Regular Expressions). This is a very fast library of regular
expressions developed at Yandex: at the lower level, it looks up the input string once, without any lookaheads or rollbacks, spending 5 machine
instructions per character (on x86 and x86_64).

The speed is achieved by using the reasonable restrictions:

Pire is primarily focused at checking whether a string matches a regular expression.

The matching substring can also be returned (by Capture), but with restrictions (a match with only one group is returned).

By default, all functions work in the single-byte mode. However, if the regular expression is a valid UTF-8 string but is not a valid ASCII string, the
UTF-8 mode is enabled automatically.

To enable the Unicode mode, you can put one character that's beyond ASCII with the ?  operator, for example: \\w+я? .

Call syntax

To avoid compiling a regular expression at each table row, wrap the function call by a named expression:

Alert

When escaping special characters in a regular expression, be sure to use the second slash, since all the standard string literals in SQL
can accept C-escaped strings, and the \d  sequence is not a valid sequence (even if it were, it wouldn't search for numbers as
intended).

You can enable the case-insensitive mode by specifying, at the beginning of the regular expression, the flag (?i) .

Examples

Grep

Matches the regular expression with a part of the string (arbitrary substring).

Match

$re = Pire::Grep("\\d+"); -- create a callable value to match a specific regular expression
SELECT * FROM table WHERE $re(key); -- use it to filter the table

$value = "xaaxaaxaa";
$match = Pire::Match("a.*");
$grep = Pire::Grep("axa");
$insensitive_grep = Pire::Grep("(?i)axa");
$multi_match = Pire::MultiMatch(@@a.*
.*a.*
.*a
.*axa.*@@);
$capture = Pire::Capture(".*x(a).*");
$capture_many = Pire::Capture(".*x(a+).*");
$replace = Pire::Replace(".*x(a).*");

SELECT
  $match($value) AS match,                        -- false
  $grep($value) AS grep,                          -- true
  $insensitive_grep($value) AS insensitive_grep,  -- true
  $multi_match($value) AS multi_match,            -- (false, true, true, true)
  $multi_match($value).0 AS some_multi_match,     -- false
  $capture($value) AS capture,                    -- "a"
  $capture_many($value) AS capture_many,          -- "aa"
  $replace($value, "b") AS replace;               -- "xaaxaaxba"

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_pire
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_pire_list-of-functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_pire_call-syntax
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_pire_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_pire_grep
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_pire_match
https://github.com/yandex/pire
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_named-nodes


Matches the whole string against the regular expression.
To get a result similar to Grep  (where substring matching is included), enclose the regular expression in .* . For example, use .*foo.*  instead
of foo .

MultiGrep/MultiMatch

Pire lets you match against multiple regular expressions in a single pass through the text and get a separate response for each match.
Use the MultiGrep/MultiMatch functions to optimize the query execution speed. Be sure to do it carefully, since the size of the state machine used
for matching grows exponentially with the number of regular expressions:

If you want to match a string against any of the listed expressions (the results are joined with "or"), it would be much more efficient to combine
the query parts in a single regular expression with |  and match it using regular Grep or Match.

Pire has a limit on the size of the state machine (YQL uses the default value set in the library). If you exceed the limit, the error is raised at the
start of the query: Failed to glue up regexes, probably the finite state machine appeared to be too large .

When you call MultiGrep/MultiMatch, regular expressions are passed one per line using multiline string literals:

Examples

Capture

If a string matches the specified regular expression, it returns a substring that matches the group enclosed in parentheses in the regular expression.
Capture is non-greedy: the shortest possible substring is returned.

Alert

The expression must contain only one group in parentheses. NULL  (empty Optional) is returned in case of no match.

If the above limitations and features are unacceptable for some reason, we recommend that you consider Re2::Capture.

REPLACE

Pire doesn't support replace based on a regular expression. Pire::Replace  implemented in YQL is a simplified emulation using Capture . It may
run correctly, if the substring occurs more than once in the source string.

As a rule, it's better to use Re2::Replace instead.

$multi_match = Pire::MultiMatch(@@a.*
.*x.*
.*axa.*@@);

SELECT
    $multi_match("a") AS a,      -- (true, false, false)
    $multi_match("axa") AS axa;  -- (true, true, true)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_pire_multigrep
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_pire_examples1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_pire_capture
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_pire_replace
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_multiline-string-literals
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_re2_capture
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_re2_replace


Re2

List of functions

The Re2 module supports regular expressions based on google::RE2 with a wide range of features provided (see the official documentation).

By default, the UTF-8 mode is enabled automatically if the regular expression is a valid UTF-8-encoded string, but is not a valid ASCII string. You
can manually control the settings of the re2 library, if you pass the result of the Re2::Options  function as the second argument to other module
functions, next to the regular expression.

Warning

Make sure to double all the backslashes in your regular expressions (if they are within a quoted string): standard string literals are
treated as C-escaped strings in SQL. You can also format regular expressions as raw strings @@regexp@@ : double slashes are not
needed in this case.

Examples

Re2::Grep / Re2::Match

If you leave out the details of implementation and syntax of regular expressions, those functions are totally similar to the same-name functions from
the Pire module. With other things equal and no specific preferences, we recommend that you use Pire::Grep or Pire::Match .

You can call the Re2::Grep  function by using a REGEXP  expression (see the basic expression syntax).

For example, the following two queries are equivalent (also in terms of computing efficiency):

$grep = Re2::Grep("b+"); SELECT $grep("aaabccc");

SELECT "aaabccc" REGEXP "b+";

Re2::Capture

Unlike Pire::Capture, Re2::Capture  supports multiple and named capturing groups.
Result type: a structure with the fields of the type String? .

Each field corresponds to a capturing group with the applicable name.

For unnamed groups, the following names are generated: _1 , _2 , etc.

The result always includes the _0  field containing the entire substring matching the regular expression.

For more information about working with structures in YQL, see the section on containers.

Re2::FindAndConsume

Searches for all occurrences of the regular expression in the passed text and returns a list of values corresponding to the parenthesized part of the
regular expression for each occurrence.

Re2::Grep(pattern:String, options:Struct<...>?) -> (string:String?) -> Bool
Re2::Match(pattern:String, options:Struct<...>?) -> (string:String?) -> Bool
Re2::Capture(pattern:String, options:Struct<...>?) -> (string:String?) -> Struct<_1:String?,foo:String?,...>
Re2::FindAndConsume(pattern:String, options:Struct<...>?) -> (string:String?) -> List<String>
Re2::Replace(pattern:String, options:Struct<...>?) -> (string:String?, replacement:String) -> String?
Re2::Count(pattern:String, options:Struct<...>?) -> (string:String?) -> Uint32
Re2::Options([CaseSensitive:Bool?,DotNl:Bool?,Literal:Bool?,LogErrors:Bool?,LongestMatch:Bool?,MaxMem:Uint64?,NeverCapture:
-> 
Struct<CaseSensitive:Bool,DotNl:Bool,Literal:Bool,LogErrors:Bool,LongestMatch:Bool,MaxMem:Uint64,NeverCapture:Bool,NeverNl:

$value = "xaaxaaxaa";
$options = Re2::Options(false AS CaseSensitive);
$match = Re2::Match("[ax]+\\d");
$grep = Re2::Grep("a.*");
$capture = Re2::Capture(".*(?P<foo>xa?)(a{2,}).*");
$replace = Re2::Replace("x(a+)x");
$count = Re2::Count("a", $options);

SELECT
  $match($value) AS match,                -- false
  $grep($value) AS grep,                  -- true
  $capture($value) AS capture,            -- (_0: 'xaaxaaxaa', _1: 'aa', foo: 'x')
  $capture($value)._1 AS capture_member,  -- "aa"
  $replace($value, "b\\1z") AS replace,   -- "baazaaxaa"
  $count($value) AS count;                -- 6

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_re2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_re2_list-of-functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_re2_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_re2_match
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_re2_capture
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_re2_findandconsume
https://github.com/google/re2
https://github.com/google/re2/wiki/Syntax
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_pire_match
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_regexp
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_pire_capture
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_containers


Re2::Replace

Works as follows:

In the input string (first argument), all the non-overlapping substrings matching the regular expression are replaced by the specified string
(second argument).

In the replacement string, you can use the contents of capturing groups from the regular expression using back-references in the format: \\1 ,
\\2  etc. The \\0  back-reference stands for the whole substring that matches the regular expression.

Re2::Count

Returns the number of non-overlapping substrings of the input string that have matched the regular expression.

Re2::Options

Notes on Re2::Options from the official repository

Parameter Default Comments

CaseSensitive:Bool? true match is case-sensitive (regexp can override with (?i) unless in posix_syntax mode)

DotNl:Bool? false let .  match \n  (default )

Literal:Bool? false interpret string as literal, not regexp

LogErrors:Bool? true log syntax and execution errors to ERROR

LongestMatch:Bool? false search for longest match, not first match

MaxMem:Uint64? - (see below) approx. max memory footprint of RE2

NeverCapture:Bool? false parse all parents as non-capturing

NeverNl:Bool? false never match \n, even if it is in regexp

PosixSyntax:Bool? false restrict regexps to POSIX egrep syntax

Utf8:Bool? true text and pattern are UTF-8; otherwise Latin-1

The following options are only consulted when PosixSyntax == true. When PosixSyntax == false, these features are always enabled and 
cannot be turned off; to perform multi-line matching in that case, begin the regexp with (?m).

PerlClasses:Bool? false allow Perl's \d \s \w \D \S \W

WordBoundary:Bool? false allow Perl's \b \B (word boundary and not)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_re2_replace
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_re2_count
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_re2_options
https://github.com/google/re2/blob/main/re2/re2.h#L595-L617


It is not recommended to use Re2::Options in the code. Most parameters can be replaced with regular expression flags.

Flag usage examples

In both cases, the word FOO will be found. Using the raw string @@regexp@@ lets you avoid double slashes.

$value = "Foo bar FOO"u;
-- enable case-insensitive mode
$capture = Re2::Capture(@@(?i)(foo)@@);

SELECT
    $capture($value) AS capture; -- ("_0": "Foo", "_1": "Foo")

$capture = Re2::Capture(@@(?i)(?P<foo>FOO).*(?P<bar>bar)@@);

SELECT
    $capture($value) AS capture; -- ("_0": "Foo bar", "bar": "bar", "foo": "Foo")

OneLine:Bool? false ^ and $ only match beginning and end of text

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_re2_flag-usage-examples


Roaring

Introduction

Bitsets, also called bitmaps, are commonly used as fast data structures. Unfortunately, they can use too much memory. To compensate, we often
use compressed bitmaps.

Roaring bitmaps are compressed bitmaps which tend to outperform conventional compressed bitmaps such as WAH, EWAH or Concise. In some
instances, roaring bitmaps can be hundreds of times faster and they often offer significantly better compression. They can even be faster than
uncompressed bitmaps.

Implementation

You can work with Roaring bitmaps in YDB using a set of user-defined functions (UDFs) in the Roaring  module. These functions provide the
ability to work with 32-bit Roaring bitmaps. To do this, the data must be serialized in the format for 32-bit bitmaps described in the specification. This
can be done using a function available in the Roaring bitmap library itself.

Such libraries exist for many programming languages, such as Go. If the serialization happened on the client side, the application can then save the
serialized bitmap in a column with the String  type.

To work with Roaring bitmaps in a query, data from the String  type must be deserialized into the Resource<roaring_bitmap> type. To save the
data, you need to perform the reverse operation. After that, the application can read the updated bitmap from YDB and deserialize it.

Available methods

Serialization and deserialization

Two functions, Deserialize  and FromUint32List , are available for creating Resource<roaring_bitmap> . The second function allows creating
a Roaring bitmap from a list of unsigned integers, i.e., without the need to use the Roaring bitmap library code to create a binary representation.

YDB does not store data with the Resource  type, so the created bitmap must be converted to a binary representation using the Serialize
method.

To use the resulting bitmap, for example, in a WHERE  condition, the Uint32List  method is provided. This method returns a list of unsigned
integers from the Resource<roaring_bitmap> .

Bitwise operations

Currently, three modifying binary operations with bitmaps are supported:

Or

And

AndNot

The operations are modifying, meaning that they modify the Resource<roaring_bitmap>  passed as the first argument. Each of these operations
has a version with the WithBinary  suffix, which allows working with the binary representation without having to deserialize it into the
Resource<roaring_bitmap>  type. The implementation of these methods still has to deserialize the data to perform the operation, but it does not

create an intermediate Resource , thereby saving resources.

Other operations

The Cardinality  function is provided to obtain the number of bits set to 1 in the Resource<roaring_bitmap> .

After the bitmap has been constructed or modified, it can be optimized using the RunOptimize  method. The internal format of a Roaring bitmap
can use containers with better representations for different bit sequences.

Roaring::Deserialize(String{Flags:AutoMap})->Resource<roaring_bitmap>
Roaring::FromUint32List(List<Uint32>{Flags:AutoMap})->Resource<roaring_bitmap>
Roaring::Serialize(Resource<roaring_bitmap>{Flags:AutoMap})->String
Roaring::Uint32List(Resource<roaring_bitmap>{Flags:AutoMap})->List<Uint32>

Roaring::Cardinality(Resource<roaring_bitmap>{Flags:AutoMap})->Uint32

Roaring::Or(Resource<roaring_bitmap>{Flags:AutoMap}, Resource<roaring_bitmap>{Flags:AutoMap})->Resource<roaring_bitmap>
Roaring::OrWithBinary(Resource<roaring_bitmap>{Flags:AutoMap}, String{Flags:AutoMap})->Resource<roaring_bitmap>

Roaring::And(Resource<roaring_bitmap>{Flags:AutoMap}, Resource<roaring_bitmap>{Flags:AutoMap})->Resource<roaring_bitmap>
Roaring::AndWithBinary(Resource<roaring_bitmap>{Flags:AutoMap}, String{Flags:AutoMap})->Resource<roaring_bitmap>

Roaring::AndNot(Resource<roaring_bitmap>{Flags:AutoMap}, Resource<roaring_bitmap>{Flags:AutoMap})-
>Resource<roaring_bitmap>
Roaring::AndNotWithBinary(Resource<roaring_bitmap>{Flags:AutoMap}, String{Flags:AutoMap})->Resource<roaring_bitmap>

Roaring::RunOptimize(Resource<roaring_bitmap>{Flags:AutoMap})->Resource<roaring_bitmap>

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_roaring
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_roaring_introduction
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_roaring_implementation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_roaring_available-methods
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_roaring_serialization-and-deserialization
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_roaring_bitwise-operations
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_roaring_other-operations
https://github.com/RoaringBitmap/RoaringFormatSpec?tab=readme-ov-file#standard-32-bit-roaring-bitmap
https://github.com/RoaringBitmap/roaring
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_special


Examples

$b = Roaring::FromUint32List(AsList(42));
$b = Roaring::Or($b, Roaring::FromUint32List(AsList(56)));

SELECT Roaring::Uint32List($b) AS `Or`; -- [42, 56]

$b1 = Roaring::FromUint32List(AsList(10, 567, 42));
$b2 = Roaring::FromUint32List(AsList(42));

$b2ser = Roaring::Serialize($b2); -- save this to String column

SELECT Roaring::Cardinality(Roaring::AndWithBinary($b1, $b2ser)) AS Cardinality; -- 1

SELECT Roaring::Uint32List(Roaring::And($b1, $b2)) AS `And`; -- [42]
SELECT Roaring::Uint32List(Roaring::AndWithBinary($b1, $b2ser)) AS AndWithBinary; -- [42]

$b1 = Roaring::FromUint32List(AsList(10, 567, 42));
$b2 = Roaring::FromUint32List(AsList(42));

$b2ser = Roaring::Serialize($b2); -- save this to String column

SELECT Roaring::Cardinality(Roaring::AndNotWithBinary($b1, $b2ser)) AS Cardinality; -- 2

SELECT Roaring::Uint32List(Roaring::AndNot($b1, $b2)) AS AndNot; -- [10,567]
SELECT Roaring::Uint32List(Roaring::AndNotWithBinary($b1, $b2ser)) AS AndNotWithBinary; -- [10,567]

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_roaring_examples


String
Functions for ASCII strings:

List of functions

String::Base64Encode(String{Flags:AutoMap}) -> String

String::Base64Decode(String) -> String?

String::Base64StrictDecode(String) -> String?

String::EscapeC(String{Flags:AutoMap}) -> String

String::UnescapeC(String{Flags:AutoMap}) -> String

String::HexEncode(String{Flags:AutoMap}) -> String

String::HexDecode(String) -> String?

String::EncodeHtml(String{Flags:AutoMap}) -> String

String::DecodeHtml(String{Flags:AutoMap}) -> String

String::CgiEscape(String{Flags:AutoMap}) -> String

String::CgiUnescape(String{Flags:AutoMap}) -> String

String::Strip(String{Flags:AutoMap}) -> String

String::Collapse(String{Flags:AutoMap}) -> String

String::CollapseText(String{Flags:AutoMap}, Uint64) -> String

String::Contains(String?, String) -> Bool

String::Find(String{Flags:AutoMap}, String, [Uint64?]) -> Int64 : Returns the first position found or -1. The optional argument is
the offset from the beginning of the string.

String::ReverseFind(String{Flags:AutoMap}, String, [Uint64?]) -> Int64 : Returns the last position found or -1. The optional
argument is the offset from the beginning of the string.

String::HasPrefix(String?, String) -> Bool

String::HasPrefixIgnoreCase(String?, String) -> Bool

String::StartsWith(String?, String) -> Bool

String::StartsWithIgnoreCase(String?, String) -> Bool

String::HasSuffix(String?, String) -> Bool

String::HasSuffixIgnoreCase(String?, String) -> Bool

String::EndsWith(String?, String) -> Bool

String::EndsWithIgnoreCase(String?, String) -> Bool

String::Substring(String{Flags:AutoMap}, [Uint64?, Uint64?]) -> String

String::AsciiToLower(String{Flags:AutoMap}) -> String : Changes only Latin characters. For working with other alphabets, see
Unicode::ToLower

String::AsciiToUpper(String{Flags:AutoMap}) -> String : Changes only Latin characters. For working with other alphabets, see
Unicode::ToUpper

String::AsciiToTitle(String{Flags:AutoMap}) -> String : Changes only Latin characters. For working with other alphabets, see
Unicode::ToTitle

String::SplitToList( String?, String, [ DelimeterString:Bool?, SkipEmpty:Bool?, Limit:Uint64? ]) -> List<String>

The first argument is the source string
The second argument is a delimiter
The third argument includes the following parameters:

DelimeterString:Bool? — treating a delimiter as a string (true, by default) or a set of characters "any of" (false)

SkipEmpty:Bool? — whether to skip empty strings in the result, is false by default

Limit:Uint64? — Limits the number of fetched components (unlimited by default); if the limit is exceeded, the raw suffix of the source string
is returned in the last item

String::JoinFromList(List<String>{Flags:AutoMap}, String) -> String

String::ToByteList(List<String>{Flags:AutoMap}) -> List<Byte>

String::FromByteList(List<Uint8>) -> String

String::ReplaceAll(String{Flags:AutoMap}, String, String) -> String : Arguments: input, find, replacement

String::ReplaceFirst(String{Flags:AutoMap}, String, String) -> String : Arguments: input, find, replacement

String::ReplaceLast(String{Flags:AutoMap}, String, String) -> String : Arguments: input, find, replacement

String::RemoveAll(String{Flags:AutoMap}, String) -> String : The second argument is interpreted as an unordered set of characters
to delete

String::RemoveFirst(String{Flags:AutoMap}, String) -> String : An unordered set of characters in the second argument, only the first
encountered character from set is deleted

String::RemoveLast(String{Flags:AutoMap}, String) -> String : An unordered set of characters in the second argument, only the last
encountered character from the set is deleted

String::IsAscii(String{Flags:AutoMap}) -> Bool

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_string
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_string_list-of-functions


String::IsAsciiSpace(String{Flags:AutoMap}) -> Bool

String::IsAsciiUpper(String{Flags:AutoMap}) -> Bool

String::IsAsciiLower(String{Flags:AutoMap}) -> Bool

String::IsAsciiAlpha(String{Flags:AutoMap}) -> Bool

String::IsAsciiAlnum(String{Flags:AutoMap}) -> Bool

String::IsAsciiHex(String{Flags:AutoMap}) -> Bool

String::LevensteinDistance(String{Flags:AutoMap}, String{Flags:AutoMap}) -> Uint64

String::LeftPad(String{Flags:AutoMap}, Uint64, [String?]) -> String

String::RightPad(String{Flags:AutoMap}, Uint64) -> String

String::Hex(Uint64{Flags:AutoMap}) -> String

String::SHex(Int64{Flags:AutoMap}) -> String

String::Bin(Uint64{Flags:AutoMap}) -> String

String::SBin(Int64{Flags:AutoMap}) -> String

String::HexText(String{Flags:AutoMap}) -> String

String::BinText(String{Flags:AutoMap}) -> String

String::HumanReadableDuration(Uint64{Flags:AutoMap}) -> String

String::HumanReadableQuantity(Uint64{Flags:AutoMap}) -> String

String::HumanReadableBytes(Uint64{Flags:AutoMap}) -> String

String::Prec(Double{Flags:AutoMap}, Uint64) -> String

String::Reverse(String?) -> String?

Alert

The functions from the String library don't support Cyrillic and can only work with ASCII characters. To work with UTF-8 encoded
strings, use functions from Unicode.

Examples

SELECT String::Base64Encode("YQL"); -- "WVFM"
SELECT String::Strip("YQL ");       -- "YQL"
SELECT String::SplitToList("1,2,3,4,5,6,7", ",", 3 as Limit); -- ["1", "2", "3", "4,5,6,7"]

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_string_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_unicode


Unicode
Functions for Unicode strings.

List of functions

Unicode::IsUtf(String) -> Bool

Checks whether a string is a valid UTF-8 sequence. For example, the string "\xF0"  isn't a valid UTF-8 sequence, but the string
"\xF0\x9F\x90\xB1"  correctly describes a UTF-8 cat emoji.

Unicode::GetLength(Utf8{Flags:AutoMap}) -> Uint64

Returns the length of a utf-8 string in unicode code points. Surrogate pairs are counted as one character.

Unicode::Find(string:Utf8{Flags:AutoMap}, subString:Utf8, [pos:Uint64?]) -> Uint64?

Unicode::RFind(string:Utf8{Flags:AutoMap}, subString:Utf8, [pos:Uint64?]) -> Uint64?

Finding the first ( RFind  - the last) occurrence of a substring in a string starting from the pos  position. Returns the position of the first
character from the found substring. In case of failure, returns Null.

Unicode::Substring(string:Utf8{Flags:AutoMap}, from:Uint64?, len:Uint64?) -> Utf8

Returns a string  substring starting with from  that is len  characters long. If the len  argument is omitted, the substring is taken to the
end of the source string.

If from  exceeds the length of the original string, an empty string ""  is returned.

The Unicode::Normalize...  functions convert the passed UTF-8 string to a normalization form:

Unicode::Normalize(Utf8{Flags:AutoMap}) -> Utf8  -- NFC

Unicode::NormalizeNFD(Utf8{Flags:AutoMap}) -> Utf8

Unicode::NormalizeNFC(Utf8{Flags:AutoMap}) -> Utf8

Unicode::NormalizeNFKD(Utf8{Flags:AutoMap}) -> Utf8

Unicode::NormalizeNFKC(Utf8{Flags:AutoMap}) -> Utf8

Unicode::Translit(string:Utf8{Flags:AutoMap}, [lang:String?]) -> Utf8

Transliterates with Latin letters the words from the passed string, consisting entirely of characters of the alphabet of the language passed by
the second argument. If no language is specified, the words are transliterated from Russian. Available languages: "kaz", "rus", "tur", and "ukr".

Unicode::LevensteinDistance(stringA:Utf8{Flags:AutoMap}, stringB:Utf8{Flags:AutoMap}) -> Uint64

Calculates the Levenshtein distance for the passed strings.

Unicode::Fold(Utf8{Flags:AutoMap}, [ Language:String?, DoLowerCase:Bool?, DoRenyxa:Bool?, DoSimpleCyr:Bool?, 

FillOffset:Bool? ]) -> Utf8

Performs case folding on the passed string.

Parameters:

Language  is set according to the same rules as in Unicode::Translit() .

DoLowerCase  converts a string to lowercase letters, defaults to true .

DoRenyxa  converts diacritical characters to similar Latin characters, defaults to true .

DoSimpleCyr  converts diacritical Cyrillic characters to similar Latin characters, defaults to true .

FillOffset  parameter is not used.

Unicode::ReplaceAll(input:Utf8{Flags:AutoMap}, find:Utf8, replacement:Utf8) -> Utf8

SELECT Unicode::GetLength("жніўня"); -- 6

SELECT Unicode::Find("aaa", "bb"); -- Null

SELECT Unicode::Substring("0123456789abcdefghij", 10); -- "abcdefghij"

SELECT Unicode::Translit("Тот уголок земли, где я провел"); -- "Tot ugolok zemli, gde ya provel"

SELECT Unicode::Fold("Kongreßstraße", false AS DoSimpleCyr, false AS DoRenyxa); -- "kongressstrasse"
SELECT Unicode::Fold("ҫурт"); -- "сурт"
SELECT Unicode::Fold("Eylül", "Turkish" AS Language); -- "eylul"

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_unicode
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_unicode_list-of-functions
https://unicode.org/reports/tr15/#Norm_Forms
https://www.w3.org/TR/charmod-norm/#definitionCaseFolding


Unicode::ReplaceFirst(input:Utf8{Flags:AutoMap}, find:Utf8, replacement:Utf8) -> Utf8

Unicode::ReplaceLast(input:Utf8{Flags:AutoMap}, find:Utf8, replacement:Utf8) -> Utf8

Replaces all/first/last occurrences of the find  string in the input  with replacement .

Unicode::RemoveAll(input:Utf8{Flags:AutoMap}, symbols:Utf8) -> Utf8

Unicode::RemoveFirst(input:Utf8{Flags:AutoMap}, symbols:Utf8) -> Utf8

Unicode::RemoveLast(input:Utf8{Flags:AutoMap}, symbols:Utf8) -> Utf8

Deletes all/first/last occurrences of characters in the symbols  set from the input . The second argument is interpreted as an unordered set
of characters to be removed.

Unicode::ToCodePointList(Utf8{Flags:AutoMap}) -> List<Uint32>

Splits a string into a Unicode sequence of codepoints.

Unicode::FromCodePointList(List<Uint32>{Flags:AutoMap}) -> Utf8

Generates a Unicode string from codepoints.

Unicode::Reverse(Utf8{Flags:AutoMap}) -> Utf8

Reverses a string.

Unicode::ToLower(Utf8{Flags:AutoMap}) -> Utf8

Unicode::ToUpper(Utf8{Flags:AutoMap}) -> Utf8

Unicode::ToTitle(Utf8{Flags:AutoMap}) -> Utf8

Converts a string to UPPER, lower, or Title case.

Unicode::SplitToList( string:Utf8?, separator:Utf8, [ DelimeterString:Bool?, SkipEmpty:Bool?, Limit:Uint64? ]) -> 

List<Utf8>

Splits a string into substrings by separator.
string  -- Source string. separator  -- Separator. Parameters:

DelimeterString:Bool? — treating a delimiter as a string (true, by default) or a set of characters "any of" (false)

SkipEmpty:Bool? - whether to skip empty strings in the result, is false by default

Limit:Uint64? - Limits the number of fetched components (unlimited by default); if the limit is exceeded, the raw suffix of the source string
is returned in the last item

Unicode::JoinFromList(List<Utf8>{Flags:AutoMap}, separator:Utf8) -> Utf8

Concatenates a list of strings via a separator  into a single string.

Unicode::ToUint64(string:Utf8{Flags:AutoMap}, [prefix:Uint16?]) -> Uint64

Converts a string to a number.

The second optional argument sets the number system. By default, 0 (automatic detection by prefix).
Supported prefixes: 0x(0X)  - base-16, 0  - base-8. Defaults to base-10.
The -  sign before a number is interpreted as in C unsigned arithmetic. For example, -0x1  -> UI64_MAX.
If there are incorrect characters in a string or a number goes beyond ui64, the function terminates with an error.

Unicode::TryToUint64(string:Utf8{Flags:AutoMap}, [prefix:Uint16?]) -> Uint64?

Similar to the Unicode::ToUint64()  function, except that it returns NULL  instead of an error.

SELECT Unicode::ReplaceLast("absence", "enc", ""); -- "abse"
SELECT Unicode::RemoveAll("abandon", "an"); -- "bdo"

SELECT Unicode::ToCodePointList("Щавель"); -- [1065, 1072, 1074, 1077, 1083, 1100]
SELECT 
Unicode::FromCodePointList(AsList(99,111,100,101,32,112,111,105,110,116,115,32,99,111,110,118,101,114,116,101,114)); 
-- "code points converter"

SELECT Unicode::SplitToList("One, two, three, four, five", ", ", 2 AS Limit); -- ["One", "two", "three, four, five"]
SELECT Unicode::JoinFromList(["One", "two", "three", "four", "five"], ";"); -- "One;two;three;four;five"

SELECT Unicode::ToUint64("77741"); -- 77741
SELECT Unicode::ToUint64("-77741"); -- 18446744073709473875
SELECT Unicode::TryToUint64("asdh831"); -- Null



Url

Normalize

Url::Normalize(String) -> String?

Normalizes the URL in a robot-friendly way: converts the hostname into lowercase, strips out certain fragments, and so on.
The normalization result only depends on the URL itself. The normalization DOES NOT include operations depending on the external data:
transformation based on duplicates, mirrors, etc.

Returned value:

Normalized URL.

NULL , if the passed string argument can't be parsed as a URL.

Examples

NormalizeWithDefaultHttpScheme

Url::NormalizeWithDefaultHttpScheme(String?) -> String?

Normalizes similarly to Url::Normalize , but inserts the http://  schema in case there is no schema.

Returned value:

Normalized URL.

Source URL, if the normalization has failed.

Examples

Encode / Decode

Encode a UTF-8 string to the urlencoded format ( Url::Encode ) and back ( Url::Decode ).

List of functions

Url::Encode(String?) -> String?

Url::Decode(String?) -> String?

Examples

Parse

Parses the URL into parts.

Examples

SELECT Url::Normalize("hTTp://wWw.yDb.TECH/"); -- "http://www.ydb.tech/"
SELECT Url::Normalize("http://ydb.tech#foo");      -- "http://ydb.tech/"

SELECT Url::NormalizeWithDefaultHttpScheme("wWw.yDb.TECH");    -- "http://www.ydb.tech/"
SELECT Url::NormalizeWithDefaultHttpScheme("http://ydb.tech#foo"); -- "http://ydb.tech/"

SELECT Url::Decode("http://ydb.tech/%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B0");
  -- "http://ydb.tech/page"
SELECT Url::Encode("http://ydb.tech/page");
  -- "http://ydb.tech/%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B0"

Url::Parse(Parse{Flags:AutoMap}) -> Struct< Frag: String?, Host: String?, ParseError: String?, Pass: String?, Path: 
String?, Port: String?, Query: String?, Scheme: String?, User: String? >

SELECT Url::Parse(
  "https://en.wikipedia.org/wiki/Isambard_Kingdom_Brunel?s=24&g=h-24#Great_Western_Railway");
/*
(
  "Frag": "Great_Western_Railway",
  "Host": "en.wikipedia.org",
  "ParseError": null,
  "Pass": null,

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_url
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_url_normalize
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_url_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_url_normalizewithdefaulthttpscheme
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_url_examples1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_url_encode
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_url_list-of-functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_url_examples2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_url_parse
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_url_examples3


Get...

Get a component of the URL.

List of functions

Url::GetScheme(String{Flags:AutoMap}) -> String

Url::GetHost(String?) -> String?

Url::GetHostPort(String?) -> String?

Url::GetSchemeHost(String?) -> String?

Url::GetSchemeHostPort(String?) -> String?

Url::GetPort(String?) -> String?

Url::GetTail(String?) -> String?  -- everything following the host: path + query + fragment

Url::GetPath(String?) -> String?

Url::GetFragment(String?) -> String?

Url::GetCGIParam(String?, String) -> String?  -- The second parameter is the name of the intended CGI parameter.

Url::GetDomain(String?, Uint8) -> String?  -- The second parameter is the required domain level.

Url::GetTLD(String{Flags:AutoMap}) -> String

Url::IsKnownTLD(String{Flags:AutoMap}) -> Bool  -- Registered on iana.org.

Url::IsWellKnownTLD(String{Flags:AutoMap}) -> Bool  -- Belongs to a small whitelist of com, net, org, ru, and so on.

Url::GetDomainLevel(String{Flags:AutoMap}) -> Uint64

Url::GetSignificantDomain(String{Flags:AutoMap}, [List<String>?]) -> String

Returns a second-level domain in most cases and a third-level domain for the hostnames like: ***.XXX.YY , where XXX  is com, net, org, co,
gov, or edu. You can redefine this list using an optional second argument

Url::GetOwner(String{Flags:AutoMap}) -> String

Returns the domain that's most likely owned by an individual or organization. Unlike Url::GetSignificantDomain , it uses a special whitelist.
Besides the ***.co.uk  domains, it can return a third-level domain used by free hosting sites and blogs (for example:
something.livejournal.com)

Examples

Cut...

Url::CutScheme(String?) -> String?

Returns the passed URL without the schema ( http:// , https:// , etc.).

Url::CutWWW(String?) -> String?

Returns the passed domain without the "www." prefix (if any).

Url::CutWWW2(String?) -> String?

Returns the passed domain without the prefixes like "www.", "www2.", "wwww777." (if any).

Url::CutQueryStringAndFragment(String{Flags:AutoMap}) -> String

Returns a copy of the passed URL, stripping out all the CGI parameters and fragments ("?foo=bar" and/or "#baz").

Examples

...Punycode...

Punycode transformations.

  "Path": "/wiki/Isambard_Kingdom_Brunel",
  "Port": null,
  "Query": "s=24&g=h-24",
  "Scheme": "https",
  "User": null
)
*/

SELECT Url::GetScheme("https://ydb.tech");       -- "https://"
SELECT Url::GetDomain("http://www.ydb.tech", 2); -- "ydb.tech"

SELECT Url::CutScheme("http://www.ydb.tech"); -- "www.ydb.tech"
SELECT Url::CutWWW("www.ydb.tech");           -- "ydb.tech"

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_url_get
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_url_list-of-functions1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_url_examples4
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_url_cut
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_url_examples5
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_url_punycode
http://www.iana.org/
https://en.wikipedia.org/wiki/Punycode


List of functions

Url::HostNameToPunycode(String{Flag:AutoMap}) -> String?

Url::ForceHostNameToPunycode(String{Flag:AutoMap}) -> String

Url::PunycodeToHostName(String{Flag:AutoMap}) -> String?

Url::ForcePunycodeToHostName(String{Flag:AutoMap}) -> String

Url::CanBePunycodeHostName(String{Flag:AutoMap}) -> Bool

Examples

...Query...

Query transformations.

List of functions

Examples

SELECT Url::PunycodeToHostName("xn--80aniges7g.xn--j1aef"); -- "example.com"

Url::QueryStringToList(String{Flag:AutoMap}, [
  KeepBlankValues:Bool?,  -- Empty values in percent-encoded queries are interpreted as empty strings, defaults to 
false.
  Strict:Bool?,           -- If false, parsing errors are ignored and incorrect fields are skipped, defaults to true.
  MaxFields:Uint32?,      -- The maximum number of fields. If exceeded, an exception is thrown. Defaults to Max<Uint32>.
  Separator:String?       -- A key-value pair separator, defaults to '&'.
]) -> List<Tuple<String, String>>
Url::QueryStringToDict(String{Flag:AutoMap}, [
  KeepBlankValues:Bool?,  -- Empty values in percent-encoded queries are interpreted as empty strings, defaults to 
false.
  Strict:Bool?,           -- If false, parsing errors are ignored and incorrect fields are skipped, defaults to true.
  MaxFields:Uint32?,      -- The maximum number of fields. If exceeded, an exception is thrown. Defaults to Max<Uint32>.
  Separator:String?       -- A key-value pair separator, defaults to '&'.
]) -> Dict<String, List<String>>
Url::BuildQueryString(Dict<String, List<String?>>{Flag:AutoMap}, [
  Separator:String?       -- A key-value pair separator, defaults to '&'.
]) -> String
Url::BuildQueryString(Dict<String, String?>{Flag:AutoMap}, [
  Separator:String?       -- A key-value pair separator, defaults to '&'.
]) -> String
Url::BuildQueryString(List<Tuple<String, String?>>{Flag:AutoMap}, [
  Separator:String?       -- A key-value pair separator, defaults to '&'.
]) -> String

SELECT Url::QueryStringToList("a=1&b=2&a=3");                       -- [("a", "1"), ("b", "2"), ("a", "3")]
SELECT Url::QueryStringToDict("a=1&b=2&a=3");                       -- {"b" : ["2"], "a" : ["1", "3"]}
SELECT Url::BuildQueryString([("a", "1"), ("a", "3"), ("b", "2")]); -- "a=1&a=3&b=2"
SELECT Url::BuildQueryString({"a" : "1", "b" : "2"});               -- "b=2&a=1"
SELECT Url::BuildQueryString({"a" : ["1", "3"], "b" : ["2", "4"]}); -- "b=2&b=4&a=1&a=3"

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_url_list-of-functions2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_url_examples6
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_url_query
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_url_list-of-functions3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_url_examples7
https://docs.python.org/3/library/urllib.parse.html


Yson
YSON is a JSON-like data format developed at Yandex.

Similarities with JSON:

Does not have a strict scheme.

Besides simple data types, it supports dictionaries and lists in arbitrary combinations.

Some differences from JSON:

It also has a binary representation in addition to the text representation.

The text representation uses semicolons instead of commas and equal signs instead of colons.

The concept of "attributes" is supported, that is, named properties that can be assigned to a node in the tree.

Implementation specifics and functionality of the module:

Along with YSON, this module also supports standard JSON to expand the application scope in a way.
It works with a DOM representation of YSON in memory that in YQL terms is passed between functions as a "resource" (see the description of
special data types). Most of the module's functions have the semantics of a query to perform a specified operation with a resource and return
an empty optional type if the operation failed because the actual data type mismatched the expected one.

Provides several main classes of functions (find below a complete list and detailed description of functions):

Yson::Parse*** : Getting a resource with a DOM object from serialized data, with all further operations performed on the obtained
resource.

Yson::From : Getting a resource with a DOM object from simple YQL data types or containers (lists or dictionaries).

Yson::ConvertTo*** : Converting a resource to primitive data types or containers.

Yson::Lookup*** : Getting a single list item or a dictionary with optional conversion to the relevant data type.

Yson::YPath*** : Getting one element from the document tree based on the relative path specified, optionally converting it to the
relevant data type.

Yson::Serialize*** : Getting a copy of data from the resource and serializing the data in one of the formats.

For convenience, when serialized Yson and Json are passed to functions expecting a resource with a DOM object, implicit conversion using
Yson::Parse  or Yson::ParseJson  is done automatically. In SQL syntax, the dot or square brackets operator automatically adds a
Yson::Lookup  call. To serialize a resource, you still need to call Yson::ConvertTo***  or Yson::Serialize*** . It means that, for example,

to get the "foo" element as a string from the Yson column named mycolumn and serialized as a dictionary, you can write: SELECT 
Yson::ConvertToString(mycolumn["foo"]) FROM mytable;  or SELECT Yson::ConvertToString(mycolumn.foo) FROM mytable; . In the
variant with a dot, special characters can be escaped by general rules for IDs.

The module's functions must be considered as "building blocks" from which you can assemble different structures, for example:

Yson::Parse*** -> Yson::Serialize*** : Converting from one format to other.

Yson::Parse*** -> Yson::Lookup -> Yson::Serialize*** : Extracting the value of the specified subtree in the source YSON tree.

Yson::Parse*** -> Yson::ConvertToList -> ListMap -> Yson::Lookup*** : Extracting items by a key from the YSON list.

Examples

Yson::Parse...

$node = Json(@@
  {"abc": {"def": 123, "ghi": "hello"}}
@@);
SELECT Yson::SerializeText($node.abc) AS `yson`;
-- {"def"=123;"ghi"="\xD0\xBF\xD1\x80\xD0\xB8\xD0\xB2\xD0\xB5\xD1\x82"}

$node = Yson(@@
  <a=z;x=y>[
    {abc=123; def=456};
    {abc=234; xyz=789};
  ]
@@);
$attrs = Yson::YPath($node, "/@");

SELECT
  ListMap(Yson::ConvertToList($node), ($x) -> { return Yson::LookupInt64($x, "abc") }) AS abcs,
  Yson::ConvertToStringDict($attrs) AS attrs,
  Yson::SerializePretty(Yson::Lookup($node, "7", Yson::Options(false AS Strict))) AS miss;

/*
- abcs: `[123; 234]`
- attrs: `{"a"="z";"x"="y"}`
- miss: `NULL`
*/

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_yson
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_yson_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_yson_ysonparse
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_special
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_optional
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_primitive
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_containers
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_escape


The result of all three functions is non-serializable: it can only be passed as the input to other function from the Yson library. However, you can't
save it to a table or return to the client as a result of the operation: such an attempt results in a typing error. You also can't return it outside
subqueries: if you need to do this, call Yson::Serialize, and the optimizer will remove unnecessary serialization and deserialization if materialization
isn't needed in the end.

Note

The Yson::ParseJsonDecodeUtf8  expects that characters outside the ASCII range must be additionally escaped.

Yson::From

Yson::From  is a polymorphic function that converts most primitive data types and containers (lists, dictionaries, tuples, structures, and so on) into
a Yson resource. The source object type must be Yson-compatible. For example, in dictionary keys, you can only use the String  or Utf8  data
types, but not String?  or Utf8?  .

Example

Yson::WithAttributes

Adds attributes (the second argument) to the Yson node (the first argument). The attributes must constitute a map node.

Yson::Equals

Checking trees in memory for equality. The operation is tolerant to the source serialization format and the order of keys in dictionaries.

Yson::GetHash

Calculating a 64-bit hash from an object tree.

Yson::Is...

Checking that the current node has the appropriate type. The Entity is # .

Yson::GetLength

Yson::Parse(Yson{Flags:AutoMap}) -> Resource<'Yson2.Node'>
Yson::ParseJson(Json{Flags:AutoMap}) -> Resource<'Yson2.Node'>
Yson::ParseJsonDecodeUtf8(Json{Flags:AutoMap}) -> Resource<'Yson2.Node'>

Yson::Parse(String{Flags:AutoMap}) -> Resource<'Yson2.Node'>? -- accepts YSON in any format
Yson::ParseJson(String{Flags:AutoMap}) -> Resource<'Yson2.Node'>?
Yson::ParseJsonDecodeUtf8(String{Flags:AutoMap}) -> Resource<'Yson2.Node'>?

Yson::From(T) -> Resource<'Yson2.Node'>

SELECT Yson::Serialize(Yson::From(TableRow())) FROM table1;

Yson::WithAttributes(Resource<'Yson2.Node'>{Flags:AutoMap}, Resource<'Yson2.Node'>{Flags:AutoMap}) -> 
Resource<'Yson2.Node'>?

Yson::Equals(Resource<'Yson2.Node'>{Flags:AutoMap}, Resource<'Yson2.Node'>{Flags:AutoMap}) -> Bool

Yson::GetHash(Resource<'Yson2.Node'>{Flags:AutoMap}) -> Uint64

Yson::IsEntity(Resource<'Yson2.Node'>{Flags:AutoMap}) -> bool
Yson::IsString(Resource<'Yson2.Node'>{Flags:AutoMap}) -> bool
Yson::IsDouble(Resource<'Yson2.Node'>{Flags:AutoMap}) -> bool
Yson::IsUint64(Resource<'Yson2.Node'>{Flags:AutoMap}) -> bool
Yson::IsInt64(Resource<'Yson2.Node'>{Flags:AutoMap}) -> bool
Yson::IsBool(Resource<'Yson2.Node'>{Flags:AutoMap}) -> bool
Yson::IsList(Resource<'Yson2.Node'>{Flags:AutoMap}) -> bool
Yson::IsDict(Resource<'Yson2.Node'>{Flags:AutoMap}) -> bool

Yson::GetLength(Resource<'Yson2.Node'>{Flags:AutoMap}) -> Uint64?

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_yson_ysonfrom
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_yson_example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_yson_ysonwithattributes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_yson_ysonequals
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_yson_ysongethash
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_yson_ysonis
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_yson_ysongetlength
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_select_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_yson_ysonserialize


Getting the number of elements in a list or dictionary.

Yson::ConvertTo...

Warning

These functions do not do implicit type casting by default, that is, the value in the argument must exactly match the function called.

Yson::ConvertTo  is a polymorphic function that converts the data type that is specified in the second argument and supports containers (lists,
dictionaries, tuples, structures, and so on) into a Yson resource.

Example

Yson::Contains

Checks for a key in the dictionary. If the object type is a map, then it searches among the keys.
If the object type is a list, then the key must be a decimal number, i.e., an index in the list.

Yson::Lookup...

Yson::ConvertTo(Resource<'Yson2.Node'>{Flags:AutoMap}, Type<T>) -> T
Yson::ConvertToBool(Resource<'Yson2.Node'>{Flags:AutoMap}) -> Bool?
Yson::ConvertToInt64(Resource<'Yson2.Node'>{Flags:AutoMap}) -> Int64?
Yson::ConvertToUint64(Resource<'Yson2.Node'>{Flags:AutoMap}) -> Uint64?
Yson::ConvertToDouble(Resource<'Yson2.Node'>{Flags:AutoMap}) -> Double?
Yson::ConvertToString(Resource<'Yson2.Node'>{Flags:AutoMap}) -> String?
Yson::ConvertToList(Resource<'Yson2.Node'>{Flags:AutoMap}) -> List<Resource<'Yson2.Node'>>
Yson::ConvertToBoolList(Resource<'Yson2.Node'>{Flags:AutoMap}) -> List<Bool>
Yson::ConvertToInt64List(Resource<'Yson2.Node'>{Flags:AutoMap}) -> List<Int64>
Yson::ConvertToUint64List(Resource<'Yson2.Node'>{Flags:AutoMap}) -> List<Uint64>
Yson::ConvertToDoubleList(Resource<'Yson2.Node'>{Flags:AutoMap}) -> List<Double>
Yson::ConvertToStringList(Resource<'Yson2.Node'>{Flags:AutoMap}) -> List<String>
Yson::ConvertToDict(Resource<'Yson2.Node'>{Flags:AutoMap}) -> Dict<String,Resource<'Yson2.Node'>>
Yson::ConvertToBoolDict(Resource<'Yson2.Node'>{Flags:AutoMap}) -> Dict<String,Bool>
Yson::ConvertToInt64Dict(Resource<'Yson2.Node'>{Flags:AutoMap}) -> Dict<String,Int64>
Yson::ConvertToUint64Dict(Resource<'Yson2.Node'>{Flags:AutoMap}) -> Dict<String,Uint64>
Yson::ConvertToDoubleDict(Resource<'Yson2.Node'>{Flags:AutoMap}) -> Dict<String,Double>
Yson::ConvertToStringDict(Resource<'Yson2.Node'>{Flags:AutoMap}) -> Dict<String,String>

$data = Yson(@@{
    "name" = "Anya";
    "age" = 15u;
    "params" = {
        "ip" = "95.106.17.32";
        "last_time_on_site" = 0.5;
        "region" = 213;
        "user_agent" = "Mozilla/5.0"
    }
}@@);
SELECT Yson::ConvertTo($data,
    Struct<
        name: String,
        age: Uint32,
        params: Dict<String,Yson>
    >
);

Yson::Contains(Resource<'Yson2.Node'>{Flags:AutoMap}, String) -> Bool?

Yson::Lookup(Resource<'Yson2.Node'>{Flags:AutoMap}, String) -> Resource<'Yson2.Node'>?
Yson::LookupBool(Resource<'Yson2.Node'>{Flags:AutoMap}, String) -> Bool?
Yson::LookupInt64(Resource<'Yson2.Node'>{Flags:AutoMap}, String) -> Int64?
Yson::LookupUint64(Resource<'Yson2.Node'>{Flags:AutoMap}, String) -> Uint64?
Yson::LookupDouble(Resource<'Yson2.Node'>{Flags:AutoMap}, String) -> Double?
Yson::LookupString(Resource<'Yson2.Node'>{Flags:AutoMap}, String) -> String?
Yson::LookupDict(Resource<'Yson2.Node'>{Flags:AutoMap}, String) -> Dict<String,Resource<'Yson2.Node'>>?
Yson::LookupList(Resource<'Yson2.Node'>{Flags:AutoMap}, String) -> List<Resource<'Yson2.Node'>>?

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_yson_ysonconvertto
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_yson_example1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_yson_ysoncontains
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_yson_ysonlookup


The above functions are short notations for a typical use case: Yson::YPath : go to a level in the dictionary and then extract the value —
Yson::ConvertTo*** . For all the listed functions, the second argument is a key name from the dictionary (unlike YPath, it has no / prefix) or an

index from the list (for example, 7 ). They simplify the query and produce a small gain in speed.

Yson::YPath

Lets you get a part of the resource based on the source resource and the part's path in YPath format.

Yson::Attributes

Getting all node attributes as a dictionary.

Yson::Serialize...

Yson::SerializeJson

SkipMapEntity  serializes #  values in dictionaries. The value of attributes is not affected by the flag. By default, false .

EncodeUtf8  responsible for escaping non-ASCII characters. By default, false .

WriteNanAsString  allows serializing NaN  and Inf  values as strings. By default, false .

The Yson  and Json  data types returned by serialization functions are special cases of a string that is known to contain data in the given format
(Yson/Json).

Yson::Options

It's passed in the last optional argument (omitted for brevity) to the methods Parse... , ConvertTo... , Contains , Lookup... , and YPath...
that accept the result of the Yson::Options  call. By default, all the Yson::Options  fields are false and when enabled (true), they modify the
behavior as follows:

AutoConvert: If the value passed to Yson doesn't match the result data type exactly, the value is converted where possible. For example,
Yson::ConvertToInt64  in this mode will convert even Double numbers to Int64.

Strict: By default, all functions from the Yson library return an error in case of issues during query execution (for example, an attempt to parse
a string that is not Yson/Json, or an attempt to search by a key in a scalar type, or when a conversion to an incompatible data type has been
requested, and so on). If you disable the strict mode, NULL  is returned instead of an error in most cases. When converting to a dictionary or
list ( ConvertTo<Type>Dict  or ConvertTo<Type>List ), improper items are excluded from the resulting collection.

Example

Yson::YPath(Resource<'Yson2.Node'>{Flags:AutoMap}, String) -> Resource<'Yson2.Node'>?
Yson::YPathBool(Resource<'Yson2.Node'>{Flags:AutoMap}, String) -> Bool?
Yson::YPathInt64(Resource<'Yson2.Node'>{Flags:AutoMap}, String) -> Int64?
Yson::YPathUint64(Resource<'Yson2.Node'>{Flags:AutoMap}, String) -> Uint64?
Yson::YPathDouble(Resource<'Yson2.Node'>{Flags:AutoMap}, String) -> Double?
Yson::YPathString(Resource<'Yson2.Node'>{Flags:AutoMap}, String) -> String?
Yson::YPathDict(Resource<'Yson2.Node'>{Flags:AutoMap}, String) -> Dict<String,Resource<'Yson2.Node'>>?
Yson::YPathList(Resource<'Yson2.Node'>{Flags:AutoMap}, String) -> List<Resource<'Yson2.Node'>>?

Yson::Attributes(Resource<'Yson2.Node'>{Flags:AutoMap}) -> Dict<String,Resource<'Yson2.Node'>>

Yson::Serialize(Resource<'Yson2.Node'>{Flags:AutoMap}) -> Yson -- A binary representation
Yson::SerializeText(Resource<'Yson2.Node'>{Flags:AutoMap}) -> Yson
Yson::SerializePretty(Resource<'Yson2.Node'>{Flags:AutoMap}) -> Yson -- To get a text result, wrap it in ToBytes(...)

Yson::SerializeJson(Resource<'Yson2.Node'>{Flags:AutoMap}, [Resource<'Yson2.Options'>?, SkipMapEntity:Bool?, 
EncodeUtf8:Bool?, WriteNanAsString:Bool?]) -> Json?

Yson::Options([AutoConvert:Bool?, Strict:Bool?]) -> Resource<'Yson2.Options'>

$yson = @@{y = true; x = 5.5}@@y;
SELECT Yson::LookupBool($yson, "z"); --- null
SELECT Yson::LookupBool($yson, "y"); --- true

SELECT Yson::LookupInt64($yson, "x"); --- Error
SELECT Yson::LookupInt64($yson, "x", Yson::Options(false as Strict)); --- null
SELECT Yson::LookupInt64($yson, "x", Yson::Options(true as AutoConvert)); --- 5

SELECT Yson::ConvertToBoolDict($yson); --- Error

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_yson_ysonypath
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_yson_ysonattributes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_yson_ysonserialize
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_yson_ysonserializejson
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_yson_ysonoptions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_yson_example2


If you need to use the same Yson library settings throughout the query, it's more convenient to use PRAGMA yson.AutoConvert; and/or PRAGMA
yson.Strict;. Only with these PRAGMA  you can affect implicit calls to the Yson library occurring when you work with Yson/Json data types.

See also

Accessing values inside JSON with YQL

Modifying JSON with YQL

SELECT Yson::ConvertToBoolDict($yson, Yson::Options(false as Strict)); --- { "y": true }
SELECT Yson::ConvertToDoubleDict($yson, Yson::Options(false as Strict)); --- { "x": 5.5 }

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_yson_see-also
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_yson.autoconvert
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_pragma_yson.strict
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_recipes_accessing-json
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_recipes_modifying-json


Connecting via PostgreSQL Protocol

Warning

At the moment, YDB's compatibility with PostgreSQL is under development, so not all PostgreSQL constructs and functions are
supported yet. PostgreSQL compatibility is available for testing in the form of a Docker container, which can be deployed by following
these instructions.

Running YDB with PostgreSQL compatibility enabled

Currently, the PostgreSQL compatibility feature is available for testing in the Docker image: ghcr.io/ydb-platform/local-ydb:nightly .

Commands for starting a local Docker container with YDB and open ports for PostgreSQL and Embedded UI:

Tip

In this example, the containers are intentionally created in a way that their state is deleted after they stop. This simplifies the
instructions and allows you to repeatedly run tests in a known environment without worrying about past test failures.

To preserve the container's state, you need to remove the environment variable YDB_USE_IN_MEMORY_PDISKS .

After launching the container, you can connect to it via PostgreSQL clients on port 5432, the database local , or open the web interface on port
8765.

Connecting to the Running Container via psql

Upon executing this command, the interactive command-line interface of psql , the PostgreSQL client, will be launched. All subsequent queries
should be entered within this client interface.

Hello world example

Output:

Docker-compose

To launch using a Docker Compose configuration file, it must already be installed on your system.

docker-compose.yaml:

Run:

services:
    ydb:
        image: ghcr.io/ydb-platform/local-ydb:nightly
        ports:
        - "5432:5432"
        - "8765:8765"
        environment:
        - "YDB_USE_IN_MEMORY_PDISKS=true"
        - "POSTGRES_USER=${YDB_PG_USER:-root}"
        - "POSTGRES_PASSWORD=${YDB_PG_PASSWORD:-1234}"
        - "YDB_EXPERIMENTAL_PG=1"

docker-compose up -d --pull=always

Docker command

docker run --name ydb-postgres -d --pull always -p 5432:5432 -p 8765:8765 -e POSTGRES_USER=root -e 
POSTGRES_PASSWORD=1234 -e YDB_EXPERIMENTAL_PG=1 -e YDB_USE_IN_MEMORY_PDISKS=true ghcr.io/ydb-platform/local-ydb:nightly

docker run --rm -it --network=host postgres:14 psql postgresql://root:1234@localhost:5432/local

SELECT 'Hello, world!';

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_docker-connect
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_docker-connect_running-ydb-with-postgresql-compatibility-enabled
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_docker-connect_connecting-to-the-running-container-via-psql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_docker-connect_hello-world-example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_docker-connect
http://localhost:8765/
https://docs.docker.com/compose/install/standalone/


Creating a Table

The primary purpose of database management systems is to store data for later retrieval. As an SQL-based system, the principal abstraction for
storing data is the table. To create our first table, execute the following query:

Adding test data

Now let's populate our table with some initial data. The simplest way to do this is by using literals.

Querying test data

Output:

Stopping the Container

This command will stop the running container and delete all data stored within it.

    column0
---------------
 Hello, world!
(1 row)

CREATE TABLE example
(
    key int4,
    value text,
    PRIMARY KEY (key)
);

INSERT INTO example (key, value)
VALUES (123, 'hello'),
       (321, 'world');

SELECT COUNT(*) FROM example;

 column0
---------
       2
(1 row)

Docker-compose

In the directory containing the docker-compose.yaml  file, execute the command that will stop the container and remove its data:

Note

To stop a Docker container and preserve its data, you should run it without the YDB_USE_IN_MEMORY_PDISKS  environment variable and
use the stop command:

docker-compose down -vt 1

docker-compose stop

Docker command

This command will stop the container and remove the data:

docker rm -f ydb-postgres

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_docker-connect_creating-a-table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_docker-connect_adding-test-data
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_docker-connect_querying-test-data
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_docker-connect_stopping-the-container


PostgreSQL functions

Warning

At the moment, YDB's compatibility with PostgreSQL is under development, so not all PostgreSQL constructs and functions are
supported yet. PostgreSQL compatibility is available for testing in the form of a Docker container, which can be deployed by following
these instructions.

This section contains PostgreSQL functions supported in the YDB mode of compatibility with PostgreSQL. The original structure of the PostgreSQL
documentation and examples of function application are preserved in the section. This article is automatically supplemented and tested.

9.1. Logical Operators

The usual logical operators are available:

boolean AND boolean → boolean

boolean OR boolean → boolean

NOT boolean → boolean

9.2. Comparison Functions and Operators

The usual comparison operators are available, as shown in Table 9.1.

Table 9.1. Comparison Operators

There are also some comparison predicates, as shown in Table 9.2. These behave much like operators, but have special syntax mandated by the
SQL standard.

Operator Description

datatype < datatype → boolean Less than

datatype > datatype → boolean Greater than

datatype <= datatype → boolean Less than or equal to

datatype >= datatype → boolean Greater than or equal to

datatype = datatype → boolean Equal

datatype <> datatype → boolean Not equal

datatype != datatype → boolean Not equal

Predicate Description Example(s)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions_logical-operators
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions_comparison-functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_docker-connect


datatype BETWEEN datatype AND datatype → 
boolean

Between (inclusive of the range endpoints).
    

datatype NOT BETWEEN datatype AND 
datatype → boolean

Not between (the negation of BETWEEN).
    

datatype BETWEEN SYMMETRIC datatype 
AND datatype → boolean

Between, after sorting the two endpoint 
values.     

datatype NOT BETWEEN SYMMETRIC 
datatype AND datatype → boolean

Not between, after sorting the two endpoint 
values.     

        

2 BETWEEN 1 AND 3 → true
2 BETWEEN 3 AND 1 → false

        
    

        

2 NOT BETWEEN 1 AND 3 → 
false

        
    

        

2 BETWEEN SYMMETRIC 3 AND 1 
→ true

        
    

        

2 NOT BETWEEN SYMMETRIC 3 
AND 1 → false

        
    



9.3. Mathematical Functions and Operators

datatype IS DISTINCT FROM datatype → 
boolean

Not equal, treating null as a comparable 
value. (NOT SUPPORTED)     

datatype IS NOT DISTINCT FROM datatype → 
boolean

Equal, treating null as a comparable value. 
(NOT SUPPORTED)     

datatype IS NULL → boolean Test whether value is null.
    

datatype IS NOT NULL → boolean Test whether value is not null.
    

datatype ISNULL → boolean Test whether value is null (nonstandard 
syntax)     

        

#1 IS DISTINCT FROM NULL → 
true
#NULL IS DISTINCT FROM NULL 
→ false

        
    

        

#1 IS NOT DISTINCT FROM 
NULL → false
#NULL IS NOT DISTINCT FROM 
NULL → true

        
    

        

1.5 IS NULL → false

        
    

        

'null' IS NOT NULL → true

        
    

        

1.5 ISNULL → false

        
    

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions_mathematical-functions


Mathematical operators are provided for many PostgreSQL types. For types without standard mathematical conventions (e.g., date/time types) we
describe the actual behavior in subsequent sections.

Table 9.4 shows the mathematical operators that are available for the standard numeric types. Unless otherwise noted, operators shown as
accepting numeric_type are available for all the types smallint, integer, bigint, numeric, real, and double precision. Operators shown as accepting
integral_type are available for the types smallint, integer, and bigint. Except where noted, each form of an operator returns the same data type as its
argument(s). Calls involving multiple argument data types, such as integer + numeric, are resolved by using the type appearing later in these lists.

Table 9.4. Mathematical Operators

datatype NOTNULL → boolean Test whether value is not null (nonstandard 
syntax)     

boolean IS TRUE → boolean Test whether boolean expression yields 
true. (NOT SUPPORTED)     

        

1.5 NOTNULL → true

        
    

        

true IS TRUE → true
NULL::boolean IS TRUE → 
false

        
    

Operator Description Example(s)

numeric_type + numeric_type → 
numeric_type

Addition
    

+ numeric_type → numeric_type Unary plus (no operation)
    

numeric_type - numeric_type → 
numeric_type

Subtraction
    

- numeric_type → numeric_type Negation
    

        

2 + 3 → 5

        
    

        

+ 3.5 → 3.5

        
    

        

2 - 3 → -1

        
    

        

- (-4) → 4

        
    



numeric_type * numeric_type → 
numeric_type

Multiplication
    

numeric_type / numeric_type → 
numeric_type

Division (for integral types, division truncates the result 
towards zero)     

numeric_type % numeric_type → 
numeric_type

Modulo (remainder); available for smallint, integer, bigint, 
and numeric     

numeric ^ numeric → numeric

double precision ^ double precision 
→ double precision

Exponentiation.

Unlike typical mathematical practice, multiple uses of ^ will 
associate left to right by default.

    

|/ double precision → double 
precision

Square root
    

        

2 * 3 → 6

        
    

        

5.0 / 2 → 
2.5000000000000000
5 / 2 → 2
(-5) / 2 → -2

        
    

        

5 % 4 → 1

        
    

        

2 ^ 3 → 8
2 ^ 3 ^ 3 → 512
2 ^ (3 ^ 3) → 134217728

        
    

        

|/ 25.0 → 5

        
    



||/ double precision → double 
precision

Cube root
    

@ numeric_type → numeric_type Absolute value
    

integral_type & integral_type → 
integral_type

Bitwise AND
    

integral_type | integral_type → 
integral_type

Bitwise OR
    

integral_type # integral_type → 
integral_type

Bitwise exclusive OR
    

        

||/ 64.0 → 4

        
    

        

@ -5.0 → 5.0

        
    

        

91 & 15 → 11

        
    

        

32 | 3 → 35

        
    

        

17 # 5 → 20

        
    



Table 9.5 shows the available mathematical functions. Many of these functions are provided in multiple forms with different argument types. Except
where noted, any given form of a function returns the same data type as its argument(s); cross-type cases are resolved in the same way as
explained above for operators. The functions working with double precision data are mostly implemented on top of the host system's C library;
accuracy and behavior in boundary cases can therefore vary depending on the host system.

Table 9.5. Mathematical Functions

~ integral_type → integral_type Bitwise NOT
    

integral_type << integer → 
integral_type

Bitwise shift left
    

integral_type >> integer → 
integral_type

Bitwise shift right
    

        

~1 → -2

        
    

        

1 << 4 → 16

        
    

        

8 >> 2 → 2

        
    

Function Description Example(s)

abs ( numeric_type ) → 
numeric_type

Absolute value
    

cbrt ( double precision ) → 
double precision

Cube root
    

        

abs(-17.4) → 17.4

        
    

        

cbrt(64.0) → 4

        
    



ceil ( numeric ) → numeric

ceil ( double precision ) → 
double precision

Nearest integer greater than or equal to argument
    

ceiling ( numeric ) → numeric

ceiling ( double precision ) → 
double precision

Nearest integer greater than or equal to 
argument(same as ceil)     

degrees ( double precision ) 
→ double precision

Converts radians to degrees
    

div ( y numeric, x numeric ) → 
numeric

Integer quotient of y/x (truncates towards zero)
    

exp ( numeric ) → numeric

exp ( double precision ) → 
double precision

Exponential (e raised to the given power)
    

        

ceil(42.2) → 43
ceil(-42.8) → -42

        
    

        

ceiling(95.3) → 96

        
    

        

degrees(0.5) → 28.64788975654116

        
    

        

div(9, 4) → 2

        
    

        

exp(1.0) → 2.7182818284590452

        
    



factorial ( bigint ) → numeric Factorial
    

floor ( numeric ) → numeric

floor ( double precision ) → 
double precision

Nearest integer less than or equal to argument
    

gcd ( numeric_type, 
numeric_type ) → 
numeric_type

Greatest common divisor (the largest positive number 
that divides both inputs with no remainder); returns 0 if 
both inputs are zero; available for integer, bigint, and 
numeric

    

lcm ( numeric_type, 
numeric_type ) → 
numeric_type

Least common multiple (the smallest strictly positive 
number that is an integral multiple of both inputs); 
returns 0 if either input is zero; available for integer, 
bigint, and numeric

    

ln ( numeric ) → numeric

ln ( double precision ) → 
double precision

Natural logarithm
    

        

factorial(5) → 120

        
    

        

floor(42.8) → 42
floor(-42.8) → -43

        
    

        

gcd(1071, 462) → 21

        
    

        

lcm(1071, 462) → 23562

        
    

        

ln(2.0) → 0.6931471805599453

        
    



log ( numeric ) → numeric

log ( double precision ) → 
double precision

Base 10 logarithm
    

log10 ( numeric ) → numeric

log10 ( double precision ) → 
double precision

Base 10 logarithm (same as log)
    

log ( b numeric, x numeric ) → 
numeric

Logarithm of x to base b
    

min_scale ( numeric ) → 
integer

Minimum scale (number of fractional decimal digits) 
needed to represent the supplied value precisely     

mod ( y numeric_type, x 
numeric_type ) → 
numeric_type

Remainder of y/x; available for smallint, integer, bigint, 
and numeric     

        

log(100) → 2

        
    

        

log10(1000) → 3

        
    

        

log(2.0, 64.0) → 
6.0000000000000000

        
    

        

min_scale(8.4100) → 2

        
    

        

mod(9, 4) → 1

        
    



Table 9.6. Random Functions

Table 9.7 shows the available trigonometric functions. Each of these functions comes in two variants, one that measures angles in radians and one
that measures angles in degrees.

Table 9.7. Trigonometric Functions

pi ( ) → double precision Approximate value of π
    

power ( a numeric, b numeric 
) → numeric

power ( a double precision, b 
double precision ) → double 
precision

a raised to the power of b
    

radians ( double precision ) → 
double precision

Converts degrees to radians
    

round ( numeric ) → numeric

round ( double precision ) → 
double precision

Rounds to nearest integer. For numeric, ties are 
broken by rounding away from zero. For double 
precision, the tie-breaking behavior is platform 
dependent, but “round to nearest even” is the most 
common rule.

    

round ( v numeric, s integer ) 
→ numeric

Rounds v to s decimal places. Ties are broken by 
rounding away from zero.     

        

pi() → 3.141592653589793

        
    

        

power(9, 3) → 729

        
    

        

radians(45.0) → 
0.7853981633974483

        
    

        

round(42.4) → 42

        
    

        

round(42.4382, 2) → 42.44
round(1234.56, -1) → 1230

        
    

Function Description Example(s)

random ( ) → double precision Returns a random value in the range 0.0 <= x < 1.0

setseed ( double precision ) → 
void

Sets the seed for subsequent random() calls; argument must be between -1.0 and 
1.0, inclusive

(NOT SUPPORTED)

Function Description Example(s)



scale ( numeric ) → integer Scale of the argument (the number of decimal digits in 
the fractional part)     

sign ( numeric ) → numeric

sign ( double precision ) → 
double precision

Sign of the argument (-1, 0, or +1)
    

sqrt ( numeric ) → numeric

sqrt ( double precision ) → 
double precision

Square root
    

trim_scale ( numeric ) → 
numeric

Reduces the value's scale (number of fractional 
decimal digits) by removing trailing zeroes     

trunc ( numeric ) → numeric

trunc ( double precision ) → 
double precision

Truncates to integer (towards zero)
    

        

scale(8.4100) → 4

        
    

        

sign(-8.4) → -1

        
    

        

sqrt(2) → 1.4142135623730951

        
    

        

trim_scale(8.4100) → 8.41

        
    

        

trunc(42.8) → 42
trunc(-42.8) → -42

        
    

acos ( double precision ) → double precision Inverse cosine, result in radians
    

acosd ( double precision ) → double precision Inverse cosine, result in degrees
    

asin ( double precision ) → double precision Inverse sine, result in radians
    

asind ( double precision ) → double precision Inverse sine, result in degrees
    

atan ( double precision ) → double precision Inverse tangent, result in radians
    

        

acos(1) → 0

        
    

        

acosd(0.5) → 60

        
    

        

asin(1) → 1.5707963267948966

        
    

        

asind(0.5) → 30

        
    

        

atan(1) → 0.7853981633974483

        
    



trunc ( v numeric, s integer ) 
→ numeric

Truncates v to s decimal places
    

width_bucket ( operand 
numeric, low numeric, high 
numeric, count integer ) → 
integer

width_bucket ( operand 
double precision, low double 
precision, high double 
precision, count integer ) → 
integer

Returns the number of the bucket in which operand 
falls in a histogram having count equal-width buckets 
spanning the range low to high. Returns 0 or count+1 
for an input outside that range.

    

width_bucket ( operand 
anycompatible, thresholds 
anycompatiblearray ) → 
integer (NOT SUPPORTED)

Returns the number of the bucket in which operand 
falls given an array listing the lower bounds of the 
buckets. Returns 0 for an input less than the first 
lower bound. operand and the array elements can be 
of any type having standard comparison operators. 
The thresholds array must be sorted, smallest first, or 
unexpected results will be obtained.

    

        

trunc(42.4382, 2) → 42.43

        
    

        

width_bucket(5.35, 0.024, 10.06, 
5) → 3

        
    

        

#width_bucket(now(), 
array['yesterday', 'today', 
'tomorrow']::timestamptz[]) → 2

        
    

atand ( double precision ) → double precision Inverse tangent, result in degrees
    

atan2 ( y double precision, x double precision ) → 
double precision

Inverse tangent of y/x, result in 
radians     

atan2d ( y double precision, x double precision ) → 
double precision

Inverse tangent of y/x, result in 
degrees     

cos ( double precision ) → double precision Cosine, argument in radians
    

cosd ( double precision ) → double precision Cosine, argument in degrees
    

        

atand(1) → 45

        
    

        

atan2(1, 0) → 
1.5707963267948966

        
    

        

atan2d(1, 0) → 90

        
    

        

cos(0) → 1

        
    

        

cosd(60) → 0.5

        
    



Table 9.8 shows the available hyperbolic functions.

Table 9.8. Hyperbolic Functions

cot ( double precision ) → double precision Cotangent, argument in radians
    

cotd ( double precision ) → double precision Cotangent, argument in degrees
    

sin ( double precision ) → double precision Sine, argument in radians
    

sind ( double precision ) → double precision Sine, argument in degrees
    

tan ( double precision ) → double precision Tangent, argument in radians
    

        

cot(0.5) → 1.830487721712452

        
    

        

cotd(45) → 1

        
    

        

sin(1) → 0.8414709848078965

        
    

        

sind(30) → 0.5

        
    

        

tan(1) → 1.5574077246549023

        
    



tand ( double precision ) → double precision Tangent, argument in degrees
    

        

tand(45) → 1

        
    

Function Description Example(s)

sinh ( double precision ) → double precision Hyperbolic sine
    

cosh ( double precision ) → double precision Hyperbolic cosine
    

tanh ( double precision ) → double precision Hyperbolic tangent
    

asinh ( double precision ) → double precision Inverse hyperbolic sine
    

acosh ( double precision ) → double precision Inverse hyperbolic cosine
    

        

sinh(1) → 1.1752011936438014

        
    

        

cosh(0) → 1

        
    

        

tanh(1) → 0.7615941559557649

        
    

        

asinh(1) → 0.881373587019543

        
    

        

acosh(1) → 0

        
    



9.4. String Functions and Operators

This section describes functions and operators for examining and manipulating string values. Strings in this context include values of the types
character, character varying, and text. Except where noted, these functions and operators are declared to accept and return type text. They will
interchangeably accept character varying arguments. Values of type character will be converted to text before the function or operator is applied,
resulting in stripping any trailing spaces in the character value.

SQL defines some string functions that use key words, rather than commas, to separate arguments. Details are in Table 9.9. PostgreSQL also
provides versions of these functions that use the regular function invocation syntax (see Table 9.10).

Table 9.9. SQL String Functions and Operators

atanh ( double precision ) → double precision Inverse hyperbolic tangent
    

        

atanh(0.5) → 0.5493061443340548

        
    

Function/Operator Description Example(s)

text || text → text Concatenates the two strings
    

text || anynonarray → text

anynonarray || text → text

Converts the non-string input to text, then concatenates the 
two strings. (The non-string input cannot be of an array 
type, because that would create ambiguity with the array || 
operators. If you want to concatenate an array's text 
equivalent, cast it to text explicitly.) (UNSUPPORTED)

    

text IS [NOT] [form] 
NORMALIZED → boolean

Checks whether the string is in the specified Unicode 
normalization form. The optional form key word specifies 
the form: NFC (the default), NFD, NFKC, or NFKD. This 
expression can only be used when the server encoding is 
UTF8. Note that checking for normalization using this 
expression is often faster than normalizing possibly already 
normalized strings.

    

        

'Post' || 'greSQL' → 
PostgreSQL

        
    

        

#'Value: ' || 42 → Value: 42

        
    

        

U&'\0061\0308bc' IS NFD 
NORMALIZED → true

        
    

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions_string-functions


bit_length ( text ) → integer Returns number of bits in the string (8 times the 
octet_length)     

char_length ( text ) → 
integer

character_length ( text ) → 
integer

Returns number of characters in the string.
    

lower ( text ) → text Converts the string to all lower case, according to the rules 
of the database's locale.     

normalize ( text [, form ] ) 
→ text

Converts the string to the specified Unicode normalization 
form. The optional form key word specifies the form: NFC 
(the default), NFD, NFKC, or NFKD. This function can only 
be used when the server encoding is UTF8.

    

octet_length ( text ) → 
integer

Returns number of bytes in the string.
    

        

bit_length('jose') → 32

        
    

        

char_length('josé') → 4

        
    

        

lower('TOM') → tom

        
    

        

normalize(U&'\0061\0308bc', 
NFC) → äbc

        
    

        

octet_length('josé') → 5

        
    



octet_length ( character ) 
→ integer

Returns number of bytes in the string. Since this version of 
the function accepts type character directly, it will not strip 
trailing spaces.

    

overlay ( string text 
PLACING newsubstring 
text FROM start integer [ 
FOR count integer ] ) → 
text

Replaces the substring of string that starts at the start'th 
character and extends for count characters with 
newsubstring. If count is omitted, it defaults to the length of 
newsubstring.

    

position ( substring text IN 
string text ) → integer

Returns first starting index of the specified substring within 
string, or zero if it's not present.     

substring ( string text [ 
FROM start integer ] [ FOR 
count integer ] ) → text

Extracts the substring of string starting at the start'th 
character if that is specified, and stopping after count 
characters if that is specified. Provide at least one of start 
and count.

    

        

octet_length('abc 
'::character(4)) → 4

        
    

        

overlay('Txxxxas' placing 
'hom' from 2 for 4) → Thomas

        
    

        

position('om' in 'Thomas') → 3

        
    

        

substring('Thomas' from 2 for 
3) → hom
substring('Thomas' from 3) → 
omas
substring('Thomas' for 2) → Th

        
    



Additional string manipulation functions are available and are listed in Table 9.10. Some of them are used internally to implement the SQL-standard
string functions listed in Table 9.9.

Table 9.10. Other String Functions

substring ( string text 
FROM pattern text ) → text

Extracts the first substring matching POSIX regular 
expression; see Section 9.7.3.     

substring ( string text 
SIMILAR pattern text 
ESCAPE escape text ) → 
text

substring ( string text 
FROM pattern text FOR 
escape text ) → text

Extracts the first substring matching SQL regular 
expression; see Section 9.7.2. The first form has been 
specified since SQL:2003; the second form was only in 
SQL:1999 and should be considered obsolete.

    

trim ( [ LEADING | 
TRAILING | BOTH ] [ 
characters text ] FROM 
string text ) → text

Removes the longest string containing only characters in 
characters (a space by default) from the start, end, or both 
ends (BOTH is the default) of string.

    

trim ( [ LEADING | 
TRAILING | BOTH ] [ 
FROM ] string text [, 
characters text ] ) → text

This is a non-standard syntax for trim().
    

upper ( text ) → text Converts the string to all upper case, according to the rules 
of the database's locale.     

        

substring('Thomas' from 
'...$') → mas

        
    

        

substring('Thomas' similar 
'%#"o_a#"_' escape '#') → oma

        
    

        

trim(both 'xyz' from 
'yxTomxx') → Tom

        
    

        

trim(both from 'yxTomxx', 
'xyz') → Tom

        
    

        

upper('tom') → TOM

        
    

Function Description Example(s)

ascii ( text ) → integer Returns the numeric code of the first character of 
the argument. In UTF8 encoding, returns the 
Unicode code point of the character. In other 
multibyte encodings, the argument must be an 
ASCII character.

    

btrim ( string text [, 
characters text ] ) → text

Removes the longest string containing only 
characters in characters (a space by default) from 
the start and end of string.

    

chr ( integer ) → text Returns the character with the given code. In UTF8 
encoding the argument is treated as a Unicode 
code point. In other multibyte encodings the 
argument must designate an ASCII character. 
chr(0) is disallowed because text data types 
cannot store that character.

    

        

ascii('x') → 120

        
    

        

btrim('xyxtrimyyx', 'xyz') → trim

        
    

        

chr(65) → A

        
    



concat ( val1 "any" [, val2 
"any" [, ...] ] ) → text

Concatenates the text representations of all the 
arguments. NULL arguments are ignored. (NOT 
SUPPORTED)

    

concat_ws ( sep text, val1 
"any" [, val2 "any" [, ...] ] ) 
→ text

Concatenates all but the first argument, with 
separators. The first argument is used as the 
separator string, and should not be NULL. Other 
NULL arguments are ignored. (NOT SUPPORTED)

    

format ( formatstr text [, 
formatarg "any" [, ...] ] ) → 
text

Formats arguments according to a format string; 
see Section 9.4.1. This function is similar to the C 
function sprintf. (NOT SUPPORTED)

    

initcap ( text ) → text Converts the first letter of each word to upper case 
and the rest to lower case. Words are sequences 
of alphanumeric characters separated by non-
alphanumeric characters.

    

left ( string text, n integer ) 
→ text

Returns first n characters in the string, or when n is 
negative, returns all but last |n| characters.     

        

concat('abcde', 2, NULL, 22) → 
abcde222

        
    

        

concat_ws(',', 'abcde', 2, NULL, 22) → 
abcde,2,22

        
    

        

format('Hello %s, %1$s', 'World') → 
Hello World, World

        
    

        

initcap('hi THOMAS') → Hi Thomas

        
    

        

left('abcde', 2) → ab

        
    



length ( text ) → integer Returns the number of characters in the string.
    

lpad ( string text, length 
integer [, fill text ] ) → text

Extends the string to length length by prepending 
the characters fill (a space by default). If the string 
is already longer than length then it is truncated 
(on the right).

    

ltrim ( string text [, 
characters text ] ) → text

Removes the longest string containing only 
characters in characters (a space by default) from 
the start of string.

    

md5 ( text ) → text Computes the MD5 hash of the argument, with the 
result written in hexadecimal.     

parse_ident ( 
qualified_identifier text [, 
strict_mode boolean 
DEFAULT true ] ) → text[]

Splits qualified_identifier into an array of identifiers, 
removing any quoting of individual identifiers. By 
default, extra characters after the last identifier are 
considered an error; but if the second parameter is 
false, then such extra characters are ignored. (This 
behavior is useful for parsing names for objects 
like functions.) Note that this function does not 
truncate over-length identifiers. If you want 
truncation you can cast the result to name[].

    

        

length('jose') → 4

        
    

        

lpad('hi', 5, 'xy') → xyxhi

        
    

        

ltrim('zzzytest', 'xyz') → test

        
    

        

md5('abc') → 
900150983cd24fb0d6963f7d28e17f72

        
    

        

parse_ident('"SomeSchema".someTable') 
→ {SomeSchema,someTable}

        
    



pg_client_encoding ( ) → 
name

Returns current client encoding name.
    

quote_ident ( text ) → text Returns the given string suitably quoted to be used 
as an identifier in an SQL statement string. Quotes 
are added only if necessary (i.e., if the string 
contains non-identifier characters or would be 
case-folded). Embedded quotes are properly 
doubled. See also Example 43.1.

    

quote_literal ( text ) → text Returns the given string suitably quoted to be used 
as a string literal in an SQL statement string. 
Embedded single-quotes and backslashes are 
properly doubled. Note that quote_literal returns 
null on null input; if the argument might be null, 
quote_nullable is often more suitable. See also 
Example 43.1.

    

quote_literal ( anyelement 
) → text

Converts the given value to text and then quotes it 
as a literal. Embedded single-quotes and 
backslashes are properly doubled. (NOT 
SUPPORTED)

    

quote_nullable ( text ) → 
text

Returns the given string suitably quoted to be used 
as a string literal in an SQL statement string; or, if 
the argument is null, returns NULL. Embedded 
single-quotes and backslashes are properly 
doubled. See also Example 43.1.

    

        

pg_client_encoding() → UTF8

        
    

        

quote_ident('Foo bar') → "Foo bar"

        
    

        

quote_literal(E'O\'Reilly') → 
''O''Reilly''

        
    

        

#quote_literal(42.5) → '42.5'

        
    

        

quote_nullable(NULL) → NULL

        
    



quote_nullable ( 
anyelement ) → text

Converts the given value to text and then quotes it 
as a literal; or, if the argument is null, returns 
NULL. Embedded single-quotes and backslashes 
are properly doubled. (NOT SUPPORTED)

    

regexp_match ( string 
text, pattern text [, flags 
text ] ) → text[]

Returns captured substrings resulting from the first 
match of a POSIX regular expression to the string; 
see Section 9.7.3.

    

regexp_matches ( string 
text, pattern text [, flags 
text ] ) → setof text[]

Returns captured substrings resulting from the first 
match of a POSIX regular expression to the string, 
or multiple matches if the g flag is used; see 
Section 9.7.3. (NOT SUPPORTED)

    

regexp_replace ( string 
text, pattern text, 
replacement text [, flags 
text ] ) → text

Replaces substrings resulting from the first match 
of a POSIX regular expression, or multiple 
substring matches if the g flag is used; see Section 
9.7.3.

    

regexp_split_to_array ( 
string text, pattern text [, 
flags text ] ) → text[]

Splits string using a POSIX regular expression as 
the delimiter, producing an array of results; see 
Section 9.7.3.

    

        

#quote_nullable(42.5) → '42.5'

        
    

        

regexp_match('foobarbequebaz', '(bar)
(beque)') → {bar,beque}

        
    

        

#regexp_matches('foobarbequebaz', 
'ba.', 'g') → {bar},{baz}

        
    

        

regexp_replace('Thomas', '.[mN]a.', 
'M') → ThM

        
    

        

regexp_split_to_array('hello world', 
'\s+') → {hello,world}

        
    



regexp_split_to_table ( 
string text, pattern text [, 
flags text ] ) → setof text

Splits string using a POSIX regular expression as 
the delimiter, producing a set of results; see 
Section 9.7.3. (NOT SUPPORTED)

    

repeat ( string text, 
number integer ) → text

Repeats string the specified number of times.
    

replace ( string text, from 
text, to text ) → text

Replaces all occurrences in string of substring 
from with substring to.     

reverse ( text ) → text Reverses the order of the characters in the string.
    

right ( string text, n integer 
) → text

Returns last n characters in the string, or when n is 
negative, returns all but first |n| characters.     

        

#regexp_split_to_table('hello world', 
'\s+') → hello,world

        
    

        

repeat('Pg', 4) → PgPgPgPg

        
    

        

replace('abcdefabcdef', 'cd', 'XX') → 
abXXefabXXef

        
    

        

reverse('abcde') → edcba

        
    

        

right('abcde', 2) → de

        
    



rpad ( string text, length 
integer [, fill text ] ) → text

Extends the string to length length by appending 
the characters fill (a space by default). If the string 
is already longer than length then it is truncated.

    

rtrim ( string text [, 
characters text ] ) → text

Removes the longest string containing only 
characters in characters (a space by default) from 
the end of string.

    

split_part ( string text, 
delimiter text, n integer ) 
→ text

Splits string at occurrences of delimiter and returns 
the n'th field (counting from one), or when n is 
negative, returns the |n|'th-from-last field.

    

strpos ( string text, 
substring text ) → integer

Returns first starting index of the specified 
substring within string, or zero if it's not present. 
(Same as position(substring in string), but note the 
reversed argument order.)

    

substr ( string text, start 
integer [, count integer ] ) 
→ text

Extracts the substring of string starting at the 
start'th character, and extending for count 
characters if that is specified. (Same as 
substring(string from start for count).)

    

        

rpad('hi', 5, 'xy') → hixyx

        
    

        

rtrim('testxxzx', 'xyz') → test

        
    

        

split_part('abc~@~def~@~ghi', '~@~', 
2) → def
split_part('abc,def,ghi,jkl', ',', -2) 
→ ghi

        
    

        

strpos('high', 'ig') → 2

        
    

        

substr('alphabet', 3) → phabet
substr('alphabet', 3, 2) → ph

        
    



9.5. Binary String Functions and Operators

This section describes functions and operators for examining and manipulating binary strings, that is values of type bytea. Many of these are
equivalent, in purpose and syntax, to the text-string functions described in the previous section.

SQL defines some string functions that use key words, rather than commas, to separate arguments. Details are in Table 9.11. PostgreSQL also
provides versions of these functions that use the regular function invocation syntax (see Table 9.12).

Table 9.11. SQL Binary String Functions and Operators

starts_with ( string text, 
prefix text ) → boolean

Returns true if string starts with prefix.
    

string_to_array ( string 
text, delimiter text [, 
null_string text ] ) → text[]

Splits the string at occurrences of delimiter and 
forms the resulting fields into a text array. If 
delimiter is NULL, each character in the string will 
become a separate element in the array. If 
delimiter is an empty string, then the string is 
treated as a single field. If null_string is supplied 
and is not NULL, fields matching that string are 
replaced by NULL.

    

string_to_table ( string 
text, delimiter text [, 
null_string text ] ) → setof 
text

Splits the string at occurrences of delimiter and 
returns the resulting fields as a set of text rows. If 
delimiter is NULL, each character in the string will 
become a separate row of the result. If delimiter is 
an empty string, then the string is treated as a 
single field. If null_string is supplied and is not 
NULL, fields matching that string are replaced by 
NULL. (NOT SUPPORTED)

    

to_ascii ( string text ) → 
text

to_ascii ( string text, 
encoding name ) → text

to_ascii ( string text, 
encoding integer ) → text

Converts string to ASCII from another encoding, 
which may be identified by name or number. If 
encoding is omitted the database encoding is 
assumed (which in practice is the only useful 
case). The conversion consists primarily of 
dropping accents. Conversion is only supported 
from LATIN1, LATIN2, LATIN9, and WIN1250 
encodings. (See the unaccent module for another, 
more flexible solution.) (NOT SUPPORTED)

    

to_hex ( integer ) → text

to_hex ( bigint ) → text

Converts the number to its equivalent hexadecimal 
representation.     

        

starts_with('alphabet', 'alph') → true

        
    

        

string_to_array('xx~~yy~~zz', '~~', 
'yy') → {xx,NULL,zz}

        
    

        

#string_to_table('xx~^~yy~^~zz', 
'~^~', 'yy') → [xx,NULL,zz]

        
    

        

#to_ascii('Karél') → Karel

        
    

        

to_hex(2147483647) → 7fffffff

        
    

Function/Operator Description Example(s)

bytea || bytea → bytea Concatenates the two binary strings.
    

        

'\x123456'::bytea || 
'\x789a00bcde'::bytea → 
\x123456789a00bcde

        
    

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions_binary-string-functions


Additional binary string manipulation functions are available and are listed in Table 9.12. Some of them are used internally to implement the SQL-
standard string functions listed in Table 9.11.

Table 9.12. Other Binary String Functions

translate ( string text, from 
text, to text ) → text

Replaces each character in string that matches a 
character in the from set with the corresponding 
character in the to set. If from is longer than to, 
occurrences of the extra characters in from are 
deleted.

    

unistr ( text ) → text Evaluate escaped Unicode characters in the 
argument. Unicode characters can be specified as 
\XXXX (4 hexadecimal digits), +XXXXXX (6 
hexadecimal digits), \uXXXX (4 hexadecimal 
digits), or \UXXXXXXXX (8 hexadecimal digits). To 
specify a backslash, write two backslashes. All 
other characters are taken literally.

If the server encoding is not UTF-8, the Unicode 
code point identified by one of these escape 
sequences is converted to the actual server 
encoding; an error is reported if that's not possible.

This function provides a (non-standard) alternative 
to string constants with Unicode escapes (see 
Section 4.1.2.3).

    

        

translate('12345', '143', 'ax') → a2x5

        
    

        

unistr('d\0061t\+000061') → data
unistr('d\u0061t\U00000061') → data

        
    

bit_length ( bytea ) → integer Returns number of bits in the binary 
string (8 times the octet_length).     

octet_length ( bytea ) → integer Returns number of bytes in the binary 
string.     

overlay ( bytes bytea PLACING 
newsubstring bytea FROM start 
integer [ FOR count integer ] ) → 
bytea

Replaces the substring of bytes that 
starts at the start'th byte and extends for 
count bytes with newsubstring. If count is 
omitted, it defaults to the length of 
newsubstring.

    

position ( substring bytea IN 
bytes bytea ) → integer

Returns first starting index of the 
specified substring within bytes, or zero if 
it's not present.

    

substring ( bytes bytea [ FROM 
start integer ] [ FOR count integer 
] ) → bytea

Extracts the substring of bytes starting at 
the start'th byte if that is specified, and 
stopping after count bytes if that is 
specified. Provide at least one of start 
and count.

    

        

bit_length('\x123456'::bytea) → 24

        
    

        

octet_length('\x123456'::bytea) → 3

        
    

        

overlay('\x1234567890'::bytea placing 
'\002\003'::bytea from 2 for 3) → 
\x12020390

        
    

        

position('\x5678'::bytea in 
'\x1234567890'::bytea) → 3

        
    

        

substring('\x1234567890'::bytea from 3 
for 2) → \x5678

        
    

Function Description Example(s)



trim ( [ LEADING | TRAILING | 
BOTH ] bytesremoved bytea 
FROM bytes bytea ) → bytea

Removes the longest string containing 
only bytes appearing in bytesremoved 
from the start, end, or both ends (BOTH 
is the default) of bytes.

    

trim ( [ LEADING | TRAILING | 
BOTH ] [ FROM ] bytes bytea, 
bytesremoved bytea ) → bytea

This is a non-standard syntax for trim().
    

        

trim('\x9012'::bytea from 
'\x1234567890'::bytea) → \x345678

        
    

        

trim(both from '\x1234567890'::bytea, 
'\x9012'::bytea) → \x345678

        
    

bit_count ( 
bytes bytea ) 
→ bigint

Returns the 
number of bits 
set in the 
binary string 
(also known as 
“popcount”).

    

btrim ( bytes 
bytea, 
bytesremoved 
bytea ) → 
bytea

Removes the 
longest string 
containing only 
bytes 
appearing in 
bytesremoved 
from the start 
and end of 
bytes.

    

get_bit ( bytes 
bytea, n bigint 
) → integer

Extracts n'th 
bit from binary 
string.

    

get_byte ( 
bytes bytea, n 
integer ) → 
integer

Extracts n'th 
byte from 
binary string.

    

length ( bytea 
) → integer

Returns the 
number of 
bytes in the 
binary string.

    

        

bit_count('\x1234567890'::bytea) → 15

        
    

        

btrim('\x1234567890'::bytea, '\x9012'::bytea) → \x345678

        
    

        

get_bit('\x1234567890'::bytea, 30) → 1

        
    

        

get_byte('\x1234567890'::bytea, 4) → 144

        
    

        

length('\x1234567890'::bytea) → 5

        
    



Functions get_byte and set_byte number the first byte of a binary string as byte 0. Functions get_bit and set_bit number bits from the right within
each byte; for example bit 0 is the least significant bit of the first byte, and bit 15 is the most significant bit of the second byte.

For historical reasons, the function md5 returns a hex-encoded value of type text whereas the SHA-2 functions return type bytea. Use the functions
encode and decode to convert between the two. For example write encode(sha256('abc'), 'hex') to get a hex-encoded text representation, or
decode(md5('abc'), 'hex') to get a bytea value.

Functions for converting strings between different character sets (encodings), and for representing arbitrary binary data in textual form, are shown
in Table 9.13. For these functions, an argument or result of type text is expressed in the database's default encoding, while arguments or results of
type bytea are in an encoding named by another argument.

Table 9.13. Text/Binary String Conversion Functions

length ( bytes 
bytea, 
encoding 
name ) → 
integer

Returns the 
number of 
characters in 
the binary 
string, 
assuming that 
it is text in the 
given 
encoding.

    

ltrim ( bytes 
bytea, 
bytesremoved 
bytea ) → 
bytea

Removes the 
longest string 
containing only 
bytes 
appearing in 
bytesremoved 
from the start 
of bytes.

    

md5 ( bytea ) 
→ text

Computes the 
MD5 hash of 
the binary 
string, with the 
result written in 
hexadecimal.

    

rtrim ( bytes 
bytea, 
bytesremoved 
bytea ) → 
bytea

Removes the 
longest string 
containing only 
bytes 
appearing in 
bytesremoved 
from the end of 
bytes.

    

set_bit ( bytes 
bytea, n 
bigint, 
newvalue 
integer ) → 
bytea

Sets n'th bit in 
binary string to 
newvalue.

    

        

length('jose'::bytea, 'UTF8') → 4

        
    

        

ltrim('\x1234567890'::bytea, '\x9012'::bytea) → \x34567890

        
    

        

md5('Th\000omas'::bytea) → 8ab2d3c9689aaf18b4958c334c82d8b1

        
    

        

rtrim('\x1234567890'::bytea, '\x9012'::bytea) → \x12345678

        
    

        

set_bit('\x1234567890'::bytea, 30, 0) → \x1234563890

        
    

Function Description Example(s)

convert ( bytes bytea, 
src_encoding name, 
dest_encoding name ) → 
bytea

Converts a binary string representing text in 
encoding src_encoding to a binary string in 
encoding dest_encoding (see Section 24.3.4 for 
available conversions). (NOT SUPPORTED)

    

convert_from ( bytes bytea, 
src_encoding name ) → 
text

Converts a binary string representing text in 
encoding src_encoding to text in the database 
encoding (see Section 24.3.4 for available 
conversions).

    

        

#convert('text_in_utf8', 'UTF8', 
'LATIN1') → \x746578745f696e5f75746638

        
    

        

convert_from('text_in_utf8', 'UTF8') → 
text_in_utf8

        
    



9.6. Bit String Functions and Operators

This section describes functions and operators for examining and manipulating bit strings, that is values of the types bit and bit varying. (While only
type bit is mentioned in these tables, values of type bit varying can be used interchangeably.) Bit strings support the usual comparison operators
shown in Table 9.1, as well as the operators shown in Table 9.14.

Table 9.14. Bit String Operators

Some of the functions available for binary strings are also available for bit strings, as shown in Table 9.15.

Table 9.15. Bit String Functions

set_byte ( 
bytes bytea, n 
integer, 
newvalue 
integer ) → 
bytea

Sets n'th byte 
in binary string 
to newvalue.

    

sha224 ( 
bytea ) → 
bytea

Computes the 
SHA-224 hash 
of the binary 
string.

    

sha256 ( 
bytea ) → 
bytea

Computes the 
SHA-256 hash 
of the binary 
string.

    

sha384 ( 
bytea ) → 
bytea

Computes the 
SHA-384 hash 
of the binary 
string.

    

sha512 ( 
bytea ) → 
bytea

Computes the 
SHA-512 hash 
of the binary 
string.

    

        

set_byte('\x1234567890'::bytea, 4, 64) → \x1234567840

        
    

        

sha224('abc'::bytea) → \x23097d223405d8228642a477bda255b32aadbce4bda0b3f7e36c9da7

        
    

        

sha256('abc'::bytea) → \xba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad

        
    

        

sha384('abc'::bytea) → \xcb00753f45a35e8bb5a03d699ac65007272c32ab0eded1631a8b605a43ff5bed8086072ba1e7cc2358baeca134c825a7

        
    

        

sha512('abc'::bytea) → 
\xddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55d39a2192992a274fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94fa54ca49f

        
    

convert_to ( string text, 
dest_encoding name ) → 
bytea

Converts a text string (in the database encoding) 
to a binary string encoded in encoding 
dest_encoding (see Section 24.3.4 for available 
conversions).

    

encode ( bytes bytea, 
format text ) → text

Encodes binary data into a textual representation; 
supported format values are: base64, escape, hex.     

decode ( string text, format 
text ) → bytea

Decodes binary data from a textual representation; 
supported format values are the same as for 
encode.

    

        

convert_to('some_text', 'UTF8') → 
\x736f6d655f74657874

        
    

        

encode('123\000\001', 'base64') → 
MTIzAAE=

        
    

        

decode('MTIzAAE=', 'base64') → 
\x3132330001

        
    

Operator Description Example(s)

Concatenation

Bitwise AND (inputs must be of equal length)

Bitwise OR (inputs must be of equal length)

Bitwise exclusive OR (inputs must be of equal length)

Bitwise NOT

Bitwise shift left (string length is preserved)

Bitwise shift right (string length is preserved)

Function Description Example(s)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions_bit-string-functions


substr ( bytes 
bytea, start 
integer [, 
count integer 
] ) → bytea

Extracts the 
substring of 
bytes starting 
at the start'th 
byte, and 
extending for 
count bytes if 
that is 
specified. 
(Same as 
substring(bytes 
from start for 
count).)

    

        

substr('\x1234567890'::bytea, 3, 2) → \x5678

        
    

bit_count ( bit ) → bigint Returns the number of bits set in the bit 
string (also known as “popcount”).     

bit_length ( bit ) → integer Returns number of bits in the bit string.
    

length ( bit ) → integer Returns number of bits in the bit string.
    

octet_length ( bit ) → integer Returns number of bytes in the bit string.
    

overlay ( bits bit PLACING 
newsubstring bit FROM start 
integer [ FOR count integer ] 
) → bit

Replaces the substring of bits that starts at 
the start'th bit and extends for count bits with 
newsubstring. If count is omitted, it defaults 
to the length of newsubstring.

    

        

bit_count(B'10111') → 4

        
    

        

bit_length(B'10111') → 5

        
    

        

length(B'10111') → 5

        
    

        

octet_length(B'1011111011') → 2

        
    

        

overlay(B'01010101010101010' placing 
B'11111' from 2 for 3) → 
0111110101010101010

        
    



In addition, it is possible to cast integral values to and from type bit. Casting an integer to bit(n) copies the rightmost n bits. Casting an integer to a
bit string width wider than the integer itself will sign-extend on the left. Some examples:

Note that casting to just “bit” means casting to bit(1), and so will deliver only the least significant bit of the integer.

9.7. Pattern Matching

9.7.1. LIKE

The LIKE expression returns true if the string matches the supplied pattern. (As expected, the NOT LIKE expression returns false if LIKE returns
true, and vice versa. An equivalent expression is NOT (string LIKE pattern).)

If pattern does not contain percent signs or underscores, then the pattern only represents the string itself; in that case LIKE acts like the equals
operator. An underscore (_) in pattern stands for (matches) any single character; a percent sign (%) matches any sequence of zero or more
characters.

Some examples:

LIKE pattern matching always covers the entire string. Therefore, if it's desired to match a sequence anywhere within a string, the pattern must start
and end with a percent sign.

To match a literal underscore or percent sign without matching other characters, the respective character in pattern must be preceded by the
escape character. The default escape character is the backslash but a different one can be selected by using the ESCAPE clause. To match the
escape character itself, write two escape characters.

Note
If you have standard_conforming_strings turned off, any backslashes you write in literal string constants will need to be doubled. See Section
4.1.2.1 for more information.

It's also possible to select no escape character by writing ESCAPE ''. This effectively disables the escape mechanism, which makes it impossible to
turn off the special meaning of underscore and percent signs in the pattern.

According to the SQL standard, omitting ESCAPE means there is no escape character (rather than defaulting to a backslash), and a zero-length
ESCAPE value is disallowed. PostgreSQL's behavior in this regard is therefore slightly nonstandard.

The key word ILIKE can be used instead of LIKE to make the match case-insensitive according to the active locale. This is not in the SQL standard
but is a PostgreSQL extension.

The operator ~~  is equivalent to LIKE, and ~~*  corresponds to ILIKE. There are also !~~  and !~~*  operators that represent NOT LIKE and
NOT ILIKE, respectively. All of these operators are PostgreSQL-specific. You may see these operator names in EXPLAIN output and similar places,
since the parser actually translates LIKE et al. to these operators.

The phrases LIKE, ILIKE, NOT LIKE, and NOT ILIKE are generally treated as operators in PostgreSQL syntax; for example they can be used in
expression operator ANY (subquery) constructs, although an ESCAPE clause cannot be included there. In some obscure cases it may be
necessary to use the underlying operator names instead.

Also see the prefix operator ^@ and corresponding starts_with function, which are useful in cases where simply matching the beginning of a string
is needed.

9.7.2. SIMILAR TO Regular Expressions

44::bit(10)                    → 0000101100
44::bit(3)                     → 100
cast(-44 as bit(12))           → 111111010100
'1110'::bit(4)::integer        → 14

string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

'abc' LIKE 'abc'    → true
'abc' LIKE 'a%'     → true
'abc' LIKE '_b_'    → true
'abc' LIKE 'c'      → false

string SIMILAR TO pattern [ESCAPE escape-character] (NOT SUPPORTED)
string NOT SIMILAR TO pattern [ESCAPE escape-character] (NOT SUPPORTED)

position ( substring bit IN bits 
bit ) → integer

Returns first starting index of the specified 
substring within bits, or zero if it's not 
present.

    

substring ( bits bit [ FROM 
start integer ] [ FOR count 
integer ] ) → bit

Extracts the substring of bits starting at the 
start'th bit if that is specified, and stopping 
after count bits if that is specified. Provide at 
least one of start and count.

    

get_bit ( bits bit, n integer ) → 
integer

Extracts n'th bit from bit string; the first 
(leftmost) bit is bit 0.     

set_bit ( bits bit, n integer, 
newvalue integer ) → bit

Sets n'th bit in bit string to newvalue; the first 
(leftmost) bit is bit 0.     

        

position(B'010' in B'000001101011') → 8

        
    

        

substring(B'110010111111' from 3 for 2) → 
00

        
    

        

get_bit(B'101010101010101010', 6) → 1

        
    

        

set_bit(B'101010101010101010', 6, 0) → 
101010001010101010

        
    

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions_pattern-matching


The SIMILAR TO operator returns true or false depending on whether its pattern matches the given string. It is similar to LIKE, except that it
interprets the pattern using the SQL standard's definition of a regular expression. SQL regular expressions are a curious cross between LIKE
notation and common (POSIX) regular expression notation.

Like LIKE, the SIMILAR TO operator succeeds only if its pattern matches the entire string; this is unlike common regular expression behavior where
the pattern can match any part of the string. Also like LIKE, SIMILAR TO uses _ and % as wildcard characters denoting any single character and
any string, respectively (these are comparable to . and .* in POSIX regular expressions).

In addition to these facilities borrowed from LIKE, SIMILAR TO supports these pattern-matching metacharacters borrowed from POSIX regular
expressions:

| denotes alternation (either of two alternatives).

denotes repetition of the previous item zero or more times.

denotes repetition of the previous item one or more times.

? denotes repetition of the previous item zero or one time.

{m} denotes repetition of the previous item exactly m times.

{m,} denotes repetition of the previous item m or more times.

{m,n} denotes repetition of the previous item at least m and not more than n times.

Parentheses () can be used to group items into a single logical item.

A bracket expression [...] specifies a character class, just as in POSIX regular expressions.

Notice that the period (.) is not a metacharacter for SIMILAR TO.

As with LIKE, a backslash disables the special meaning of any of these metacharacters. A different escape character can be specified with
ESCAPE, or the escape capability can be disabled by writing ESCAPE ''.

According to the SQL standard, omitting ESCAPE means there is no escape character (rather than defaulting to a backslash), and a zero-length
ESCAPE value is disallowed. PostgreSQL's behavior in this regard is therefore slightly nonstandard.

Another nonstandard extension is that following the escape character with a letter or digit provides access to the escape sequences defined for
POSIX regular expressions; see Table 9.20, Table 9.21, and Table 9.22 below.

Some examples:

The substring function with three parameters provides extraction of a substring that matches an SQL regular expression pattern. The function can
be written according to standard SQL syntax:

or using the now obsolete SQL:1999 syntax:

or as a plain three-argument function:

As with SIMILAR TO, the specified pattern must match the entire data string, or else the function fails and returns null. To indicate the part of the
pattern for which the matching data sub-string is of interest, the pattern should contain two occurrences of the escape character followed by a
double quote ("). The text matching the portion of the pattern between these separators is returned when the match is successful.

The escape-double-quote separators actually divide substring's pattern into three independent regular expressions; for example, a vertical bar (|) in
any of the three sections affects only that section. Also, the first and third of these regular expressions are defined to match the smallest possible
amount of text, not the largest, when there is any ambiguity about how much of the data string matches which pattern. (In POSIX parlance, the first
and third regular expressions are forced to be non-greedy.)

As an extension to the SQL standard, PostgreSQL allows there to be just one escape-double-quote separator, in which case the third regular
expression is taken as empty; or no separators, in which case the first and third regular expressions are taken as empty.

Some examples, with #" delimiting the return string:

#'abc' SIMILAR TO 'abc'          → true
#'abc' SIMILAR TO 'a'            → false
#'abc' SIMILAR TO '%(b|d)%'      → true
#'abc' SIMILAR TO '(b|c)%'       → false
#'-abc-' SIMILAR TO '%\mabc\M%'  → true
#'xabcy' SIMILAR TO '%\mabc\M%'  → false

substring(string similar pattern escape escape-character)

substring(string from pattern for escape-character)

substring(string, pattern, escape-character)



9.7.3. POSIX Regular Expressions
Table 9.16 lists the available operators for pattern matching using POSIX regular expressions.

Table 9.16. Regular Expression Match Operators

POSIX regular expressions provide a more powerful means for pattern matching than the LIKE and SIMILAR TO operators. Many Unix tools such
as egrep, sed, or awk use a pattern matching language that is similar to the one described here.

A regular expression is a character sequence that is an abbreviated definition of a set of strings (a regular set). A string is said to match a regular
expression if it is a member of the regular set described by the regular expression. As with LIKE, pattern characters match string characters exactly
unless they are special characters in the regular expression language — but regular expressions use different special characters than LIKE does.

substring('foobar' similar '%#"o_b#"%' escape '#')   → oob
substring('foobar' similar '#"o_b#"%' escape '#')    → NULL

Operator Description Example(s)

ext ~ text → boolean String matches regular expression, case sensitively
    

text ~* text → boolean String matches regular expression, case insensitively
    

text !~ text → boolean String does not match regular expression, case sensitively
    

text !~* text → boolean String does not match regular expression, case insensitively
    

        

'thomas' ~ 't.*ma' → true

        
    

        

'thomas' ~* 'T.*ma' → true

        
    

        

'thomas' !~ 't.*max' → true

        
    

        

'thomas' !~* 'T.*ma' → false

        
    



Unlike LIKE patterns, a regular expression is allowed to match anywhere within a string, unless the regular expression is explicitly anchored to the
beginning or end of the string.

Some examples:

The POSIX pattern language is described in much greater detail below.

The substring function with two parameters, substring(string from pattern), provides extraction of a substring that matches a POSIX regular
expression pattern. It returns null if there is no match, otherwise the first portion of the text that matched the pattern. But if the pattern contains any
parentheses, the portion of the text that matched the first parenthesized subexpression (the one whose left parenthesis comes first) is returned. You
can put parentheses around the whole expression if you want to use parentheses within it without triggering this exception. If you need parentheses
in the pattern before the subexpression you want to extract, see the non-capturing parentheses described below.

Some examples:

The regexp_replace function provides substitution of new text for substrings that match POSIX regular expression patterns. It has the syntax
regexp_replace(source, pattern, replacement [, flags ]). The source string is returned unchanged if there is no match to the pattern. If there is a
match, the source string is returned with the replacement string substituted for the matching substring. The replacement string can contain \n,
where n is 1 through 9, to indicate that the source substring matching the n'th parenthesized subexpression of the pattern should be inserted, and it
can contain & to indicate that the substring matching the entire pattern should be inserted. Write \ if you need to put a literal backslash in the
replacement text. The flags parameter is an optional text string containing zero or more single-letter flags that change the function's behavior. Flag i
specifies case-insensitive matching, while flag g specifies replacement of each matching substring rather than only the first one. Supported flags
(though not g) are described in Table 9.24.

Some examples:

The regexp_match function returns a text array of captured substring(s) resulting from the first match of a POSIX regular expression pattern to a
string. It has the syntax regexp_match(string, pattern [, flags ]). If there is no match, the result is NULL. If a match is found, and the pattern contains
no parenthesized subexpressions, then the result is a single-element text array containing the substring matching the whole pattern. If a match is
found, and the pattern contains parenthesized subexpressions, then the result is a text array whose n'th element is the substring matching the n'th
parenthesized subexpression of the pattern (not counting “non-capturing” parentheses; see below for details). The flags parameter is an optional
text string containing zero or more single-letter flags that change the function's behavior. Supported flags are described in Table 9.24.

Some examples:

In the common case where you just want the whole matching substring or NULL for no match, write something like

The regexp_matches function returns a set of text arrays of captured substring(s) resulting from matching a POSIX regular expression pattern to a
string. It has the same syntax as regexp_match. This function returns no rows if there is no match, one row if there is a match and the g flag is not
given, or N rows if there are N matches and the g flag is given. Each returned row is a text array containing the whole matched substring or the
substrings matching parenthesized subexpressions of the pattern, just as described above for regexp_match. regexp_matches accepts all the flags
shown in Table 9.24, plus the g flag which commands it to return all matches, not just the first one.

Some examples:

'abcd' ~ 'bc'     → true
'abcd' ~ 'a.c'    → true /* dot matches any character */
'abcd' ~ 'a.*d'   → true /* * repeats the preceding pattern item */
'abcd' ~ '(b|x)'  → true /* | means OR, parentheses group */
'abcd' ~ '^a'     → true /* ^ anchors to start of string */
'abcd' ~ '^(b|c)' → false /* would match except for anchoring */

substring('foobar' from 'o.b')      → oob
substring('foobar' from 'o(.)b')    → o

regexp_replace('foobarbaz', 'b..', 'X') → fooXbaz
regexp_replace('foobarbaz', 'b..', 'X', 'g') → fooXX
regexp_replace('foobarbaz', 'b(..)', 'X\1Y', 'g') → fooXarYXazY

regexp_match('foobarbequebaz', 'bar.*que') → {barbeque}
regexp_match('foobarbequebaz', '(bar)(beque)') → {bar,beque}

#(regexp_match('foobarbequebaz', 'bar.*que'))[1] → barbeque

SELECT * FROM regexp_matches('foo', 'not there') a → [
]

SELECT * FROM regexp_matches('foobarbequebazilbarfbonk', '(b[^b]+)(b[^b]+)', 'g') a → [
{bar,beque}
{bazil,barf}
]



Tip
In most cases regexp_matches() should be used with the g flag, since if you only want the first match, it's easier and more efficient to use
regexp_match(). However, regexp_match() only exists in PostgreSQL version 10 and up. When working in older versions, a common trick is to
place a regexp_matches() call in a sub-select, for example:

This produces a text array if there's a match, or NULL if not, the same as regexp_match() would do. Without the sub-select, this query would
produce no output at all for table rows without a match, which is typically not the desired behavior.

The regexp_split_to_table function splits a string using a POSIX regular expression pattern as a delimiter. It has the syntax
regexp_split_to_table(string, pattern [, flags ]). If there is no match to the pattern, the function returns the string. If there is at least one match, for
each match it returns the text from the end of the last match (or the beginning of the string) to the beginning of the match. When there are no more
matches, it returns the text from the end of the last match to the end of the string. The flags parameter is an optional text string containing zero or
more single-letter flags that change the function's behavior. regexp_split_to_table supports the flags described in Table 9.24.

The regexp_split_to_array function behaves the same as regexp_split_to_table, except that regexp_split_to_array returns its result as an array of
text. It has the syntax regexp_split_to_array(string, pattern [, flags ]). The parameters are the same as for regexp_split_to_table.

Some examples:

As the last example demonstrates, the regexp split functions ignore zero-length matches that occur at the start or end of the string or immediately
after a previous match. This is contrary to the strict definition of regexp matching that is implemented by regexp_match and regexp_matches, but is
usually the most convenient behavior in practice. Other software systems such as Perl use similar definitions.

9.7.3.5. Regular Expression Matching Rules
In the event that an RE could match more than one substring of a given string, the RE matches the one starting earliest in the string. If the RE could
match more than one substring starting at that point, either the longest possible match or the shortest possible match will be taken, depending on
whether the RE is greedy or non-greedy.

Whether an RE is greedy or not is determined by the following rules:

Most atoms, and all constraints, have no greediness attribute (because they cannot match variable amounts of text anyway).

Adding parentheses around an RE does not change its greediness.

A quantified atom with a fixed-repetition quantifier ({m} or {m}?) has the same greediness (possibly none) as the atom itself.

A quantified atom with other normal quantifiers (including {m,n} with m equal to n) is greedy (prefers longest match).

A quantified atom with a non-greedy quantifier (including {m,n}? with m equal to n) is non-greedy (prefers shortest match).

SELECT col1, (SELECT regexp_matches(col2, '(bar)(beque)')) FROM tab;

SELECT foo FROM regexp_split_to_table('the quick brown fox jumps over the lazy dog', '\s+') AS foo → [
the
quick
brown
fox
jumps
over
the
lazy
dog
]

SELECT regexp_split_to_array('the quick brown fox jumps over the lazy dog', '\s+') → 
{the,quick,brown,fox,jumps,over,the,lazy,dog}

SELECT foo FROM regexp_split_to_table('the quick brown fox', '\s*') AS foo → [
t
h
e
q
u
i
c
k
b
r
o
w
n
f
o
x
]



A branch — that is, an RE that has no top-level | operator — has the same greediness as the first quantified atom in it that has a greediness
attribute.

An RE consisting of two or more branches connected by the | operator is always greedy.

The above rules associate greediness attributes not only with individual quantified atoms, but with branches and entire REs that contain quantified
atoms. What that means is that the matching is done in such a way that the branch, or whole RE, matches the longest or shortest possible
substring as a whole. Once the length of the entire match is determined, the part of it that matches any particular subexpression is determined on
the basis of the greediness attribute of that subexpression, with subexpressions starting earlier in the RE taking priority over ones starting later.

An example of what this means:

In the first case, the RE as a whole is greedy because Y*  is greedy. It can match beginning at the Y, and it matches the longest possible string
starting there, i.e., Y123. The output is the parenthesized part of that, or 123. In the second case, the RE as a whole is non-greedy because Y*?  is
non-greedy. It can match beginning at the Y, and it matches the shortest possible string starting there, i.e., Y1. The subexpression [0-9]{1,3} is
greedy but it cannot change the decision as to the overall match length; so it is forced to match just 1.

In short, when an RE contains both greedy and non-greedy subexpressions, the total match length is either as long as possible or as short as
possible, according to the attribute assigned to the whole RE. The attributes assigned to the subexpressions only affect how much of that match
they are allowed to “eat” relative to each other.

The quantifiers {1,1} and {1,1}? can be used to force greediness or non-greediness, respectively, on a subexpression or a whole RE. This is useful
when you need the whole RE to have a greediness attribute different from what's deduced from its elements. As an example, suppose that we are
trying to separate a string containing some digits into the digits and the parts before and after them. We might try to do that like this:

That didn't work: the first .* is greedy so it “eats” as much as it can, leaving the \d+ to match at the last possible place, the last digit. We might try to
fix that by making it non-greedy:

That didn't work either, because now the RE as a whole is non-greedy and so it ends the overall match as soon as possible. We can get what we
want by forcing the RE as a whole to be greedy:

Controlling the RE's overall greediness separately from its components' greediness allows great flexibility in handling variable-length patterns.

When deciding what is a longer or shorter match, match lengths are measured in characters, not collating elements. An empty string is considered
longer than no match at all. For example: bb*  matches the three middle characters of abbbc; (week|wee)(night|knights) matches all ten characters
of weeknights; when (.*).*  is matched against abc the parenthesized subexpression matches all three characters; and when (a*)* is matched
against bc both the whole RE and the parenthesized subexpression match an empty string.

If case-independent matching is specified, the effect is much as if all case distinctions had vanished from the alphabet. When an alphabetic that
exists in multiple cases appears as an ordinary character outside a bracket expression, it is effectively transformed into a bracket expression
containing both cases, e.g., x becomes [xX]. When it appears inside a bracket expression, all case counterparts of it are added to the bracket
expression, e.g., [x] becomes [xX] and [^x] becomes [^xX].

If newline-sensitive matching is specified, . and bracket expressions using ^ will never match the newline character (so that matches will not cross
lines unless the RE explicitly includes a newline) and ^ and $ will match the empty string after and before a newline respectively, in addition to
matching at beginning and end of string respectively. But the ARE escapes \A and \Z continue to match beginning or end of string only. Also, the
character class shorthands \D and \W will match a newline regardless of this mode. (Before PostgreSQL 14, they did not match newlines when in
newline-sensitive mode. Write [^[:digit:]] or [^[:word:]] to get the old behavior.)

If partial newline-sensitive matching is specified, this affects . and bracket expressions as with newline-sensitive matching, but not ^ and $.

If inverse partial newline-sensitive matching is specified, this affects ^ and $ as with newline-sensitive matching, but not . and bracket expressions.
This isn't very useful but is provided for symmetry

9.8. Data Type Formatting Functions

The PostgreSQL formatting functions provide a powerful set of tools for converting various data types (date/time, integer, floating point, numeric) to
formatted strings and for converting from formatted strings to specific data types. Table 9.25 lists them. These functions all follow a common calling
convention: the first argument is the value to be formatted and the second argument is a template that defines the output or input format.

Table 9.25. Formatting Functions

SUBSTRING('XY1234Z', 'Y*([0-9]{1,3})')  → 123
SUBSTRING('XY1234Z', 'Y*?([0-9]{1,3})') → 1

regexp_match('abc01234xyz', '(.*)(\d+)(.*)') → {abc0123,4,xyz}

regexp_match('abc01234xyz', '(.*?)(\d+)(.*)') → {abc,0,""}

regexp_match('abc01234xyz', '(?:(.*?)(\d+)(.*)){1,1}') → {abc,01234,xyz}

Function Description Example(s)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions_data-type-formatting-functions


Table 9.30 shows some examples of the use of the to_char function.

Table 9.30. to_char Examples

to_char('2000-06-06 05:39:18'::timestamp, 'Day, DD  HH12:MI:SS') → 'Tuesday  , 06  05:39:18'
to_char('2000-06-06 05:39:18'::timestamp, 'FMDay, FMDD  HH12:MI:SS') → 'Tuesday, 6  05:39:18'
to_char(-0.1, '99.99') → '  -.10'
to_char(-0.1, 'FM9.99') → '-.1'
to_char(-0.1, 'FM90.99') → '-0.1'
to_char(0.1, '0.9') → ' 0.1'
to_char(12, '9990999.9') → '    0012.0'
to_char(12, 'FM9990999.9') → '0012.'
to_char(485, '999') → ' 485'
to_char(-485, '999') → '-485'
to_char(485, '9 9 9') → ' 4 8 5'
to_char(1485, '9,999') → ' 1,485'
to_char(1485, '9G999') → ' 1,485'
to_char(148.5, '999.999') → ' 148.500'
to_char(148.5, 'FM999.999') → '148.5'
to_char(148.5, 'FM999.990') → '148.500'

to_char ( timestamp with 
time zone, text ) → text

Converts time stamp to string according to the 
given format.     

to_char ( interval, text ) → 
text

Converts interval to string according to the given 
format.     

to_char ( numeric_type, 
text ) → text

Converts number to string according to the given 
format; available for integer, bigint, numeric, real, 
double precision.

    

to_date ( text, text ) → 
date

Converts string to date according to the given 
format.     

to_number ( text, text ) → 
numeric

Converts string to numeric according to the given 
format.     

        

to_char(timestamp '2002-04-20 
17:31:12.66', 'HH12:MI:SS') → 05:31:12

        
    

        

to_char(interval '15h 2m 12s', 
'HH24:MI:SS') → 15:02:12

        
    

        

to_char(125, '999') → ' 125'
to_char(125.8::real, '999D9') → ' 125.8'
to_char(-125.8, '999D99S') → '125.80-'

        
    

        

to_date('05 Dec 2000', 'DD Mon YYYY') → 
'2000-12-05'

        
    

        

to_number('12,454.8-', '99G999D9S') → 
'-12454.8'

        
    



9.9. Date/Time Functions and Operators

Table 9.32 shows the available functions for date/time value processing, with details appearing in the following subsections. Table 9.31 illustrates
the behaviors of the basic arithmetic operators (+, *, etc.). For formatting functions, refer to Section 9.8. You should be familiar with the background
information on date/time data types from Section 8.5.

In addition, the usual comparison operators shown in Table 9.1 are available for the date/time types. Dates and timestamps (with or without time
zone) are all comparable, while times (with or without time zone) and intervals can only be compared to other values of the same data type. When
comparing a timestamp without time zone to a timestamp with time zone, the former value is assumed to be given in the time zone specified by the
TimeZone configuration parameter, and is rotated to UTC for comparison to the latter value (which is already in UTC internally). Similarly, a date
value is assumed to represent midnight in the TimeZone zone when comparing it to a timestamp.

All the functions and operators described below that take time or timestamp inputs actually come in two variants: one that takes time with time zone
or timestamp with time zone, and one that takes time without time zone or timestamp without time zone. For brevity, these variants are not shown
separately. Also, the + and * operators come in commutative pairs (for example both date + integer and integer + date); we show only one of each
such pair.

Table 9.31. Date/Time Operators

to_char(148.5, '999D999') → ' 148.500'
to_char(3148.5, '9G999D999') → ' 3,148.500'
to_char(-485, '999S') → '485-'
to_char(-485, '999MI') → '485-'
to_char(485, '999MI') → '485 '
to_char(485, 'FM999MI') → '485'
to_char(485, 'PL999') → '+ 485'
to_char(485, 'SG999') → '+485'
to_char(-485, 'SG999') → '-485'
to_char(-485, '9SG99') → '4-85'
to_char(-485, '999PR') → '<485>'
to_char(485, 'L999') → '  485'
to_char(485, 'RN') → '        CDLXXXV'
to_char(485, 'FMRN') → 'CDLXXXV'
to_char(5.2, 'FMRN') → 'V'
to_char(482, '999th') → ' 482nd'
to_char(485, '"Good number:"999') → 'Good number: 485'
to_char(485.8, '"Pre:"999" Post:" .999') → 'Pre: 485 Post: .800'
to_char(12, '99V999') → ' 12000'
to_char(12.4, '99V999') → ' 12400'
to_char(12.45, '99V9') → ' 125'
to_char(0.0004859, '9.99EEEE') → ' 4.86e-04'

to_timestamp ( text, text ) 
→ timestamp with time 
zone

Converts string to time stamp according to the 
given format. (See also to_timestamp(double 
precision) in Table 9.32.)

    

        

cast(to_timestamp('05 Dec 2000', 'DD Mon 
YYYY') as timestamp) → '2000-12-05 
00:00:00'

        
    

Operator Description Example(s)

date + integer → date Add a number of days to a date
    

date + interval → 
timestamp

Add an interval to a date
    

        

date '2001-09-28' + 7 → 2001-10-05

        
    

        

date '2001-09-28' + interval '1 hour' → 
2001-09-28 01:00:00

        
    

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions_date-time-functions


date + time → 
timestamp

Add a time-of-day to a date
    

interval + interval → 
interval

Add intervals
    

timestamp + interval → 
timestamp

Add an interval to a timestamp
    

time + interval → time Add an interval to a time
    

interval → interval
Negate an interval

    

        

date '2001-09-28' + time '03:00' → 2001-
09-28 03:00:00

        
    

        

interval '1 day' + interval '1 hour' → 1 
day 01:00:00

        
    

        

timestamp '2001-09-28 01:00' + interval 
'23 hours' → 2001-09-29 00:00:00

        
    

        

time '01:00' + interval '3 hours' → 
04:00:00

        
    

        

- interval '23 hours' → -23:00:00

        
    



Table 9.32. Date/Time Functions

date - date → integer Subtract dates, producing the number of days 
elapsed     

date - integer → date Subtract a number of days from a date
    

date - interval → 
timestamp

Subtract an interval from a date
    

time - time → interval Subtract times
    

time - interval → time Subtract an interval from a time
    

        

date '2001-10-01' - date '2001-09-28' → 3

        
    

        

date '2001-10-01' - 7 → 2001-09-24

        
    

        

date '2001-09-28' - interval '1 hour' → 
2001-09-27 23:00:00

        
    

        

time '05:00' - time '03:00' → 02:00:00

        
    

        

time '05:00' - interval '2 hours' → 
03:00:00

        
    



timestamp - interval → 
timestamp

Subtract an interval from a timestamp
    

interval - interval → 
interval

Subtract intervals
    

timestamp - timestamp 
→ interval

Subtract timestamps (converting 24-hour 
intervals into days, similarly to justify_hours())     

interval * double 
precision → interval

Multiply an interval by a scalar
    

interval / double 
precision → interval

Divide an interval by a scalar
    

        

timestamp '2001-09-28 23:00' - interval 
'23 hours' → 2001-09-28 00:00:00

        
    

        

interval '1 day' - interval '1 hour' → 1 
day -01:00:00

        
    

        

timestamp '2001-09-29 03:00' - timestamp 
'2001-07-27 12:00' → 63 days 15:00:00

        
    

        

interval '1 second' * 900 → 00:15:00
interval '1 day' * 21 → 21 days
interval '1 hour' * 3.5 → 03:30:00

        
    

        

interval '1 hour' / 1.5 → 00:40:00

        
    

Function Description Example(s)

age ( timestamp, timestamp ) → 
interval

Subtract arguments, producing a “symbolic” 
result that uses years and months, rather 
than just days

    

age ( timestamp ) → interval Subtract argument from current_date (at 
midnight)     

clock_timestamp ( ) → timestamp 
with time zone

Current date and time (changes during 
statement execution); see Section 9.9.5     

current_date → date Current date; see Section 9.9.5
    

        

age(timestamp '2001-04-10', 
timestamp '1957-06-13') → 43 years 
9 mons 27 days

        
    

        

age(timestamp '1957-06-13') ~→ 62 
years 6 mons 10 days

        
    

        

clock_timestamp() ~→ 2019-12-23 
14:39:53.662522-05

        
    

        

current_date ~→ 2019-12-23

        
    



current_time → time with time zone Current time of day; see Section 9.9.5
    

current_time ( integer ) → time with 
time zone

Current time of day, with limited precision; 
see Section 9.9.5     

current_timestamp → timestamp 
with time zone

Current date and time (start of current 
transaction); see Section 9.9.5     

current_timestamp ( integer ) → 
timestamp with time zone

Current date and time (start of current 
transaction), with limited precision; see 
Section 9.9.5

    

date_bin ( interval, timestamp, 
timestamp ) → timestamp

Bin input into specified interval aligned with 
specified origin; see Section 9.9.3     

        

current_time ~→ 14:39:53.662522-05

        
    

        

current_time(2) ~→ 14:39:53.66-05

        
    

        

current_timestamp ~→ 2019-12-23 
14:39:53.662522-05

        
    

        

current_timestamp(0) ~→ 2019-12-23 
14:39:53-05

        
    

        

date_bin('15 minutes', timestamp 
'2001-02-16 20:38:40', timestamp 
'2001-02-16 20:05:00') → 2001-02-16 
20:35:00

        
    



date_part ( text, timestamp ) → 
double precision

Get timestamp subfield (equivalent to 
extract); see Section 9.9.1     

date_part ( text, interval ) → double 
precision

Get interval subfield (equivalent to extract); 
see Section 9.9.1     

date_trunc ( text, timestamp ) → 
timestamp

Truncate to specified precision; see Section 
9.9.2     

date_trunc ( text, timestamp with 
time zone, text ) → timestamp with 
time zone

Truncate to specified precision in the 
specified time zone; see Section 9.9.2 (NOT 
SUPPORTED)

    

        

date_part('hour', timestamp '2001-
02-16 20:38:40') → 20

        
    

        

date_part('month', interval '2 
years 3 months') → 3

        
    

        

date_trunc('hour', timestamp '2001-
02-16 20:38:40') → 2001-02-16 
20:00:00

        
    

        

#date_trunc('day', timestamptz 
'2001-02-16 20:38:40+00', 
'Australia/Sydney') → 2001-02-16 
13:00:00+00

        
    



In addition to these functions, the SQL OVERLAPS operator is supported: (NOT SUPPORTED)

This expression yields true when two time periods (defined by their endpoints) overlap, false when they do not overlap. The endpoints can be
specified as pairs of dates, times, or time stamps; or as a date, time, or time stamp followed by an interval. When a pair of values is provided, either
the start or the end can be written first; OVERLAPS automatically takes the earlier value of the pair as the start. Each time period is considered to
represent the half-open interval start <= time < end, unless start and end are equal in which case it represents that single time instant. This means
for instance that two time periods with only an endpoint in common do not overlap.

When adding an interval value to (or subtracting an interval value from) a timestamp with time zone value, the days component advances or
decrements the date of the timestamp with time zone by the indicated number of days, keeping the time of day the same. Across daylight saving

(start1, end1) OVERLAPS (start2, end2)
(start1, length1) OVERLAPS (start2, length2)

(DATE '2001-02-16', DATE '2001-12-21') OVERLAPS (DATE '2001-10-30', DATE '2002-10-30') → true
(DATE '2001-02-16', INTERVAL '100 days') OVERLAPS (DATE '2001-10-30', DATE '2002-10-30') → false
(DATE '2001-10-29', DATE '2001-10-30') OVERLAPS (DATE '2001-10-30', DATE '2001-10-31') → false
(DATE '2001-10-30', DATE '2001-10-30') OVERLAPS (DATE '2001-10-30', DATE '2001-10-31') → true

date_trunc ( text, interval ) → 
interval

Truncate to specified precision; see Section 
9.9.2     

extract ( field from timestamp ) → 
numeric

Get timestamp subfield; see Section 9.9.1
    

extract ( field from interval ) → 
numeric

Get interval subfield; see Section 9.9.1
    

isfinite ( date ) → boolean Test for finite date (not +/-infinity)
    

isfinite ( timestamp ) → boolean Test for finite timestamp (not +/-infinity)
    

        

date_trunc('hour', interval '2 days 
3 hours 40 minutes') → 2 days 
03:00:00

        
    

        

extract(hour from timestamp '2001-
02-16 20:38:40') → 20

        
    

        

extract(month from interval '2 
years 3 months') → 3

        
    

        

isfinite(date '2001-02-16') → true

        
    

        

isfinite(timestamp 'infinity') → 
false

        
    



time changes (when the session time zone is set to a time zone that recognizes DST), this means interval '1 day' does not necessarily equal
interval '24 hours'. For example, with the session time zone set to America/Denver:

This happens because an hour was skipped due to a change in daylight saving time at 2005-04-03 02:00:00 in time zone America/Denver.

Note there can be ambiguity in the months field returned by age because different months have different numbers of days. PostgreSQL's approach
uses the month from the earlier of the two dates when calculating partial months. For example, age('2004-06-01', '2004-04-30') uses April to yield 1
mon 1 day, while using May would yield 1 mon 2 days because May has 31 days, while April has only 30.

Subtraction of dates and timestamps can also be complex. One conceptually simple way to perform subtraction is to convert each value to a
number of seconds using EXTRACT(EPOCH FROM ...), then subtract the results; this produces the number of seconds between the two values.
This will adjust for the number of days in each month, timezone changes, and daylight saving time adjustments. Subtraction of date or timestamp
values with the “-” operator returns the number of days (24-hours) and hours/minutes/seconds between the values, making the same adjustments.
The age function returns years, months, days, and hours/minutes/seconds, performing field-by-field subtraction and then adjusting for negative field
values. The following queries illustrate the differences in these approaches. The sample results were produced with timezone = 'US/Eastern'; there
is a daylight saving time change between the two dates used:

9.9.1. EXTRACT, date_part

The extract function retrieves subfields such as year or hour from date/time values. source must be a value expression of type timestamp, time, or
interval. (Expressions of type date are cast to timestamp and can therefore be used as well.) field is an identifier or string that selects what field to
extract from the source value. The extract function returns values of type numeric. The following are valid field names:

century
The century

The first century starts at 0001-01-01 00:00:00 AD, although they did not know it at the time. This definition applies to all Gregorian calendar
countries. There is no century number 0, you go from -1 century to 1 century. If you disagree with this, please write your complaint to: Pope,
Cathedral Saint-Peter of Roma, Vatican.

day
For timestamp values, the day (of the month) field (1–31) ; for interval values, the number of days

decade
The year field divided by 10

dow
The day of the week as Sunday (0) to Saturday (6)

Note that extract's day of the week numbering differs from that of the to_char(..., 'D') function.

doy
The day of the year (1–365/366)

epoch
For timestamp with time zone values, the number of seconds since 1970-01-01 00:00:00 UTC (negative for timestamps before that); for date and

timestamp with time zone '2005-04-02 12:00:00-07' + interval '1 day' ~→ 2005-04-03 12:00:00-06
timestamp with time zone '2005-04-02 12:00:00-07' + interval '24 hours' ~→ 2005-04-03 13:00:00-06

EXTRACT(EPOCH FROM timestamptz '2013-07-01 12:00:00') - EXTRACT(EPOCH FROM timestamptz '2013-03-01 12:00:00') ~→ 
10537200.000000
(EXTRACT(EPOCH FROM timestamptz '2013-07-01 12:00:00') - EXTRACT(EPOCH FROM timestamptz '2013-03-01 12:00:00')) / 60 / 
60 / 24 ~→ 121.9583333333333333
timestamptz '2013-07-01 12:00:00' - timestamptz '2013-03-01 12:00:00' ~→ 121 days 23:00:00
age(timestamptz '2013-07-01 12:00:00', timestamptz '2013-03-01 12:00:00') → 4 mons

EXTRACT(field FROM source)

EXTRACT(CENTURY FROM TIMESTAMP '2000-12-16 12:21:13') → 20
EXTRACT(CENTURY FROM TIMESTAMP '2001-02-16 20:38:40') → 21

EXTRACT(DAY FROM TIMESTAMP '2001-02-16 20:38:40') → 16
 EXTRACT(DAY FROM INTERVAL '40 days 1 minute') → 40

EXTRACT(DECADE FROM TIMESTAMP '2001-02-16 20:38:40') → 200

EXTRACT(DOW FROM TIMESTAMP '2001-02-16 20:38:40') → 5

EXTRACT(DOY FROM TIMESTAMP '2001-02-16 20:38:40') → 47

isfinite ( interval ) → boolean Test for finite interval (currently always true)
    

justify_days ( interval ) → interval Adjust interval so 30-day time periods are 
represented as months     

justify_hours ( interval ) → interval Adjust interval so 24-hour time periods are 
represented as days     

justify_interval ( interval ) → interval Adjust interval using justify_days and 
justify_hours, with additional sign 
adjustments

    

localtime → time Current time of day; see Section 9.9.5 (NOT 
SUPPORTED)     

        

isfinite(interval '4 hours') → true

        
    

        

justify_days(interval '35 days') → 
1 mon 5 days

        
    

        

justify_hours(interval '27 hours') 
→ 1 day 03:00:00

        
    

        

justify_interval(interval '1 mon -1 
hour') → 29 days 23:00:00

        
    

        

#localtime ~→ 14:39:53.662522

        
    



timestamp values, the nominal number of seconds since 1970-01-01 00:00:00, without regard to timezone or daylight-savings rules; for interval
values, the total number of seconds in the interval

You can convert an epoch value back to a timestamp with time zone with to_timestamp:

Beware that applying to_timestamp to an epoch extracted from a date or timestamp value could produce a misleading result: the result will
effectively assume that the original value had been given in UTC, which might not be the case.

hour
The hour field (0–23)

isodow
The day of the week as Monday (1) to Sunday (7)

This is identical to dow except for Sunday. This matches the ISO 8601 day of the week numbering.

isoyear
The ISO 8601 week-numbering year that the date falls in (not applicable to intervals)

Each ISO 8601 week-numbering year begins with the Monday of the week containing the 4th of January, so in early January or late December the
ISO year may be different from the Gregorian year. See the week field for more information.

This field is not available in PostgreSQL releases prior to 8.3.

julian
The Julian Date corresponding to the date or timestamp (not applicable to intervals). Timestamps that are not local midnight result in a fractional
value. See Section B.7 for more information.

microseconds
The seconds field, including fractional parts, multiplied by 1 000 000; note that this includes full seconds

millennium
The millennium

Years in the 1900s are in the second millennium. The third millennium started January 1, 2001.

milliseconds
The seconds field, including fractional parts, multiplied by 1000. Note that this includes full seconds.

minute
The minutes field (0–59)

month
For timestamp values, the number of the month within the year (1–12) ; for interval values, the number of months, modulo 12 (0–11)

EXTRACT(EPOCH FROM TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40.12-08') → 982384720.120000
EXTRACT(EPOCH FROM TIMESTAMP '2001-02-16 20:38:40.12') → 982355920.120000
EXTRACT(EPOCH FROM INTERVAL '5 days 3 hours') → 442800.000000

to_timestamp(982384720.12) → 2001-02-17 04:38:40.12+00

EXTRACT(HOUR FROM TIMESTAMP '2001-02-16 20:38:40') → 20

EXTRACT(ISODOW FROM TIMESTAMP '2001-02-18 20:38:40') → 7

EXTRACT(ISOYEAR FROM DATE '2006-01-01') → 2005
EXTRACT(ISOYEAR FROM DATE '2006-01-02') → 2006

EXTRACT(JULIAN FROM DATE '2006-01-01') → 2453737
EXTRACT(JULIAN FROM TIMESTAMP '2006-01-01 12:00') → 2453737.50000000000000000000

EXTRACT(MICROSECONDS FROM TIME '17:12:28.5') → 28500000

EXTRACT(MILLENNIUM FROM TIMESTAMP '2001-02-16 20:38:40') → 3

EXTRACT(MILLISECONDS FROM TIME '17:12:28.5') → 28500.000

EXTRACT(MINUTE FROM TIMESTAMP '2001-02-16 20:38:40') → 38

localtime ( integer ) → time Current time of day, with limited precision; 
see Section 9.9.5 (NOT SUPPORTED)     

localtimestamp → timestamp Current date and time (start of current 
transaction); see Section 9.9.5 (NOT 
SUPPORTED)

    

localtimestamp ( integer ) → 
timestamp

Current date and time (start of current 
transaction), with limited precision; see 
Section 9.9.5 (NOT SUPPORTED)

    

make_date ( year int, month int, day 
int ) → date

Create date from year, month and day fields 
(negative years signify BC)     

make_interval ( [ years int [, months 
int [, weeks int [, days int [, hours int 
[, mins int [, secs double precision 
]]]]]]] ) → interval

Create interval from years, months, weeks, 
days, hours, minutes and seconds fields, 
each of which can default to zero (NOT 
SUPPORTED)

    

        

#localtime(0) ~→ 14:39:53

        
    

        

#localtimestamp ~→ 2019-12-23 
14:39:53.662522

        
    

        

#localtimestamp(2) ~→ 2019-12-23 
14:39:53.66

        
    

        

make_date(2013, 7, 15) → 2013-07-15

        
    

        

#make_interval(days => 10) → 10 
days

        
    



quarter
The quarter of the year (1–4) that the date is in

second
The seconds field, including any fractional seconds

timezone
The time zone offset from UTC, measured in seconds. Positive values correspond to time zones east of UTC, negative values to zones west of
UTC. (Technically, PostgreSQL does not use UTC because leap seconds are not handled.)

timezone_hour
The hour component of the time zone offset

timezone_minute
The minute component of the time zone offset

week
The number of the ISO 8601 week-numbering week of the year. By definition, ISO weeks start on Mondays and the first week of a year contains
January 4 of that year. In other words, the first Thursday of a year is in week 1 of that year.

In the ISO week-numbering system, it is possible for early-January dates to be part of the 52nd or 53rd week of the previous year, and for late-
December dates to be part of the first week of the next year. For example, 2005-01-01 is part of the 53rd week of year 2004, and 2006-01-01 is part
of the 52nd week of year 2005, while 2012-12-31 is part of the first week of 2013. It's recommended to use the isoyear field together with week to
get consistent results.

year
The year field. Keep in mind there is no 0 AD, so subtracting BC years from AD years should be done with care.

Note
When the input value is +/-Infinity, extract returns +/-Infinity for monotonically-increasing fields (epoch, julian, year, isoyear, decade, century, and
millennium). For other fields, NULL is returned. PostgreSQL versions before 9.6 returned zero for all cases of infinite input.

The extract function is primarily intended for computational processing. For formatting date/time values for display, see Section 9.8.

The date_part function is modeled on the traditional Ingres equivalent to the SQL-standard function extract:

Note that here the field parameter needs to be a string value, not a name. The valid field names for date_part are the same as for extract. For
historical reasons, the date_part function returns values of type double precision. This can result in a loss of precision in certain uses. Using extract
is recommended instead.

9.9.2. date_trunc

The function date_trunc is conceptually similar to the trunc function for numbers.

source is a value expression of type timestamp, timestamp with time zone, or interval. (Values of type date and time are cast automatically to
timestamp or interval, respectively.) field selects to which precision to truncate the input value. The return value is likewise of type timestamp,
timestamp with time zone, or interval, and it has all fields that are less significant than the selected one set to zero (or one, for day and month).

Valid values for field are:

SELECT EXTRACT(MONTH FROM TIMESTAMP '2001-02-16 20:38:40') → 2
SELECT EXTRACT(MONTH FROM INTERVAL '2 years 3 months') → 3
SELECT EXTRACT(MONTH FROM INTERVAL '2 years 13 months') → 1

SELECT EXTRACT(QUARTER FROM TIMESTAMP '2001-02-16 20:38:40') → 1

SELECT EXTRACT(SECOND FROM TIMESTAMP '2001-02-16 20:38:40') → 40.000000
SELECT EXTRACT(SECOND FROM TIME '17:12:28.5') → 28.500000

EXTRACT(WEEK FROM TIMESTAMP '2001-02-16 20:38:40') → 7

EXTRACT(YEAR FROM TIMESTAMP '2001-02-16 20:38:40') → 2001

date_part('field', source)

date_part('day', TIMESTAMP '2001-02-16 20:38:40') → 16
date_part('hour', INTERVAL '4 hours 3 minutes') → 4

date_trunc(field, source [, time_zone ])

make_time ( hour int, min int, sec 
double precision ) → time

Create time from hour, minute and seconds 
fields     

make_timestamp ( year int, month 
int, day int, hour int, min int, sec 
double precision ) → timestamp

Create timestamp from year, month, day, 
hour, minute and seconds fields (negative 
years signify BC)

    

make_timestamptz ( year int, month 
int, day int, hour int, min int, sec 
double precision [, timezone text ] ) 
→ timestamp with time zone

Create timestamp with time zone from year, 
month, day, hour, minute and seconds fields 
(negative years signify BC). If timezone is 
not specified, the current time zone is used; 
the examples assume the session time zone 
is Europe/London

    

now ( ) → timestamp with time zone Current date and time (start of current 
transaction); see Section 9.9.5     

        

make_time(8, 15, 23.5) → 08:15:23.5

        
    

        

make_timestamp(2013, 7, 15, 8, 15, 
23.5) → 2013-07-15 08:15:23.5

        
    

        

make_timestamptz(2013, 7, 15, 8, 
15, 23.5) ~→ 2013-07-15 
08:15:23.5+01
#make_timestamptz(2013, 7, 15, 8, 
15, 23.5, 'America/New_York') ~→ 
2013-07-15 13:15:23.5+01

        
    

        

now() ~→ 2019-12-23 
14:39:53.662522-05

        
    



microseconds
milliseconds
second
minute
hour
day
week
month
quarter
year
decade
century
millennium

When the input value is of type timestamp with time zone, the truncation is performed with respect to a particular time zone; for example, truncation
to day produces a value that is midnight in that zone. By default, truncation is done with respect to the current TimeZone setting, but the optional
time_zone argument can be provided to specify a different time zone. The time zone name can be specified in any of the ways described in Section
8.5.3.

A time zone cannot be specified when processing timestamp without time zone or interval inputs. These are always taken at face value.

Examples (assuming the local time zone is America/New_York):

9.9.3. date_bin

The function date_bin “bins” the input timestamp into the specified interval (the stride) aligned with a specified origin.

source is a value expression of type timestamp or timestamp with time zone. (Values of type date are cast automatically to timestamp.) stride is a
value expression of type interval. The return value is likewise of type timestamp or timestamp with time zone, and it marks the beginning of the bin
into which the source is placed.

Examples:

In the case of full units (1 minute, 1 hour, etc.), it gives the same result as the analogous date_trunc call, but the difference is that date_bin can
truncate to an arbitrary interval.

The stride interval must be greater than zero and cannot contain units of month or larger.

9.9.4. AT TIME ZONE

The AT TIME ZONE operator converts time stamp without time zone to/from time stamp with time zone, and time with time zone values to different
time zones. Table 9.33 shows its variants. (NOT SUPPORTED)

Table 9.33. AT TIME ZONE Variants

date_trunc('hour', TIMESTAMP '2001-02-16 20:38:40') ~→ 2001-02-16 20:00:00
date_trunc('year', TIMESTAMP '2001-02-16 20:38:40') ~→ 2001-01-01 00:00:00
date_trunc('day', TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40+00') ~→ 2001-02-16 00:00:00-05
#date_trunc('day', TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40+00', 'Australia/Sydney') ~→ 2001-02-16 08:00:00-05
date_trunc('hour', INTERVAL '3 days 02:47:33') → 3 days 02:00:00

date_bin(stride, source, origin)

date_bin('15 minutes', TIMESTAMP '2020-02-11 15:44:17', TIMESTAMP '2001-01-01') → 2020-02-11 15:30:00
date_bin('15 minutes', TIMESTAMP '2020-02-11 15:44:17', TIMESTAMP '2001-01-01 00:02:30') → 2020-02-11 15:32:30

statement_timestamp ( ) → 
timestamp with time zone

Current date and time (start of current 
statement); see Section 9.9.5     

timeofday ( ) → text Current date and time (like clock_timestamp, 
but as a text string); see Section 9.9.5     

transaction_timestamp ( ) → 
timestamp with time zone

Current date and time (start of current 
transaction); see Section 9.9.5     

to_timestamp ( double precision ) → 
timestamp with time zone

Convert Unix epoch (seconds since 1970-01-
01 00:00:00+00) to timestamp with time zone     

        

statement_timestamp() ~→ 2019-12-23 
14:39:53.662522-05

        
    

        

timeofday() ~→ Mon Dec 23 
14:39:53.662522 2019 EST

        
    

        

transaction_timestamp() ~→ 2019-12-
23 14:39:53.662522-05

        
    

        

to_timestamp(1284352323) → 2010-09-
13 04:32:03+00

        
    

Operator Description Example(s)

Converts given time stamp without time zone to time stamp with time zone, assuming the given 
value is in the named time zone.

Converts given time stamp with time zone to time stamp without time zone, as the time would 
appear in that zone.

Converts given time with time zone to a new time zone. Since no date is supplied, this uses the 
currently active UTC offset for the named destination zone.



In these expressions, the desired time zone zone can be specified either as a text value (e.g., 'America/Los_Angeles') or as an interval (e.g.,
INTERVAL '-08:00'). In the text case, a time zone name can be specified in any of the ways described in Section 8.5.3. The interval case is only
useful for zones that have fixed offsets from UTC, so it is not very common in practice.

Examples (assuming the current TimeZone setting is America/Los_Angeles):

The first example adds a time zone to a value that lacks it, and displays the value using the current TimeZone setting. The second example shifts
the time stamp with time zone value to the specified time zone, and returns the value without a time zone. This allows storage and display of values
different from the current TimeZone setting. The third example converts Tokyo time to Chicago time.

The function timezone(zone, timestamp) is equivalent to the SQL-conforming construct timestamp AT TIME ZONE zone.

9.9.5. Current Date/Time

PostgreSQL provides a number of functions that return values related to the current date and time. These SQL-standard functions all return values
based on the start time of the current transaction:

CURRENT_TIME and CURRENT_TIMESTAMP deliver values with time zone; LOCALTIME and LOCALTIMESTAMP deliver values without time
zone.

CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME, and LOCALTIMESTAMP can optionally take a precision parameter, which causes the
result to be rounded to that many fractional digits in the seconds field. Without a precision parameter, the result is given to the full available
precision.

Some examples:

Since these functions return the start time of the current transaction, their values do not change during the transaction. This is considered a feature:
the intent is to allow a single transaction to have a consistent notion of the “current” time, so that multiple modifications within the same transaction
bear the same time stamp.

Note
Other database systems might advance these values more frequently.

PostgreSQL also provides functions that return the start time of the current statement, as well as the actual current time at the instant the function is
called. The complete list of non-SQL-standard time functions is:

transaction_timestamp() is equivalent to CURRENT_TIMESTAMP, but is named to clearly reflect what it returns. statement_timestamp() returns the
start time of the current statement (more specifically, the time of receipt of the latest command message from the client). statement_timestamp()
and transaction_timestamp() return the same value during the first command of a transaction, but might differ during subsequent commands.
clock_timestamp() returns the actual current time, and therefore its value changes even within a single SQL command. timeofday() is a historical
PostgreSQL function. Like clock_timestamp(), it returns the actual current time, but as a formatted text string rather than a timestamp with time zone
value. now() is a traditional PostgreSQL equivalent to transaction_timestamp().

All the date/time data types also accept the special literal value now to specify the current date and time (again, interpreted as the transaction start
time). Thus, the following three all return the same result:

#TIMESTAMP '2001-02-16 20:38:40' AT TIME ZONE 'America/Denver' ~→ 2001-02-16 19:38:40-08
#TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40-05' AT TIME ZONE 'America/Denver' ~→ 2001-02-16 18:38:40
#TIMESTAMP '2001-02-16 20:38:40' AT TIME ZONE 'Asia/Tokyo' AT TIME ZONE 'America/Chicago' ~→ 2001-02-16 05:38:40

CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TIME(precision)
CURRENT_TIMESTAMP(precision)
LOCALTIME
LOCALTIMESTAMP
LOCALTIME(precision)
LOCALTIMESTAMP(precision)

CURRENT_TIME ~→ 14:39:53.662522-05
CURRENT_DATE ~→ 2019-12-23
CURRENT_TIMESTAMP ~→ 2019-12-23 14:39:53.662522-05
CURRENT_TIMESTAMP(2) ~→ 2019-12-23 14:39:53.66-05
#LOCALTIMESTAMP ~→ 2019-12-23 14:39:53.662522

transaction_timestamp()
statement_timestamp()
clock_timestamp()
timeofday()
now()

SELECT CURRENT_TIMESTAMP;
SELECT now();



Tip
Do not use the third form when specifying a value to be evaluated later, for example in a DEFAULT clause for a table column. The system will
convert now to a timestamp as soon as the constant is parsed, so that when the default value is needed, the time of the table creation would be
used! The first two forms will not be evaluated until the default value is used, because they are function calls. Thus they will give the desired
behavior of defaulting to the time of row insertion. (See also Section 8.5.1.4.)

9.9.6. Delaying Execution

The following functions are available to delay execution of the server process:

pg_sleep makes the current session's process sleep until the given number of seconds have elapsed. Fractional-second delays can be specified.
pg_sleep_for is a convenience function to allow the sleep time to be specified as an interval. pg_sleep_until is a convenience function for when a
specific wake-up time is desired. For example:

Note
The effective resolution of the sleep interval is platform-specific; 0.01 seconds is a common value. The sleep delay will be at least as long as
specified. It might be longer depending on factors such as server load. In particular, pg_sleep_until is not guaranteed to wake up exactly at the
specified time, but it will not wake up any earlier.

Warning
Make sure that your session does not hold more locks than necessary when calling pg_sleep or its variants. Otherwise other sessions might have
to wait for your sleeping process, slowing down the entire system.

9.10. Enum Support Functions (NOT SUPPORTED)

9.11. Geometric Functions and Operators

The geometric types point, box, lseg, line, path, polygon, and circle have a large set of native support functions and operators, shown in Table 9.35,
Table 9.36, and Table 9.37.

Table 9.35. Geometric Operators

SELECT TIMESTAMP 'now';  /* but see tip below */

pg_sleep ( double precision )
pg_sleep_for ( interval )
pg_sleep_until ( timestamp with time zone )

SELECT pg_sleep(1.5);
SELECT pg_sleep_for('5 minutes');
SELECT pg_sleep_until('tomorrow 03:00');

Operator Description Example(s)

geometric_type + 
point → 
geometric_type

Adds the coordinates of the second point to those 
of each point of the first argument, thus 
performing translation. Available for point, box, 
path, circle.

    

path + path → 
path

Concatenates two open paths (returns NULL if 
either path is closed).     

        

box '(1,1),(0,0)' + point '(2,0)' → (3,1),(2,0)

        
    

        

path '[(0,0),(1,1)]' + path '[(2,2),(3,3),
(4,4)]' → [(0,0),(1,1),(2,2),(3,3),(4,4)]

        
    

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions_enum-support-functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions_geometric-functions


geometric_type - 
point → 
geometric_type

Subtracts the coordinates of the second point 
from those of each point of the first argument, 
thus performing translation. Available for point, 
box, path, circle.

    

geometric_type * 
point → 
geometric_type

Multiplies each point of the first argument by the 
second point (treating a point as being a complex 
number represented by real and imaginary parts, 
and performing standard complex multiplication). 
If one interprets the second point as a vector, this 
is equivalent to scaling the object's size and 
distance from the origin by the length of the 
vector, and rotating it counterclockwise around 
the origin by the vector's angle from the x axis. 
Available for point, box,[a] path, circle.

    

geometric_type / 
point → 
geometric_type

Divides each point of the first argument by the 
second point (treating a point as being a complex 
number represented by real and imaginary parts, 
and performing standard complex division). If one 
interprets the second point as a vector, this is 
equivalent to scaling the object's size and 
distance from the origin down by the length of the 
vector, and rotating it clockwise around the origin 
by the vector's angle from the x axis. Available for 
point, box,[a] path, circle.

    

@-@ 
geometric_type → 
double precision

Computes the total length. Available for lseg, 
path.     

        

box '(1,1),(0,0)' - point '(2,0)' → (-1,1),
(-2,0)

        
    

        

path '((0,0),(1,0),(1,1))' * point '(3.0,0)' → 
((0,0),(3,0),(3,3))
path '((0,0),(1,0),(1,1))' * point(cosd(45), 
sind(45)) → ((0,0),
(0.7071067811865475,0.7071067811865475),
(0,1.414213562373095))

        
    

        

path '((0,0),(1,0),(1,1))' / point '(2.0,0)' → 
((0,0),(0.5,0),(0.5,0.5))
path '((0,0),(1,0),(1,1))' / point(cosd(45), 
sind(45)) → ((0,0),
(0.7071067811865476,-0.7071067811865476),
(1.4142135623730951,0))

        
    

        

@-@ path '[(0,0),(1,0),(1,1)]' → 2

        
    



@@ 
geometric_type → 
point

Computes the center point. Available for box, 
lseg, polygon, circle.     

# geometric_type 
→ integer

Returns the number of points. Available for path, 
polygon.     

geometric_type # 
geometric_type → 
point

Computes the point of intersection, or NULL if 
there is none. Available for lseg, line.     

box # box → box Computes the intersection of two boxes, or NULL 
if there is none.     

geometric_type 
## 
geometric_type → 
point

Computes the closest point to the first object on 
the second object. Available for these pairs of 
types: (point, box), (point, lseg), (point, line), 
(lseg, box), (lseg, lseg), (line, lseg).

    

        

@@ box '(2,2),(0,0)' → (1,1)

        
    

        

# path '((1,0),(0,1),(-1,0))' → 3

        
    

        

lseg '[(0,0),(1,1)]' # lseg '[(1,0),(0,1)]' → 
(0.5,0.5)

        
    

        

box '(2,2),(-1,-1)' # box '(1,1),(-2,-2)' → 
(1,1),(-1,-1)

        
    

        

point '(0,0)' ## lseg '[(2,0),(0,2)]' → (1,1)

        
    



geometric_type <-
> geometric_type 
→ double 
precision

Computes the distance between the objects. 
Available for all geometric types except polygon, 
for all combinations of point with another 
geometric type, and for these additional pairs of 
types: (box, lseg), (lseg, line), (polygon, circle) 
(and the commutator cases).

    

geometric_type 
@> 
geometric_type → 
boolean

Does first object contain second? Available for 
these pairs of types: (box, point), (box, box), 
(path, point), (polygon, point), (polygon, polygon), 
(circle, point), (circle, circle).

    

geometric_type 
<@ 
geometric_type → 
boolean

Is first object contained in or on second? 
Available for these pairs of types: (point, box), 
(point, lseg), (point, line), (point, path), (point, 
polygon), (point, circle), (box, box), (lseg, box), 
(lseg, line), (polygon, polygon), (circle, circle).

    

geometric_type 
&& 
geometric_type → 
boolean

Do these objects overlap? (One point in common 
makes this true.) Available for box, polygon, 
circle.

    

geometric_type 
<< 
geometric_type → 
boolean

Is first object strictly left of second? Available for 
point, box, polygon, circle.     

        

circle '<(0,0),1>' <-> circle '<(5,0),1>' → 3

        
    

        

circle '<(0,0),2>' @> point '(1,1)' → true

        
    

        

point '(1,1)' <@ circle '<(0,0),2>' → true

        
    

        

box '(1,1),(0,0)' && box '(2,2),(0,0)' → true

        
    

        

circle '<(0,0),1>' << circle '<(5,0),1>' → true

        
    



[a] “Rotating” a box with these operators only moves its corner points: the box is still considered to have sides parallel to the axes. Hence the box's
size is not preserved, as a true rotation would do.

Caution
Note that the “same as” operator, ~=, represents the usual notion of equality for the point, box, polygon, and circle types. Some of the geometric
types also have an = operator, but = compares for equal areas only. The other scalar comparison operators (<= and so on), where available for
these types, likewise compare areas.

Note
Before PostgreSQL 14, the point is strictly below/above comparison operators point <<| point and point |>> point were respectively called <^ and >^.
These names are still available, but are deprecated and will eventually be removed.

Table 9.36. Geometric Functions

geometric_type 
>> 
geometric_type → 
boolean

Is first object strictly right of second? Available for 
point, box, polygon, circle.     

geometric_type &
< geometric_type 
→ boolean

Does first object not extend to the right of 
second? Available for box, polygon, circle.     

geometric_type 
&> 
geometric_type → 
boolean

Does first object not extend to the left of second? 
Available for box, polygon, circle.     

geometric_type 
<<| 
geometric_type → 
boolean

Is first object strictly below second? Available for 
point, box, polygon, circle.     

geometric_type 
|>> 
geometric_type → 
boolean

Is first object strictly above second? Available for 
point, box, polygon, circle.     

        

circle '<(5,0),1>' >> circle '<(0,0),1>' → true

        
    

        

box '(1,1),(0,0)' &< box '(2,2),(0,0)' → true

        
    

        

box '(3,3),(0,0)' &> box '(2,2),(0,0)' → true

        
    

        

box '(3,3),(0,0)' <<| box '(5,5),(3,4)' → true

        
    

        

box '(5,5),(3,4)' |>> box '(3,3),(0,0)' → true

        
    

Function Description Example(s)

area ( geometric_type ) 
→ double precision

Computes area. Available for box, path, circle. A path input must 
be closed, else NULL is returned. Also, if the path is self-
intersecting, the result may be meaningless.

    

center ( geometric_type ) 
→ point

Computes center point. Available for box, circle.
    

diagonal ( box ) → lseg Extracts box's diagonal as a line segment (same as lseg(box)).
    

        

area(box '(2,2),(0,0)') → 4

        
    

        

center(box '(1,2),(0,0)') → 
(0.5,1)

        
    

        

diagonal(box '(1,2),(0,0)') 
→ [(1,2),(0,0)]

        
    



geometric_type &
<| geometric_type 
→ boolean

Does first object not extend above second? 
Available for box, polygon, circle.     

geometric_type 
|&> 
geometric_type → 
boolean

Does first object not extend below second? 
Available for box, polygon, circle.     

box <^ box → 
boolean

Is first object below second (allows edges to 
touch)?     

box >^ box → 
boolean

Is first object above second (allows edges to 
touch)?     

geometric_type ?
# geometric_type 
→ boolean

Do these objects intersect? Available for these 
pairs of types: (box, box), (lseg, box), (lseg, lseg), 
(lseg, line), (line, box), (line, line), (path, path).

    

        

box '(1,1),(0,0)' &<| box '(2,2),(0,0)' → true

        
    

        

box '(3,3),(0,0)' |&> box '(2,2),(0,0)' → true

        
    

        

box '((1,1),(0,0))' <^ box '((2,2),(1,1))' → 
true

        
    

        

box '((2,2),(1,1))' >^ box '((1,1),(0,0))' → 
true

        
    

        

lseg '[(-1,0),(1,0)]' ?# box '(2,2),(-2,-2)' → 
true

        
    

diameter ( circle ) → 
double precision

Computes diameter of circle.
    

height ( box ) → double 
precision

Computes vertical size of box.
    

isclosed ( path ) → 
boolean

Is path closed?
    

isopen ( path ) → 
boolean

Is path open?
    

length ( geometric_type ) 
→ double precision

Computes the total length. Available for lseg, path.
    

        

diameter(circle '<(0,0),2>') 
→ 4

        
    

        

height(box '(1,2),(0,0)') → 
2

        
    

        

isclosed(path '((0,0),(1,1),
(2,0))') → true

        
    

        

isopen(path '[(0,0),(1,1),
(2,0)]') → true

        
    

        

length(path '((-1,0),
(1,0))') → 4

        
    



Table 9.37. Geometric Type Conversion Functions

?- line → boolean

?- lseg → boolean

Is line horizontal?
    

point ?- point → 
boolean

Are points horizontally aligned (that is, have 
same y coordinate)?     

?| line → boolean

?| lseg → boolean

Is line vertical?
    

point ?| point → 
boolean

Are points vertically aligned (that is, have same x 
coordinate)?     

line ?-| line → 
boolean

lseg ?-| lseg → 
boolean

Are lines perpendicular?
    

        

?- lseg '[(-1,0),(1,0)]' → true

        
    

        

point '(1,0)' ?- point '(0,0)' → true

        
    

        

?| lseg '[(-1,0),(1,0)]' → false

        
    

        

point '(0,1)' ?| point '(0,0)' → true

        
    

        

lseg '[(0,0),(0,1)]' ?-| lseg '[(0,0),(1,0)]' → 
true

        
    

npoints ( geometric_type 
) → integer

Returns the number of points. Available for path, polygon.
    

pclose ( path ) → path Converts path to closed form.
    

popen ( path ) → path Converts path to open form.
    

radius ( circle ) → double 
precision

Computes radius of circle.
    

        

npoints(path '[(0,0),(1,1),
(2,0)]') → 3

        
    

        

pclose(path '[(0,0),(1,1),
(2,0)]') → ((0,0),(1,1),
(2,0))

        
    

        

popen(path '((0,0),(1,1),
(2,0))') → [(0,0),(1,1),
(2,0)]

        
    

        

radius(circle '<(0,0),2>') → 
2

        
    

Function Description Example(s)

box ( circle ) 
→ box

Computes box inscribed 
within the circle.     

        

box(circle '<(0,0),2>') → (1.414213562373095,1.414213562373095),
(-1.414213562373095,-1.414213562373095)

        
    



9.12. Network Address Functions and Operators

The IP network address types, cidr and inet, support the usual comparison operators shown in Table 9.1 as well as the specialized operators and
functions shown in Table 9.38 and Table 9.39.

Any cidr value can be cast to inet implicitly; therefore, the operators and functions shown below as operating on inet also work on cidr values.
(Where there are separate functions for inet and cidr, it is because the behavior should be different for the two cases.) Also, it is permitted to cast an
inet value to cidr. When this is done, any bits to the right of the netmask are silently zeroed to create a valid cidr value.

Table 9.38. IP Address Operators

line ?|| line → 
boolean

lseg ?|| lseg → 
boolean

Are lines parallel?
    

geometric_type 
~= 
geometric_type → 
boolean

Are these objects the same? Available for point, 
box, polygon, circle.     

        

lseg '[(-1,0),(1,0)]' ?|| lseg '[(-1,2),(1,2)]' 
→ true

        
    

        

polygon '((0,0),(1,1))' ~= polygon '((1,1),
(0,0))' → true

        
    

slope ( point, point ) → 
double precision

Computes slope of a line drawn through the two points.
    

width ( box ) → double 
precision

Computes horizontal size of box.
    

        

slope(point '(0,0)', point 
'(2,1)') → 0.5

        
    

        

width(box '(1,2),(0,0)') → 1

        
    

box ( point ) 
→ box

Converts point to empty 
box.     

box ( point, 
point ) → box

Converts any two corner 
points to box.     

box ( polygon 
) → box

Computes bounding box 
of polygon.     

bound_box ( 
box, box ) → 
box

Computes bounding box 
of two boxes.     

circle ( box ) 
→ circle

Computes smallest 
circle enclosing box.     

        

box(point '(1,0)') → (1,0),(1,0)

        
    

        

box(point '(0,1)', point '(1,0)') → (1,1),(0,0)

        
    

        

box(polygon '((0,0),(1,1),(2,0))') → (2,1),(0,0)

        
    

        

bound_box(box '(1,1),(0,0)', box '(4,4),(3,3)') → (4,4),(0,0)

        
    

        

circle(box '(1,1),(0,0)') → <(0.5,0.5),0.7071067811865476>

        
    

Operator Description Example(s)

inet << inet 
→ boolean

Is subnet strictly contained by subnet? This operator, and the next four, test 
for subnet inclusion. They consider only the network parts of the two 
addresses (ignoring any bits to the right of the netmasks) and determine 
whether one network is identical to or a subnet of the other.

    

        

inet '192.168.1.5' << inet 
'192.168.1/24' → true
inet '192.168.0.5' << inet 
'192.168.1/24' → false
inet '192.168.1/24' << inet 
'192.168.1/24' → false

        
    

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions_network-address-functions


circle ( point, 
double 
precision ) → 
circle

Constructs circle from 
center and radius.     

circle ( 
polygon ) → 
circle

Converts polygon to 
circle. The circle's 
center is the mean of 
the positions of the 
polygon's points, and 
the radius is the 
average distance of the 
polygon's points from 
that center.

    

line ( point, 
point ) → line

Converts two points to 
the line through them.     

lseg ( box ) → 
lseg

Extracts box's diagonal 
as a line segment.     

lseg ( point, 
point ) → lseg

Constructs line segment 
from two endpoints.     

        

circle(point '(0,0)', 2.0) → <(0,0),2>

        
    

        

circle(polygon '((0,0),(1,3),(2,0))') → <(1,1),1.6094757082487299>

        
    

        

line(point '(-1,0)', point '(1,0)') → {0,-1,0}

        
    

        

lseg(box '(1,0),(-1,0)') → [(1,0),(-1,0)]

        
    

        

lseg(point '(-1,0)', point '(1,0)') → [(-1,0),(1,0)]

        
    

inet <<= inet 
→ boolean

Is subnet contained by or equal to subnet?
    

inet >> inet 
→ boolean

Does subnet strictly contain subnet?
    

inet >>= inet 
→ boolean

Does subnet contain or equal subnet?
    

inet && inet 
→ boolean

Does either subnet contain or equal the other?
    

        

inet '192.168.1/24' <<= inet 
'192.168.1/24' → true

        
    

        

inet '192.168.1/24' >> inet 
'192.168.1.5' → true

        
    

        

inet '192.168.1/24' >>= inet 
'192.168.1/24' → true

        
    

        

inet '192.168.1/24' && inet 
'192.168.1.80/28' → true
inet '192.168.1/24' && inet 
'192.168.2.0/28' → false

        
    



Table 9.39. IP Address Functions

path ( 
polygon ) → 
path

Converts polygon to a 
closed path with the 
same list of points.

    

point ( double 
precision, 
double 
precision ) → 
point

Constructs point from its 
coordinates.     

point ( box ) 
→ point

Computes center of 
box.     

point ( circle ) 
→ point

Computes center of 
circle.     

point ( lseg ) 
→ point

Computes center of line 
segment.     

        

path(polygon '((0,0),(1,1),(2,0))') → ((0,0),(1,1),(2,0))

        
    

        

point(23.4, -44.5) → (23.4,-44.5)

        
    

        

point(box '(1,0),(-1,0)') → (0,0)

        
    

        

point(circle '<(0,0),2>') → (0,0)

        
    

        

point(lseg '[(-1,0),(1,0)]') → (0,0)

        
    

~ inet → 
inet

Computes bitwise NOT.
    

inet & inet 
→ inet

Computes bitwise AND.
    

inet | inet → 
inet

Computes bitwise OR.
    

inet + bigint 
→ inet

Adds an offset to an address.
    

bigint + inet 
→ inet

Adds an offset to an address. (NOT SUPPORTED)
    

        

~ inet '192.168.1.6' → 
63.87.254.249

        
    

        

inet '192.168.1.6' & inet 
'0.0.0.255' → 0.0.0.6

        
    

        

inet '192.168.1.6' | inet 
'0.0.0.255' → 192.168.1.255

        
    

        

inet '192.168.1.6' + 25 → 
192.168.1.31

        
    

        

#200 + inet '::ffff:fff0:1' 
→ ::ffff:255.240.0.201

        
    



point ( 
polygon ) → 
point

Computes center of 
polygon (the mean of 
the positions of the 
polygon's points).

    

polygon ( box 
) → polygon

Converts box to a 4-
point polygon.     

polygon ( 
circle ) → 
polygon

Converts circle to a 12-
point polygon.     

polygon ( 
path ) → 
polygon

Converts closed path to 
a polygon with the same 
list of points.

    

        

point(polygon '((0,0),(1,1),(2,0))') → (1,0.3333333333333333)

        
    

        

polygon(box '(1,1),(0,0)') → ((0,0),(0,1),(1,1),(1,0))

        
    

        

polygon(circle '<(0,0),2>') → ((-2,0),
(-1.7320508075688774,0.9999999999999999),
(-1.0000000000000002,1.7320508075688772),(-1.2246467991473532e-16,2),
(0.9999999999999996,1.7320508075688774),
(1.732050807568877,1.0000000000000007),(2,2.4492935982947064e-16),
(1.7320508075688776,-0.9999999999999994),
(1.0000000000000009,-1.7320508075688767),(3.6739403974420594e-16,-2),
(-0.9999999999999987,-1.732050807568878),
(-1.7320508075688767,-1.0000000000000009))

        
    

        

polygon(path '((0,0),(1,1),(2,0))') → ((0,0),(1,1),(2,0))

        
    

inet - bigint 
→ inet

Subtracts an offset from an address.
    

inet - inet → 
bigint

Computes the difference of two addresses.
    

        

inet '192.168.1.43' - 36 → 
192.168.1.7

        
    

        

inet '192.168.1.43' - inet 
'192.168.1.19' → 24
inet '::1' - inet '::ffff:1' 
→ -4294901760

        
    

Function Description Example(s)

abbrev ( inet ) → text Creates an abbreviated display format as text. (The result is the 
same as the inet output function produces; it is “abbreviated” 
only in comparison to the result of an explicit cast to text, which 
for historical reasons will never suppress the netmask part.)

    

abbrev ( cidr ) → text Creates an abbreviated display format as text. (The 
abbreviation consists of dropping all-zero octets to the right of 
the netmask; more examples are in Table 8.22.)

    

broadcast ( inet ) → 
inet

Computes the broadcast address for the address's network.
    

family ( inet ) → 
integer

Returns the address's family: 4 for IPv4, 6 for IPv6.
    

        

abbrev(inet '10.1.0.0/32') → 
10.1.0.0

        
    

        

abbrev(cidr '10.1.0.0/16') → 
10.1/16

        
    

        

broadcast(inet 
'192.168.1.5/24') → 
192.168.1.255/24

        
    

        

family(inet '::1') → 6

        
    



host ( inet ) → text Returns the IP address as text, ignoring the netmask.
    

hostmask ( inet ) → 
inet

Computes the host mask for the address's network.
    

inet_merge ( inet, inet 
) → cidr

Computes the smallest network that includes both of the given 
networks.     

inet_same_family ( 
inet, inet ) → boolean

Tests whether the addresses belong to the same IP family.
    

        

host(inet '192.168.1.0/24') → 
192.168.1.0

        
    

        

hostmask(inet 
'192.168.23.20/30') → 0.0.0.3

        
    

        

inet_merge(inet 
'192.168.1.5/24', inet 
'192.168.2.5/24') → 
192.168.0.0/22

        
    

        

inet_same_family(inet 
'192.168.1.5/24', inet '::1') → 
false

        
    



Tip
The abbrev, host, and text functions are primarily intended to offer alternative display formats for IP addresses.

The MAC address types, macaddr and macaddr8, support the usual comparison operators shown in Table 9.1 as well as the specialized functions
shown in Table 9.40. In addition, they support the bitwise logical operators ~, & and | (NOT, AND and OR), just as shown above for IP addresses.

Table 9.40. MAC Address Functions

9.13. Text Search Functions and Operators (NOT SUPPORTED)

9.14. UUID Functions

PostgreSQL includes one function to generate a UUID:

gen_random_uuid () → uuid

This function returns a version 4 (random) UUID. This is the most commonly used type of UUID and is appropriate for most applications.

9.15. XML Functions

The functions and function-like expressions described in this section operate on values of type xml. See Section 8.13 for information about the xml
type. The function-like expressions xmlparse and xmlserialize for converting to and from type xml are documented there, not in this section.

Use of most of these functions requires PostgreSQL to have been built with configure --with-libxml.

9.15.1. Producing XML Content

masklen ( inet ) → 
integer

Returns the netmask length in bits.
    

netmask ( inet ) → 
inet

Computes the network mask for the address's network.
    

network ( inet ) → cidr Returns the network part of the address, zeroing out whatever 
is to the right of the netmask. (This is equivalent to casting the 
value to cidr.)

    

set_masklen ( inet, 
integer ) → inet

Sets the netmask length for an inet value. The address part 
does not change.     

        

masklen(inet '192.168.1.5/24') 
→ 24

        
    

        

netmask(inet '192.168.1.5/24') 
→ 255.255.255.0

        
    

        

network(inet '192.168.1.5/24') 
→ 192.168.1.0/24

        
    

        

set_masklen(inet 
'192.168.1.5/24', 16) → 
192.168.1.5/16

        
    

Function Description Example(s)

trunc ( macaddr ) → 
macaddr

Sets the last 3 bytes of the address to zero. The 
remaining prefix can be associated with a particular 
manufacturer (using data not included in 
PostgreSQL).

    

trunc ( macaddr8 ) → 
macaddr8

Sets the last 5 bytes of the address to zero. The 
remaining prefix can be associated with a particular 
manufacturer (using data not included in 
PostgreSQL).

    

macaddr8_set7bit ( 
macaddr8 ) → macaddr8

Sets the 7th bit of the address to one, creating what 
is known as modified EUI-64, for inclusion in an IPv6 
address.

    

        

trunc(macaddr '12:34:56:78:90:ab') → 
12:34:56:00:00:00

        
    

        

trunc(macaddr8 
'12:34:56:78:90:ab:cd:ef') → 
12:34:56:00:00:00:00:00

        
    

        

macaddr8_set7bit(macaddr8 
'00:34:56:ab:cd:ef') → 
02:34:56:ff:fe:ab:cd:ef

        
    

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions_text-search-functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions_uuid-functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions_xml-functions


A set of functions and function-like expressions is available for producing XML content from SQL data. As such, they are particularly suitable for
formatting query results into XML documents for processing in client applications.

9.15.1.1. Xmlcomment

xmlcomment ( text ) → xml

The function xmlcomment creates an XML value containing an XML comment with the specified text as content. The text cannot contain “--” or end
with a “-”, otherwise the resulting construct would not be a valid XML comment. If the argument is null, the result is null.

Example:

9.15.1.2. Xmlconcat

xmlconcat ( xml [, ...] ) → xml (NOT SUPPORTED)

The function xmlconcat concatenates a list of individual XML values to create a single value containing an XML content fragment. Null values are
omitted; the result is only null if there are no nonnull arguments.

Example:

XML declarations, if present, are combined as follows. If all argument values have the same XML version declaration, that version is used in the
result, else no version is used. If all argument values have the standalone declaration value “yes”, then that value is used in the result. If all
argument values have a standalone declaration value and at least one is “no”, then that is used in the result. Else the result will have no standalone
declaration. If the result is determined to require a standalone declaration but no version declaration, a version declaration with version 1.0 will be
used because XML requires an XML declaration to contain a version declaration. Encoding declarations are ignored and removed in all cases.

Example:

9.15.1.3. Xmlelement

xmlelement ( NAME name [, XMLATTRIBUTES ( attvalue [ AS attname ] [, ...] ) ] [, content [, ...]] ) → xml (NOT SUPPORTED)

Element and attribute names that are not valid XML names are escaped by replacing the offending characters by the sequence xHHHH, where
HHHH is the character's Unicode codepoint in hexadecimal notation. For example:

An explicit attribute name need not be specified if the attribute value is a column reference, in which case the column's name will be used as the
attribute name by default. In other cases, the attribute must be given an explicit name. So this example is valid:

Element content, if specified, will be formatted according to its data type. If the content is itself of type xml, complex XML documents can be
constructed. For example:

Content of other types will be formatted into valid XML character data. This means in particular that the characters <, >, and & will be converted to
entities. Binary data (data type bytea) will be represented in base64 or hex encoding, depending on the setting of the configuration parameter
xmlbinary. The particular behavior for individual data types is expected to evolve in order to align the PostgreSQL mappings with those specified in
SQL:2006 and later, as discussed in Section D.3.1.3.

9.15.1.4. Xmlforest

xmlforest ( content [ AS name ] [, ...] ) → xml (NOT SUPPORTED)

9.15.1.5. Xmlpi

xmlpi ( NAME name [, content ] ) → xml (NOT SUPPORTED)

9.15.1.6. Xmlroot

xmlroot ( xml, VERSION {text|NO VALUE} [, STANDALONE {YES|NO|NO VALUE} ] ) → xml (NOT SUPPORTED)

xmlcomment('hello') → <!--hello-->

#xmlconcat('<abc/>', '<bar>foo</bar>') → <abc/><bar>foo</bar>

#xmlconcat('<?xml version="1.1"?><foo/>', '<?xml version="1.1" standalone="no"?><bar/>') → <?xml version="1.1"?><foo/>
<bar/>

#xmlelement(name foo) → <foo/>
#xmlelement(name foo, xmlattributes('xyz' as bar)) → <foo bar="xyz"/>
#xmlelement(name foo, xmlattributes(current_date as bar), 'cont', 'ent') ~→ <foo bar="2007-01-26">content</foo>

#xmlelement(name "foo$bar", xmlattributes('xyz' as "a&b")) → <foo_x0024_bar a_x0026_b="xyz"/>

#xmlelement(name foo, xmlattributes('xyz' as bar), xmlelement(name abc), xmlcomment('test'), xmlelement(name xyz)) → 
<foo bar="xyz"><abc/><!--test--><xyz/></foo>

set_masklen ( cidr, 
integer ) → cidr

Sets the netmask length for a cidr value. Address bits to the 
right of the new netmask are set to zero.     

text ( inet ) → text Returns the unabbreviated IP address and netmask length as 
text. (This has the same result as an explicit cast to text.)     

        

set_masklen(cidr 
'192.168.1.0/24', 16) → 
192.168.0.0/16

        
    

        

text(inet '192.168.1.5') → 
192.168.1.5/32

        
    



9.15.1.7. Xmlagg

xmlagg ( xml ) → xml

The function xmlagg is, unlike the other functions described here, an aggregate function. It concatenates the input values to the aggregate function
call, much like xmlconcat does, except that concatenation occurs across rows rather than across expressions in a single row. See Section 9.21 for
additional information about aggregate functions.

Example:

9.15.2. XML Predicates
The expressions described in this section check properties of xml values.

9.15.2.1. IS DOCUMENT

xml IS DOCUMENT → boolean (NOT SUPPORTED)

The expression IS DOCUMENT returns true if the argument XML value is a proper XML document, false if it is not (that is, it is a content fragment),
or null if the argument is null. See Section 8.13 about the difference between documents and content fragments.

9.15.2.2. IS NOT DOCUMENT

xml IS NOT DOCUMENT → boolean (NOT SUPPORTED)

The expression IS NOT DOCUMENT returns false if the argument XML value is a proper XML document, true if it is not (that is, it is a content
fragment), or null if the argument is null.

9.15.2.3. XMLEXISTS

XMLEXISTS ( text PASSING [BY {REF|VALUE}] xml [BY {REF|VALUE}] ) → boolean

The function xmlexists evaluates an XPath 1.0 expression (the first argument), with the passed XML value as its context item. The function returns
false if the result of that evaluation yields an empty node-set, true if it yields any other value. The function returns null if any argument is null. A
nonnull value passed as the context item must be an XML document, not a content fragment or any non-XML value.

Example:

9.15.2.4. Xml_is_well_formed (NOT SUPPORTED)

xml_is_well_formed ( text ) → boolean
xml_is_well_formed_document ( text ) → boolean
xml_is_well_formed_content ( text ) → boolean

9.15.3. Processing XML
To process values of data type xml, PostgreSQL offers the functions xpath and xpath_exists, which evaluate XPath 1.0 expressions, and the
XMLTABLE table function.

9.15.3.1. Xpath

xpath ( xpath text, xml xml [, nsarray text[] ] ) → xml[] (NOT SUPPORTED)

9.15.3.2. Xpath_exists

xpath_exists ( xpath text, xml xml [, nsarray text[] ] ) → boolean

The function xpath_exists is a specialized form of the xpath function. Instead of returning the individual XML values that satisfy the XPath 1.0
expression, this function returns a Boolean indicating whether the query was satisfied or not (specifically, whether it produced any value other than
an empty node-set). This function is equivalent to the XMLEXISTS predicate, except that it also offers support for a namespace mapping argument.

Example:

9.15.3.3. Xmltable

XMLTABLE (
[ XMLNAMESPACES ( namespace_uri AS namespace_name [, ...] ), ]
row_expression PASSING [BY {REF|VALUE}] document_expression [BY {REF|VALUE}]
COLUMNS name { type [PATH column_expression] [DEFAULT default_expression] [NOT NULL | NULL]
| FOR ORDINALITY }
[, ...]
) → setof record (NOT SUPPORTED)

9.15.4. Mapping Tables to XML (NOT SUPPORTED)

SELECT xmlagg(x::xml) from (values ('<a/>'),('<b/>')) a(x) → <a/><b/>

xmlexists('//town[text() = ''Toronto'']' PASSING BY VALUE '<towns><town>Toronto</town><town>Ottawa</town></towns>') → 
true

xpath_exists('/my:a/text()', '<my:a xmlns:my="http://example.com">test</my:a>',ARRAY[ARRAY['my', 'http://example.com']]) 
→ true



The following functions map the contents of relational tables to XML values. They can be thought of as XML export functionality:

table_to_xml ( table regclass, nulls boolean,
tableforest boolean, targetns text ) → xml
query_to_xml ( query text, nulls boolean,
tableforest boolean, targetns text ) → xml
cursor_to_xml ( cursor refcursor, count integer, nulls boolean,
tableforest boolean, targetns text ) → xml

9.16. JSON Functions and Operators

This section describes:

functions and operators for processing and creating JSON data

the SQL/JSON path language

To learn more about the SQL/JSON standard, see [sqltr-19075-6]. For details on JSON types supported in PostgreSQL, see Section 8.14.

9.16.1. Processing and Creating JSON Data

Table 9.44 shows the operators that are available for use with JSON data types (see Section 8.14). In addition, the usual comparison operators
shown in Table 9.1 are available for jsonb, though not for json. The comparison operators follow the ordering rules for B-tree operations outlined in
Section 8.14.4. See also Section 9.21 for the aggregate function json_agg which aggregates record values as JSON, the aggregate function
json_object_agg which aggregates pairs of values into a JSON object, and their jsonb equivalents, jsonb_agg and jsonb_object_agg.

Table 9.44. json and jsonb Operators

Operator Description Example(s)

json -> integer 
→ json

jsonb -> 
integer → 
jsonb

Extracts n'th element of JSON array (array elements are 
indexed from zero, but negative integers count from the end).     

json -> text → 
json

jsonb -> text 
→ jsonb

Extracts JSON object field with the given key.
    

json ->> 
integer → text

jsonb ->> 
integer → text

Extracts n'th element of JSON array, as text.
    

        

'[{"a":"foo"},{"b":"bar"},
{"c":"baz"}]'::json -> 2 → {"c":"baz"}
'[{"a":"foo"},{"b":"bar"},
{"c":"baz"}]'::json -> -3 → {"a":"foo"}

        
    

        

'{"a": {"b":"foo"}}'::json -> 'a' → 
{"b":"foo"}

        
    

        

'[1,2,3]'::json ->> 2 → 3

        
    

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions_json-functions


Note
The field/element/path extraction operators return NULL, rather than failing, if the JSON input does not have the right structure to match the
request; for example if no such key or array element exists.

Some further operators exist only for jsonb, as shown in Table 9.45. Section 8.14.4 describes how these operators can be used to effectively search
indexed jsonb data.

Table 9.45. Additional jsonb Operators

json ->> text 
→ text

jsonb ->> text 
→ text

Extracts JSON object field with the given key, as text.
    

json #> text[] 
→ json

jsonb #> text[] 
→ jsonb

Extracts JSON sub-object at the specified path, where path 
elements can be either field keys or array indexes. (NOT 
SUPPORTED)

    

json #>> text[] 
→ text

jsonb #>> 
text[] → text

Extracts JSON sub-object at the specified path as text. (NOT 
SUPPORTED)     

        

'{"a":1,"b":2}'::json ->> 'b' → 2

        
    

        

#'{"a": {"b": ["foo","bar"]}}'::json #> 
'{a,b,1}' → "bar"

        
    

        

#'{"a": {"b": ["foo","bar"]}}'::json 
#>> '{a,b,1}' → bar

        
    

Operator Description Example(s)

jsonb @> 
jsonb → 
boolean

Does the first JSON value contain the second? (See Section 8.14.3 for 
details about containment.)     

jsonb <@ 
jsonb → 
boolean

Is the first JSON value contained in the second?
    

        

'{"a":1, "b":2}'::jsonb @> 
'{"b":2}'::jsonb → true

        
    

        

'{"b":2}'::jsonb <@ '{"a":1, 
"b":2}'::jsonb → true

        
    



jsonb ? text 
→ boolean

Does the text string exist as a top-level key or array element within the 
JSON value?     

jsonb ?| 
text[] → 
boolean

Do any of the strings in the text array exist as top-level keys or array 
elements?     

jsonb ?& 
text[] → 
boolean

Do all of the strings in the text array exist as top-level keys or array 
elements?     

        

'{"a":1, "b":2}'::jsonb ? 'b' 
→ true
'["a", "b", "c"]'::jsonb ? 'b' 
→ true

        
    

        

'{"a":1, "b":2, "c":3}'::jsonb 
?| array['b', 'd'] → true

        
    

        

'["a", "b", "c"]'::jsonb ?& 
array['a', 'b'] → true

        
    



Note
The jsonpath operators @? and @@ suppress the following errors: missing object field or array element, unexpected JSON item type, datetime
and numeric errors. The jsonpath-related functions described below can also be told to suppress these types of errors. This behavior might be
helpful when searching JSON document collections of varying structure.

Table 9.46 shows the functions that are available for constructing json and jsonb values.

Table 9.46. JSON Creation Functions

jsonb || 
jsonb → 
jsonb

Concatenates two jsonb values. Concatenating two arrays generates an 
array containing all the elements of each input. Concatenating two objects 
generates an object containing the union of their keys, taking the second 
object's value when there are duplicate keys. All other cases are treated by 
converting a non-array input into a single-element array, and then 
proceeding as for two arrays. Does not operate recursively: only the top-
level array or object structure is merged.

    

To append an array to another array as 
a single entry, wrap it in an additional 
layer of array, for example:

    

jsonb - text 
→ jsonb

Deletes a key (and its value) from a JSON object, or matching string 
value(s) from a JSON array.     

jsonb - 
text[] → 
jsonb

Deletes all matching keys or array elements from the left operand. (NOT 
SUPPORTED)     

        

'["a", "b"]'::jsonb || '["a", 
"d"]'::jsonb → ["a", "b", "a", 
"d"]
'{"a": "b"}'::jsonb || '{"c": 
"d"}'::jsonb → {"a": "b", "c": 
"d"}
'[1, 2]'::jsonb || '3'::jsonb 
→ [1, 2, 3]
'{"a": "b"}'::jsonb || 
'42'::jsonb → [{"a": "b"}, 42]

        
    

        

'[1, 2]'::jsonb || 
jsonb_build_array('[3, 
4]'::jsonb) → [1, 2, [3, 4]]

        
    

        

'{"a": "b", "c": "d"}'::jsonb 
- 'a' → {"c": "d"}
'["a", "b", "c", "b"]'::jsonb 
- 'b' → ["a", "c"]

        
    

        

#'{"a": "b", "c": "d"}'::jsonb 
- '{a,c}'::text[] → {}

        
    

Function Description Example(s)



jsonb - 
integer → 
jsonb

Deletes the array element with specified index (negative integers count from 
the end). Throws an error if JSON value is not an array.     

jsonb #- 
text[] → 
jsonb

Deletes the field or array element at the specified path, where path 
elements can be either field keys or array indexes.     

jsonb @? 
jsonpath → 
boolean

Does JSON path return any item for the specified JSON value?
    

jsonb @@ 
jsonpath → 
boolean

Returns the result of a JSON path predicate check for the specified JSON 
value. Only the first item of the result is taken into account. If the result is 
not Boolean, then NULL is returned.

    

        

'["a", "b"]'::jsonb - 1 → 
["a"]

        
    

        

'["a", {"b":1}]'::jsonb #- 
'{1,b}' → ["a", {}]

        
    

        

'{"a":[1,2,3,4,5]}'::jsonb @? 
'$.a[*] ? (@ > 2)' → true

        
    

        

'{"a":[1,2,3,4,5]}'::jsonb @@ 
'$.a[*] > 2' → true

        
    

to_json ( anyelement 
) → json

to_jsonb ( 
anyelement ) → 
jsonb

Converts any SQL value to json or jsonb. Arrays and composites 
are converted recursively to arrays and objects (multidimensional 
arrays become arrays of arrays in JSON). Otherwise, if there is a 
cast from the SQL data type to json, the cast function will be 
used to perform the conversion;[a] otherwise, a scalar JSON 
value is produced. For any scalar other than a number, a 
Boolean, or a null value, the text representation will be used, with 
escaping as necessary to make it a valid JSON string value. 
(NOT SUPPORTED)

    

array_to_json ( 
anyarray [, boolean ] 
) → json

Converts an SQL array to a JSON array. The behavior is the 
same as to_json except that line feeds will be added between 
top-level array elements if the optional boolean parameter is 
true.

    

row_to_json ( record 
[, boolean ] ) → json

Converts an SQL composite value to a JSON object. The 
behavior is the same as to_json except that line feeds will be 
added between top-level elements if the optional boolean 
parameter is true. (NOT SUPPORTED)

    

json_build_array ( 
VARIADIC "any" ) → 
json

jsonb_build_array ( 
VARIADIC "any" ) → 
jsonb

Builds a possibly-heterogeneously-typed JSON array out of a 
variadic argument list. Each argument is converted as per 
to_json or to_jsonb. (NOT SUPPORTED)

    

        

#to_json('Fred said 
"Hi."'::text) → "Fred said 
\"Hi.\""
#to_jsonb(row(42, 'Fred said 
"Hi."'::text)) → {"f1": 42, 
"f2": "Fred said \"Hi.\""}

        
    

        

array_to_json('{{1,5},
{99,100}}'::int[]) → [[1,5],
[99,100]]

        
    

        

#row_to_json(row(1,'foo')) → 
{"f1":1,"f2":"foo"}

        
    

        

json_build_array(1, 2, 'foo', 
4, 5) → [1, 2, "foo", 4, 5]

        
    



Table 9.47 shows the functions that are available for processing json and jsonb values.

Table 9.47. JSON Processing Functions

json_build_object ( 
VARIADIC "any" ) → 
json

jsonb_build_object ( 
VARIADIC "any" ) → 
jsonb

Builds a JSON object out of a variadic argument list. By 
convention, the argument list consists of alternating keys and 
values. Key arguments are coerced to text; value arguments are 
converted as per to_json or to_jsonb. (NOT SUPPORTED)

    

json_object ( text[] ) 
→ json

jsonb_object ( text[] ) 
→ jsonb

Builds a JSON object out of a text array. The array must have 
either exactly one dimension with an even number of members, 
in which case they are taken as alternating key/value pairs, or 
two dimensions such that each inner array has exactly two 
elements, which are taken as a key/value pair. All values are 
converted to JSON strings.

    

json_object ( keys 
text[], values text[] ) 
→ json

jsonb_object ( keys 
text[], values text[] ) 
→ jsonb

This form of json_object takes keys and values pairwise from 
separate text arrays. Otherwise it is identical to the one-
argument form.

    

        

#json_build_object('foo', 1, 2, 
row(3,'bar')) → {"foo" : 1, "2" 
: {"f1":3,"f2":"bar"}}

        
    

        

json_object('{a, 1, b, "def", 
c, 3.5}') → {"a" : "1", "b" : 
"def", "c" : "3.5"}
json_object('{{a, 1}, {b, 
"def"}, {c, 3.5}}') → {"a" : 
"1", "b" : "def", "c" : "3.5"}

        
    

        

json_object('{a,b}', '{1,2}') → 
{"a" : "1", "b" : "2"}

        
    

Function Description Example(s)

json_array_elements ( json 
) → setof json

jsonb_array_elements ( 
jsonb ) → setof jsonb

Expands the top-level JSON array into a set of 
JSON values.     

json_array_elements_text ( 
json ) → setof text

jsonb_array_elements_text 
( jsonb ) → setof text

Expands the top-level JSON array into a set of 
text values.     

json_array_length ( json ) 
→ integer

jsonb_array_length ( jsonb 
) → integer

Returns the number of elements in the top-level 
JSON array.     

        

SELECT * FROM json_array_elements('[1,true, 
[2,false]]') as a → [
1
true
[2,false]
]

        
    

        

SELECT * FROM 
json_array_elements_text('["foo", "bar"]') as a 
→ [
foo
bar
]

        
    

        

json_array_length('[1,2,3,{"f1":1,"f2":
[5,6]},4]') → 5
jsonb_array_length('[]') → 0

        
    



9.16.2. The SQL/JSON Path Language

SQL/JSON path expressions specify the items to be retrieved from the JSON data, similar to XPath expressions used for SQL access to XML. In
PostgreSQL, path expressions are implemented as the jsonpath data type and can use any elements described in Section 8.14.7.

JSON query functions and operators pass the provided path expression to the path engine for evaluation. If the expression matches the queried
JSON data, the corresponding JSON item, or set of items, is returned. Path expressions are written in the SQL/JSON path language and can
include arithmetic expressions and functions.

A path expression consists of a sequence of elements allowed by the jsonpath data type. The path expression is normally evaluated from left to
right, but you can use parentheses to change the order of operations. If the evaluation is successful, a sequence of JSON items is produced, and
the evaluation result is returned to the JSON query function that completes the specified computation.

To refer to the JSON value being queried (the context item), use the $ variable in the path expression. It can be followed by one or more accessor
operators, which go down the JSON structure level by level to retrieve sub-items of the context item. Each operator that follows deals with the result
of the previous evaluation step.

For example, suppose you have some JSON data from a GPS tracker that you would like to parse, such as:

{
"track": {
"segments": [
{
"location": [ 47.763, 13.4034 ],
"start time": "2018-10-14 10:05:14",
"HR": 73
},
{
"location": [ 47.706, 13.2635 ],
"start time": "2018-10-14 10:39:21",
"HR": 135
}
]
}
}
To retrieve the available track segments, you need to use the .key accessor operator to descend through surrounding JSON objects:

$.track.segments
To retrieve the contents of an array, you typically use the [*] operator. For example, the following path will return the location coordinates for all the
available track segments:

json_each ( json ) → setof 
record ( key text, value 
json )

jsonb_each ( jsonb ) → 
setof record ( key text, 
value jsonb )

Expands the top-level JSON object into a set of 
key/value pairs.     

json_each_text ( json ) → 
setof record ( key text, 
value text )

jsonb_each_text ( jsonb ) 
→ setof record ( key text, 
value text )

Expands the top-level JSON object into a set of 
key/value pairs. The returned values will be of 
type text.

    

json_extract_path ( 
from_json json, VARIADIC 
path_elems text[] ) → json

jsonb_extract_path ( 
from_json jsonb, 
VARIADIC path_elems 
text[] ) → jsonb

Extracts JSON sub-object at the specified path. 
(This is functionally equivalent to the #> operator, 
but writing the path out as a variadic list can be 
more convenient in some cases.) (NOT 
SUPPORTED)

    

json_extract_path_text ( 
from_json json, VARIADIC 
path_elems text[] ) → text

jsonb_extract_path_text ( 
from_json jsonb, 
VARIADIC path_elems 
text[] ) → text

Extracts JSON sub-object at the specified path as 
text. (This is functionally equivalent to the #>> 
operator.) (NOT SUPPORTED)

    

        

SELECT * FROM json_each('{"a":"foo", 
"b":"bar"}') as a → [
a,"foo"
b,"bar"
]

        
    

        

SELECT * FROM json_each_text('{"a":"foo", 
"b":"bar"}') as a → [
a,foo
b,bar
]

        
    

        

json_extract_path('{"f2":{"f3":1},"f4":
{"f5":99,"f6":"foo"}}', 'f4', 'f6') → "foo"

        
    

        

json_extract_path_text('{"f2":{"f3":1},"f4":
{"f5":99,"f6":"foo"}}', 'f4', 'f6') → foo

        
    



$.track.segments[*].location
To return the coordinates of the first segment only, you can specify the corresponding subscript in the [] accessor operator. Recall that JSON array
indexes are 0-relative:

$.track.segments[0].location
The result of each path evaluation step can be processed by one or more jsonpath operators and methods listed in Section 9.16.2.2. Each method
name must be preceded by a dot. For example, you can get the size of an array:

$.track.segments.size()
More examples of using jsonpath operators and methods within path expressions appear below in Section 9.16.2.2.

When defining a path, you can also use one or more filter expressions that work similarly to the WHERE clause in SQL. A filter expression begins
with a question mark and provides a condition in parentheses:

? (condition)
Filter expressions must be written just after the path evaluation step to which they should apply. The result of that step is filtered to include only
those items that satisfy the provided condition. SQL/JSON defines three-valued logic, so the condition can be true, false, or unknown. The unknown
value plays the same role as SQL NULL and can be tested for with the is unknown predicate. Further path evaluation steps use only those items for
which the filter expression returned true.

The functions and operators that can be used in filter expressions are listed in Table 9.49. Within a filter expression, the @ variable denotes the
value being filtered (i.e., one result of the preceding path step). You can write accessor operators after @ to retrieve component items.

For example, suppose you would like to retrieve all heart rate values higher than 130. You can achieve this using the following expression:

$.track.segments[*].HR ? (@ > 130)
To get the start times of segments with such values, you have to filter out irrelevant segments before returning the start times, so the filter
expression is applied to the previous step, and the path used in the condition is different:

$.track.segments[*] ? (@.HR > 130)."start time"
You can use several filter expressions in sequence, if required. For example, the following expression selects start times of all segments that
contain locations with relevant coordinates and high heart rate values:

$.track.segments[*] ? (@.location[1] < 13.4) ? (@.HR > 130)."start time"
Using filter expressions at different nesting levels is also allowed. The following example first filters all segments by location, and then returns high
heart rate values for these segments, if available:

$.track.segments[*] ? (@.location[1] < 13.4).HR ? (@ > 130)
You can also nest filter expressions within each other:

$.track ? (exists(@.segments[*] ? (@.HR > 130))).segments.size()
This expression returns the size of the track if it contains any segments with high heart rate values, or an empty sequence otherwise.

PostgreSQL's implementation of the SQL/JSON path language has the following deviations from the SQL/JSON standard:

A path expression can be a Boolean predicate, although the SQL/JSON standard allows predicates only in filters. This is necessary for
implementation of the @@ operator. For example, the following jsonpath expression is valid in PostgreSQL:

$.track.segments[*].HR < 70
There are minor differences in the interpretation of regular expression patterns used in like_regex filters, as described in Section 9.16.2.3.

9.16.2.1. Strict And Lax Modes

When you query JSON data, the path expression may not match the actual JSON data structure. An attempt to access a non-existent member of
an object or element of an array results in a structural error. SQL/JSON path expressions have two modes of handling structural errors:

lax (default) — the path engine implicitly adapts the queried data to the specified path. Any remaining structural errors are suppressed and
converted to empty SQL/JSON sequences.

strict — if a structural error occurs, an error is raised.

The lax mode facilitates matching of a JSON document structure and path expression if the JSON data does not conform to the expected schema.
If an operand does not match the requirements of a particular operation, it can be automatically wrapped as an SQL/JSON array or unwrapped by
converting its elements into an SQL/JSON sequence before performing this operation. Besides, comparison operators automatically unwrap their
operands in the lax mode, so you can compare SQL/JSON arrays out-of-the-box. An array of size 1 is considered equal to its sole element.
Automatic unwrapping is not performed only when:

The path expression contains type() or size() methods that return the type and the number of elements in the array, respectively.

The queried JSON data contain nested arrays. In this case, only the outermost array is unwrapped, while all the inner arrays remain unchanged.
Thus, implicit unwrapping can only go one level down within each path evaluation step.

For example, when querying the GPS data listed above, you can abstract from the fact that it stores an array of segments when using the lax mode:

lax $.track.segments.location
In the strict mode, the specified path must exactly match the structure of the queried JSON document to return an SQL/JSON item, so using this
path expression will cause an error. To get the same result as in the lax mode, you have to explicitly unwrap the segments array:

strict $.track.segments[*].location
The .** accessor can lead to surprising results when using the lax mode. For instance, the following query selects every HR value twice:

lax $.**.HR
This happens because the .** accessor selects both the segments array and each of its elements, while the .HR accessor automatically unwraps

json_object_keys ( json ) 
→ setof text

jsonb_object_keys ( jsonb ) 
→ setof text

Returns the set of keys in the top-level JSON 
object.     

        

SELECT * FROM 
json_object_keys('{"f1":"abc","f2":{"f3":"a", 
"f4":"b"}}') as a → [
f1
f2
]

        
    



arrays when using the lax mode. To avoid surprising results, we recommend using the .** accessor only in the strict mode. The following query
selects each HR value just once:

strict $.**.HR

9.16.2.2. SQL/JSON Path Operators And Methods

Table 9.48 shows the operators and methods available in jsonpath. Note that while the unary operators and methods can be applied to multiple
values resulting from a preceding path step, the binary operators (addition etc.) can only be applied to single values.

Table 9.48. jsonpath Operators and Methods

json_populate_record ( 
base anyelement, 
from_json json ) → 
anyelement

jsonb_populate_record ( 
base anyelement, 
from_json jsonb ) → 
anyelement

Expands the top-level JSON object to a row 
having the composite type of the base argument. 
The JSON object is scanned for fields whose 
names match column names of the output row 
type, and their values are inserted into those 
columns of the output. (Fields that do not 
correspond to any output column name are 
ignored.) In typical use, the value of base is just 
NULL, which means that any output columns that 
do not match any object field will be filled with 
nulls. However, if base isn't NULL then the values 
it contains will be used for unmatched columns. 
(NOT SUPPORTED)

To convert a JSON value to the SQL type of an 
output column, the following rules are applied in 
sequence:

A JSON null value is converted to an SQL null in 
all cases.

If the output column is of type json or jsonb, the 
JSON value is just reproduced exactly.

If the output column is a composite (row) type, 
and the JSON value is a JSON object, the fields 
of the object are converted to columns of the 
output row type by recursive application of these 
rules.

Likewise, if the output column is an array type 
and the JSON value is a JSON array, the 
elements of the JSON array are converted to 
elements of the output array by recursive 
application of these rules.

Otherwise, if the JSON value is a string, the 
contents of the string are fed to the input 
conversion function for the column's data type.

Otherwise, the ordinary text representation of the 
JSON value is fed to the input conversion 
function for the column's data type.

While the example below uses a constant JSON 
value, typical use would be to reference a json or 
jsonb column laterally from another table in the 
query's FROM clause. Writing 
json_populate_record in the FROM clause is 
good practice, since all of the extracted columns 
are available for use without duplicate function 
calls.

    

        

#CREATE TYPE subrowtype as (d int, e 
text);
#CREATE type myrowtype as (a int, b 
text[], c subrowtype);
#SELECT * FROM 
json_populate_record(null::myrowtype, 
'{"a": 1, "b": ["2", "a b"], "c": 
{"d": 4, "e": "a b c"}, "x": "foo"}') 
→ 1,{2,"a b"},(4,"a b c")

Operator/Method Description Example(s)

number + number → 
number

Addition
    

+ number → number Unary plus (no operation); unlike 
addition, this can iterate over multiple 
values

    

number - number → 
number

Subtraction
    

- number → number Negation; unlike subtraction, this can 
iterate over multiple values     

        

jsonb_path_query_array('[2]', '$[0] + 3', '{}', 
false) → [5]

        
    

        

jsonb_path_query_array('{"x": [2,3,4]}', '+ $.x', 
'{}', false) → [2, 3, 4]

        
    

        

jsonb_path_query_array('[2]', '7 - $[0]', '{}', 
false) → [5]

        
    

        

jsonb_path_query_array('{"x": [2,3,4]}', '- $.x', 
'{}', false) → [-2, -3, -4]

        
    



Note
The result type of the datetime() and datetime(template) methods can be date, timetz, time, timestamptz, or timestamp. Both methods determine
their result type dynamically.

The datetime() method sequentially tries to match its input string to the ISO formats for date, timetz, time, timestamptz, and timestamp. It stops on
the first matching format and emits the corresponding data type.

The datetime(template) method determines the result type according to the fields used in the provided template string.

The datetime() and datetime(template) methods use the same parsing rules as the to_timestamp SQL function does (see Section 9.8), with three
exceptions. First, these methods don't allow unmatched template patterns. Second, only the following separators are allowed in the template string:
minus sign, period, solidus (slash), comma, apostrophe, semicolon, colon and space. Third, separators in the template string must exactly match
the input string.

If different date/time types need to be compared, an implicit cast is applied. A date value can be cast to timestamp or timestamptz, timestamp can
be cast to timestamptz, and time to timetz. However, all but the first of these conversions depend on the current TimeZone setting, and thus can
only be performed within timezone-aware jsonpath functions.

Table 9.49 shows the available filter expression elements.

Table 9.49. jsonpath Filter Expression Elements

json_populate_recordset ( 
base anyelement, 
from_json json ) → setof 
anyelement

jsonb_populate_recordset ( 
base anyelement, 
from_json jsonb ) → setof 
anyelement

Expands the top-level JSON array of objects to a 
set of rows having the composite type of the base 
argument. Each element of the JSON array is 
processed as described above for 
json[b]_populate_record. (NOT SUPPORTED)

    

json_to_record ( json ) → 
record

jsonb_to_record ( jsonb ) 
→ record

Expands the top-level JSON object to a row 
having the composite type defined by an AS 
clause. (As with all functions returning record, the 
calling query must explicitly define the structure 
of the record with an AS clause.) The output 
record is filled from fields of the JSON object, in 
the same way as described above for 
json[b]_populate_record. Since there is no input 
record value, unmatched columns are always 
filled with nulls. (NOT SUPPORTED)

    

json_to_recordset ( json ) 
→ setof record

jsonb_to_recordset ( jsonb 
) → setof record

Expands the top-level JSON array of objects to a 
set of rows having the composite type defined by 
an AS clause. (As with all functions returning 
record, the calling query must explicitly define the 
structure of the record with an AS clause.) Each 
element of the JSON array is processed as 
described above for json[b]_populate_record. 
(NOT SUPPORTED)

    

        
    

        

#CREATE TYPE twoints as (a int, b int);
#SELECT * FROM 
json_populate_recordset(null::twoints, 
'[{"a":1,"b":2}, {"a":3,"b":4}]') → [
1,2
3,4
]

        
    

        

#CREATE TYPE myrowtype as (a int, b text);
#SELECT * FROM json_to_record('{"a":1,"b":
[1,2,3],"c":[1,2,3],"e":"bar","r": {"a": 123, 
"b": "a b c"}}') as x(a int, b text, c int[], 
d text, r myrowtype) → 1,[1,2,3],{1,2,3},
(123,"a b c")

        
    

        

#SELECT * from 
json_to_recordset('[{"a":1,"b":"foo"}, 
{"a":"2","c":"bar"}]') as x(a int, b text) → [
1,foo
2,
]

        
    

number * number → 
number

Multiplication
    

number / number → 
number

Division
    

number % number → 
number

Modulo (remainder)
    

value . type() → string Type of the JSON item (see 
json_typeof)     

value . size() → number Size of the JSON item (number of 
array elements, or 1 if not an array)     

        

jsonb_path_query_array('[4]', '2 * $[0]', '{}', 
false) → [8]

        
    

        

jsonb_path_query_array('[8.5]', '$[0] / 2', '{}', 
false) → [4.2500000000000000]

        
    

        

jsonb_path_query_array('[32]', '$[0] % 10', '{}', 
false) → [2]

        
    

        

jsonb_path_query_array('[1, "2", {}]', 
'$[*].type()', '{}', false) → ["number", "string", 
"object"]

        
    

        

jsonb_path_query_array('{"m": [11, 15]}', 
'$.m.size()', '{}', false) → [2]

        
    

Predicate/Value Description Example(s)



jsonb_set ( target jsonb, 
path text[], new_value 
jsonb [, create_if_missing 
boolean ] ) → jsonb

Returns target with the item designated by path 
replaced by new_value, or with new_value added 
if create_if_missing is true (which is the default) 
and the item designated by path does not exist. 
All earlier steps in the path must exist, or the 
target is returned unchanged. As with the path 
oriented operators, negative integers that appear 
in the path count from the end of JSON arrays. If 
the last path step is an array index that is out of 
range, and create_if_missing is true, the new 
value is added at the beginning of the array if the 
index is negative, or at the end of the array if it is 
positive.

    

jsonb_set_lax ( target 
jsonb, path text[], 
new_value jsonb [, 
create_if_missing boolean 
[, null_value_treatment text 
]] ) → jsonb

If new_value is not NULL, behaves identically to 
jsonb_set. Otherwise behaves according to the 
value of null_value_treatment which must be one 
of 'raise_exception', 'use_json_null', 'delete_key', 
or 'return_target'. The default is 'use_json_null'.

    

jsonb_insert ( target jsonb, 
path text[], new_value 
jsonb [, insert_after 
boolean ] ) → jsonb

Returns target with new_value inserted. If the 
item designated by the path is an array element, 
new_value will be inserted before that item if 
insert_after is false (which is the default), or after 
it if insert_after is true. If the item designated by 
the path is an object field, new_value will be 
inserted only if the object does not already 
contain that key. All earlier steps in the path must 
exist, or the target is returned unchanged. As with 
the path oriented operators, negative integers 
that appear in the path count from the end of 
JSON arrays. If the last path step is an array 
index that is out of range, the new value is added 
at the beginning of the array if the index is 
negative, or at the end of the array if it is positive.

    

json_strip_nulls ( json ) → 
json

jsonb_strip_nulls ( jsonb ) 
→ jsonb

Deletes all object fields that have null values from 
the given JSON value, recursively. Null values 
that are not object fields are untouched.

    

        

jsonb_set('[{"f1":1,"f2":null},2,null,3]', 
'{0,f1}', '[2,3,4]', false) → [{"f1": [2, 3, 
4], "f2": null}, 2, null, 3]
jsonb_set('[{"f1":1,"f2":null},2]', '{0,f3}', 
'[2,3,4]') → [{"f1": 1, "f2": null, "f3": [2, 
3, 4]}, 2]

        
    

        

jsonb_set_lax('[{"f1":1,"f2":null},2,null,3]', 
'{0,f1}', null) → [{"f1": null, "f2": null}, 
2, null, 3]
jsonb_set_lax('[{"f1":99,"f2":null},2]', 
'{0,f3}', null, true, 'return_target') → 
[{"f1": 99, "f2": null}, 2]

        
    

        

jsonb_insert('{"a": [0,1,2]}', '{a, 1}', 
'"new_value"') → {"a": [0, "new_value", 1, 2]}
jsonb_insert('{"a": [0,1,2]}', '{a, 1}', 
'"new_value"', true) → {"a": [0, 1, 
"new_value", 2]}

        
    

        

json_strip_nulls('[{"f1":1, "f2":null}, 2, 
null, 3]') → [{"f1":1},2,null,3]

        
    

value . double() → 
number

Approximate floating-point number 
converted from a JSON number or 
string

    

number . ceiling() → 
number

Nearest integer greater than or equal 
to the given number     

number . floor() → 
number

Nearest integer less than or equal to 
the given number     

number . abs() → 
number

Absolute value of the given number
    

string . datetime() → 
datetime_type (see 
note)

Date/time value converted from a 
string (NOT SUPPORTED)     

        

jsonb_path_query_array('{"len": "1.9"}', 
'$.len.double() * 2', '{}', false) → [3.8]

        
    

        

jsonb_path_query_array('{"h": 1.3}', 
'$.h.ceiling()', '{}', false) → [2]

        
    

        

jsonb_path_query_array('{"h": 1.7}', '$.h.floor()', 
'{}', false) → [1]

        
    

        

jsonb_path_query_array('{"z": -0.3}', '$.z.abs()', 
'{}', false) → [0.3]

        
    

        

jsonb_path_query_array('["2015-8-1", "2015-08-
12"]', '$[*] ? (@.datetime() < "2015-08-
2".datetime())', '{}', false) → ["2015-8-1"]

        
    

value == value → 
boolean

Equality comparison (this, and the other 
comparison operators, work on all 
JSON scalar values)

    

value != value → 
boolean

value <> value → 
boolean

Non-equality comparison
    

value < value → 
boolean

Less-than comparison
    

value <= value → 
boolean

Less-than-or-equal-to comparison
    

        

jsonb_path_query_array('[1, "a", 1, 3]', '$[*] ? (@ 
== 1)', '{}', false) → [1, 1]
jsonb_path_query_array('[1, "a", 1, 3]', '$[*] ? (@ 
== "a")', '{}', false) → ["a"]

        
    

        

jsonb_path_query_array('[1, 2, 1, 3]', '$[*] ? (@ != 
1)', '{}', false) → [2, 3]
jsonb_path_query_array('["a", "b", "c"]', '$[*] ? (@ 
<> "b")', '{}', false) → ["a", "c"]

        
    

        

jsonb_path_query_array('[1, 2, 3]', '$[*] ? (@ < 2)', 
'{}', false) → [1]

        
    

        

jsonb_path_query_array('["a", "b", "c"]', '$[*] ? (@ 
<= "b")', '{}', false) → ["a", "b"]

        
    



9.16.2.3. SQL/JSON Regular Expressions
SQL/JSON path expressions allow matching text to a regular expression with the like_regex filter. For example, the following SQL/JSON path query
would case-insensitively match all strings in an array that start with an English vowel:

$[*] ? (@ like_regex "^[aeiou]" flag "i")

The optional flag string may include one or more of the characters i for case-insensitive match, m to allow ^ and $ to match at newlines, s to allow .
to match a newline, and q to quote the whole pattern (reducing the behavior to a simple substring match).

The SQL/JSON standard borrows its definition for regular expressions from the LIKE_REGEX operator, which in turn uses the XQuery standard.
PostgreSQL does not currently support the LIKE_REGEX operator. Therefore, the like_regex filter is implemented using the POSIX regular
expression engine described in Section 9.7.3. This leads to various minor discrepancies from standard SQL/JSON behavior, which are cataloged in
Section 9.7.3.8. Note, however, that the flag-letter incompatibilities described there do not apply to SQL/JSON, as it translates the XQuery flag
letters to match what the POSIX engine expects.

Keep in mind that the pattern argument of like_regex is a JSON path string literal, written according to the rules given in Section 8.14.7. This means
in particular that any backslashes you want to use in the regular expression must be doubled. For example, to match string values of the root
document that contain only digits:

$.* ? (@ like_regex "^\\d+$")

9.17. Sequence Manipulation Functions (NOT SUPPORTED)

9.18. Conditional Expressions

9.18.1. CASE
The SQL CASE expression is a generic conditional expression, similar to if/else statements in other programming languages:

CASE WHEN condition THEN result
[WHEN ...]
[ELSE result]
END
CASE clauses can be used wherever an expression is valid. Each condition is an expression that returns a boolean result. If the condition's result is
true, the value of the CASE expression is the result that follows the condition, and the remainder of the CASE expression is not processed. If the
condition's result is not true, any subsequent WHEN clauses are examined in the same manner. If no WHEN condition yields true, the value of the
CASE expression is the result of the ELSE clause. If the ELSE clause is omitted and no condition is true, the result is null.

An example:

The data types of all the result expressions must be convertible to a single output type. See Section 10.5 for more details.

There is a “simple” form of CASE expression that is a variant of the general form above:

CASE expression
WHEN value THEN result
[WHEN ...]
[ELSE result]
END

The first expression is computed, then compared to each of the value expressions in the WHEN clauses until one is found that is equal to it. If no
match is found, the result of the ELSE clause (or a null value) is returned. This is similar to the switch statement in C.

The example above can be written using the simple CASE syntax:

SELECT a,
       CASE WHEN a=1 THEN 'one'
            WHEN a=2 THEN 'two'
            ELSE 'other'
       END as case
    FROM (VALUES (1),(2),(3)) as x(a)

 a | case
---+-------
 1 | one
 2 | two
 3 | other

SELECT a,
       CASE a WHEN 1 THEN 'one'

jsonb_path_exists ( target 
jsonb, path jsonpath [, vars 
jsonb [, silent boolean ]] ) 
→ boolean

Checks whether the JSON path returns any item 
for the specified JSON value. If the vars 
argument is specified, it must be a JSON object, 
and its fields provide named values to be 
substituted into the jsonpath expression. If the 
silent argument is specified and is true, the 
function suppresses the same errors as the @? 
and @@ operators do.

    

jsonb_path_match ( target 
jsonb, path jsonpath [, vars 
jsonb [, silent boolean ]] ) 
→ boolean

Returns the result of a JSON path predicate 
check for the specified JSON value. Only the first 
item of the result is taken into account. If the 
result is not Boolean, then NULL is returned. The 
optional vars and silent arguments act the same 
as for jsonb_path_exists.

    

jsonb_path_query ( target 
jsonb, path jsonpath [, vars 
jsonb [, silent boolean ]] ) 
→ setof jsonb

Returns all JSON items returned by the JSON 
path for the specified JSON value. The optional 
vars and silent arguments act the same as for 
jsonb_path_exists.

    

jsonb_path_query_array ( 
target jsonb, path jsonpath 
[, vars jsonb [, silent 
boolean ]] ) → jsonb

Returns all JSON items returned by the JSON 
path for the specified JSON value, as a JSON 
array. The optional vars and silent arguments act 
the same as for jsonb_path_exists.

    

        

jsonb_path_exists('{"a":[1,2,3,4,5]}', '$.a[*] 
? (@ >= $min && @ <= $max)', '{"min":2, 
"max":4}', false) → true

        
    

        

jsonb_path_match('{"a":[1,2,3,4,5]}', 
'exists($.a[*] ? (@ >= $min && @ <= $max))', 
'{"min":2, "max":4}', false) → true

        
    

        

SELECT * FROM jsonb_path_query('{"a":
[1,2,3,4,5]}', '$.a[*] ? (@ >= $min && @ <= 
$max)', '{"min":2, "max":4}', false) as a → [
2
3
4
]

        
    

        

jsonb_path_query_array('{"a":[1,2,3,4,5]}', 
'$.a[*] ? (@ >= $min && @ <= $max)', '{"min":2, 
"max":4}', false) → [2, 3, 4]

        
    

string . 
datetime(template) → 
datetime_type (see 
note)

Date/time value converted from a 
string using the specified to_timestamp 
template (NOT SUPPORTED)

    

object . keyvalue() → 
array

The object's key-value pairs, 
represented as an array of objects 
containing three fields: "key", "value", 
and "id"; "id" is a unique identifier of the 
object the key-value pair belongs to

    

        

jsonb_path_query_array('["12:30", "18:40"]', 
'$[*].datetime("HH24:MI")', '{}', false) → 
["12:30:00", "18:40:00"]

        
    

        

jsonb_path_query_array('{"x": "20", "y": 32}', 
'$.keyvalue()', '{}', false) → [{"id": 0, "key": 
"x", "value": "20"}, {"id": 0, "key": "y", "value": 
32}]

        
    

value > value → 
boolean

Greater-than comparison
    

value >= value → 
boolean

Greater-than-or-equal-to comparison
    

true → boolean JSON constant true
    

false → boolean JSON constant false
    

        

jsonb_path_query_array('[1, 2, 3]', '$[*] ? (@ > 2)', 
'{}', false) → [3]

        
    

        

jsonb_path_query_array('[1, 2, 3]', '$[*] ? (@ >= 
2)', '{}', false) → [2, 3]

        
    

        

jsonb_path_query_array('[{"name": "John", "parent": 
false}, {"name": "Chris", "parent": true}]', '$[*] ? 
(@.parent == true)', '{}', false) → [{"name": 
"Chris", "parent": true}]

        
    

        

jsonb_path_query_array('[{"name": "John", "parent": 
false}, {"name": "Chris", "parent": true}]', '$[*] ? 
(@.parent == false)', '{}', false) → [{"name": 
"John", "parent": false}]

        
    

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions_sequence-manipulation-functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions_conditional-expressions


A CASE expression does not evaluate any subexpressions that are not needed to determine the result. For example, this is a possible way of
avoiding a division-by-zero failure:

Note
As described in Section 4.2.14, there are various situations in which subexpressions of an expression are evaluated at different times, so that the
principle that “CASE evaluates only necessary subexpressions” is not ironclad. For example a constant 1/0 subexpression will usually result in a
division-by-zero failure at planning time, even if it's within a CASE arm that would never be entered at run time.

9.18.2. COALESCE

COALESCE(value [, ...])
The COALESCE function returns the first of its arguments that is not null. Null is returned only if all arguments are null. It is often used to substitute
a default value for null values when data is retrieved for display, for example:

This returns description if it is not null, otherwise short_description if it is not null, otherwise (none).

The arguments must all be convertible to a common data type, which will be the type of the result (see Section 10.5 for details).

Like a CASE expression, COALESCE only evaluates the arguments that are needed to determine the result; that is, arguments to the right of the
first non-null argument are not evaluated. This SQL-standard function provides capabilities similar to NVL and IFNULL, which are used in some
other database systems.

9.18.3. NULLIF

NULLIF(value1, value2) (NOT SUPPORTED)
The NULLIF function returns a null value if value1 equals value2; otherwise it returns value1. This can be used to perform the inverse operation of
the COALESCE example given above:

In this example, if value is (none), null is returned, otherwise the value of value is returned.

The two arguments must be of comparable types. To be specific, they are compared exactly as if you had written value1 = value2, so there must be
a suitable = operator available.

The result has the same type as the first argument — but there is a subtlety. What is actually returned is the first argument of the implied = operator,
and in some cases that will have been promoted to match the second argument's type. For example, NULLIF(1, 2.2) yields numeric, because there
is no integer = numeric operator, only numeric = numeric.

9.18.4. GREATEST and LEAST

GREATEST(value [, ...])
LEAST(value [, ...])

The GREATEST and LEAST functions select the largest or smallest value from a list of any number of expressions. The expressions must all be
convertible to a common data type, which will be the type of the result (see Section 10.5 for details). NULL values in the list are ignored. The result
will be NULL only if all the expressions evaluate to NULL. (NOT SUPPORTED)

Note that GREATEST and LEAST are not in the SQL standard, but are a common extension. Some other databases make them return NULL if any
argument is NULL, rather than only when all are NULL.

9.19. Array Functions and Operators

Table 9.51 shows the specialized operators available for array types. In addition to those, the usual comparison operators shown in Table 9.1 are
available for arrays. The comparison operators compare the array contents element-by-element, using the default B-tree comparison function for
the element data type, and sort based on the first difference. In multidimensional arrays the elements are visited in row-major order (last subscript
varies most rapidly). If the contents of two arrays are equal but the dimensionality is different, the first difference in the dimensionality information
determines the sort order.

Table 9.51. Array Operators

              WHEN 2 THEN 'two'
              ELSE 'other'
       END as case
    FROM (VALUES (1),(2),(3)) as x(a)

 a | case
---+-------
 1 | one
 2 | two
 3 | other

SELECT ... WHERE CASE WHEN x <> 0 THEN y/x > 1.5 ELSE false END;

SELECT COALESCE(description, short_description, '(none)') ...

SELECT NULLIF(value, '(none)') ...

jsonb_path_query_first ( 
target jsonb, path jsonpath 
[, vars jsonb [, silent 
boolean ]] ) → jsonb

Returns the first JSON item returned by the 
JSON path for the specified JSON value. Returns 
NULL if there are no results. The optional vars 
and silent arguments act the same as for 
jsonb_path_exists.

    

jsonb_path_exists_tz ( 
target jsonb, path jsonpath 
[, vars jsonb [, silent 
boolean ]] ) → boolean

jsonb_path_match_tz ( 
target jsonb, path jsonpath 
[, vars jsonb [, silent 
boolean ]] ) → boolean

jsonb_path_query_tz ( 
target jsonb, path jsonpath 
[, vars jsonb [, silent 
boolean ]] ) → setof jsonb

jsonb_path_query_array_tz 
( target jsonb, path 
jsonpath [, vars jsonb [, 
silent boolean ]] ) → jsonb

jsonb_path_query_first_tz ( 
target jsonb, path jsonpath 
[, vars jsonb [, silent 
boolean ]] ) → jsonb

These functions act like their counterparts 
described above without the _tz suffix, except 
that these functions support comparisons of 
date/time values that require timezone-aware 
conversions. The example below requires 
interpretation of the date-only value 2015-08-02 
as a timestamp with time zone, so the result 
depends on the current TimeZone setting. Due to 
this dependency, these functions are marked as 
stable, which means these functions cannot be 
used in indexes. Their counterparts are 
immutable, and so can be used in indexes; but 
they will throw errors if asked to make such 
comparisons. (NOT SUPPORTED)

    

jsonb_pretty ( jsonb ) → 
text

Converts the given JSON value to pretty-printed, 
indented text.     

        

jsonb_path_query_first('{"a":[1,2,3,4,5]}', 
'$.a[*] ? (@ >= $min && @ <= $max)', '{"min":2, 
"max":4}', false) → 2

        
    

        

jsonb_path_exists_tz('["2015-08-01 12:00:00-
05"]', '$[*] ? (@.datetime() < "2015-08-
02".datetime())', '{}', false) → true

        
    

        

jsonb_pretty('[{"f1":1,"f2":null}, 2]') → """[
    {
        "f1": 1,
        "f2": null
    },
    2
]"""

        
    

null → value JSON constant null (note that, unlike in 
SQL, comparison to null works 
normally)

    

boolean && boolean 
→ boolean

Boolean AND
    

boolean || boolean 
→ boolean

Boolean OR
    

! boolean → 
boolean

Boolean NOT
    

boolean is unknown 
→ boolean

Tests whether a Boolean condition is 
unknown.     

        

jsonb_path_query_array('[{"name": "Mary", "job": 
null}, {"name": "Michael", "job": "driver"}]', '$[*] 
? (@.job == null) .name', '{}', false) → ["Mary"]

        
    

        

jsonb_path_query_array('[1, 3, 7]', '$[*] ? (@ > 1 && 
@ < 5)', '{}', false) → [3]

        
    

        

jsonb_path_query_array('[1, 3, 7]', '$[*] ? (@ < 1 || 
@ > 5)', '{}', false) → [7]

        
    

        

jsonb_path_query_array('[1, 3, 7]', '$[*] ? (!(@ < 
5))', '{}', false) → [7]

        
    

        

jsonb_path_query_array('[-1, 2, 7, "foo"]', '$[*] ? 
((@ > 0) is unknown)', '{}', false) → ["foo"]

        
    

Operator Description Example(s)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions_array-functions


json_typeof ( json ) → text

jsonb_typeof ( jsonb ) → 
text

Returns the type of the top-level JSON value as a 
text string. Possible types are object, array, string, 
number, boolean, and null. (The null result should 
not be confused with an SQL NULL; see the 
examples.)

    

        

json_typeof('-123.4') → number
json_typeof('null'::json) → null
json_typeof(NULL::json) IS NULL → true

        
    

string like_regex 
string [ flag string ] 
→ boolean

Tests whether the first operand matches 
the regular expression given by the 
second operand, optionally with 
modifications described by a string of 
flag characters (see Section 9.16.2.3).

    

string starts with 
string → boolean

Tests whether the second operand is an 
initial substring of the first operand.     

exists ( 
path_expression ) 
→ boolean

Tests whether a path expression 
matches at least one SQL/JSON item. 
Returns unknown if the path expression 
would result in an error; the second 
example uses this to avoid a no-such-
key error in strict mode.

    

        

jsonb_path_query_array('["abc", "abd", "aBdC", 
"abdacb", "babc"]', '$[*] ? (@ like_regex "^ab.*c")', 
'{}', false) → ["abc", "abdacb"]
jsonb_path_query_array('["abc", "abd", "aBdC", 
"abdacb", "babc"]', '$[*] ? (@ like_regex "^ab.*c" 
flag "i")', '{}', false) → ["abc", "aBdC", "abdacb"]

        
    

        

jsonb_path_query_array('["John Smith", "Mary Stone", 
"Bob Johnson"]', '$[*] ? (@ starts with "John")', 
'{}', false) → ["John Smith"]

        
    

        

jsonb_path_query_array('{"x": [1, 2], "y": [2, 4]}', 
'strict $.* ? (exists (@ ? (@[*] > 2)))', '{}', 
false) → [[2, 4]]
jsonb_path_query_array('{"value": 41}', 'strict $ ? 
(exists (@.name)) .name', '{}', false) → []

        
    

anyarray @> anyarray → 
boolean

Does the first array contain the second, that is, does each element 
appearing in the second array equal some element of the first array? 
(Duplicates are not treated specially, thus ARRAY[1] and ARRAY[1,1] 
are each considered to contain the other.)

    

anyarray <@ anyarray → 
boolean

Is the first array contained by the second?
    

anyarray && anyarray → 
boolean

Do the arrays overlap, that is, have any elements in common?
    

anycompatiblearray || 
anycompatiblearray → 
anycompatiblearray

Concatenates the two arrays. Concatenating a null or empty array is 
a no-op; otherwise the arrays must have the same number of 
dimensions (as illustrated by the first example) or differ in number of 
dimensions by one (as illustrated by the second). If the arrays are 
not of identical element types, they will be coerced to a common 
type (see Section 10.5). (NOT SUPPORTED)

    

        

ARRAY[1,4,3] @> 
ARRAY[3,1,3] → true

        
    

        

ARRAY[2,2,7] <@ 
ARRAY[1,7,4,2,6] → true

        
    

        

ARRAY[1,4,3] && 
ARRAY[2,1] → true

        
    

        

#ARRAY[1,2,3] || 
ARRAY[4,5,6,7] → 
{1,2,3,4,5,6,7}
#ARRAY[1,2,3] || 
ARRAY[[4,5,6],[7,8,9.9]] 
→ {{1,2,3},{4,5,6},
{7,8,9.9}}

        
    



See Section 8.15 for more details about array operator behavior. See Section 11.2 for more details about which operators support indexed
operations.

Table 9.52 shows the functions available for use with array types. See Section 8.15 for more information and examples of the use of these
functions.

Table 9.52. Array Functions

anycompatible || 
anycompatiblearray → 
anycompatiblearray

Concatenates an element onto the front of an array (which must be 
empty or one-dimensional). (NOT SUPPORTED)     

anycompatiblearray || 
anycompatible → 
anycompatiblearray

Concatenates an element onto the end of an array (which must be 
empty or one-dimensional). (NOT SUPPORTED)     

        

#3 || ARRAY[4,5,6] → 
{3,4,5,6}

        
    

        

#ARRAY[4,5,6] || 7 → 
{4,5,6,7}

        
    

Function Description Example(s)

array_append ( 
anycompatiblearray, 
anycompatible ) → 
anycompatiblearray

Appends an element to the end of an array 
(same as the anycompatiblearray || 
anycompatible operator). (NOT 
SUPPORTED)

    

array_cat ( 
anycompatiblearray, 
anycompatiblearray ) → 
anycompatiblearray

Concatenates two arrays (same as the 
anycompatiblearray || anycompatiblearray 
operator). (NOT SUPPORTED)

    

array_dims ( anyarray ) 
→ text

Returns a text representation of the array's 
dimensions.     

        

#array_append(ARRAY[1,2], 3) → {1,2,3}

        
    

        

#array_cat(ARRAY[1,2,3], ARRAY[4,5]) → 
{1,2,3,4,5}

        
    

        

array_dims(ARRAY[[1,2,3], [4,5,6]]) → [1:2]
[1:3]

        
    



array_fill ( anyelement, 
integer[] [, integer[] ] ) → 
anyarray

Returns an array filled with copies of the given 
value, having dimensions of the lengths 
specified by the second argument. The 
optional third argument supplies lower-bound 
values for each dimension (which default to all 
1). (NOT SUPPORTED)

    

array_length ( anyarray, 
integer ) → integer

Returns the length of the requested array 
dimension. (Produces NULL instead of 0 for 
empty or missing array dimensions.)

    

array_lower ( anyarray, 
integer ) → integer

Returns the lower bound of the requested 
array dimension.     

array_ndims ( anyarray ) 
→ integer

Returns the number of dimensions of the 
array.     

        

#array_fill(11, ARRAY[2,3]) → {{11,11,11},
{11,11,11}}
#array_fill(7, ARRAY[3], ARRAY[2]) → [2:4]=
{7,7,7}

        
    

        

array_length(array[1,2,3], 1) → 3
#array_length(array[]::int[], 1) → NULL
array_length(array['text'], 2) → NULL

        
    

        

array_lower('[0:2]={1,2,3}'::integer[], 1) → 
0

        
    

        

array_ndims(ARRAY[[1,2,3], [4,5,6]]) → 2

        
    



Note
There are two differences in the behavior of string_to_array from pre-9.1 versions of PostgreSQL. First, it will return an empty (zero-element) array
rather than NULL when the input string is of zero length. Second, if the delimiter string is NULL, the function splits the input into individual
characters, rather than returning NULL as before.

See also Section 9.21 about the aggregate function array_agg for use with arrays.

9.20. Range/Multirange Functions and Operators (NOT SUPPORTED)

9.21. Aggregate Functions

Aggregate functions compute a single result from a set of input values. The built-in general-purpose aggregate functions are listed in Table 9.57
while statistical aggregates are in Table 9.58. The built-in within-group ordered-set aggregate functions are listed in Table 9.59 while the built-in
within-group hypothetical-set ones are in Table 9.60. Grouping operations, which are closely related to aggregate functions, are listed in Table 9.61.
The special syntax considerations for aggregate functions are explained in Section 4.2.7. Consult Section 2.7 for additional introductory information.

array_position ( 
anycompatiblearray, 
anycompatible [, integer ] 
) → integer

Returns the subscript of the first occurrence of 
the second argument in the array, or NULL if 
it's not present. If the third argument is given, 
the search begins at that subscript. The array 
must be one-dimensional. Comparisons are 
done using IS NOT DISTINCT FROM 
semantics, so it is possible to search for 
NULL. (NOT SUPPORTED)

    

array_positions ( 
anycompatiblearray, 
anycompatible ) → 
integer[]

Returns an array of the subscripts of all 
occurrences of the second argument in the 
array given as first argument. The array must 
be one-dimensional. Comparisons are done 
using IS NOT DISTINCT FROM semantics, so 
it is possible to search for NULL. NULL is 
returned only if the array is NULL; if the value 
is not found in the array, an empty array is 
returned. (NOT SUPPORTED)

    

array_prepend ( 
anycompatible, 
anycompatiblearray ) → 
anycompatiblearray

Prepends an element to the beginning of an 
array (same as the anycompatible || 
anycompatiblearray operator). (NOT 
SUPPORTED)

    

array_remove ( 
anycompatiblearray, 
anycompatible ) → 
anycompatiblearray

Removes all elements equal to the given 
value from the array. The array must be one-
dimensional. Comparisons are done using IS 
NOT DISTINCT FROM semantics, so it is 
possible to remove NULLs. (NOT 
SUPPORTED)

    

array_replace ( 
anycompatiblearray, 
anycompatible, 
anycompatible ) → 
anycompatiblearray

Replaces each array element equal to the 
second argument with the third argument. 
(NOT SUPPORTED)

    

        

#array_position(ARRAY['sun', 'mon', 'tue', 
'wed', 'thu', 'fri', 'sat'], 'mon') → 2

        
    

        

#array_positions(ARRAY['A','A','B','A'], 
'A') → {1,2,4}

        
    

        

#array_prepend(1, ARRAY[2,3]) → {1,2,3}

        
    

        

#array_remove(ARRAY[1,2,3,2], 2) → {1,3}

        
    

        

#array_replace(ARRAY[1,2,5,4], 5, 3) → 
{1,2,3,4}

        
    

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions_range-multirange-functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions_aggregate-functions


Aggregate functions that support Partial Mode are eligible to participate in various optimizations, such as parallel aggregation.

Table 9.57. General-Purpose Aggregate Functions
array_to_string ( array 
anyarray, delimiter text [, 
null_string text ] ) → text

Converts each array element to its text 
representation, and concatenates those 
separated by the delimiter string. If null_string 
is given and is not NULL, then NULL array 
entries are represented by that string; 
otherwise, they are omitted.

    

array_upper ( anyarray, 
integer ) → integer

Returns the upper bound of the requested 
array dimension.     

cardinality ( anyarray ) → 
integer

Returns the total number of elements in the 
array, or 0 if the array is empty.     

trim_array ( array 
anyarray, n integer ) → 
anyarray

Trims an array by removing the last n 
elements. If the array is multidimensional, only 
the first dimension is trimmed.

    

        

array_to_string(ARRAY[1, 2, 3, NULL, 5], 
',', '*') → 1,2,3,*,5

        
    

        

array_upper(ARRAY[1,8,3,7], 1) → 4

        
    

        

cardinality(ARRAY[[1,2],[3,4]]) → 4

        
    

        

trim_array(ARRAY[1,2,3,4,5,6], 2) → 
{1,2,3,4}

        
    

Function Description Partial 
Mode

Example

array_agg ( 
anynonarray ) → 
anyarray

Collects all the input values, 
including nulls, into an array.

No
    

array_agg ( anyarray ) 
→ anyarray

Concatenates all the input arrays 
into an array of one higher 
dimension. (The inputs must all 
have the same dimensionality, 
and cannot be empty or null.)

No
    

avg ( smallint ) → 
numeric

avg ( integer ) → 
numeric

avg ( bigint ) → numeric

avg ( numeric ) → 
numeric

avg ( real ) → double 
precision

avg ( double precision ) 
→ double precision

avg ( interval ) → 
interval

Computes the average 
(arithmetic mean) of all the non-
null input values.

Yes
    

        

SELECT array_agg(x) FROM (VALUES (1),(2)) 
a(x) → {1,2}

        
    

        

SELECT array_agg(x) FROM (VALUES 
(Array[1,2]),(Array[3,4])) a(x) → {{1,2},
{3,4}}

        
    

        

SELECT avg(x::smallint) FROM (VALUES (1),
(2),(3)) a(x) → 2.0000000000000000
SELECT avg(x::integer) FROM (VALUES (1),(2),
(3)) a(x) → 2.0000000000000000
SELECT avg(x::bigint) FROM (VALUES (1),(2),
(3)) a(x) → 2.0000000000000000
SELECT avg(x::numeric) FROM (VALUES (1),(2),
(3)) a(x) → 2.0000000000000000
SELECT avg(x::real) FROM (VALUES (1),(2),
(3)) a(x) → 2
SELECT avg(x::double precision) FROM (VALUES 
(1),(2),(3)) a(x) → 2
SELECT avg(cast(x as interval day)) FROM 
(VALUES ('1'),('2'),('3')) a(x) → 2 days

        
    



It should be noted that except for count, these functions return a null value when no rows are selected. In particular, sum of no rows returns null, not
zero as one might expect, and array_agg returns null rather than an empty array when there are no input rows. The coalesce function can be used
to substitute zero or an empty array for null when necessary.

The aggregate functions array_agg, json_agg, jsonb_agg, json_object_agg, jsonb_object_agg, string_agg, and xmlagg, as well as similar user-
defined aggregate functions, produce meaningfully different result values depending on the order of the input values. This ordering is unspecified by
default, but can be controlled by writing an ORDER BY clause within the aggregate call, as shown in Section 4.2.7. Alternatively, supplying the input
values from a sorted subquery will usually work. For example:

unnest ( anyarray ) → 
setof anyelement

Expands an array into a set of rows. The 
array's elements are read out in storage order. 
(NOT SUPPORTED)

    

unnest ( anyarray, 
anyarray [, ... ] ) → setof 
anyelement, anyelement 
[, ... ]

Expands multiple arrays (possibly of different 
data types) into a set of rows. If the arrays are 
not all the same length then the shorter ones 
are padded with NULLs. This form is only 
allowed in a query's FROM clause; see 
Section 7.2.1.4. (NOT SUPPORTED)

    

        

SELECT * FROM unnest(ARRAY[1,2]) as a → [
1
2
]

SELECT * FROM unnest(ARRAY[['foo','bar'],
['baz','quux']]) as a → [
foo
bar
baz
quux
]

        
    

        

#SELECT * FROM unnest(ARRAY[1,2], 
ARRAY['foo','bar','baz']) as x(a,b) → [
1,foo
2,bar
,baz
]

        
    

bit_and ( smallint ) → 
smallint

bit_and ( integer ) → 
integer

bit_and ( bigint ) → 
bigint

bit_and ( bit ) → bit

Computes the bitwise AND of all 
non-null input values.

Yes
    

bit_or ( smallint ) → 
smallint

bit_or ( integer ) → 
integer

bit_or ( bigint ) → bigint

bit_or ( bit ) → bit

Computes the bitwise OR of all 
non-null input values.

Yes
    

bit_xor ( smallint ) → 
smallint

bit_xor ( integer ) → 
integer

bit_xor ( bigint ) → 
bigint

bit_xor ( bit ) → bit

Computes the bitwise exclusive 
OR of all non-null input values. 
Can be useful as a checksum for 
an unordered set of values.

Yes
    

        

SELECT bit_and(x::smallint) FROM (VALUES 
(5),(6),(7)) a(x) → 4
SELECT bit_and(x::integer) FROM (VALUES (5),
(6),(7)) a(x) → 4
SELECT bit_and(x::bigint) FROM (VALUES (5),
(6),(7)) a(x) → 4
SELECT bit_and(x::bit(3)) FROM (VALUES 
('101'),('110'),('111')) a(x) → 100

        
    

        

SELECT bit_or(x::smallint) FROM (VALUES (4),
(5),(6)) a(x) → 7
SELECT bit_or(x::integer) FROM (VALUES (4),
(5),(6)) a(x) → 7
SELECT bit_or(x::bigint) FROM (VALUES (4),
(5),(6)) a(x) → 7
SELECT bit_or(x::bit(3)) FROM (VALUES 
('100'),('101'),('110')) a(x) → 111

        
    

        

SELECT bit_xor(x::smallint) FROM (VALUES 
(5),(6),(6)) a(x) → 5
SELECT bit_xor(x::integer) FROM (VALUES (5),
(6),(6)) a(x) → 5
SELECT bit_xor(x::bigint) FROM (VALUES (5),
(6),(6)) a(x) → 5
SELECT bit_xor(x::bit(3)) FROM (VALUES 
('101'),('110'),('110')) a(x) → 101

        
    



Beware that this approach can fail if the outer query level contains additional processing, such as a join, because that might cause the subquery's
output to be reordered before the aggregate is computed.

Note
The boolean aggregates bool_and and bool_or correspond to the standard SQL aggregates every and any or some. PostgreSQL supports every,
but not any or some, because there is an ambiguity built into the standard syntax:

Here ANY can be considered either as introducing a subquery, or as being an aggregate function, if the subquery returns one row with a Boolean
value. Thus the standard name cannot be given to these aggregates.

Note
Users accustomed to working with other SQL database management systems might be disappointed by the performance of the count aggregate
when it is applied to the entire table. A query like:

SELECT count(*) FROM sometable;
will require effort proportional to the size of the table: PostgreSQL will need to scan either the entire table or the entirety of an index that includes all
rows in the table.

Table 9.58 shows aggregate functions typically used in statistical analysis. (These are separated out merely to avoid cluttering the listing of more-
commonly-used aggregates.) Functions shown as accepting numeric_type are available for all the types smallint, integer, bigint, numeric, real, and
double precision. Where the description mentions N, it means the number of input rows for which all the input expressions are non-null. In all cases,
null is returned if the computation is meaningless, for example when N is zero.

Table 9.58. Aggregate Functions for Statistics

SELECT xmlagg(x) FROM (SELECT x FROM test ORDER BY y DESC) AS tab;

SELECT b1 = ANY((SELECT b2 FROM t2 ...)) FROM t1 ...;

bool_and ( boolean ) → 
boolean

Returns true if all non-null input 
values are true, otherwise false.

Yes
    

bool_or ( boolean ) → 
boolean

Returns true if any non-null input 
value is true, otherwise false.

Yes
    

count ( * ) → bigint Computes the number of input 
rows.

Yes
    

count ( any ) → bigint Computes the number of input 
rows in which the input value is 
not null.

Yes
    

        

SELECT bool_and(x) FROM (VALUES (null),
(false),(true)) a(x) → false
SELECT bool_and(x) FROM (VALUES (null),
(true),(true)) a(x) → true
SELECT bool_and(x) FROM (VALUES 
(null::bool),(null::bool),(null::bool)) a(x) 
→ NULL

        
    

        

SELECT bool_or(x) FROM (VALUES (null),
(false),(false)) a(x) → false
SELECT bool_or(x) FROM (VALUES (null),
(false),(true)) a(x) → true
SELECT bool_or(x) FROM (VALUES (null::bool),
(null::bool),(null::bool)) a(x) → NULL

        
    

        

SELECT count(*) FROM (VALUES (4),(5),(6)) 
a(x) → 3

        
    

        

SELECT count(x) FROM (VALUES (4),(null),(6)) 
a(x) → 2

        
    

Function Description Partial 
Mode

Examples

corr ( Y double precision, X 
double precision ) → double 
precision

Computes the correlation 
coefficient.

Yes
    

covar_pop ( Y double precision, 
X double precision ) → double 
precision

Computes the population 
covariance.

Yes
    

        

SELECT corr(x,y) FROM (VALUES 
(1,2),(2,3),(3,1)) a(x,y) → -0.5

        
    

        

SELECT covar_pop(x,y) FROM (VALUES 
(1,2),(2,3),(3,1)) a(x,y) → 
-0.3333333333333333

        
    



every ( boolean ) → 
boolean

This is the SQL standard's 
equivalent to bool_and

Yes
    

json_agg ( anyelement ) 
→ json

jsonb_agg ( anyelement 
) → jsonb

Collects all the input values, 
including nulls, into a JSON 
array. Values are converted to 
JSON as per to_json or to_jsonb. 
(NOT SUPPORTED)

No
    

json_object_agg ( key 
any, value any ) → json

jsonb_object_agg ( key 
any, value any ) → 
jsonb

Collects all the key/value pairs 
into a JSON object. Key 
arguments are coerced to text; 
value arguments are converted 
as per to_json or to_jsonb. 
Values can be null, but not keys.

No
    

        

SELECT every(x) FROM (VALUES (null),(false),
(true)) a(x) → false
SELECT every(x) FROM (VALUES (null),(true),
(true)) a(x) → true
SELECT every(x) FROM (VALUES (null::bool),
(null::bool),(null::bool)) a(x) → NULL

        
    

        

#SELECT json_agg(x) FROM (VALUES (1),(2),
(3)) a(x) → [1,2,3]
#SELECT jsonb_agg(x) FROM (VALUES ('a'),
('b'),('c')) a(x) → ["a","b","c"]

        
    

        

SELECT json_object_agg(x,y) FROM (VALUES 
('a',1),('b',2),('c',3)) a(x,y) → [
{ "a" : 1, "b" : 2, "c" : 3 }
]

SELECT jsonb_object_agg(x,y) FROM (VALUES 
('x','a'),('y','b'),('z','c')) a(x,y) → [
{"x": "a", "y": "b", "z": "c"}
]

        
    

covar_samp ( Y double 
precision, X double precision ) 
→ double precision

Computes the sample covariance. Yes
    

regr_avgx ( Y double precision, 
X double precision ) → double 
precision

Computes the average of the 
independent variable, sum(X)/N.

Yes
    

regr_avgy ( Y double precision, 
X double precision ) → double 
precision

Computes the average of the 
dependent variable, sum(Y)/N.

Yes
    

regr_count ( Y double precision, 
X double precision ) → bigint

Computes the number of rows in 
which both inputs are non-null.

Yes
    

regr_intercept ( Y double 
precision, X double precision ) 
→ double precision

Computes the y-intercept of the 
least-squares-fit linear equation 
determined by the (X, Y) pairs.

Yes
    

        

SELECT covar_samp(x,y) FROM (VALUES 
(1,2),(2,3),(3,1)) a(x,y) → -0.5

        
    

        

SELECT regr_avgx(x,y) FROM (VALUES 
(1,2),(2,3),(3,1)) a(x,y) → 2

        
    

        

SELECT regr_avgy(x,y) FROM (VALUES 
(1,2),(2,3),(3,1)) a(x,y) → 2

        
    

        

SELECT regr_count(x,y) FROM (VALUES 
(1,2),(2,3),(3,1)) a(x,y) → 3

        
    

        

SELECT regr_intercept(x,y) FROM 
(VALUES (1,2),(2,3),(3,1)) a(x,y) → 
3

        
    



Table 9.59 shows some aggregate functions that use the ordered-set aggregate syntax. These functions are sometimes referred to as “inverse
distribution” functions. Their aggregated input is introduced by ORDER BY, and they may also take a direct argument that is not aggregated, but is
computed only once. All these functions ignore null values in their aggregated input. For those that take a fraction parameter, the fraction value
must be between 0 and 1; an error is thrown if not. However, a null fraction value simply produces a null result.

Table 9.59. Ordered-Set Aggregate Functions (NOT SUPPORTED)

max ( see text ) → 
same as input type

Computes the maximum of the 
non-null input values. Available 
for any numeric, string, 
date/time, or enum type, as well 
as inet, interval, money, oid, 
pg_lsn, tid, and arrays of any of 
these types. (Arrays aren't 
supported)

Yes
    

        

SELECT max(x::smallint) FROM (VALUES (1),
(2),(3)) a(x) → 3
SELECT max(x::integer) FROM (VALUES (1),(2),
(3)) a(x) → 3
SELECT max(x::bigint) FROM (VALUES (1),(2),
(3)) a(x) → 3
SELECT max(x::real) FROM (VALUES (1),(2),
(3)) a(x) → 3
SELECT max(x::double precision) FROM (VALUES 
(1),(2),(3)) a(x) → 3
SELECT max(x::numeric) FROM (VALUES (1),(2),
(3)) a(x) → 3
SELECT max(x) FROM (VALUES ('a'),('b'),
('c')) a(x) → 'c'
SELECT max(x::date) FROM (VALUES ('2001-01-
01'),('2001-02-03'),('2002-01-01')) a(x) → 
2002-01-01
SELECT max(x::timestamp) FROM (VALUES 
('2001-01-01 23:05:04'),('2001-01-01 
23:06:03'),('2001-01-01 23:59:00')) a(x) → 
2001-01-01 23:59:00
SELECT max(x::time) FROM (VALUES 
('10:00:05'),('11:00:01'),('12:50:00')) a(x) 
→ 12:50:00
SELECT max(x) FROM (VALUES (interval '1' 
day),(interval '2' day),(interval '3' day)) 
a(x) → 3 days

SELECT max(array[x,x]::smallint[]) FROM 
(VALUES (1),(2),(3)) a(x) → {3,3}
SELECT max(array[x,x]::integer[]) FROM 
(VALUES (1),(2),(3)) a(x) → {3,3}
SELECT max(array[x,x]::bigint[]) FROM 
(VALUES (1),(2),(3)) a(x) → {3,3}
SELECT max(array[x,x]::real[]) FROM (VALUES 
(1),(2),(3)) a(x) → {3,3}
SELECT max(array[x,x]::double precision[]) 
FROM (VALUES (1),(2),(3)) a(x) → {3,3}
SELECT max(array[x,x]::numeric[]) FROM 
(VALUES (1),(2),(3)) a(x) → {3,3}
SELECT max(array[x,x]) FROM (VALUES ('a'),
('b'),('c')) a(x) → {c,c}
SELECT max(array[x,x]::date[]) FROM (VALUES 
('2001-01-01'),('2001-02-03'),('2002-01-
01')) a(x) → {2002-01-01,2002-01-01}
SELECT max(array[x,x]::timestamp[]) FROM 
(VALUES ('2001-01-01 23:05:04'),('2001-01-01 
23:06:03'),('2001-01-01 23:59:00')) a(x) → 
{"2001-01-01 23:59:00","2001-01-01 
23:59:00"}
SELECT max(array[x,x]::time[]) FROM (VALUES 
('10:00:05'),('11:00:01'),('12:50:00')) a(x) 
→ {12:50:00,12:50:00}
SELECT max(array[x,x]) FROM (VALUES 
(interval '1' day),(interval '2' day),
(interval '3' day)) a(x) → {"3 days","3 
days"}

        
    

regr_r2 ( Y double precision, X 
double precision ) → double 
precision

Computes the square of the 
correlation coefficient.

Yes
    

regr_slope ( Y double precision, 
X double precision ) → double 
precision

Computes the slope of the least-
squares-fit linear equation 
determined by the (X, Y) pairs.

Yes
    

regr_sxx ( Y double precision, X 
double precision ) → double 
precision

Computes the “sum of squares” of 
the independent variable, 
sum(X^2) - sum(X)^2/N.

Yes
    

regr_sxy ( Y double precision, X 
double precision ) → double 
precision

Computes the “sum of products” of 
independent times dependent 
variables, sum(X*Y) - sum(X) * 
sum(Y)/N.

Yes
    

regr_syy ( Y double precision, X 
double precision ) → double 
precision

Computes the “sum of squares” of 
the dependent variable, sum(Y^2) 
- sum(Y)^2/N.

Yes
    

        

SELECT regr_r2(x,y) FROM (VALUES 
(1,2),(2,3),(3,1)) a(x,y) → 0.25

        
    

        

SELECT regr_slope(x,y) FROM (VALUES 
(1,2),(2,3),(3,1)) a(x,y) → -0.5

        
    

        

SELECT regr_sxx(x,y) FROM (VALUES 
(1,2),(2,3),(3,1)) a(x,y) → 2

        
    

        

SELECT regr_sxy(x,y) FROM (VALUES 
(1,2),(2,3),(3,1)) a(x,y) → -1

        
    

        

SELECT regr_syy(x,y) FROM (VALUES 
(1,2),(2,3),(3,1)) a(x,y) → 2

        
    

Function Description Partial 
Mode

mode () WITHIN GROUP ( ORDER BY 
anyelement ) → anyelement

Computes the mode, the most frequent value of the aggregated argument 
(arbitrarily choosing the first one if there are multiple equally-frequent values). 
The aggregated argument must be of a sortable type.

No

percentile_cont ( fraction double precision 
) WITHIN GROUP ( ORDER BY double 
precision ) → double precision

percentile_cont ( fraction double precision 
) WITHIN GROUP ( ORDER BY interval ) 
→ interval

Computes the continuous percentile, a value corresponding to the specified 
fraction within the ordered set of aggregated argument values. This will 
interpolate between adjacent input items if needed.

No



Each of the “hypothetical-set” aggregates listed in Table 9.60 is associated with a window function of the same name defined in Section 9.22. In
each case, the aggregate's result is the value that the associated window function would have returned for the “hypothetical” row constructed from
args, if such a row had been added to the sorted group of rows represented by the sorted_args. For each of these functions, the list of direct
arguments given in args must match the number and types of the aggregated arguments given in sorted_args. Unlike most built-in aggregates,
these aggregates are not strict, that is they do not drop input rows containing nulls. Null values sort according to the rule specified in the ORDER
BY clause.

Table 9.60. Hypothetical-Set Aggregate Functions (NOT SUPPORTED)

Table 9.61. Grouping Operations

min ( see text ) → same 
as input type

Computes the minimum of the 
non-null input values. Available 
for any numeric, string, 
date/time, or enum type, as well 
as inet, interval, money, oid, 
pg_lsn, tid, and arrays of any of 
these types. (Arrays aren't 
supported)

Yes
    

range_agg ( value 
anyrange ) → 
anymultirange

Computes the union of the non-
null input values. (NOT 
SUPPORTED)

No

        

SELECT min(x::smallint) FROM (VALUES (1),
(2),(3)) a(x) → 1
SELECT min(x::integer) FROM (VALUES (1),(2),
(3)) a(x) → 1
SELECT min(x::bigint) FROM (VALUES (1),(2),
(3)) a(x) → 1
SELECT min(x::real) FROM (VALUES (1),(2),
(3)) a(x) → 1
SELECT min(x::double precision) FROM (VALUES 
(1),(2),(3)) a(x) → 1
SELECT min(x::numeric) FROM (VALUES (1),(2),
(3)) a(x) → 1
SELECT min(x) FROM (VALUES ('a'),('b'),
('c')) a(x) → 'a'
SELECT min(x::date) FROM (VALUES ('2001-01-
01'),('2001-02-03'),('2002-01-01')) a(x) → 
2001-01-01
SELECT min(x::timestamp) FROM (VALUES 
('2001-01-01 23:05:04'),('2001-01-01 
23:06:03'),('2001-01-01 23:59:00')) a(x) → 
2001-01-01 23:05:04
SELECT min(x::time) FROM (VALUES 
('10:00:05'),('11:00:01'),('12:50:00')) a(x) 
→ 10:00:05
SELECT min(x) FROM (VALUES (interval '1' 
day),(interval '2' day),(interval '3' day)) 
a(x) → 1 day

SELECT min(array[x,x]::smallint[]) FROM 
(VALUES (1),(2),(3)) a(x) → {1,1}
SELECT min(array[x,x]::integer[]) FROM 
(VALUES (1),(2),(3)) a(x) → {1,1}
SELECT min(array[x,x]::bigint[]) FROM 
(VALUES (1),(2),(3)) a(x) → {1,1}
SELECT min(array[x,x]::real[]) FROM (VALUES 
(1),(2),(3)) a(x) → {1,1}
SELECT min(array[x,x]::double precision[]) 
FROM (VALUES (1),(2),(3)) a(x) → {1,1}
SELECT min(array[x,x]::numeric[]) FROM 
(VALUES (1),(2),(3)) a(x) → {1,1}
SELECT min(array[x,x]) FROM (VALUES ('a'),
('b'),('c')) a(x) → {a,a}
SELECT min(array[x,x]::date[]) FROM (VALUES 
('2001-01-01'),('2001-02-03'),('2002-01-
01')) a(x) → {2001-01-01,2001-01-01}
SELECT min(array[x,x]::timestamp[]) FROM 
(VALUES ('2001-01-01 23:05:04'),('2001-01-01 
23:06:03'),('2001-01-01 23:59:00')) a(x) → 
{"2001-01-01 23:05:04","2001-01-01 
23:05:04"}
SELECT min(array[x,x]::time[]) FROM (VALUES 
('10:00:05'),('11:00:01'),('12:50:00')) a(x) 
→ {10:00:05,10:00:05}
SELECT min(array[x,x]) FROM (VALUES 
(interval '1' day),(interval '2' day),
(interval '3' day)) a(x) → {"1 day","1 day"}

        
    

stddev ( numeric_type ) → 
double precision for real or 
double precision, otherwise 
numeric

This is a historical alias for 
stddev_samp.

Yes
    

stddev_pop ( numeric_type ) → 
double precision for real or 
double precision, otherwise 
numeric

Computes the population standard 
deviation of the input values.

Yes
    

stddev_samp ( numeric_type ) 
→ double precision for real or 
double precision, otherwise 
numeric

Computes the sample standard 
deviation of the input values.

Yes
    

variance ( numeric_type ) → 
double precision for real or 
double precision, otherwise 
numeric

This is a historical alias for 
var_samp.

Yes
    

        

SELECT stddev(x) FROM (VALUES (1),
(2),(3)) a(x) → 
1.00000000000000000000

        
    

        

SELECT stddev_pop(x) FROM (VALUES 
(1),(2),(3)) a(x) → 
0.81649658092772603273

        
    

        

SELECT stddev_samp(x) FROM (VALUES 
(1),(2),(3)) a(x) → 
1.00000000000000000000

        
    

        

SELECT variance(x) FROM (VALUES 
(1),(2),(3)) a(x) → 
1.00000000000000000000

        
    

percentile_cont ( fractions double 
precision[] ) WITHIN GROUP ( ORDER 
BY double precision ) → double 
precision[]

percentile_cont ( fractions double 
precision[] ) WITHIN GROUP ( ORDER 
BY interval ) → interval[]

Computes multiple continuous percentiles. The result is an array of the same 
dimensions as the fractions parameter, with each non-null element replaced 
by the (possibly interpolated) value corresponding to that percentile.

No

percentile_disc ( fraction double precision 
) WITHIN GROUP ( ORDER BY 
anyelement ) → anyelement

Computes the discrete percentile, the first value within the ordered set of 
aggregated argument values whose position in the ordering equals or exceeds 
the specified fraction. The aggregated argument must be of a sortable type.

No

percentile_disc ( fractions double 
precision[] ) WITHIN GROUP ( ORDER 
BY anyelement ) → anyarray

Computes multiple discrete percentiles. The result is an array of the same 
dimensions as the fractions parameter, with each non-null element replaced 
by the input value corresponding to that percentile. The aggregated argument 
must be of a sortable type.

No

Function Description Partial 
Mode

rank ( args ) WITHIN GROUP ( ORDER BY 
sorted_args ) → bigint

Computes the rank of the hypothetical row, with gaps; that is, the row 
number of the first row in its peer group.

No

dense_rank ( args ) WITHIN GROUP ( 
ORDER BY sorted_args ) → bigint

Computes the rank of the hypothetical row, without gaps; this function 
effectively counts peer groups.

No

percent_rank ( args ) WITHIN GROUP ( 
ORDER BY sorted_args ) → double 
precision

Computes the relative rank of the hypothetical row, that is (rank - 1) / (total 
rows - 1). The value thus ranges from 0 to 1 inclusive.

No

cume_dist ( args ) WITHIN GROUP ( 
ORDER BY sorted_args ) → double 
precision

Computes the cumulative distribution, that is (number of rows preceding or 
peers with hypothetical row) / (total rows). The value thus ranges from 1/N 
to 1.

No



The grouping operations shown in Table 9.61 are used in conjunction with grouping sets (see Section 7.2.4) to distinguish result rows. The
arguments to the GROUPING function are not actually evaluated, but they must exactly match expressions given in the GROUP BY clause of the
associated query level. For example:

Here, the grouping value 0 in the first four rows shows that those have been grouped normally, over both the grouping columns. The value 1
indicates that model was not grouped by in the next-to-last two rows, and the value 3 indicates that neither make nor model was grouped by in the
last row (which therefore is an aggregate over all the input rows).

9.22. Window Functions

Window functions provide the ability to perform calculations across sets of rows that are related to the current query row. See Section 3.5 for an
introduction to this feature, and Section 4.2.8 for syntax details.

The built-in window functions are listed in Table 9.62. Note that these functions must be invoked using window function syntax, i.e., an OVER
clause is required.

In addition to these functions, any built-in or user-defined ordinary aggregate (i.e., not ordered-set or hypothetical-set aggregates) can be used as a
window function; see Section 9.21 for a list of the built-in aggregates. Aggregate functions act as window functions only when an OVER clause
follows the call; otherwise they act as plain aggregates and return a single row for the entire set.

Table 9.62. General-Purpose Window Functions

=> SELECT * FROM items_sold;
 make  | model | sales
-------+-------+-------
 Foo   | GT    |  10
 Foo   | Tour  |  20
 Bar   | City  |  15
 Bar   | Sport |  5
(4 rows)

=> SELECT make, model, GROUPING(make,model), sum(sales) FROM items_sold GROUP BY ROLLUP(make,model);
 make  | model | grouping | sum
-------+-------+----------+-----
 Foo   | GT    |        0 | 10
 Foo   | Tour  |        0 | 20
 Bar   | City  |        0 | 15
 Bar   | Sport |        0 | 5
 Foo   |       |        1 | 30
 Bar   |       |        1 | 20
       |       |        3 | 50
(7 rows)

range_intersect_agg ( 
value anyrange ) → 
anyrange

range_intersect_agg ( 
value anymultirange ) 
→ anymultirange

Computes the intersection of the 
non-null input values. (NOT 
SUPPORTED)

No

string_agg ( value text, 
delimiter text ) → text

string_agg ( value 
bytea, delimiter bytea ) 
→ bytea

Concatenates the non-null input 
values into a string. Each value 
after the first is preceded by the 
corresponding delimiter (if it's not 
null).

No
    

sum ( smallint ) → bigint

sum ( integer ) → bigint

sum ( bigint ) → 
numeric

sum ( numeric ) → 
numeric

sum ( real ) → real

sum ( double precision ) 
→ double precision

sum ( interval ) → 
interval

sum ( money ) → 
money

Computes the sum of the non-
null input values.

Yes
    

xmlagg ( xml ) → xml Concatenates the non-null XML 
input values (see Section 
9.15.1.7).

No

        

SELECT string_agg(x,'') FROM (VALUES ('a'),
('b'),('c')) a(x) → abc
SELECT string_agg(x::bytea,','::bytea) FROM 
(VALUES ('a'),('b'),('c')) a(x) → a,b,c

        
    

        

SELECT sum(x::smallint) FROM (VALUES (1),
(2),(3)) a(x) → 6
SELECT sum(x::integer) FROM (VALUES (1),(2),
(3)) a(x) → 6
SELECT sum(x::bigint) FROM (VALUES (1),(2),
(3)) a(x) → 6
SELECT sum(x::real) FROM (VALUES (1),(2),
(3)) a(x) → 6
SELECT sum(x::double precision) FROM (VALUES 
(1),(2),(3)) a(x) → 6
SELECT sum(x::numeric) FROM (VALUES (1),(2),
(3)) a(x) → 6
SELECT sum(x) FROM (VALUES (interval '1' 
day),(interval '2' day),(interval '3' day)) 
a(x) → 6 days

        
    

var_pop ( numeric_type ) → 
double precision for real or 
double precision, otherwise 
numeric

Computes the population variance 
of the input values (square of the 
population standard deviation).

Yes
    

var_samp ( numeric_type ) → 
double precision for real or 
double precision, otherwise 
numeric

Computes the sample variance of 
the input values (square of the 
sample standard deviation).

Yes
    

        

SELECT var_pop(x) FROM (VALUES (1),
(2),(3)) a(x) → 
0.66666666666666666667

        
    

        

SELECT var_samp(x) FROM (VALUES 
(1),(2),(3)) a(x) → 
1.00000000000000000000

        
    

Function Description

GROUPING ( 
group_by_expression(s) ) → 
integer

Returns a bit mask indicating which GROUP BY expressions are not included in the current grouping 
set. Bits are assigned with the rightmost argument corresponding to the least-significant bit; each bit is 0 
if the corresponding expression is included in the grouping criteria of the grouping set generating the 
current result row, and 1 if it is not included. (NOT SUPPORTED)

Function Description Examples

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions_window-functions


row_number () → bigint Returns the number of the current row within its partition, 
counting from 1.     

rank () → bigint Returns the rank of the current row, with gaps; that is, the 
row_number of the first row in its peer group.     

dense_rank () → bigint Returns the rank of the current row, without gaps; this function 
effectively counts peer groups.     

        

SELECT row_number() OVER 
(ORDER BY x) FROM (VALUES 
(4),(5),(6)) a(x) → [
1
2
3
]

        
    

        

SELECT rank() OVER (ORDER BY 
x) FROM (VALUES (4),(5),(5),
(6)) a(x) → [
1
2
2
4
]

        
    

        

SELECT dense_rank() OVER 
(ORDER BY x) FROM (VALUES 
(4),(5),(5),(6)) a(x) → [
1
2
2
3
]

        
    



percent_rank () → double 
precision

Returns the relative rank of the current row, that is (rank - 1) / 
(total partition rows - 1). The value thus ranges from 0 to 1 
inclusive.

    

cume_dist () → double 
precision

Returns the cumulative distribution, that is (number of partition 
rows preceding or peers with current row) / (total partition 
rows). The value thus ranges from 1/N to 1.

    

ntile ( num_buckets integer 
) → integer

Returns an integer ranging from 1 to the argument value, 
dividing the partition as equally as possible.     

        

SELECT percent_rank() OVER 
(ORDER BY x) FROM (VALUES 
(4),(5),(5),(6)) a(x) → [
0
0.3333333333333333
0.3333333333333333
1
]

        
    

        

SELECT cume_dist() OVER 
(ORDER BY x) FROM (VALUES 
(4),(5),(5),(6)) a(x) → [
0.25
0.75
0.75
1
]

        
    

        

SELECT ntile(2) OVER (ORDER 
BY x) FROM (VALUES (4),(5),
(5),(6)) a(x) → [
1
1
2
2
]

        
    



All of the functions listed in Table 9.62 depend on the sort ordering specified by the ORDER BY clause of the associated window definition. Rows
that are not distinct when considering only the ORDER BY columns are said to be peers. The four ranking functions (including cume_dist) are
defined so that they give the same answer for all rows of a peer group.

Note that first_value, last_value, and nth_value consider only the rows within the “window frame”, which by default contains the rows from the start
of the partition through the last peer of the current row. This is likely to give unhelpful results for last_value and sometimes also nth_value. You can
redefine the frame by adding a suitable frame specification (RANGE, ROWS or GROUPS) to the OVER clause. See Section 4.2.8 for more
information about frame specifications.

When an aggregate function is used as a window function, it aggregates over the rows within the current row's window frame. An aggregate used
with ORDER BY and the default window frame definition produces a “running sum” type of behavior, which may or may not be what's wanted. To
obtain aggregation over the whole partition, omit ORDER BY or use ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED
FOLLOWING. Other frame specifications can be used to obtain other effects.

Note
The SQL standard defines a RESPECT NULLS or IGNORE NULLS option for lead, lag, first_value, last_value, and nth_value. This is not
implemented in PostgreSQL: the behavior is always the same as the standard's default, namely RESPECT NULLS. Likewise, the standard's FROM
FIRST or FROM LAST option for nth_value is not implemented: only the default FROM FIRST behavior is supported. (You can achieve the result of
FROM LAST by reversing the ORDER BY ordering.)

9.23. Subquery Expressions

This section describes the SQL-compliant subquery expressions available in PostgreSQL. All of the expression forms documented in this section
return Boolean (true/false) results.

9.23.1. EXISTS

EXISTS (subquery)
The argument of EXISTS is an arbitrary SELECT statement, or subquery. The subquery is evaluated to determine whether it returns any rows. If it
returns at least one row, the result of EXISTS is “true”; if the subquery returns no rows, the result of EXISTS is “false”.

The subquery can refer to variables from the surrounding query, which will act as constants during any one evaluation of the subquery.

The subquery will generally only be executed long enough to determine whether at least one row is returned, not all the way to completion. It is
unwise to write a subquery that has side effects (such as calling sequence functions); whether the side effects occur might be unpredictable.

Since the result depends only on whether any rows are returned, and not on the contents of those rows, the output list of the subquery is normally
unimportant. A common coding convention is to write all EXISTS tests in the form EXISTS(SELECT 1 WHERE ...). There are exceptions to this rule
however, such as subqueries that use INTERSECT.

This simple example is like an inner join on col2, but it produces at most one output row for each tab1 row, even if there are several matching tab2
rows:

Example

9.23.2. IN

expression IN (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand expression is evaluated and compared to
each row of the subquery result. The result of IN is “true” if any equal subquery row is found. The result is “false” if no equal row is found (including
the case where the subquery returns no rows).

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one right-hand row yields null, the result of the
IN construct will be null, not false. This is in accordance with SQL's normal rules for Boolean combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.

row_constructor IN (subquery) (NOT SUPPORTED)

The left-hand side of this form of IN is a row constructor, as described in Section 4.2.13. The right-hand side is a parenthesized subquery, which
must return exactly as many columns as there are expressions in the left-hand row. The left-hand expressions are evaluated and compared row-
wise to each row of the subquery result. The result of IN is “true” if any equal subquery row is found. The result is “false” if no equal row is found
(including the case where the subquery returns no rows).

SELECT col1
FROM tab1
WHERE EXISTS (SELECT 1 FROM tab2 WHERE col2 = tab1.col2);

SELECT x FROM (VALUES (1),(2),(3)) a(x) WHERE EXISTS (SELECT 1 FROM (VALUES (3),(4),(5)) b(y) WHERE x=y) → [
3
]

lag ( value anycompatible 
[, offset integer [, default 
anycompatible ]] ) → 
anycompatible

Returns value evaluated at the row that is offset rows before 
the current row within the partition; if there is no such row, 
instead returns default (which must be of a type compatible 
with value). Both offset and default are evaluated with respect 
to the current row. If omitted, offset defaults to 1 and default to 
NULL.

    

lead ( value anycompatible 
[, offset integer [, default 
anycompatible ]] ) → 
anycompatible

Returns value evaluated at the row that is offset rows after the 
current row within the partition; if there is no such row, instead 
returns default (which must be of a type compatible with value). 
Both offset and default are evaluated with respect to the 
current row. If omitted, offset defaults to 1 and default to NULL.

    

first_value ( value 
anyelement ) → 
anyelement

Returns value evaluated at the row that is the first row of the 
window frame.     

        

SELECT lag(x) OVER (ORDER BY 
x) FROM (VALUES (4),(5),(5),
(6)) a(x) → [
NULL
4
5
5
]

        
    

        

SELECT lead(x) OVER (ORDER 
BY x) FROM (VALUES (4),(5),
(5),(6)) a(x) → [
5
5
6
NULL
]

        
    

        

SELECT first_value(x) OVER 
(ORDER BY x) FROM (VALUES 
(4),(5),(5),(6)) a(x) → [
4
4
4
4
]

        
    

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions_subquery-expressions


As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions. Two rows are considered equal if all their
corresponding members are non-null and equal; the rows are unequal if any corresponding members are non-null and unequal; otherwise the result
of that row comparison is unknown (null). If all the per-row results are either unequal or null, with at least one null, then the result of IN is null.

Example

9.23.3. NOT IN

expression NOT IN (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand expression is evaluated and compared to
each row of the subquery result. The result of NOT IN is “true” if only unequal subquery rows are found (including the case where the subquery
returns no rows). The result is “false” if any equal row is found.

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one right-hand row yields null, the result of the
NOT IN construct will be null, not true. This is in accordance with SQL's normal rules for Boolean combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.

row_constructor NOT IN (subquery) (NOT SUPPORTED)

The left-hand side of this form of NOT IN is a row constructor, as described in Section 4.2.13. The right-hand side is a parenthesized subquery,
which must return exactly as many columns as there are expressions in the left-hand row. The left-hand expressions are evaluated and compared
row-wise to each row of the subquery result. The result of NOT IN is “true” if only unequal subquery rows are found (including the case where the
subquery returns no rows). The result is “false” if any equal row is found.

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions. Two rows are considered equal if all their
corresponding members are non-null and equal; the rows are unequal if any corresponding members are non-null and unequal; otherwise the result
of that row comparison is unknown (null). If all the per-row results are either unequal or null, with at least one null, then the result of NOT IN is null.

Example

9.23.4. ANY/SOME

expression operator ANY (subquery)
expression operator SOME (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand expression is evaluated and compared to
each row of the subquery result using the given operator, which must yield a Boolean result. The result of ANY is “true” if any true result is obtained.
The result is “false” if no true result is found (including the case where the subquery returns no rows).

SOME is a synonym for ANY. IN is equivalent to = ANY.

Note that if there are no successes and at least one right-hand row yields null for the operator's result, the result of the ANY construct will be null,
not false. This is in accordance with SQL's normal rules for Boolean combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.

row_constructor operator ANY (subquery) (NOT SUPPORTED)
row_constructor operator SOME (subquery) (NOT SUPPORTED)

The left-hand side of this form of ANY is a row constructor, as described in Section 4.2.13. The right-hand side is a parenthesized subquery, which
must return exactly as many columns as there are expressions in the left-hand row. The left-hand expressions are evaluated and compared row-
wise to each row of the subquery result, using the given operator. The result of ANY is “true” if the comparison returns true for any subquery row.
The result is “false” if the comparison returns false for every subquery row (including the case where the subquery returns no rows). The result is
NULL if no comparison with a subquery row returns true, and at least one comparison returns NULL.

See Section 9.24.5 for details about the meaning of a row constructor comparison.

Example

9.23.5. ALL

expression operator ALL (subquery)

SELECT x FROM (VALUES (1),(2),(3)) a(x) WHERE x IN (SELECT y FROM (VALUES (3),(4),(5)) b(y)) → [
3
]

SELECT x FROM (VALUES (1),(2),(3)) a(x) WHERE x NOT IN (SELECT y FROM (VALUES (3),(4),(5)) b(y)) ORDER BY x → [
1
2
]

SELECT x FROM (VALUES (1),(2),(3)) a(x) WHERE x = ANY (SELECT y FROM (VALUES (3),(4),(5)) b(y)) → [
3
]

last_value ( value 
anyelement ) → 
anyelement

Returns value evaluated at the row that is the last row of the 
window frame.     

nth_value ( value 
anyelement, n integer ) → 
anyelement

Returns value evaluated at the row that is the n'th row of the 
window frame (counting from 1); returns NULL if there is no 
such row.

    

        

SELECT last_value(x) OVER 
(ORDER BY x) FROM (VALUES 
(4),(5),(5),(6)) a(x) → [
4
5
5
6
]

        
    

        

SELECT nth_value(x,2) OVER 
(ORDER BY x) FROM (VALUES 
(4),(5),(5),(6)) a(x) → [
NULL
5
5
5
]

        
    



The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand expression is evaluated and compared to
each row of the subquery result using the given operator, which must yield a Boolean result. The result of ALL is “true” if all rows yield true
(including the case where the subquery returns no rows). The result is “false” if any false result is found. The result is NULL if no comparison with a
subquery row returns false, and at least one comparison returns NULL.

NOT IN is equivalent to <> ALL.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.

row_constructor operator ALL (subquery) (NOT SUPPORTED)

The left-hand side of this form of ALL is a row constructor, as described in Section 4.2.13. The right-hand side is a parenthesized subquery, which
must return exactly as many columns as there are expressions in the left-hand row. The left-hand expressions are evaluated and compared row-
wise to each row of the subquery result, using the given operator. The result of ALL is “true” if the comparison returns true for all subquery rows
(including the case where the subquery returns no rows). The result is “false” if the comparison returns false for any subquery row. The result is
NULL if no comparison with a subquery row returns false, and at least one comparison returns NULL.

See Section 9.24.5 for details about the meaning of a row constructor comparison.

Example

9.23.6. Single-Row Comparison

row_constructor operator (subquery) (NOT SUPPORTED)

The left-hand side is a row constructor, as described in Section 4.2.13. The right-hand side is a parenthesized subquery, which must return exactly
as many columns as there are expressions in the left-hand row. Furthermore, the subquery cannot return more than one row. (If it returns zero
rows, the result is taken to be null.) The left-hand side is evaluated and compared row-wise to the single subquery result row.

See Section 9.24.5 for details about the meaning of a row constructor comparison.

9.24. Row and Array Comparisons

This section describes several specialized constructs for making multiple comparisons between groups of values. These forms are syntactically
related to the subquery forms of the previous section, but do not involve subqueries. The forms involving array subexpressions are PostgreSQL
extensions; the rest are SQL-compliant. All of the expression forms documented in this section return Boolean (true/false) results.

9.24.1. IN

expression IN (value [, ...])
The right-hand side is a parenthesized list of expressions. The result is “true” if the left-hand expression's result is equal to any of the right-hand
expressions. This is a shorthand notation for

expression = value1
OR
expression = value2
OR
...
Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one right-hand expression yields null, the
result of the IN construct will be null, not false. This is in accordance with SQL's normal rules for Boolean combinations of null values.

Example

9.24.2. NOT IN

expression NOT IN (value [, ...])
The right-hand side is a parenthesized list of expressions. The result is “true” if the left-hand expression's result is unequal to all of the right-hand
expressions. This is a shorthand notation for

expression <> value1
AND
expression <> value2

SELECT x FROM (VALUES (1),(2),(3)) a(x) WHERE x <> ALL (SELECT y FROM (VALUES (3),(4),(5)) b(y)) ORDER BY x → [
1
2
]

SELECT x FROM (VALUES (1),(2),(3)) a(x) WHERE x IN (1,2) ORDER BY x → [
1
2
]

SELECT x IN (y, z) FROM (VALUES (1,1,2),(2,3,null),(3,4,5),(4,null,null)) a(x,y,z) ORDER BY x → [
true
NULL
false
NULL
]

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions_row-and-array-comparisons


AND
...
Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one right-hand expression yields null, the
result of the NOT IN construct will be null, not true as one might naively expect. This is in accordance with SQL's normal rules for Boolean
combinations of null values.

Tip
x NOT IN y is equivalent to NOT (x IN y) in all cases. However, null values are much more likely to trip up the novice when working with NOT IN
than when working with IN. It is best to express your condition positively if possible.

Example

9.24.3. ANY/SOME (array)

expression operator ANY (array expression)
expression operator SOME (array expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand expression is evaluated and compared to each
element of the array using the given operator, which must yield a Boolean result. The result of ANY is “true” if any true result is obtained. The result
is “false” if no true result is found (including the case where the array has zero elements).

If the array expression yields a null array, the result of ANY will be null. If the left-hand expression yields null, the result of ANY is ordinarily null
(though a non-strict comparison operator could possibly yield a different result). Also, if the right-hand array contains any null elements and no true
comparison result is obtained, the result of ANY will be null, not false (again, assuming a strict comparison operator). This is in accordance with
SQL's normal rules for Boolean combinations of null values.

SOME is a synonym for ANY.

Example

9.24.4. ALL (array)

expression operator ALL (array expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand expression is evaluated and compared to each
element of the array using the given operator, which must yield a Boolean result. The result of ALL is “true” if all comparisons yield true (including
the case where the array has zero elements). The result is “false” if any false result is found.

If the array expression yields a null array, the result of ALL will be null. If the left-hand expression yields null, the result of ALL is ordinarily null
(though a non-strict comparison operator could possibly yield a different result). Also, if the right-hand array contains any null elements and no false
comparison result is obtained, the result of ALL will be null, not true (again, assuming a strict comparison operator). This is in accordance with
SQL's normal rules for Boolean combinations of null values.

Example

9.24.5. Row Constructor Comparison (NOT SUPPORTED)

row_constructor operator row_constructor

Each side is a row constructor, as described in Section 4.2.13. The two row constructors must have the same number of fields. The given operator
is applied to each pair of corresponding fields. (Since the fields could be of different types, this means that a different specific operator could be
selected for each pair.) All the selected operators must be members of some B-tree operator class, or be the negator of an = member of a B-tree
operator class, meaning that row constructor comparison is only possible when the operator is =, <>, <, <=, >, or >=, or has semantics similar to
one of these.

SELECT x FROM (VALUES (1),(2),(3)) a(x) WHERE x NOT IN (1,2) ORDER BY x → [
3
]

SELECT x NOT IN (y, z) FROM (VALUES (1,1,2),(2,3,null),(3,4,5),(4,null,null)) a(x,y,z) ORDER BY x → [
false
NULL
true
NULL
]

SELECT x FROM (VALUES (1),(2),(3)) a(x) WHERE x = ANY (array[1,2]) ORDER BY x → [
1
2
]
]

SELECT x FROM (VALUES (1),(2),(3)) a(x) WHERE x <> ALL (array[1,2]) ORDER BY x → [
3
]
]



The = and <> cases work slightly differently from the others. Two rows are considered equal if all their corresponding members are non-null and
equal; the rows are unequal if any corresponding members are non-null and unequal; otherwise the result of the row comparison is unknown (null).

For the <, <=, > and >= cases, the row elements are compared left-to-right, stopping as soon as an unequal or null pair of elements is found. If
either of this pair of elements is null, the result of the row comparison is unknown (null); otherwise comparison of this pair of elements determines
the result. For example, ROW(1,2,NULL) < ROW(1,3,0) yields true, not null, because the third pair of elements are not considered.

Note
Prior to PostgreSQL 8.2, the <, <=, > and >= cases were not handled per SQL specification. A comparison like ROW(a,b) < ROW(c,d) was
implemented as a < c AND b < d whereas the correct behavior is equivalent to a < c OR (a = c AND b < d).

row_constructor IS DISTINCT FROM row_constructor

This construct is similar to a <> row comparison, but it does not yield null for null inputs. Instead, any null value is considered unequal to (distinct
from) any non-null value, and any two nulls are considered equal (not distinct). Thus the result will either be true or false, never null.

row_constructor IS NOT DISTINCT FROM row_constructor

This construct is similar to a = row comparison, but it does not yield null for null inputs. Instead, any null value is considered unequal to (distinct
from) any non-null value, and any two nulls are considered equal (not distinct). Thus the result will always be either true or false, never null.

9.24.6. Composite Type Comparison (NOT SUPPORTED)

record operator record

The SQL specification requires row-wise comparison to return NULL if the result depends on comparing two NULL values or a NULL and a non-
NULL. PostgreSQL does this only when comparing the results of two row constructors (as in Section 9.24.5) or comparing a row constructor to the
output of a subquery (as in Section 9.23). In other contexts where two composite-type values are compared, two NULL field values are considered
equal, and a NULL is considered larger than a non-NULL. This is necessary in order to have consistent sorting and indexing behavior for composite
types.

Each side is evaluated and they are compared row-wise. Composite type comparisons are allowed when the operator is =, <>, <, <=, > or >=, or
has semantics similar to one of these. (To be specific, an operator can be a row comparison operator if it is a member of a B-tree operator class, or
is the negator of the = member of a B-tree operator class.) The default behavior of the above operators is the same as for IS [ NOT ] DISTINCT
FROM for row constructors (see Section 9.24.5).

To support matching of rows which include elements without a default B-tree operator class, the following operators are defined for composite type
comparison: *= , *<> , *< , *<= , *> , and *>= . These operators compare the internal binary representation of the two rows. Two rows might
have a different binary representation even though comparisons of the two rows with the equality operator is true. The ordering of rows under these
comparison operators is deterministic but not otherwise meaningful. These operators are used internally for materialized views and might be useful
for other specialized purposes such as replication and B-Tree deduplication (see Section 64.4.3). They are not intended to be generally useful for
writing queries, though.

9.25. Set Returning Functions

This section describes functions that possibly return more than one row. The most widely used functions in this class are series generating
functions, as detailed in Table 9.63 and Table 9.64. Other, more specialized set-returning functions are described elsewhere in this manual. See
Section 7.2.1.4 for ways to combine multiple set-returning functions.

Table 9.63. Series Generating Functions

When step is positive, zero rows are returned if start is greater than stop. Conversely, when step is negative, zero rows are returned if start is less
than stop. Zero rows are also returned if any input is NULL. It is an error for step to be zero. Some examples follow:

Function Description

generate_series ( start integer, stop integer [, step integer ] ) → setof integer

generate_series ( start bigint, stop bigint [, step bigint ] ) → setof bigint

generate_series ( start numeric, stop numeric [, step numeric ] ) → setof 
numeric

Generates a series of values from start to stop, with a 
step size of step. step defaults to 1.

generate_series ( start timestamp, stop timestamp, step interval ) → setof 
timestamp

generate_series ( start timestamp with time zone, stop timestamp with time 
zone, step interval ) → setof timestamp with time zone

Generates a series of values from start to stop, with a 
step size of step.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions_set-returning-functions


Table 9.64. Subscript Generating Functions (NOT SUPPORTED)

9.26. System Information Functions and Operators (NOT SUPPORTED)

9.27. System Administration Functions (NOT SUPPORTED)

9.28. Trigger Functions (NOT SUPPORTED)

SELECT * FROM generate_series(2,4) a → [
2
3
4
]

SELECT * FROM generate_series(5,1,-2) a → [
5
3
1
]

SELECT * FROM generate_series(4,3) a → [
]

SELECT * FROM generate_series(1.1, 4, 1.3) a → [
1.1
2.4
3.7
]

-- this example relies on the date-plus-integer operator:
SELECT date '2004-02-05' + s.a AS dates FROM generate_series(0,14,7) AS s(a) → [
2004-02-05
2004-02-12
2004-02-19
]

SELECT * FROM generate_series('2008-03-01 00:00'::timestamp, '2008-03-04 12:00', '10 hours') a → [
2008-03-01 00:00:00
2008-03-01 10:00:00
2008-03-01 20:00:00
2008-03-02 06:00:00
2008-03-02 16:00:00
2008-03-03 02:00:00
2008-03-03 12:00:00
2008-03-03 22:00:00
2008-03-04 08:00:00
]

-- basic usage:
#SELECT generate_subscripts('{NULL,1,NULL,2}'::int[], 1) AS s → [
1
2
3
4
]

SELECT a AS array, s AS subscript, a[s] AS value FROM (SELECT generate_subscripts(a, 1) AS s, a FROM (VALUES 
(array[-1,-2]),(array[100,200,300])) s(a)) foo;

Function Description

generate_subscripts ( array anyarray, dim integer ) 
→ setof integer

Generates a series comprising the valid subscripts of the dim'th dimension of the 
given array.

generate_subscripts ( array anyarray, dim integer, 
reverse boolean ) → setof integer

Generates a series comprising the valid subscripts of the dim'th dimension of the 
given array. When reverse is true, returns the series in reverse order.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions_system-information-functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions_system-administration-functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions_trigger-functions


9.29. Event Trigger Functions (NOT SUPPORTED)

9.30. Statistics Information Functions (NOT SUPPORTED)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions_event-trigger-functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions_statistics-information-functions


Dump data form PostgreSQL

Warning

At the moment, YDB's compatibility with PostgreSQL is under development, so not all PostgreSQL constructs and functions are
supported yet. PostgreSQL compatibility is available for testing in the form of a Docker container, which can be deployed by following
these instructions.

Data from PostgreSQL can be migrated to YDB using utilities such as pg_dump, psql, and YDB CLI. The pg_dump and psql utilities are installed
with PostgreSQL. YDB CLI is YDB's command-line client, which is installed separately.

To do this, you need to:

1. Create a data dump using pg_dump with the following parameters:

--inserts  — to add data using the INSERT command, instead of the COPY protocol.

--column-inserts  — to add data using the INSERT command with column names.

--rows-per-insert=1000  — to insert data in batches to speed up the process.

--encoding=utf_8  — YDB only supports string data in UTF-8.

2. Convert the dump to a format supported by YDB using the ydb tools pg-convert  command from YDB CLI.

3. Load the result into YDB in PostgreSQL compatibility mode.

pg-convert command

The ydb tools pg-convert  command reads a dump file or standard input created by the pg_dump utility, performs transformations, and outputs
to standard output a dump that can be sent to YDB's PostgreSQL-compatible middleware.

ydb tools pg-convert  performs the following transformations:

Moving the creation of the primary key into the body of the CREATE TABLE command.
Removing the public  schema from table names.

Deleting the WITH (...)  section in CREATE TABLE .

Commenting out unsupported constructs (optionally):

SELECT pg_catalog.set_config.*

ALTER TABLE

If the CLI cannot find a table's primary key, it will automatically create a BIGSERIAL column named __ydb_stub_id  as the primary key.

The general form of the command:

global options  — global parameters.

options  — subcommand parameters.

subcommand parameters

Warning

When loading large dumps, reading from standard input is not recommended because the entire dump will be stored in RAM. It is
advised to use the file option, in which case the CLI will only keep a small portion of the dump in memory.

Example of importing a dump into YDB

As an example, data generated by pgbench will be loaded.

ydb [global options...] tools pg-convert [options...]

Name Description

-i The name of the file containing the original dump. If the option is not specified, the dump is read from 
standard input.

--ignore-unsupported When this option is specified, unsupported constructs will be commented out in the resulting dump and 
duplicated in standard error. By default, if unsupported constructs are detected, the command returns an 
error. This does not apply to ALTER TABLE  expressions that define a table's primary key, as they are 
commented out in any case.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_import
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_import_pg-convert
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_import_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_import_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_docker-connect
https://www.postgresql.org/docs/current/app-pgdump.html
https://www.postgresql.org/docs/current/app-psql.html
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_index
https://www.postgresql.org/docs/current/app-pgdump.html
https://www.postgresql.org/docs/current/app-psql.html
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_install
https://www.postgresql.org/docs/current/app-pgdump.html
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_statements_insert_into
https://www.postgresql.org/docs/current/sql-copy.html
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_statements_insert_into
https://en.wikipedia.org/wiki/UTF-8
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_index
https://www.postgresql.org/docs/current/app-pgdump.html
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_statements_create_table
https://www.postgresql.org/docs/current/datatype-numeric.html#DATATYPE-SERIAL
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_import_options
https://www.postgresql.org/docs/current/pgbench.html


1. Start Docker containers with PostgreSQL and YDB:

Information about the started Docker containers:

2. Generate data through pgbench:

3. Create a dump of the database using pg_dump:

4. Load the dump into YDB:

This command uses YDB CLI to convert the dump.sql file to the format readable by the YDB PostgreSQL compatibility layer. The converted
dump file is then redirected to the psql  utility for loading the data into YDB via PostgreSQL protocol.

docker run --name postgres_container \
    -e POSTGRES_USER=pgroot -e POSTGRES_PASSWORD=1234 \
    -e POSTGRES_DB=local \
    -p 5433:5433 -d postgres:14 -c 'port=5433'
docker run --name ydb-postgres -d --pull always -p 5432:5432 -p 8765:8765 \
    -e POSTGRES_USER=ydbroot -e POSTGRES_PASSWORD=4321 \
    -e YDB_FEATURE_FLAGS=enable_temp_tables,enable_table_pg_types \
    -e YDB_USE_IN_MEMORY_PDISKS=true \
    ghcr.io/ydb-platform/local-ydb:latest

docker exec postgres_container pgbench postgres://pgroot:1234@localhost:5433/local -i

docker exec postgres_container pg_dump postgres://pgroot:1234@localhost:5433/local --inserts \
    --column-inserts --encoding=utf_8 --rows-per-insert=1000 > dump.sql

ydb tools pg-convert --ignore-unsupported -i dump.sql | psql postgresql://ydbroot:4321@localhost:5432/local

Database PostgreSQL YDB

Container name postgres_container ydb-postgres

Address postgres://pgroot:1234@localhost:5433/local postgresql://ydbroot:4321@localhost:5432/local

Port 5433 5432

User name pgroot ydbroot

Password 1234 4321

https://www.postgresql.org/docs/current/pgbench.html
https://www.postgresql.org/docs/current/app-pgdump.html


CREATE TABLE

Warning

At the moment, YDB's compatibility with PostgreSQL is under development, so not all PostgreSQL constructs and functions are
supported yet. PostgreSQL compatibility is available for testing in the form of a Docker container, which can be deployed by following
these instructions.

The CREATE TABLE  statement is used to create an empty table in the current database. The syntax of the command is:

When creating a table, you can specify:

1. Table Type: TEMPORARY  / TEMP  – a temporary table that is automatically deleted at the end of the session. If this parameter is not set (left
empty), a permanent table is created. Any indexes created on a temporary table will also be deleted at the end of the session, which means
that they are temporary as well. A temporary table and a permanent table with the same name are allowed, in which case a temporary table
will be selected.

2. Table Name: <table name>  – you can use English letters in lowercase, numbers, underscores and dollar signs ($). For example, the table
name "People" will be stored as "people". For more information, see Identifiers and Key Words.

3. Column Name: <column name>  – the same naming rules apply as for table names.

4. Data Type: <column data type>  – standard PostgreSQL data types are specified.

5. Collation Rule: COLLATE  – collation rules allow setting sorting order and character classification features in individual columns or even when
performing individual operations. Sortable types include: text , varchar , and char . You can specify the locale (e.g., en_US , ru_RU ) used
to determine the sorting and string comparison rules in the specified columns.

6. Table's Primary Key: PRIMARY KEY  – a mandatory condition when creating a table in YDB's PostgreSQL compatibility mode.

7. Table-level Constraints (there can be multiple, delimited by commas): CONSTRAINT  – this type of constraint is used as an alternative syntax to
column constraints, or when the same constraint conditions need to be applied to multiple columns. To specify a constraint, you need to state:

The keyword CONSTRAINT .

The constraint name <constraint name> . The rules for creating an identifier for the constraint are the same as for table names and
column names.

The constraint. For example, a primary key constraint can be defined for a single column as PRIMARY KEY (<column name>)  or for
multiple columns as a composite key: PRIMARY KEY (<column name1>, <column name2>, ...) .

Creating two tables with primary key autoincrement

CREATE [TEMPORARY | TEMP] TABLE <table name> (

<column name> <column data type> [COLLATE][PRIMARY KEY]

[CONSTRAINT  <constraint name> [PRIMARY KEY <column name>],
...]

);

Table people Table social_card

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_statements_create_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_statements_create_table_create_table_pk_serial
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_docker-connect
https://www.postgresql.org/docs/current/sql-syntax-lexical.html#SQL-SYNTAX-IDENTIFIERS
https://www.postgresql.org/docs/14/datatype.html
https://www.postgresql.org/docs/current/collation.html


In this example, we used the pseudo data type Serial  – it's a convenient and straightforward way to create an auto-increment that automatically
increases by 1 each time a new row is added to the table.

Creating a table with constraints

In this example, we created the "people" table with a constraint block ( CONSTRAINT ), where we defined a primary key ( PRIMARY KEY ) consisting of
the "id" column. An alternative notation could look like this: PRIMARY KEY(id)  without mentioning the CONSTRAINT  keyword.

Creating a temporary table

The temporary table is defined using the TEMPORARY  or TEMP  keywords.

Creating a table with sorting conditions

In this example, the "name" and "lastname" columns use sorting with en_US  localization.

Note

Unlike PostgreSQL, YDB uses optimistic locking. This means that transactions check the conditions for the necessary locks at the end
of their operation, not at the beginning. If the lock has been violated during the transaction's execution, such a transaction will end with
a Transaction locks invalidated  error. In this case, you can try to execute a similar transaction again.

CREATE TABLE people (
    id                    Serial,
    name                  Text NOT NULL,
    lastname              Text NOT NULL,
    age                   Int,
    country               Text,
    state                 Text,
    city                  Text,
    birthday              Date,
    sex                   Text NOT NULL,
    social_card_number    Int,
    CONSTRAINT pk PRIMARY KEY(id)
);

CREATE TEMPORARY TABLE people (
    id serial PRIMARY KEY,
    name TEXT NOT NULL
);

CREATE TABLE people (
    id                   Serial PRIMARY KEY,
    name                 Text COLLATE "en_US",
    lastname             Text COLLATE "en_US",
    age                  Int,
    country              Text,
    state                Text,
    city                 Text,
    birthday             Date,
    sex                  Text,
    social_card_number   Int
);

        

        

CREATE TABLE people (
    id                 Serial PRIMARY KEY,
    name               Text,
    lastname           Text,
    age                Int,
    country            Text,
    state              Text,
    city               Text,
    birthday           Date,
    sex                Text,
    social_card_number Int
);

        
    

        

CREATE TABLE social_card (
    id                   Serial PRIMARY KEY,
    social_card_number   Int,
    card_holder_name     Text,
    card_holder_lastname Text,
    issue                Date,
    expiry               Date,
    issuing_authority    Text,
    category             Text
);

        
    

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_statements_create_table_create_table_constraint_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_statements_create_table_create_table_temp_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_statements_create_table_create_table_collate


DROP TABLE

Warning

At the moment, YDB's compatibility with PostgreSQL is under development, so not all PostgreSQL constructs and functions are
supported yet. PostgreSQL compatibility is available for testing in the form of a Docker container, which can be deployed by following
these instructions.

Syntax of the DROP TABLE  statement:

The DROP TABLE <table name>;  statement is used to delete a table. For example: DROP TABLE people; . If the table being deleted does not
exist – an error message will be displayed:

In a number of scenarios, such behavior is not required. For example, if we want to ensure the creation of a new table by deleting the previous one
within a single SQL script or a sequence of SQL commands. In such cases, the instruction DROP TABLE IF EXISTS <table name>  is used. If the
table does not exist, the instruction will return a DROP TABLE  message, not an error.

Note

Unlike PostgreSQL, YDB uses optimistic locking. This means that transactions check the conditions for the necessary locks at the end
of their operation, not at the beginning. If the lock has been violated during the transaction's execution, such a transaction will end with
a Transaction locks invalidated  error. In this case, you can try to execute a similar transaction again.

DROP TABLE [IF EXISTS] <table name>;

Error: Cannot find table '...' because it does not exist or you do not have access permissions.
Please check correctness of table path and user permissions., code: 2003.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_statements_drop_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_docker-connect


DELETE FROM

Warning

At the moment, YDB's compatibility with PostgreSQL is under development, so not all PostgreSQL constructs and functions are
supported yet. PostgreSQL compatibility is available for testing in the form of a Docker container, which can be deployed by following
these instructions.

Syntax of the DELETE FROM  statement:

To delete a row from a table based on a specific column value, the construction DELETE FROM <table name> WHERE <column name><condition>
<value/range>  is used.

Warning

Note that the use of the WHERE ...  clause is optional, so when working with DELETE FROM  it is very important to avoid accidentally
executing the command before specifying the WHERE ...  clause.

Note

Unlike PostgreSQL, YDB uses optimistic locking. This means that transactions check the conditions for the necessary locks at the end
of their operation, not at the beginning. If the lock has been violated during the transaction's execution, such a transaction will end with
a Transaction locks invalidated  error. In this case, you can try to execute a similar transaction again.

DELETE FROM <table name>
WHERE <column name><condition><value/range>;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_statements_delete_from
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_docker-connect


INSERT INTO

Warning

At the moment, YDB's compatibility with PostgreSQL is under development, so not all PostgreSQL constructs and functions are
supported yet. PostgreSQL compatibility is available for testing in the form of a Docker container, which can be deployed by following
these instructions.

Syntax of the INSERT INTO  statement:

The INSERT INTO  statement is adds rows to a table. It can insert one or several rows in a single execution. Example of inserting a single row into
the "people" table:

In this query, we did not specify the id  column and did not assign a value to it. This is intentional, as the "id" column in the "people" table is set to
the Serial  data type. When executing the INSERT INTO  statement, the value of the "id" column will be assigned automatically, taking into
account previous values, the current "id" value will be incremented.

For inserting multiple rows into a table, the same construction is used with the enumeration of groups of data to be inserted, separated by commas:

In both examples, to specify the release date of the movie, we used the CAST()  function, which is used to convert one data type to another. In this
case, using the keyword AS  and the data type Date , we explicitly indicated that we want to convert the string representation of the date in
ISO8601 format.

You can specify the required data type, for example, DATE , by using the type cast operator :: , which is a PostgreSQL-specific syntax for explicit
conversion of a value from one data type to another. This is in contrast to the CAST  function, which is used more broadly across different SQL
databases for the same purpose. An example of using the ::  operator might look like this: '2023-01-01'::DATE , which explicitly converts the
string to a DATE  type, ensuring the database treats the value as a date. This explicit casting with ::  is particularly useful when you want to
override implicit type conversion rules of the database.

An example of using the ::  operator might look like this:

Note

Unlike PostgreSQL, YDB uses optimistic locking. This means that transactions check the conditions for the necessary locks at the end
of their operation, not at the beginning. If the lock has been violated during the transaction's execution, such a transaction will end with
a Transaction locks invalidated  error. In this case, you can try to execute a similar transaction again.

INSERT INTO <table name> (<column name>, ...)
VALUES (<value>);

INSERT INTO people (name, lastname, age, country, state, city, birthday, sex)
VALUES ('John', 'Doe', 30, 'USA', 'California', 'Los Angeles', CAST('1992-01-15' AS Date), 'Male');

INSERT INTO people (name, lastname, age, country, state, city, birthday, sex)
VALUES
    ('Jane', 'Smith', 25, 'Canada', 'Ontario', 'Toronto', CAST('1997-08-23' AS Date), 'Female'),
    ('Alice', 'Johnson', 28, 'UK', 'England', 'London', CAST('1994-05-05' AS Date), 'Female'),
    ('Bob', 'Brown', 40, 'USA', 'Texas', 'Dallas', CAST('1982-12-10' AS Date), 'Male'),
    ('Charlie', 'Davis', 35, 'Canada', 'Quebec', 'Montreal', CAST('1987-02-17' AS Date), 'Male'),
    ('Eve', 'Martin', 29, 'UK', 'Scotland', 'Edinburgh', CAST('1993-11-21' AS Date), 'Female'),
    ('Frank', 'White', 45, 'USA', 'Florida', 'Miami', CAST('1977-03-14' AS Date), 'Male'),
    ('Grace', 'Clark', 50, 'Canada', 'British Columbia', 'Vancouver', CAST('1972-04-26' AS Date), 'Female'),
    ('Hank', 'Miller', 33, 'UK', 'Wales', 'Cardiff', CAST('1989-07-30' AS Date), 'Male'),
    ('Ivy', 'Garcia', 31, 'USA', 'Arizona', 'Phoenix', CAST('1991-09-05' AS Date), 'Female'),
    ('Jack', 'Anderson', 22, 'Canada', 'Manitoba', 'Winnipeg', CAST('2000-06-13' AS Date), 'Male'),
    ('Kara', 'Thompson', 19, 'UK', 'Northern Ireland', 'Belfast', CAST('2003-10-18' AS Date), 'Female'),
    ('Liam', 'Martinez', 55, 'USA', 'New York', 'New York City', CAST('1967-01-29' AS Date), 'Male'),
    ('Molly', 'Robinson', 40, 'Canada', 'Alberta', 'Calgary', CAST('1982-12-01' AS Date), 'Female'),
    ('Noah', 'Lee', 47, 'UK', 'England', 'Liverpool', CAST('1975-05-20' AS Date), 'Male'),
    ('Olivia', 'Gonzalez', 38, 'USA', 'Illinois', 'Chicago', CAST('1984-03-22' AS Date), 'Female'),
    ('Paul', 'Harris', 23, 'Canada', 'Saskatchewan', 'Saskatoon', CAST('1999-08-19' AS Date), 'Male'),
    ('Quinn', 'Lewis', 34, 'UK', 'England', 'Manchester', CAST('1988-07-25' AS DATE), 'Female'),
    ('Rachel', 'Young', 42, 'USA', 'Ohio', 'Cleveland', CAST('1980-02-03' AS Date), 'Female');

INSERT INTO people (name, lastname, age, country, state, city, birthday, sex)
VALUES ('Sam', 'Walker', 60, 'Canada', 'Nova Scotia', 'Halifax', '1962-04-15'::Date, 'Male');

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_statements_insert_into
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_docker-connect
https://en.wikipedia.org/wiki/ISO_8601


SELECT

Warning

At the moment, YDB's compatibility with PostgreSQL is under development, so not all PostgreSQL constructs and functions are
supported yet. PostgreSQL compatibility is available for testing in the form of a Docker container, which can be deployed by following
these instructions.

Syntax of the SELECT  statement:

Calling SELECT without specifying a target table

SELECT  is used to return computations to the client side and can be used even without specifying a table, as seen in constructs like SELECT 
NOW() , or for performing operations such as working with dates, converting numbers, or calculating string lengths. However, SELECT  is also used
in conjunction with FROM ...  to retrieve data from a specified table. When used with INSERT INTO ... , SELECT  serves to select data that will
be inserted into another table. In subqueries, SELECT  is utilized within a larger query, not necessarily with FROM ... , to contribute to the overall
computation or condition.

For example, SELECT  can be used for working with dates, converting numbers, or calculating string length:

Such use of SELECT  can be useful for testing, debugging expressions, or SQL functions without accessing a real table, but more often SELECT  is
used to retrieve rows from one or more tables.

Retrieving values from one or multiple columns

To return values from one or several columns of a table, SELECT  is used in the following form:

To read all data from a table, for example, the people  table, you need to execute the command SELECT * FROM people; , where *  is the
special symbol indicating all columns. With this statement, all rows from the table will be returned with data from all columns.

To display the "id", "name", and "lastname" columns for all rows of the people  table, you can do it as follows:

Limiting the results obtained from a query using WHERE

To select only a subset of rows, the WHERE  clause with filtering criteria is used: WHERE <column name> <condition> <column value>; :

WHERE  allows the use of multiple conditional selection operators ( AND , OR ) to create complex selection conditions, such as ranges:

SELECT [<table column>, ... | *]
FROM [<table name> | <sub query>] AS <table name alias>
LEFT | RIGHT | CROSS | INNER JOIN <another table> AS <table name alias> ON <join condition>
WHERE <condition>
GROUP BY <table column>
HAVING <condition>
UNION | UNION ALL | EXCEPT | INTERSECT
ORDER BY <table column> [ASC | DESC]
LIMIT [<limit value>]
OFFSET <offset number>

SELECT CURRENT_DATE + INTERVAL '1 day';  -- Returns tomorrow's date
SELECT LENGTH('Hello');  -- Returns the length of the string 'Hello'
SELECT CAST('123' AS INTEGER);  -- Converts the string '123' to an integer

SELECT <column name> , <column name>
FROM <table name>;

SELECT id, name, lastname
FROM people;

SELECT id, name, lastname
FROM people
WHERE age > 30;

SELECT id, name, lastname
FROM people
WHERE age > 30 AND age < 45;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_statements_select
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_statements_select_select_func
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_statements_select_select_from
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_statements_select_select_from_where
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_docker-connect


Retrieving a subset of rows using LIMIT and OFFSET conditions

To limit the number of rows in the result set, LIMIT  is used with the specified number of rows:

Thus, the first 5 rows from the query will be printed out. With OFFSET , you can specify how many rows to skip before starting to print out rows:

When specifying OFFSET 3 , the first 3 rows of the resulting selection from the people  table will be skipped.

Sorting the results of a query using ORDER BY

By default, the database does not guarantee the order of returned rows, and it may vary from query to query. If a specific order of rows is required,
the ORDER BY  clause is used with the designation of the column for sorting and the direction of the sort:

Sorting is applied to the results returned by the SELECT  clause, not to the original columns of the table specified in the FROM  clause. Sorting can
be done in ascending order – ASC  (from smallest to largest - this is the default option and does not need to be specified) or in descending order –
DESC  (from largest to smallest). How sorting is executed depends on the data type of the column. For example, strings are stored in utf-8 and are

compared according to "unicode collate" (based on character codes).

Grouping the results of a query from one or more tables using GROUP BY

GROUP BY  is used to aggregate data across multiple records and group the results by one or several columns. The syntax for using GROUP BY  is
as follows:

Example of grouping data from the "people" table by gender ("sex") and age ("age") with a selection limit ( WHERE ) based on age:

In the previous example, we used WHERE  – an optional parameter for filtering the result, which filters individual rows before applying GROUP BY . In
the next example, we use HAVING  to exclude from the result the rows of groups that do not meet the condition. HAVING  filters the rows of groups
created by GROUP BY . When using HAVING , the query becomes grouped, even if GROUP BY  is absent. All selected rows are considered to form
one group, and in the SELECT  list and HAVING  clause, one can refer to the table columns only from aggregate functions. Such a query will yield a
single row if the result of the HAVING  condition is true, and zero rows otherwise.

Examples for HAVING

SELECT id, name, lastname
FROM people
WHERE age > 30 AND age < 45
LIMIT 5;

SELECT id, name, lastname
FROM people
WHERE age > 30 AND age < 45
OFFSET 3
LIMIT 5;

SELECT id, name, lastname, age
FROM people
WHERE age > 30 AND age < 45
ORDER BY age DESC;

SELECT <column name>, <column name>, ...
FROM <table name>
[WHERE <column name> = <value>]
GROUP BY <column name>, <column name>, ...;
[HAVING <column name> = <limit column value>]
[LIMIT <value>]
[OFFSET <value>]

SELECT sex, age
FROM people
WHERE age > 40
GROUP BY sex, age;

HAVING  + GROUP BY HAVING  + WHERE  + GROUP BY

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_statements_select_select_from_where_limit
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_statements_select_select_from_where_order_by
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_statements_select_select_from_where_group_by
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_statements_select_examples-for-having


Joining tables using the JOIN clause

SELECT  can be applied to multiple tables with the specification of the type of table join. The joining of tables is set through the JOIN  clause, which
comes in five types: LEFT JOIN , RIGHT JOIN , INNER JOIN , CROSS JOIN , FULL JOIN . When a JOIN  is performed on a specific condition,
such as a key, and one of the tables has several rows with the same value of this key, a Cartesian product occurs. This means that each row from
one table will be joined with every corresponding row from the other table.

Joining tables using LEFT JOIN, RIGHT JOIN, or INNER JOIN

The syntax for SELECT  using LEFT JOIN , RIGHT JOIN , INNER JOIN , FULL JOIN  is the same:

All JOIN  modes, except CROSS JOIN , use the keyword ON  for joining tables. In the case of CROSS JOIN , its usage syntax will be as follows:
CROSS JOIN <table name> AS <table name alias>; . Let's consider an example of using each JOIN  mode separately.

LEFT JOIN

Returns all rows from the left table and the matching rows from the right table. If there are no matches, it returns NULL  (the output will be empty)
for all columns of the right table. Example of using LEFT JOIN :

The result of executing an SQL query using LEFT JOIN  without one record in the right table social_card :

RIGHT JOIN

Returns all rows from the right table and the matching rows from the left table. If there are no matches, it returns NULL  for all columns of the left
table. This type of JOIN  is rarely used, as its functionality can be replaced by LEFT JOIN , and swapping the tables. Example of using RIGHT 
JOIN :

The result of executing an SQL query using RIGHT JOIN  without one record in the left table people :

SELECT <table name left>.<column name>, ... ,
FROM <table name left>
LEFT | RIGHT | INNER | FULL JOIN <table name right> AS <table name right alias>
ON <table name left>.<column name> = <table name right>.<column name>;

SELECT people.name, people.lastname, card.social_card_number
FROM people
LEFT JOIN social_card AS card
ON people.name = card.card_holder_name AND people.lastname = card.card_holder_lastname;

 name   | lastname | social_card_number
---------+----------+--------------------
 John    | Doe      |          123456789
 Jane    | Smith    |          223456789
 Alice   | Johnson  |          323456789
 Bob     | Brown    |          423456789
 Charlie | Davis    |          523456789
 Eve     | Martin   |          623456789
 Frank   | White    |

SELECT people.name, people.lastname, card.social_card_number
FROM people
RIGHT JOIN social_card AS card
ON people.name = card.card_holder_name AND people.lastname = card.card_holder_lastname;

 name   | lastname | social_card_number
---------+----------+--------------------

        

        

SELECT sex, country, age
FROM people
GROUP BY sex, country, age
HAVING sex = 'Female';

        
    

        

SELECT sex, name,age
FROM people
WHERE age > 40
GROUP BY sex, name, age
HAVING sex = 'Female';

        
    

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_statements_select_select_from_join_on
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_statements_select_select_from_left_right__inner_join_on
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_statements_select_left_join
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_statements_select_right_join
https://en.wikipedia.org/wiki/Cartesian_product


INNER JOIN

Returns rows when there are matching values in both tables. Excludes from the results those rows for which there are no matches in the joined
tables. Example of using INNER JOIN :

Such an SQL query will return only those rows for which there are matches in both tables:

CROSS JOIN

Returns the combined result of every row from the left table with every row from the right table. CROSS JOIN  is usually used when all possible
combinations of rows from two tables are needed. CROSS JOIN  simply combines each row of one table with every row of another without any
condition, which is why its syntax lacks the ON  keyword: CROSS JOIN <table name> AS <table name alias>; .

Example of using CROSS JOIN  with the result output limited by LIMIT 5 :

The example above will return all possible combinations of columns participating in the selection from the two tables:

FULL JOIN

Returns both matched and unmatched rows in both tables, filling in NULL  for columns from the table for which there is no match. Example of
executing an SQL query using FULL JOIN :

As a result of executing the SQL query, the following output will be returned:

John    | Doe      |          123456789
Jane    | Smith    |          223456789
Alice   | Johnson  |          323456789
Bob     | Brown    |          423456789
Charlie | Davis    |          523456789
Eve     | Martin   |          623456789
        |          |          723456789

SELECT people.name, people.lastname, card.social_card_number
FROM people
RIGHT JOIN social_card AS card
ON people.name = card.card_holder_name AND people.lastname = card.card_holder_lastname;

 name   | lastname | social_card_number
---------+----------+--------------------
John    | Doe      |          123456789
Jane    | Smith    |          223456789
Alice   | Johnson  |          323456789
Bob     | Brown    |          423456789
Charlie | Davis    |          523456789
Eve     | Martin   |          623456789

SELECT people.name, people.lastname, card.social_card_number
FROM people
CROSS JOIN social_card AS card
LIMIT 5;

name | lastname | social_card_number
------+----------+--------------------
 John | Doe      |          123456789
 John | Doe      |          223456789
 John | Doe      |          323456789
 John | Doe      |          423456789
 John | Doe      |          523456789

SELECT people.name, people.lastname, card.social_card_number
FROM people
FULL JOIN social_card AS card
ON people.name = card.card_holder_name AND people.lastname = card.card_holder_lastname;

 name   | lastname | social_card_number
---------+----------+--------------------
 Liam    | Martinez |         1323456789
 Eve     | Martin   |          623456789
 Hank    | Miller   |          923456789
 Molly   | Robinson |         1423456789

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_statements_select_inner_join
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_statements_select_cross_join
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_statements_select_full_join


 Sam     | Walker   |
 Paul    | Harris   |         1723456789
 Kara    | Thompson |         1223456789
         |          |         1923456789
...



UPDATE

Warning

At the moment, YDB's compatibility with PostgreSQL is under development, so not all PostgreSQL constructs and functions are
supported yet. PostgreSQL compatibility is available for testing in the form of a Docker container, which can be deployed by following
these instructions.

The syntax of the UPDATE  statement:

The UPDATE ... SET ... WHERE  statements works as follows:

1. Table name is specified – UPDATE <table name> , where the data will be updated;

2. Column name is indicated – SET <column name> , where the data will be updated;

3. New value is set – <new value> ;

4. Search criteria are specified – WHERE  with the indication of the search column <search column name>  and the value that the search
criterion should match <search value> . If CASE  is used, then the IN  operator is specified with a list of values <column name> .

Updating a single row in a table with conditions

In the example "Update with conditions", the condition combining operator AND  is used – the condition will only be satisfied when both parts meet
the truth conditions. The operator OR  can also be used – the condition will be satisfied if at least one part meets the truth conditions. There can be
multiple condition operators:

Updating a single record in a table using expressions or functions:

Frequently during updates, it is necessary to perform mathematical actions on the data or to modify it using functions.

UPDATE <table name>
SET <column name> = [<new value>, CASE ... END]
WHERE <search column name> = [<search value>, IN]

UPDATE people
SET age = 31
WHERE country = 'USA' AND city = 'Los Angeles' OR city = 'Florida';

Update without conditions Update with conditions

        

        

UPDATE people
SET name = 'Alexander'
WHERE lastname = 'Doe';

        
    

        

UPDATE people
SET age = 31
WHERE country = 'USA' AND city = 'Los Angeles';

        
    

Update with the use of expressions Update with the use of functions

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_statements_update
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_statements_update_updating-a-single-row-in-a-table-with-conditions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_statements_update_update_set_func_where
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_docker-connect


Updating multiple fields of a table row

Data can be updated in multiple columns simultaneously. For this, a list of <column name> = <column new value>  is made after the keyword
SET :

Updating multiple rows in a table using the CASE ... ENDconstruction

For simultaneous updating of different values in different rows, the CASE ... END  instruction can be used with nested data selection conditions
WHEN <column name> <condition> (=, >, <) THEN <new value> . This is followed by the WHERE <column name> IN (<column value>, ...)

construct, which allows setting a list of values for which the condition will be executed.

Example of changing the age ( age ) of people ( people ) depending on their names:

Note

Unlike PostgreSQL, YDB uses optimistic locking. This means that transactions check the conditions for the necessary locks at the end
of their operation, not at the beginning. If the lock has been violated during the transaction's execution, such a transaction will end with
a Transaction locks invalidated  error. In this case, you can try to execute a similar transaction again.

UPDATE people
SET country = 'Russia', city = 'Moscow'
WHERE lastname = 'Smith';

UPDATE people
SET age = CASE
            WHEN name = 'John' THEN 32
            WHEN name = 'Jane' THEN 26
          END
WHERE name IN ('John', 'Jane');

        

        

UPDATE people
SET age = age + 1
WHERE country = 'Canada';

        
    

        

UPDATE people
SET name = UPPER(name)
WHERE country = 'USA';

        
    

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_statements_update_update_set_where
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_statements_update_update_set_case_end_where


BEGIN, COMMIT, ROLLBACK (working with Transactions)

Warning

At the moment, YDB's compatibility with PostgreSQL is under development, so not all PostgreSQL constructs and functions are
supported yet. PostgreSQL compatibility is available for testing in the form of a Docker container, which can be deployed by following
these instructions.

Transactions are a method of grouping one or more database operation into a single unit of work. A transaction may consist of one or several SQL
statements and is used to ensure the consistency of data. A transaction guarantees that either all or none of the included SQL statements will be
executed. Transactions are managed by the commands BEGIN , COMMIT , ROLLBACK .

Transactions are executed within sessions. A session is a single connection to the database, which begins when a client connects to the database
and ends upon disconnection. A transaction starts with the BEGIN  command and ends with the COMMIT  command (for successful completion) or
ROLLBACK  (to revert). It is not obligatory to specify BEGIN , COMMIT , and ROLLBACK  explicitly, they are implied if not specified. If a session is

unexpectedly interrupted, then all uncommitted transaction that were initiated in the current session are automatically rolled back.

Let's review each of the commands:

BEGIN  initiates a new transaction. After this command is executed, all subsequent database operations are performed within the context of
this transaction.

COMMIT  completes the current transaction by applying all of its operations. If all operations within the transaction are successful, the results of
these operations are made permanent. The changes become visible to subsequent transactions.

ROLLBACK  reverts the current transaction, canceling all of its operations, if errors occurred during the transaction's execution or if the
transaction is being aborted by the application based on its internal logic. When ROLLBACK  is called, only the changes made within the current
transaction are canceled. Changes made by other transactions (even if they were initiated and completed during the execution of the current
transaction) remain unaffected. If an error occurs during the execution of a transaction, further operations within that transaction become
impossible – a ROLLBACK  must be done since performing a COMMIT  would return an error. If a session is disconnected during an active
transaction – a ROLLBACK  will automatically be executed. For more detailed information about concurrency control (MVCC), refer to this
article.

Suppose you need to make changes to different rows in a table for different columns so that the transaction is combined into a single unit of work
and has the guarantees of ACID. Such a record may look like this:

Note

Unlike PostgreSQL, YDB uses optimistic locking. This means that transactions check the conditions for the necessary locks at the end
of their operation, not at the beginning. If the lock has been violated during the transaction's execution, such a transaction will end with
a Transaction locks invalidated  error. In this case, you can try to execute a similar transaction again.

The page has been moved to a new location. Please update the links.

-- Start of the transaction
BEGIN;

-- Data update instruction
UPDATE people
SET name = 'Ivan'
WHERE id = 1;

-- Another data update instruction
UPDATE people
SET lastname = 'Gray'
WHERE id = 10;

-- If all the data is correct, then you need to execute the transaction confirmation instruction:
COMMIT;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_statements_begin_commit_rollback
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_docker-connect
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_mvcc
https://en.wikipedia.org/wiki/ACID
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_index


YDB Monitoring
YDB Monitoring is a set of web pages that display the system health according to a range of different aspects. The pages contain lists of
components and their current parameters. Many components have a health color indicator before the name.

Home page

The page is available at:

An example of the page layout is shown in the screenshot below.

In the upper-right corner of the page, you can see details about the node that created the current page:

host.

node uptime.

ydb version run by the node.

Below is the cluster summary:

cluster name, list of running tablets.

Nodes: The number of nodes.
Load: The total CPU utilization level on all nodes.

Storage: The used/total storage space.

Versions: The list of YDB versions run on the cluster nodes.

Next, you will find lists of tenants and nodes on the Tenants and Nodes tabs, respectively.

Tenant list

YDB is a multi-tenant DBMS that lets you execute isolated queries against databases of different users called tenants. Each database belongs to
one tenant.

The tenants list contains the following information on each tenant:

Tenant: Tenant path.

Name: Tenant name.

Type: Tenant type.

State: Tenant health.

CPU: CPU utilization by the tenant's nodes.

Memory: RAM consumption by the tenant's nodes.

Storage: Estimated amount of data stored by the tenant.
Pools usage: CPU usage by the nodes broken down by the internal stream pools.

Tablets States: Tablets running in the given tenant.

Domain  type tenants serve the system components needed to ensure all tenants can operate. This includes all storage nodes and system tablets.
Dedicated  type tenants perform database maintenance.

If you click on the tenant's path, you can go to the tenant page.

Node list

The list includes all nodes in the cluster. For each node, you can see:

#: Node ID.

Host: The host running the node.

Endpoints: The ports being listened to.

Version: The YDB version being run.

Uptime: The node uptime.

Memory used: The amount of RAM used.

http://<endpoint>:8765/monitoring/cluster

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring_main_page
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring_tenant_list_page
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring_node_list_page
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring_colored_indicator
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring_tenant_list_page
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring_node_list_page
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring_tenant_page


Memory limit: The RAM utilization limit set via cgroup.

Pools usage: CPU utilization broken down by the internal stream pools.

Load average: The average CPU utilization on the host.

To open the node page, click the host name.

Node page

The page is available at:

Information about the node is presented in the following sections:

Pools: CPU utilization broken down by the internal stream pools, with roughly the following pool functions:

System: The tasks of critical system components.

User: User tasks, queries executed by tablets.

Batch: Long-running background tasks.

IO: Blocking I/O operations.

IC: Networking operations.

High pool utilization might degrade performance and increase the system response time.

Common info: Basic information about the node:
Version: The YDB version.

Uptime: The node uptime.

DC: The availability zone where the node resides.

Rack: The ID of the rack where the node resides.

Load average: Average host CPU utilization for different time intervals:

1 minute.

5 minutes.

15 minutes.

The node page has the Storage and Tablets tabs with a list of storage groups and a list of tablets, respectively.

List of storage groups on the node

For storage nodes, the list includes storage groups that store data on this node's disk. For dynamic nodes, the list shows the storage groups of the
tenant that the node belongs to.

Storage groups are grouped by storage pools. Each pool can be expanded into a list of groups.

For each group, the following information is provided:

The ID of the storage group.

The performance indicator of the group.
The number of VDisks in the group.

The data storage topology.

Each storage group can also be expanded into a list of VDisks, with the following information provided for each VDisk:

VDiskID.

The unique (within the node) PDiskID where the VDisk resides.

The ID of the node where the VDisk resides.

Free/available space on the block store volume.

Path used to access block storage.

This list can be used to identify storage groups that were affected by disk or node failure.

List of tablets residing on the node

Many YDB components are implemented as tablets. The system can move tablets between nodes. A certain number of tablets can be run on any
node.

In the upper part of the list of tablets, there's a big indicator for tablets running on the given node. It shows the ratio of fully launched and running
tablets.

Under the indicator, you can see a list of tablets, where each tablet is shown as a small color indicator icon. When you hover over the indicator, the
tablet summary is shown:

Tablet: The ID of the tablet.

NodeID: The ID of the node where the tablet resides.

State: The state of the tablet.

Type: The type of tablet.

http://<endpoint>:8765/monitoring/node/<node-id>/

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring_node_page
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring_node_storage_page
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring_node_tablets_page
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring_node_page
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring_node_storage_page
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring_node_tablets_page
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring_colored_indicator


Uptime: The uptime since the tablet was last launched.

Generation: The tablet's generation (the number of the current launch attempt).

Tenant page

Like the previous pages, this page includes the tenant summary, but unlike the other pages, this section is initially collapsed.

In the Tenant Info  section, you can see the following information:

Pools: Total CPU utilization by the tenant nodes broken down by internal stream pools (for more information about pools, see the tenant
page).

Metrics: Data about tablet utilization for this tenant:

Memory: The RAM utilized by tablets.

CPU: CPU utilized by tablets.

Storage: The amount of data stored by tablets.

Network: The estimated amount of data transferred between nodes.

Read throughput: The read stream created by the tenant's tablets.

Write throughput: The write stream created by the tenant's tablets.
Tablets/running: The number of running tablets.

The tenant page also includes the following tabs:

HealthCheck: The report regarding cluster issues, if any.

Storage: List of storage groups showing the nodes and block store volumes hosting each VDisk.

Compute: List of nodes showing the nodes and tablets running on them.

Schema: Tenant schema that enables you to view tables, execute YQL queries, view a list of the slowest queries and the most loaded shards.

Network: Cluster network health.

List of storage groups in the tenant

Similarly to the list of groups in the node, this page shows a list of storage groups in the given tenant. Storage groups are grouped by storage pools
in the list. Each pool can be expanded into a list of groups.

List of nodes belonging to the tenant

Here you can see a list of nodes belonging to the current tenant. If the tenant has the domain type, the list includes storage nodes.

Each node is represented by the following parameters:

#: Node ID.

Host: The host running the node.

Uptime: The node uptime.

Endpoints: The ports being listened to.

Version: The YDB version being run.

Pools usage: CPU utilization broken down by the internal stream pools.

CPU: CPU utilization by tablets.

Memory: RAM consumption by tablets.

Network: Network usage by tablets.

Tablets: A list of tablets running on the node, grouped by type.

Tenant schema

The left part of the page shows a diagram of tenant objects where you can select specific tables and view their details.

The right part includes the tabs:

Info: Information about the table and its schema.

Preview: A preview of the first items in the table.

Graph: A range of built-in graphs with information about the table status.

Describe: The result of running the describe command.

Query: The form for executing YQL queries.

Tablets: The list of tablets serving the table.

ACL: The Access Control List.

Top queries: The top most time-consuming queries to the table.

Top shards: The top most loaded table shards.

Network health

http://<endpoint>:8765/monitoring/tenant/healthcheck?name=<tenant-path>

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring_tenant_page
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring_tenant_storage_page
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring_tenant_compute_page
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring_tenant_scheme
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring_tenant_network
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring_tenant_page
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring_tenant_storage_page
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring_tenant_compute_page
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring_tenant_scheme
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring_tenant_network
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring_node_storage_page


On the left side of the page, you can see the tenant's nodes as squares of health indicators.

Whenever you select a node, the right side of the screen shows details about the health of the network connection between this node and other
nodes.

Whenever you select the ID and Racks checkboxes, you can also see the IDs of nodes and their location in racks.

Monitoring static groups

To perform a health check on a static group, go to the  Storage panel. By default, it shows a list of groups with issues.

Enter static  in the search bar. If the result is empty, no issues have been found for the static group. But if the panel shows a static group, check
the VDisk health status in it. Acceptable health indicators are green (no issues) and blue (VDisk replication is in progress). Red indicator signals of
an issue. Hover over the indicator to get a text description of the issue.

Health indicators

To the left of a component name, you might see a color indicating its health status.

The indicator colors have the following meaning:

Green: There are no problems, the component is working normally.

Blue: Data replication is in progress, no other issues observed.

Yellow: There might be problems, the component is still running.

Red: There are critical problems, the component is down (or runs with limitations).

If a component includes other components, then in the absence of its own issues, the state is determined by aggregating the states of its parts.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring_static-group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring_colored_indicator
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring_colored_indicator


Hive web-viewer
The Hive web-viewer provides an interface for working with Hive.
Hive can be shared by a cluster or be tenant.
You can go to the Hive web-viewer from the YDB Monitoring.

Home page

The home page provides information about the distribution and usage of resources by tablets on each node in the form of a table.

The table is preceded by the following brief information:

Tenant: The tenant that Hive is responsible for.

Tablets: The percentage of tablets started and the number of running tablets to their total number.

Boot Queue: The number of tablets in the boot queue.

Wait Queue: The number of tablets that can't be started.

Resource Total: Resource utilization by tablets (cpu, net).

Resource StDev: Standard deviation of resource utilization (cnt, cpu, mem, net).

Then there is a table where each row represents a node managed by Hive. It has the following columns:

Node: The node number.

Name: The node FQDN and ic-port.
DC: The datacenter where the node resides.

Domain: The node tenant.

Uptime: The node uptime.

Unknown: The number of tablets whose state is unknown.

Starting: The number of tablets being started.

Running: The number of tablets running.

Types: Tablet distribution by type.

Usage: A normalized dominant resource.

Resources:

cnt: The number of tablets that are not using any resources.

cpu: CPU usage by tablets.

mem: RAM usage by tablets.

net: Bandwidth usage by tablets.

Active: Enables/disables the node to move tablets to this node.

Freeze: Disables tablets to be deployed on other nodes.

Kick: Moves all tablets from the node at once.
Drain: Smoothly moves all tablets from the node.

Additional pages are presented below the table:

Bad tablets: A list of tablets having issues or errors.

Heavy tablets: A list of tablets utilizing a lot of resources.

Waiting tablets: A list of tablets that can't be started.

Resources: Resource utilization by each tablet.

Tenants: A list of tenants indicating their local Hive tablets.

Nodes: A list of nodes.

Storage: A list of storage group pools.

Groups: A list of storage groups for each tablet.

Settings: The Hive configuration page.

Reassign Groups: The page for reassigning storage groups across tablets.

You can also view what tablets use a particular group and, vice versa, what groups are used on a particular tablet.

Reassign Groups

Click Reassign Groups to open the window with parameters for balancing:

Storage pool: Pool of storage groups for balancing.

Storage group: If the previous item is not specified, you can specify only one group separately.

Type: Type of tablets that balancing will be performed for.

Channels: Range of channels that balancing will be performed for.

Percent: Percentage of the total number of tablet channels that will be moved as a result of balancing.

Inflight: The number of tablets being moved to other groups at the same time.

After specifying all the parameters, click "Query" to get the number of channels moved and unlock the "Reassign" button.
Clicking this button starts reassigning.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_hive
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_hive_home-page
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_hive_reassign_groups


Interconnect Overview
Overview of cluster node interconnects. Available at:

Shows, for every other node:

ping

system clock difference

connection availability

last written error

http://<endpoint>:8765/actors/interconnect/overview

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_interconnect-overview


Logs

Logging levels

The logging level for different YDB components can be configured individually. For each component, either an explicitly set value or a default
logging level value can be applied. The default logging level value can also be changed.

Changing the logging level

To change the logging level:

1. Follow the link in the format

The Cluster Management System  page opens.

2. On the Configs tab, click on the LogConfigItems  line. The Create new item  button will show up along with a list of already created
configuration elements.

3. Click Create new item  to create a new configuration item (or click the pencil button to edit a previously created item).

4. To change the default logging level, select the desired logging level from the Level  drop-down list under Default log settings .

5. To change the logging level for individual components, use the table under Component log settings . In the line with the name of the
component whose logging level you want to change, in the Component  column, select the desired logging level from the drop-down list in the
Log level  column.

6. To save changes, click Submit

http://<endpoint>:8765/cms

Level Numeric value Value

TRACE 8 Very detailed debugging information.

DEBUG 7 Debugging information for developers.

INFO 6 Debugging information for collecting statistics.

NOTICE 5 An event essential for the system or the user has occurred.

WARN 4 This is a warning, it should be responded to and fixed unless it's temporary.

ERROR 3 A non-critical error.

CRIT 2 A critical state.

ALERT 1 System degradation is possible, system components may fail.

EMERG 0 System outage (for example, cluster failure) is possible.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_logs
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_logs_log_levels
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_logs_change_log_level


Charts
To view charts, use Grafana.

The main metrics of the system are displayed on the dashboard:

CPU Usage: The total CPU utilization on all nodes (1 000 000 = 1 CPU).

Memory Usage: RAM utilization by nodes.

Disk Space Usage: Disk space utilization by nodes.

SelfPing: The highest actual delivery time of deferred messages in the actor system over the measurement interval. Measured for messages
with a 10 ms delivery delay. If this value grows, it might indicate microbursts of workload, high CPU utilization, or displacement of the YDB
process from CPU cores by other processes.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_charts


Graphical user interfaces

Environment Instruction Compatibility level

Embedded UI Instruction

DBeaver Instruction By JDBC-driver

JetBrains Database viewer — By JDBC-driver

JetBrains DataGrip Instruction By JDBC-driver

Other JDBC-compatible IDEs — By JDBC-driver

Jupyter Notebook Instruction By YDB-SQLAlchemy

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_gui_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_embedded-ui_index
https://dbeaver.com/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_dbeaver
https://github.com/ydb-platform/ydb-jdbc-driver/releases
https://github.com/ydb-platform/ydb-jdbc-driver/releases
https://www.jetbrains.com/datagrip/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_datagrip
https://github.com/ydb-platform/ydb-jdbc-driver/releases
https://github.com/ydb-platform/ydb-jdbc-driver/releases
https://jupyter.org/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_jupyter
https://github.com/ydb-platform/ydb-sqlalchemy/releases


Data visualization (Business intelligence, BI)

Environment Compatibility Level Instruction

Apache Superset PostgreSQL wire protocol Instruction

DataLens Full Instruction

FineBI PostgreSQL wire protocol Instruction

Grafana Full Instruction

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_visualization_index
https://superset.apache.org/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#postgresql_intro
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_superset
https://datalens.tech/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_datalens
https://intl.finebi.com/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#postgresql_intro
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_finebi
https://grafana.com/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_grafana


Orchestration

System Instruction

Apache Airflow™ Instruction

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orchestration_index
https://airflow.apache.org/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_airflow


Data ingestion

Streaming data ingestion

Delivery System Instruction

FluentBit Instruction

LogStash Instruction

Kafka Connect Sink Instruction

Arbitrary JDBC data sources Instruction

Delivery System Instruction

Apache Kafka API Instruction

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_index_streaming-ingestion
https://fluentbit.io/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_fluent-bit
https://www.elastic.co/logstash
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_logstash
https://docs.confluent.io/platform/current/connect/index.html
https://github.com/ydb-platform/ydb-kafka-sink-connector
https://en.wikipedia.org/wiki/Java_Database_Connectivity
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_import-jdbc
https://kafka.apache.org/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_kafka-api_index


Data migrations

Environment Instruction

goose Instruction

Liquibase Instruction

Flyway Instruction

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_migration_index
https://github.com/pressly/goose/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_goose
https://www.liquibase.com/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_liquibase
https://documentation.red-gate.com/fd/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_flyway


Object–relational mapping

Delivery System Instruction

Hibernate Instruction

Spring Data JDBC Instruction

JOOQ Instruction

Dapper Instruction

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orm_index
https://hibernate.org/orm/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_hibernate
https://spring.io/projects/spring-data-jdbc
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_spring-data-jdbc
https://www.jooq.org/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_jooq
https://www.learndapper.com/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_dapper


Vector search

System Instruction

LangChain Instruction

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_vectorsearch_index
https://python.langchain.com/docs/introduction/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_langchain


Connecting to YDB with DBeaver
DBeaver is a free, cross-platform, open-source database management tool that provides a visual interface for connecting to various databases and
executing SQL queries. It supports many database management systems, including MySQL, PostgreSQL, Oracle, and SQLite.

DBeaver allows you to work with YDB using the Java DataBase Connectivity (JDBC) protocol. This article demonstrates how to set up this
integration.

Connecting the YDB JDBC Driver to DBeaver

To connect to YDB from DBeaver, you will need the JDBC driver. Follow these steps to download the JDBC driver:

1. Go to the ydb-jdbc-driver repository.

2. Select the latest release (tagged as Latest ) and save the ydb-jdbc-driver-shaded-<driver-version>.jar  file.

Follow these steps to connect the downloaded JDBC driver:

1. In the top menu of DBeaver, select the Database option, then select Driver Manager:

2. To create a new driver, click the New button in the Driver Manager window that opens

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_gui_dbeaver
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_gui_dbeaver_dbeaver_ydb
https://dbeaver.com/
https://en.wikipedia.org/wiki/Java_Database_Connectivity
https://github.com/ydb-platform/ydb-jdbc-driver/releases


3. In the Create Driver window that opens, specify YDB  in the Driver Name field:

4. Go to the Libraries section, click Add File, specify the path to the previously downloaded YDB JDBC driver (the ydb-jdbc-driver-shaded-
<driver-version>.jar  file), and click OK:



5. The YDB item will appear in the list of drivers. Double-click the new driver and go to the Libraries tab, click Find Class, and select
tech.ydb.jdbc.YdbDriver  from the dropdown list.

Warning

Be sure to explicitly select the tech.ydb.jdbc.YdbDriver  item from the dropdown list by clicking on it. Otherwise, DBeaver will
consider that the driver has not been selected.

Creating a Connection to YDB

Perform the following steps to establish a connection:

1. In DBeaver, create a new connection, specifying the YDB  connection type.

2. In the window that opens, go to the Main section.
3. In the General subsection, in the JDBC URL input field, specify the following connection string:

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_gui_dbeaver_dbeaver_ydb_connection


Where:

ydb_endpoint  — the endpoint of the YDB cluster to which the connection will be made.

ydb_database  — the path to the database in the YDB cluster to which queries will be made.

4. In the User and Password fields, enter the login and password for connecting to the database. A complete list of authentication methods and
connection strings for YDB is provided in the JDBC driver description.

5. Click Test Connection... to verify the settings.

If all settings are correct, a message indicating successful connection testing will appear:

6. Click Finish to save the connection.

Working with YDB

With DBeaver, you can view the list and structure of tables:

jdbc:ydb:<ydb_endpoint>/<ydb_database>?useQueryService=true

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_gui_dbeaver_dbeaver_ydb_connection
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_connect_endpoint
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_database
https://github.com/ydb-platform/ydb-jdbc-driver


As well as execute queries on the data:



Connecting to YDB with DataGrip
DataGrip is a powerful cross-platform tool for relational and NoSQL databases.

DataGrip allows you to work with YDB using the Java Database Connectivity (JDBC) protocol. This article demonstrates how to set up this
integration.

Adding the YDB JDBC Driver to DataGrip

To connect to YDB from DataGrip, you need the YDB JDBC driver.

To download the YDB JDBC driver, follow these steps:

1. Go to the ydb-jdbc-driver repository.

2. Select the latest release (tagged as Latest ) and save the ydb-jdbc-driver-shaded-<driver-version>.jar  file.

To add the downloaded JDBC driver to DataGrip, follow these steps:

1. In DataGrip, go to File | Data Sources….

The Data Sources and Drivers dialog box appears.

2. In the Data Sources and Drivers dialog box, open the Drivers tab and click the + button.

3. In the Name field, specify YDB .

4. In the Driver Files section, click the + button, choose Custom JARs…, specify the path to the previously downloaded YDB JDBC driver (the
ydb-jdbc-driver-shaded-<driver-version>.jar  file), and click OK:

5. In the Class drop-down list, select tech.ydb.jdbc.YdbDriver .

6. Click OK.

Creating a Connection to YDB

To establish a connection, perform the following steps:

1. In DataGrip, go to File | Data Sources….

The Data Sources and Drivers dialog box appears.

2. In the Data Sources and Drivers dialog box, on the Data Sources tab, click the + button and select YDB .

3. In the Authentication drop-down list, select an authentication method.

4. If you selected the User & Password  authentication method, in the User and Password fields, enter your YDB login and password.

5. On the General tab, in the URL field, specify the following connection string:

Where:

ydb_endpoint  — the endpoint of the YDB cluster.

jdbc:ydb:<ydb_endpoint>/<ydb_database>?useQueryService=true

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_gui_datagrip
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_gui_datagrip_datagrip_ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_gui_datagrip_datagrip_ydb_connection
https://www.jetbrains.com/datagrip/
https://en.wikipedia.org/wiki/Java_Database_Connectivity
https://github.com/ydb-platform/ydb-jdbc-driver/releases
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_connect_endpoint


ydb_database  — the path to the database in the YDB cluster.

A complete list of authentication methods and connection strings for YDB is provided in the JDBC driver description.

6. Click Test Connection to verify the settings.

If all the settings are correct, a message appears indicating a successful connection test.

7. Click OK to save the connection.

Working with YDB

With DataGrip you can view the list and structure of tables.

You can also execute queries on the data.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_gui_datagrip_datagrip_ydb_connection
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_database
https://github.com/ydb-platform/ydb-jdbc-driver




Work with YDB from Jupyter Notebook
Jupyter Notebook is an open-source tool for creating shareable documents that combine code, plain language descriptions, data, rich
visualizations, and interactive controls.

The ydb-sqlalchemy dialect enables working with YDB from tools such as:

Pandas

JupySQL

Example

A detailed usage example is available as a notebook.

Prerequisites:

1. Python 3.8+

2. Jupyter Notebook

3. Existing YDB cluster, a single-node one from quickstart will suffice

To run the example, download the notebook file {% file src="https://raw.githubusercontent.com/ydb-platform/ydb-
sqlalchemy/refs/heads/main/examples/jupyter_notebook/YDB%20SQLAlchemy%20%2B%20Jupyter%20Notebook%20Example.ipynb"
name="YDB SQLAlchemy - Jupyter Notebook Example.ipynb" %}, open it in Jupyter, and follow each cell sequentially, executing code as
necessary.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_gui_jupyter
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_gui_jupyter_example
https://jupyter.org/
https://github.com/ydb-platform/ydb-sqlalchemy/releases
https://pandas.pydata.org/
https://jupysql.ploomber.io/
https://github.com/ydb-platform/ydb-sqlalchemy/blob/main/examples/jupyter_notebook/YDB%20SQLAlchemy%20%2B%20Jupyter%20Notebook%20Example.ipynb
https://jupyter.org/install#jupyter-notebook
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_quickstart


Apache Superset
Apache Superset is a modern data exploration and data visualization platform.

PostgreSQL compatibility mode in YDB enables the use of Apache Superset to query and visualize data from YDB. In this case Apache Superset
works with YDB just like with PostgreSQL.

Warning

At the moment, YDB's compatibility with PostgreSQL is under development, so not all PostgreSQL constructs and functions are
supported yet. PostgreSQL compatibility is available for testing in the form of a Docker container, which can be deployed by following
these instructions.

Adding a database connection to YDB

To connect to YDB from Apache Superset using the PostgreSQL wire protocol, follow these steps:

1. In the Apache Superset toolbar, hover over Settings and select Database Connections.

2. Click the + DATABASE button.

The Connect a database wizard will appear.

3. In Step 1 of the wizard, click the PostgreSQL button.

4. In Step 2 of the wizard, enter the YDB credentials in the corresponding fields:

HOST. The endpoint of the YDB cluster to which the connection will be made.

PORT. The port of the YDB endpoint.

DATABASE NAME. The path to the database in the YDB cluster where queries will be executed.
USERNAME. The login for connecting to the YDB database.

PASSWORD. The password for connecting to the YDB database.

DISPLAY NAME. The YDB connection name in Apache Superset.

5. Click CONNECT.

6. To save the database connection, click FINISH.

Creating a dataset

To create a dataset for a YDB table, follow these steps:

1. In the Apache Superset toolbar, hover over the + button and select SQL query.

2. In the DATABASE drop-down list, select the YDB database connection.

3. In the SCHEMA drop-down list, select public .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_visualization_superset
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_visualization_superset_add-database-connection
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_visualization_superset_create-dataset
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_intro
https://superset.apache.org/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_docker-connect
https://ydb.tech/docs/en/concepts/connect#endpoint
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_database


Alert

YDB currently does not provide table schema information via the PostgreSQL protocol. You can skip selecting a table in the SEE
TABLE SCHEMA drop-down list.

4. Enter the SQL query in the right section of the page. For example, SELECT * FROM <ydb_table_name> .

Tip

To create a dataset for a table located in a subdirectory of a YDB database, specify the table path in the table name. For example:

1. Click RUN to test the SQL query.

2. Click the down arrow next to the SAVE button, then click Save dataset.

The Save or Overwrite Dataset dialog box appears.

3. In the Save or Overwrite Dataset dialog box, select Save as new, enter the dataset name, and click SAVE & EXPLORE.

After creating datasets, you can use data from YDB to create charts in Apache Superset. For more information, refer to the Apache Superset
documentation.

Creating a chart

Let's create a sample chart with the dataset from the episodes  table that is described in the YQL tutorial.

The table contains the following columns:

series_id

season_id
episode_id

title

air_date

Let's say that we want to make a pie chart to show how many episodes each season contains.

To create a chart, follow these steps:

1. In the Apache Superset toolbar, hover over the + button and select Chart.
2. In the Choose a dataset drop-down list, select a dataset for the episodes  table.

3. In the Choose chart type pane, select Pie chart .

4. Click CREATE NEW CHART.

5. In the Query pane, configure the chart:

In the DIMENSIONS drop-down list, select the season_id  column.

In the METRIC field, specify the COUNT(title)  function.

In the FILTERS field, specify the series_id in (2)  filter.

6. Click CREATE CHART.

The pie chart will appear in the preview pane on the right.

SELECT * FROM "<path/to/subdirectory/table_name>";

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_visualization_superset_create-chart
https://superset.apache.org/docs/intro/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_yql-tutorial_index


7. Click SAVE.

The Save chart dialog box will appear.

8. In the Save chart dialog box, in the CHART NAME field, enter the chart name.

9. Click SAVE.



DataLens
DataLens is an open-source business intelligence (BI) and data visualization tool that enables users to analyze and display data from various
sources, including YDB. DataLens allows you to describe data models, create charts and other visualizations, build dashboards, and provide
collaborative access to analytics.

Prerequisites

DataLens must be deployed and configured.

Note

This article covers the integration of self-managed YDB and DataLens. For documentation on integrating the respective managed
services, refer to the Yandex Cloud documentation.

Adding a database connection to YDB

To create a connection to YDB:

1. Go to the workbook page or create a new one.

2. In the top right corner, click Create → Connection.

3. Select the YDB connection.

4. Choose an authentication type:

Cache lifetime in seconds. Set the cache lifetime or leave the default value. The recommended value is 300 seconds (5 minutes).

SQL query access level. Allows the use of custom SQL queries to create a dataset.

5. Click Create connection.

6. Specify a connection name and click Create.

7. Proceed to creating a dataset.

Example

Anonymous

Host name. Specify the hostname for YDB connection.

Port. Specify the connection port for YDB. The default port is 2135.

Database path. Specify the name of the database to connect to.

Password

Host name. Specify the hostname for YDB connection.

Port. Specify the connection port for YDB. The default port is 2135.

Database path. Specify the name of the database to connect to.

Username. Enter the username to connect to YDB.

Password. Enter the user password.

OAuth

OAuth token. Provide the OAuth token to access YDB.

Host name. Specify the hostname for YDB connection.

Port. Specify the connection port for YDB. The default port is 2135.

Database path. Specify the name of the database to connect to.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_visualization_datalens
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_visualization_datalens_prerequisites
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_visualization_datalens_add-database-connection
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_visualization_datalens_example
https://datalens.tech/
https://datalens.tech/docs/en/quickstart.html
https://yandex.cloud/en/docs/datalens/operations/connection/create-ydb
https://datalens.tech/docs/en/workbooks-collections/index.html
https://datalens.tech/docs/en/dataset/index.html




FineBI
FineBI is a powerful big data analytics tool. FineBI allows organizations to analyze and share data for informed decision-making. It helps transform
raw data into insightful visualizations, track KPIs, identify trends, and predict future outcomes.

PostgreSQL compatibility mode in YDB enables the use of FineBI to query and visualize data from YDB. In this case FineBI works with YDB just
like with PostgreSQL.

Warning

At the moment, YDB's compatibility with PostgreSQL is under development, so not all PostgreSQL constructs and functions are
supported yet. PostgreSQL compatibility is available for testing in the form of a Docker container, which can be deployed by following
these instructions.

Prerequisites

Before you begin, make sure that the following software is installed:

FineBI.

PostgreSQL JDBC driver uploaded to FineBI.

Note

You can download the latest PostgreSQL JDBC driver from the Download page of the PostgreSQL web site. For information on
how to upload the PostgreSQL JDBC driver to FineBI, refer to the FineBI documentation.

Adding a database connection to YDB

To connect to YDB from FineBI using the PostgreSQL wire protocol, follow these steps:

1. Log in to FineBI as the admin  user.

2. Navigate to System Management > Data Connection > Data Connection Management.
3. Click the New Data Connection button.

4. In the Search field, type postgresql  to find the PostgreSQL icon.

5. Click the PostgreSQL icon.

6. Enter the YDB credentials in the corresponding fields:
Data Connection Name. The YDB connection name in FineBI.

Driver. The driver that FineBI uses to connect to YDB.

Select Custom  and the installed JDBC driver org.postgresql.Driver .

Database Name. The path to the database in the YDB cluster where queries will be executed.

Alert

Special characters in the path string must be URL encoded. For example, ensure that you replace slash ( / ) characters with
%2F .

Host. The endpoint of the YDB cluster to which the connection will be made.

Port. The port of the YDB endpoint.

Username. The login for connecting to the YDB database.

Password. The password for connecting to the YDB database.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_visualization_finebi
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_visualization_finebi_prerequisites
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_visualization_finebi_add-database-connection
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_intro
https://intl.finebi.com/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_docker-connect
https://intl.finebi.com/
https://jdbc.postgresql.org/download/
https://help.fanruan.com/finebi-en/doc-view-1540.html
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_database
https://en.wikipedia.org/wiki/Percent-encoding
https://ydb.tech/docs/en/concepts/connect#endpoint


7. Click Test Connection.

If the connection details are correct, a message confirming a successful connection will appear.

8. To save the database connection, click Save.

A new database connection will appear in the Data Connection list.

Adding an SQL Dataset

To create a dataset for a YDB table, follow these steps:

1. In FineBI, open the Public Data tab.

2. Select a folder, to which you want to add a dataset.

Warning

You must have the Public Data Management permission for the selected folder in FineBI.

3. Click Add Dataset and select SQL Dataset from the drop-down list.

4. In the Table Name field, enter a name for the dataset.

5. In the Data from Data Connection drop-down list, select the YDB connection you created.

6. In the SQL Statement field, enter the SQL query to retrieve the necessary columns from a YDB table. For example, SELECT * FROM 
<ydb_table_name>  for all columns.

Tip

To create a dataset for a table located in a subdirectory of a YDB database, specify the table path in the table name. For example:

7. To test the SQL query, click Preview. If the query is correct, the table data will appear in the preview pane.

SELECT * FROM "<path/to/subdirectory/table_name>";

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_visualization_finebi_add-dataset
https://help.fanruan.com/finebi-en/doc-view-5734.html


8. To save the dataset, click OK.

After creating datasets, you can use data from YDB to create charts in FineBI. For more information, refer to the FineBI documentation.

Creating a chart

Let's create a sample chart using the dataset from the episodes  table, as described in the YQL tutorial. Among other things, this tutorial covers
how to create this table and populate it with data. It will be a pie chart that demonstrates how many episodes each season of a given series
contains.

The table contains the following columns:

series_id

season_id

episode_id

title

air_date

To create a chart, follow these steps:

1. In FineBI, open the My Analysis tab.

2. Click New Subject.

The Select Data dialog box will appear.

3. In the Select Data dialog box, navigate to the dataset for the episodes  table and click OK.

4. Click the Component tab at the bottom of the page.

5. In the Chart Type pane, click the Pie Chart icon.

6. In the list of columns in the episodes  dataset, click the arrow next to the episode_id  column and select Convert to Dimension from the
drop-down list.

7. Drag the season_id  column to the Color field.

8. Drag the title  column to the Label field.

9. Drag the series_id  column to the Filter field.

The Add Filter to episodes.series_id dialog box will appear.
10. In the Add Filter to episodes.series_id dialog box, select Detailed Value  and click Next Step.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_visualization_finebi_create-chart
https://help.fanruan.com/finebi-en/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_yql-tutorial_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_yql-tutorial_create_demo_tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_yql-tutorial_fill_tables_with_data


11. Specify the following condition:

series_id  Equal To  Fixed Value  2

12. Click OK.

The diagram will display data only for the series that has the ID of 2 .

13. Click Save.



YDB data source for Grafana
The YDB data source plugin allows you to use Grafana to query and visualize data from YDB.

Installation

Prerequisites: the plugin requires Grafana v9.2 or higher.

Follow the Grafana's plugin installation docs to install a plugin named ydb-grafana-datasource-plugin .

Configuration

YDB user for the data source

Set up an YDB user account with read-only permissions (more about permissions) and access to databases and tables you want to query.

Warning

Please note that Grafana does not validate that queries are safe. Queries can contain any SQL statements, including data modification
instructions.

Data transfer protocol support

The plugin supports gRPC and gRPCS transport protocols.

Configuration via UI

Once the plugin is installed on your Grafana instance, follow these instructions to add a new YDB data source, and enter configuration options.

Configuration with provisioning system

Alternatively, Grafana's provisioning system allows you to configure data sources using configuration files. To read about how it works, including all
the settings you can set for this data source, refer to the Provisioning Grafana data sources documentation.

Authentication

The Grafana plugin supports the following authentication methods: Anonymous, Access Token, Metadata, Service Account Key and Static
Credentials.

Below is an example config for authenticating a YDB data source using username and password:

Here are fields that are supported in connection configuration:

apiVersion: 1
datasources:
  - name: YDB
    type: ydbtech-ydb-datasource
    jsonData:
      authKind: '<password>'
      endpoint: 'grpcs://<hostname>:2135'
      dbLocation: '<location_to_db>'
      user: '<username>'
    secureJsonData:
      password: '<userpassword>'
      certificate: |
        <full content of *.pem file>

Name Description Type

authKind Authentication type "Anonymous" , "ServiceAccountKey" , 
"AccessToken" , "UserPassword" , 

"MetaData"

endpoint Database endpoint string

dbLocation Database location string

user User name string

serviceAccAuthAccessKey Service account access key string  (secured)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_visualization_grafana
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_visualization_grafana_installation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_visualization_grafana_configuration
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_visualization_grafana_ydb-user-for-the-data-source
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_visualization_grafana_data-transfer-protocol-support
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_visualization_grafana_configuration-via-ui
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_visualization_grafana_configuration-with-provisioning-system
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_visualization_grafana_authentication
https://grafana.com/grafana/plugins/ydbtech-ydb-datasource/
https://grafana.com/
https://grafana.com/docs/grafana/latest/plugins/installation/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authorization_right
https://grpc.io/
https://grafana.com/docs/grafana/latest/datasources/add-a-data-source/
https://grafana.com/docs/grafana/latest/administration/provisioning/#data-sources
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_auth


Building queries

YDB is queried with a SQL dialect named YQL.
The query editor allows to get data in different representations: time series, table, or logs.

Time series

Time series visualization options are selectable if the query returns at least one field with Date , Datetime , or Timestamp  type (for now, working
with time is supported only in UTC timezone) and at least one field with Int64 , Int32 , Int16 , Int8 , Uint64 , Uint32 , Uint16 , Uint8 ,
Double  or Float  type. Then, you can select time series visualization options. Any other column is treated as a value column.

Multi-line time series

To create a multi-line time series, the query must return at least 3 fields:

field with Date , Datetime  or Timestamp  type (for now, working with time is supported only in UTC timezone)

metric - field with Int64 , Int32 , Int16 , Int8 , Uint64 , Uint32 , Uint16 , Uint8 , Double  or Float  type

either metric or field with String  or Utf8  type - the value for splitting metrics into separate series.

For example:

Tip

For this kind of queries, using column-oriented tables will likely be beneficial in terms of performance.

SELECT
    `timestamp`,
    `responseStatus`
    AVG(`requestTime`) AS `avgReqTime`
FROM `/database/endpoint/my-logs`
GROUP BY `responseStatus`, `timestamp`
ORDER BY `timestamp`

accessToken Access token string  (secured)

password User password string  (secured)

certificate If self-signed certificates are used on your YDB 
cluster nodes, specify the Certificate Authority 
certificate used to issue them

string  (secured)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_visualization_grafana_building-queries
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_visualization_grafana_time-series
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_visualization_grafana_multi-line-time-series
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_column-oriented-tables
https://en.wikipedia.org/wiki/Certificate_authority


Tables

Table visualizations will always be available for any valid YDB query that returns exactly one result set.

Visualizing logs with the Logs Panel

To use the Logs panel, your query must return a Date , Datetime , or Timestamp  value and a String  value. You can select logs visualizations
using the visualization options.

Only the first text field will be represented as a log line by default. This behavior can be customized using the query builder.

Macros

The query can contain macros, which simplify syntax and allow for dynamic parts, like date range filters.
There are two kinds of macros - Grafana-level and YDB-level. The plugin will parse query text and, before sending it to YDB, substitute variables
and Grafana-level macros with particular values. After that YDB-level macroses will be treated by YDB server-side.

Here is an example of a query with a macro that will use Grafana's time filter:

SELECT `timeCol`
FROM `/database/endpoint/my-logs`
WHERE $__timeFilter(`timeCol`)

SELECT `timeCol`
FROM `/database/endpoint/my-logs`
WHERE $__timeFilter(`timeCol` + Interval("PT24H"))

Macro Description Output example

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_visualization_grafana_tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_visualization_grafana_visualizing-logs-with-the-logs-panel
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_visualization_grafana_macros
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_visualization_grafana_macros


Templates and variables

To add a new YDB query variable, refer to Add a query variable.
After creating a variable, you can use it in your YDB queries by using Variable syntax.
For more information about variables, refer to Templates and variables.

Learn more

Add Annotations.

Configure and use Templates and variables.

Add Transformations.

Set up alerting; refer to Alerts overview.

$__timeFilter(expr) Replaced by 
a conditional 
that filters the 
data (using 
the provided 
column or 
expression) 
based on the 
time range of 
the panel in 
microseconds

foo >= CAST(1636717526371000 AS Timestamp) AND foo <= CAST(1668253526371000 AS Timestamp)' )

$__fromTimestamp Replaced by 
the starting 
time of the 
range of the 
panel cast to 
Timestamp

CAST(1636717526371000 AS Timestamp)

$__toTimestamp Replaced by 
the ending 
time of the 
range of the 
panel cast to 
Timestamp

CAST(1636717526371000 AS Timestamp)

$__varFallback(condition, $templateVar) Replaced by 
the first 
parameter 
when the 
template 
variable in 
the second 
parameter is 
not provided.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_visualization_grafana_templates-and-variables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_visualization_grafana_learn-more
https://grafana.com/docs/grafana/latest/variables/variable-types/add-query-variable/
https://grafana.com/docs/grafana/latest/variables/syntax/
https://grafana.com/docs/grafana/latest/variables/
https://grafana.com/docs/grafana/latest/dashboards/annotations/
https://grafana.com/docs/grafana/latest/variables/
https://grafana.com/docs/grafana/latest/panels/transformations/
https://grafana.com/docs/grafana/latest/alerting/


Apache Airflow™
Integration of YDB with Apache Airflow™ allows you to automate and manage complex workflows. Apache Airflow™ provides features for
scheduling tasks, monitoring their execution, and managing dependencies between them, such as orchestration. Using Airflow to orchestrate tasks
such as uploading data to YDB, executing queries, and managing transactions allows you to automate and optimize operational processes. This is
especially important for ETL tasks, where large amounts of data require regular extraction, transformation, and loading.

YDB provider package apache-airflow-providers-ydb allows to work with YDB from Apache Airflow™. Apache Airflow™ tasks are Python
applications consisting of a set of Apache Airflow™ operators and their dependencies, defining the order of execution.

Setup

Execute the following command on all Apache Airflow™ hosts to install the apache-airflow-providers-ydb  package:

Python version 3.8 or higher is required.

Object model

The airflow.providers.ydb  package contains a set of components for interacting with YDB:

Operator YDBExecuteQueryOperator  for integrating tasks into the Apache Airflow™ scheduler.

Hook YDBHook  for direct interaction with YDB.

YDBExecuteQueryOperator

To make requests to YDB, use the Apache Airflow™ operator YDBExecuteQueryOperator .

Required arguments

task_id  — the name of the Apache Airflow™ task.

sql  — the text of the SQL query to be executed in YDB.

Optional arguments

ydb_conn_id  — the connection identifier with the YDB  type, containing the connection parameters for YDB. If omitted, a connection named
ydb_default  is used. The ydb_default  connection is preinstalled as part of Apache Airflow™ and does not need to be configured

separately.

is_ddl  — indicates that SQL DDL is running. If omitted or set to False , then SQL DML is running.

params  — a dictionary of query parameters.

Example:

In this example, a Apache Airflow™ task is created with the ID ydb_operator , which executes the query SELECT 'Hello, world!' .

YDBHook

The Apache Airflow™ class YDBHook  is used to execute low-level commands in YDB.

Optional arguments

ydb_conn_id  — the connection identifier with the YDB  type, containing the connection parameters for YDB. If omitted, a connection named
ydb_default  is used. The ydb_default  connection is preinstalled as part of Apache Airflow™ and does not need to be configured

separately.

is_ddl  — indicates that SQL DDL is running. If omitted or set to False , then SQL DML is running.

YDBHook  supports the following methods:

bulk_upsert

get_conn

bulk_upsert

Performs batch data insertion into YDB tables.

Required arguments

table_name  — the name of the YDB table where the data will be inserted.

rows  — an array of rows to insert.

pip install ydb apache-airflow-providers-ydb

ydb_operator = YDBExecuteQueryOperator(task_id="ydb_operator", sql="SELECT 'Hello, world!'")

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orchestration_airflow
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orchestration_airflow_setup
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orchestration_airflow_object_model
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orchestration_airflow_ydb_execute_query_operator
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orchestration_airflow_required-arguments
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orchestration_airflow_optional-arguments
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orchestration_airflow_ydb_hook
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orchestration_airflow_optional-arguments1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orchestration_airflow_bulk_upsert
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orchestration_airflow_required-arguments1
https://airflow.apache.org/
https://airflow.apache.org/docs/apache-airflow-providers
https://pypi.org/project/apache-airflow-providers-ydb/
https://airflow.apache.org/docs/apache-airflow/stable/index.html
https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/operators.html
https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/dags.html
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orchestration_airflow_ydb_execute_query_operator
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orchestration_airflow_ydb_hook
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orchestration_airflow_ydb_default
https://en.wikipedia.org/wiki/Data_definition_language
https://en.wikipedia.org/wiki/Data_Manipulation_Language
https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/params.html
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orchestration_airflow_ydb_default
https://en.wikipedia.org/wiki/Data_definition_language
https://en.wikipedia.org/wiki/Data_Manipulation_Language
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orchestration_airflow_bulk_upsert
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orchestration_airflow_get_conn
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_bulk-upsert


column_types  — a description of column types.

Example:

In this example, a YDBHook  object is created, through which the bulk_upsert  batch data insertion operation is performed.

get_conn

Returns the YDBConnection  object, which implements the DbApiConnection  interface for working with data. The DbApiConnection  class
provides a standardized interface for interacting with the database, allowing operations such as establishing connections, executing SQL queries,
and managing transactions, regardless of the specific database management system.

Example:

In this example, a YDBHook  object is created, and a YDBConnection  object is requested from the created object. This connection is then used to
read data and retrieve a list of columns.

Connection to YDB

To connect to YDB, you must create a new or edit an existing Apache Airflow™ connection with the YDB  type.

hook = YDBHook(ydb_conn_id=...)
column_types = (
        ydb.BulkUpsertColumns()
        .add_column("pet_id", ydb.OptionalType(ydb.PrimitiveType.Int32))
        .add_column("name", ydb.PrimitiveType.Utf8)
        .add_column("pet_type", ydb.PrimitiveType.Utf8)
        .add_column("birth_date", ydb.PrimitiveType.Utf8)
        .add_column("owner", ydb.PrimitiveType.Utf8)
    )

rows = [
    {"pet_id": 3, "name": "Lester", "pet_type": "Hamster", "birth_date": "2020-06-23", "owner": "Lily"},
    {"pet_id": 4, "name": "Quincy", "pet_type": "Parrot", "birth_date": "2013-08-11", "owner": "Anne"},
]
hook.bulk_upsert("pet", rows=rows, column_types=column_types)

hook = YDBHook(ydb_conn_id=...)

# Execute the SQL query and get the cursor
connection = hook.get_conn()
cursor = connection.cursor()
cursor.execute("SELECT * from pet;")

# Extract the result and column names
result = cursor.fetchall()
columns = [desc[0] for desc in cursor.description]

# Close cursor and connection
cursor.close()
connection.close()

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orchestration_airflow_get_conn
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orchestration_airflow_ydb_default
https://pypi.python.org/pep-0249/#connection-objects
https://airflow.apache.org/docs/apache-airflow/stable/howto/connection.html


Where:

Connection Id  — the Apache Airflow™ connection identifier.

Host  — the protocol and cluster address of YDB.

Port  — the port of YDB.

Database name  — the name of the YDB database.

Specify the details for one of the following authentication methods on the YDB cluster:

Login  and Password  — specify user credentials for using static credentials.

Service account auth JSON  — specify the value of the Service Account Key .

Service account auth JSON file path  — specify the path to the Service Account Key  file.

IAM token  — specify the IAM token.

Use VM metadata  — enable this option to use virtual machine metadata.

Matching between YQL and Python types

Below are the rules for converting YQL types to Python results. Types not listed below are not supported.

Scalar types

YQL type Python type Example in Python

Int8 , Int16 , Int32 , Uint8 , Uint16 , Uint32 , Int64 , 
Uint64

int 647713

Bool bool True

Float , float float

NaN and Inf are represented as 
None

7.88731023

None

Decimal Decimal 45.23410083

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orchestration_airflow_matching-between-yql-and-python-types
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orchestration_airflow_scalars-types
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_static-credentials
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_iam
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_iam
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_iam


Complex types

Optional types

Containers

Special types

Example

To make requests to YDB, the package provides the Apache Airflow™ operator YDBExecuteQueryOperator  and hook YDBHook .

In the example below, a create_pet_table  task is launched to create a table in YDB. After the table is successfully created, the
populate_pet_table  task runs to populate the table with data using UPSERT  commands. Additionally, the
populate_pet_table_via_bulk_upsert  task fills the table using bulk_upsert . After data insertion, a read operation is performed using the
get_all_pets  task and the get_birth_date  task for parameterized data reading.

To execute queries in YDB, a pre-created connection of type YDB Connection named test_ydb_connection  is used.

Utf8 str "Text of string"

String str "Text of string"

YQL type Python type Example in Python

Json , JsonDocument str  (the entire node is inserted as a string) {"a":[1,2,3]}

Date datetime.date 2022-02-09

Datetime , Timestamp datetime.datetime 2022-02-09 10:13:11

YQL type Python type Example in Python

Optional Original type or None 1

YQL type Python type Example in Python

List<Type> list [1,2,3,4]

Dict<KeyType, ValueType> dict {"key1": "value1", "key2": "value2"}

Set<KeyType> set {"key_value1", "key_value2"}

Tuple<Type1, Type2> tuple (element1, element2)

Struct<Name:Utf8, Age:Int32> dict {"Name": "value1", "Age": value2}

YQL type Python type

Void , Null None

EmptyList []

EmptyDict {}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orchestration_airflow_complex-types
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orchestration_airflow_optional-types
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orchestration_airflow_containers
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orchestration_airflow_special-types
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orchestration_airflow_example
https://airflow.apache.org/docs/apache-airflow-providers-ydb/stable/_api/airflow/providers/ydb/operators/ydb/index.html
https://airflow.apache.org/docs/apache-airflow-providers-ydb/stable/_api/airflow/providers/ydb/hooks/ydb/index.html
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_bulk-upsert
https://airflow.apache.org/docs/apache-airflow-providers-ydb/stable/connections/ydb.html


from __future__ import annotations

import datetime

import ydb
from airflow import DAG
from airflow.decorators import task
from airflow.providers.ydb.hooks.ydb import YDBHook
from airflow.providers.ydb.operators.ydb import YDBExecuteQueryOperator

@task
def populate_pet_table_via_bulk_upsert():
    hook = YDBHook(ydb_conn_id="test_ydb_connection")
    column_types = (
        ydb.BulkUpsertColumns()
        .add_column("pet_id", ydb.OptionalType(ydb.PrimitiveType.Int32))
        .add_column("name", ydb.PrimitiveType.Utf8)
        .add_column("pet_type", ydb.PrimitiveType.Utf8)
        .add_column("birth_date", ydb.PrimitiveType.Utf8)
        .add_column("owner", ydb.PrimitiveType.Utf8)
    )

    rows = [
        {"pet_id": 3, "name": "Lester", "pet_type": "Hamster", "birth_date": "2020-06-23", "owner": "Lily"},
        {"pet_id": 4, "name": "Quincy", "pet_type": "Parrot", "birth_date": "2013-08-11", "owner": "Anne"},
    ]
    hook.bulk_upsert("pet", rows=rows, column_types=column_types)

with DAG(
    dag_id="ydb_demo_dag",
    start_date=datetime.datetime(2020, 2, 2),
    schedule="@once",
    catchup=False,
) as dag:
    create_pet_table = YDBExecuteQueryOperator(
        task_id="create_pet_table",
        sql="""
            CREATE TABLE pet (
            pet_id INT,
            name TEXT NOT NULL,
            pet_type TEXT NOT NULL,
            birth_date TEXT NOT NULL,
            owner TEXT NOT NULL,
            PRIMARY KEY (pet_id)
            );
          """,
        is_ddl=True,  # must be specified for DDL queries
        ydb_conn_id="test_ydb_connection"
    )

    populate_pet_table = YDBExecuteQueryOperator(
        task_id="populate_pet_table",
        sql="""
              UPSERT INTO pet (pet_id, name, pet_type, birth_date, owner)
              VALUES (1, 'Max', 'Dog', '2018-07-05', 'Jane');

              UPSERT INTO pet (pet_id, name, pet_type, birth_date, owner)
              VALUES (2, 'Susie', 'Cat', '2019-05-01', 'Phil');
            """,
        ydb_conn_id="test_ydb_connection"
    )

    get_all_pets = YDBExecuteQueryOperator(task_id="get_all_pets", sql="SELECT * FROM pet;", 
ydb_conn_id="test_ydb_connection")

    get_birth_date = YDBExecuteQueryOperator(
        task_id="get_birth_date",
        sql="SELECT * FROM pet WHERE birth_date BETWEEN '{{params.begin_date}}' AND '{{params.end_date}}'",
        params={"begin_date": "2020-01-01", "end_date": "2020-12-31"},
        ydb_conn_id="test_ydb_connection"
    )

    (
        create_pet_table
        >> populate_pet_table
        >> populate_pet_table_via_bulk_upsert()



        >> get_all_pets
        >> get_birth_date
    )



Log records collection using FluentBit
This section describes the integration between YDB and the log capture tool FluentBit to save and analyze the log records in YDB.

Overview

FluentBit is a tool that can collect text data, manipulate it (modify, transform, combine), and send it to various repositories for further processing. A
custom plugin library for FluentBit has been developed to support saving the log records into YDB. The library's source code is available in the
fluent-bit-ydb repository.

Deploying a log delivery scheme using FluentBit and YDB as the destination database includes the following steps:

1. Create YDB tables for the log data storage

2. Deploy FluentBit and YDB plugin for FluentBit

3. Configure FluentBit to collect and process the logs

4. Configure FluentBit to send the logs to YDB tables

Creating tables for log data

Tables for log data storage must be created in the chosen YDB database. The structure of the tables is determined by a set of fields of a specific log
supplied using FluentBit. Depending on the requirements, different log types may be saved to different tables. Normally, the table for log data
contains the following fields:

timestamp

log level

hostname

service name
message text or its semi-structural representation as JSON document

YDB tables must have a primary key, uniquely identifying each table's row. A timestamp does not always uniquely identify messages coming from a
particular source because messages might be generated simultaneously. To enforce the uniqueness of the primary key, a hash value can be added
to the table. The hash value is computed using the CityHash64 algorithm over the log record data.

Row-based and columnar tables can both be used for log data storage. Columnar tables are recommended, as they support more efficient data
scans for log data retrieval.

Example of the row-based table for log data storage:

Example of the columnar table for log data storage:

The command that creates the columnar table differs in the following details:

it specifies the columnar storage type and the table's partitioning key in the last two lines;

the timestamp  column is the first column of the primary key, which is optimal and recommended for columnar, but not for row-based tables.
See the specific guidelines for choosing the primary key for columnar tables and for row-based tables.

CREATE TABLE `fluent-bit/log` (
    `timestamp`         Timestamp NOT NULL,
    `hostname`          Text NOT NULL,
    `input`             Text NOT NULL,
    `datahash`          Uint64 NOT NULL,
    `level`             Text NULL,
    `message`           Text NULL,
    `other`             JsonDocument NULL,
    PRIMARY KEY (
         `datahash`, `timestamp`, `hostname`, `input`
    )
);

CREATE TABLE `fluent-bit/log` (
    `timestamp`         Timestamp NOT NULL,
    `hostname`          Text NOT NULL,
    `input`             Text NOT NULL,
    `datahash`          Uint64 NOT NULL,
    `level`             Text NULL,
    `message`           Text NULL,
    `other`             JsonDocument NULL,
    PRIMARY KEY (
         `timestamp`, `hostname`, `input`, `datahash`
    )
) PARTITION BY HASH(`timestamp`, `hostname`, `input`)
  WITH (STORE = COLUMN);

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_fluent-bit
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_fluent-bit_overview
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_fluent-bit_creating-tables-for-log-data
https://fluentbit.io/
https://github.com/ydb-platform/fluent-bit-ydb
https://github.com/google/cityhash
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_primary-key_column-oriented
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_primary-key_row-oriented


TTL configuration can be optionally applied to the table, limiting the data storage period and enabling the automatic removal of obsolete data.
Enabling TTL requires an extra setting in the WITH  section of the table creation command. For example, TTL = Interval("P14D") ON 
timestamp  sets the storage period to 14 days, based on the timestamp  field's value.

FluentBit deployment and configuration

FluentBit deployment should be performed according to its documentation.

YDB plugin for FluentBit is available in the source code form in the repository, along with the build instructions. A docker image is provided for
container-based deployments: ghcr.io/ydb-platform/fluent-bit-ydb .

General logic, configuration syntax and procedures to set up the receiving, processing, and delivering logs in the FluentBit environment are defined
in the corresponding FluentBit documentation.

Writing logs to YDB tables

Before using the YDB output plugin, it needs to be enabled in the FluentBit settings. The list of the enabled FluentBit plugins is configured in a file
(for example, plugins.conf ), which is referenced through the plugins_file  parameter in the SERVICE  section of the main FluentBit
configuration file. Below is the example of such a file with YDB plugin enabled (plugin library path may be different depending on your setup):

The table below lists the configuration parameters supported by the YDB output plugin for FluentBit.

The following pseudo-columns are available, in addition to the actual FluentBit log record fields, to be used as source values in the column map
( Columns  parameter):

.timestamp  - log record timestamp (mandatory)

# plugins.conf
[PLUGINS]
    Path /usr/lib/fluent-bit/out_ydb.so

Parameter Description

Name Plugin type, should be value ydb

Match (optional) Tag matching expression to select log records which should be routed to YDB

ConnectionURL YDB connection URL, including the protocol, endpoint, and database path (see the 
documentation)

TablePath Table path starting from database root (example: fluent-bit/log )

Columns JSON structure mapping the fields of FluentBit record to the columns of the target YDB table. 
May include the pseudo-columns listed below

CredentialsAnonymous Configured as 1  for anonymous YDB authentication

CredentialsToken Token value, to use the token authentication YDB mode

CredentialsYcMetadata Configure as 1  for virtual machine metadata YDB authentication

CredentialsStatic Username and password for YDB authentication, specified in the following format: 
username:password@

CredentialsYcServiceAccountKeyFile Path of a file containing the service account (SA) key, to use the SA key YDB authentication

CredentialsYcServiceAccountKeyJson JSON data of the service account key to be used instead of the filename (useful in K8s 
environment)

Certificates Path to the certificate authority (CA) trusted certificates file, or the literal trusted CA certificate 
value

LogLevel Plugin-specific logging level should be one of disabled  (default), trace , debug , info , 
warn , error , fatal  or panic

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_fluent-bit_fluentbit-deployment-and-configuration
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_fluent-bit_writing-logs-to-ydb-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_ttl
https://docs.fluentbit.io/manual/installation/getting-started-with-fluent-bit
https://github.com/ydb-platform/fluent-bit-ydb
https://docs.fluentbit.io/manual/concepts/key-concepts
https://docs.fluentbit.io/manual/concepts/data-pipeline/router
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_connect


.input  - log input stream name (mandatory)

.hash  - uint64 hash code, computed over the log record fields (optional)

.other  - JSON document containing all log record fields that were not explicitly mapped to any table column (optional)

Example of Columns  parameter value:

Collecting logs in a Kubernetes cluster

FluentBit is often used to collect logs in the Kubernetes environment. Below is the schema of the log delivery process, implemented using FluentBit
and YDB, for applications running in the Kubernetes cluster:

In this diagram:

Application pods write logs to stdout/stderr

Text from stdout/stderr is saved as files on Kubernetes worker nodes

Pod with FluentBit:

Mounts a folder with log files for itself

Reads the contents from the log files

Enriches log records with additional metadata

Saves records to YDB database

Table to store Kubernetes logs

Below is the YDB table structure to store the Kubernetes logs:

{".timestamp": "timestamp", ".input": "input", ".hash": "datahash", "log": "message", "level": "level", "host": 
"hostname", ".other": "other"}

CREATE TABLE `fluent-bit/log` (
    `timestamp`         Timestamp NOT NULL,
    `file`              Text NOT NULL,
    `pipe`              Text NOT NULL,
    `message`           Text NULL,
    `datahash`          Uint64 NOT NULL,
    `message_parsed`    JSON NULL,
    `kubernetes`        JSON NULL,

    PRIMARY KEY (
         `timestamp`, `file`, `datahash`
    )
) PARTITION BY HASH(`timestamp`, `file`)
  WITH (STORE = COLUMN, TTL = Interval("P14D") ON `timestamp`);

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_fluent-bit_collecting-logs-in-a-kubernetes-cluster
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_fluent-bit_table-to-store-kubernetes-logs


Columns purpose:

timestamp  – the log record timestamp;

file  – the name of the source from which the log was read. In the case of Kubernetes, this will be the name of the file on the worker node in
which the logs of a specific pod are written;

pipe  – stdout or stderr stream where application-level writing was done;

datahash  – hash code computed over the log record;

message  – the textual part of the log record;

message_parsed  – log record fields in the structured form, if it could be parsed using the configured FluentBit parsers from the textual part;

kubernetes  – information about the pod, including name, namespace, and annotations.

Optionally, TTL can be configured for the table, as shown in the example.

FluentBit configuration

In order to deploy FluentBit in the Kubernetes environment, a configuration file with the log collection and processing parameters must be prepared
(typical file name: values.yaml ). This section provides the necessary comments on this file's content with the examples.

It is necessary to replace the repository and image version of the FluentBit container:

In this image, a plugin library has been added that implements YDB support.

The following lines define the rules for mounting log folders in FluentBit pods:

FluentBit startup parameters should be configured as shown below:

The FluentBit pipeline for collecting, converting, and delivering logs should be defined according to the example:

image:
  repository: ghcr.io/ydb-platform/fluent-bit-ydb
  tag: latest

volumeMounts:
  - name: config
    mountPath: /fluent-bit/etc/conf

daemonSetVolumes:
  - name: varlog
    hostPath:
      path: /var/log
  - name: varlibcontainers
    hostPath:
      path: /var/lib/containerd/containers
  - name: etcmachineid
    hostPath:
      path: /etc/machine-id
      type: File

daemonSetVolumeMounts:
  - name: varlog
    mountPath: /var/log
  - name: varlibcontainers
    mountPath: /var/lib/containerd/containers
    readOnly: true
  - name: etcmachineid
    mountPath: /etc/machine-id
    readOnly: true

command:
  - /fluent-bit/bin/fluent-bit

args:
  - --workdir=/fluent-bit/etc
  - --plugin=/fluent-bit/lib/out_ydb.so
  - --config=/fluent-bit/etc/conf/fluent-bit.conf

config:
  inputs: |
    [INPUT]
        Name tail
        Path /var/log/containers/*.log
        multiline.parser cri

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_fluent-bit_fluentbit-configuration


Configuration blocks description:

inputs  - this block specifies where to read and how to parse logs. In this case, *.log  files will be read from the /var/log/containers/
folder, which is mounted from the host

filters  - this block specifies how the logs will be processed. In this case, for each log record, the corresponding metadata is added (using
the Kubernetes filter), and unused fields ( _p , time ) are cut out

outputs  - this block specifies where the logs will be sent. In this case, logs are saved into the fluent-bit/log  table in the YDB database.
Database connection parameters (in the shown example, ConnectionURL  and CredentialsToken ) are defined using the environment
variables – OUTPUT_YDB_CONNECTION_URL , OUTPUT_YDB_CREDENTIALS_TOKEN . Authentication parameters and the set of corresponding
environment variables are updated depending on the configuration of the YDB cluster being used.

Environment variables are defined as shown below:

Authentication data should be stored as the secret object in the Kubernetes cluster configuration. Example command to create a Kubernetes secret:

Deploying FluentBit in a Kubernetes cluster

HELM is a tool to package and install applications in a Kubernetes cluster. To deploy FluentBit, the corresponding chart repository (containing the
installation scenario) should be added using the following command:

After that, FluentBit can be deployed to a Kubernetes cluster with the following command:

The argument --values  in the example command shown above references the file containing the FluentBit settings.

        Tag kube.*
        Mem_Buf_Limit 5MB
        Skip_Long_Lines On

  filters: |
    [FILTER]
        Name kubernetes
        Match kube.*
        Keep_Log On
        Merge_Log On
        Merge_Log_Key log_parsed
        K8S-Logging.Parser On
        K8S-Logging.Exclude On

    [FILTER]
        Name modify
        Match kube.*
        Remove time
        Remove _p

  outputs: |
    [OUTPUT]
        Name ydb
        Match kube.*
        TablePath fluent-bit/log
        Columns 
{".timestamp":"timestamp",".input":"file",".hash":"datahash","log":"message","log_parsed":"message_structured","stream":"pi
        ConnectionURL ${OUTPUT_YDB_CONNECTION_URL}
        CredentialsToken ${OUTPUT_YDB_CREDENTIALS_TOKEN}

env:
  - name: OUTPUT_YDB_CONNECTION_URL
    value: grpc://ydb-endpoint:2135/path/to/database
  - name: OUTPUT_YDB_CREDENTIALS_TOKEN
    valueFrom:
      secretKeyRef:
        key: token
        name: fluent-bit-ydb-plugin-token

kubectl create secret -n ydb-fluent-bit-integration generic fluent-bit-ydb-plugin-token --from-literal=token=<YDB TOKEN>

helm repo add fluent https://fluent.github.io/helm-charts

helm upgrade --install fluent-bit fluent/fluent-bit \
  --version 0.37.1 \
  --namespace ydb-fluent-bit-integration \
  --create-namespace \
  --values values.yaml

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_fluent-bit_deploying-fluentbit-in-a-kubernetes-cluster
https://helm.sh/


Installation verification

Check that FluentBit has started by reading its logs (there should be no [error]  level entries):

Check that there are records in the YDB table (they will appear approximately a few minutes after launching FluentBit):

Resources cleanup

To remove FluentBit, it is sufficient to delete the Kubernetes namespace which was used for the installation:

After uninstalling FluentBit, the log storage table can be dropped from the YDB database:

kubectl logs -n ydb-fluent-bit-integration -l app.kubernetes.io/instance=fluent-bit

SELECT * FROM `fluent-bit/log` LIMIT 10 ORDER BY `timestamp` DESC;

kubectl delete namespace ydb-fluent-bit-integration

DROP TABLE `fluent-bit/log`;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_fluent-bit_installation-verification
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_fluent-bit_resources-cleanup


Integrating Logstash and YDB
This section describes the integration options between YDB and Logstash, a server-side data collection and processing pipeline.

Introduction

Logstash dynamically ingests, transforms, and ships data regardless of format or complexity. A Logstash pipeline can contain different types of
plugins: input, output, and filter. The YDB Logstash plugins repository is hosted on GitHub and contains the following plugins:

Storage Plugin for persisting Logstash events in row-oriented or column-oriented YDB tables;

Input Topic Plugin for reading Logstash events from YDB topics;

Output Topic Plugin for sending Logstash events to YDB topics.

These plugins can be built from the source code or downloaded as pre-built artifacts for the two latest versions of Logstash.

Note

Further code snippets use the placeholder <path-to-logstash> , which must be replaced by a path to a directory with installed
Logstash.

Execute the following command to install any Logstash plugin:

Check that the plugin has been installed:

The command will return a list of all installed plugins, which contain the plugin's name.

Configure YDB connection

All plugins use the same set of parameters to configure the connection to YDB. This set contains only one required parameter,
connection_string . Other parameters are optional and allow configuring an authentication mode. An anonymous mode will be used if the

configuration doesn't contain any of these parameters.

YDB Storage Plugin

This plugin allows storing the Logstash events stream in YDB tables for further analysis. This is especially useful with column-oriented tables
optimized for handling Online Analytical Processing (OLAP) requests. Every field of a Logstash event will be stored in a column with a
corresponding name. Fields that do not match any column will be ignored.

Configuration

The plugin configuration is done by adding a ydb_storage  block in the output  section of the Logstash pipeline config file. The plugin supports
the standard set of connection parameters and a few additional options:

table_name  — the required name of the destination table.

uuid_column  — the optional name of the column that the plugin will use for storing an auto-generated identifier.

timestamp_column  — the optional name of the column that the plugin will use for storing the events' timestamp.

<path-to-logstash>/bin/logstash-plugin install </path/to/logstash-plugin.gem>

<path-to-logstash>/bin/logstash-plugin list

# This example demonstrates configuration for ydb_storage plugin.
# The plugins ydb_topics_output and ydb_topics_input configure the same way.
ydb_storage {
    # Database connection string contains a schema, hostname, port, and database path
    connection_string => "grpc://localhost:2136/local"
    # Authentication token (for using the "Access Token" mode)
    token_auth => "<token_value>"
    # Authentication token file path (for using the "Access Token" mode)
    token_file => "</path/to/token/file>"
    # Service account key file path (for using the "Service Account Key" mode)
    sa_key_file => "</path/to/key.json>"
    # Flag to use metadata authentication service (for using the "Metadata" mode)
    use_metadata => true
}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_logstash
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_logstash_introduction
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_logstash_configure-ydb-connection
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_logstash_ydb-storage-plugin
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_logstash_configuration
https://www.elastic.co/logstash
https://github.com/ydb-platform/ydb-logstash-plugins
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_row-oriented-table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_olap-data-types
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic
https://github.com/ydb-platform/ydb-logstash-plugins/blob/main/BUILD.md
https://github.com/ydb-platform/ydb-logstash-plugins/releases
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_column-tables
https://www.elastic.co/guide/en/logstash/current/event-dependent-configuration.html
https://www.elastic.co/guide/en/logstash/current/configuration.html
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_logstash_configure-ydb-connection


Warning

The Storage plugin doesn't check if the Logstash event has correct and unique values for the table's primary key. It uses the bulk
upsert method for storing data in YDB, and if multiple events have the same primary keys, they will overwrite each other. The primary
key is recommended to contain those event fields that will be present in every event and can uniquely identify each event. If no such
set of fields exists, add an extra column to the primary key and fill it with a random value using the uuid_column  parameter.

Usage example

Creating a table

Create a new column-oriented table with the necessary columns in any existing YDB database. For example, the table below uses a random value
generated by the plugin.

Setup plugin in Logstash pipeline config

To activate the plugin, add the ydb_storage  block in the output  section of the Logstash pipeline config. Additionally, add the http  block in the
input  section for creating test messages via HTTP requests:

To apply these changes, restart Logstash.

Send test messages

Send a few test messages:

All commands return ok  if the messages are sent.

Check that the messages are stored in YDB

To check that all sent messages are written to the table, execute the following query using ScanQuery mode:

The query will return a list of written events:

CREATE TABLE `logstash_demo` (
    `uuid`     Text NOT NULL,      -- identifier
    `ts`       Timestamp NOT NULL, -- timestamp of event creation
    `message`  Text,
    `user`     Text,
    `level`    Int32,

    PRIMARY KEY (
         `uuid`
    )
)
WITH (STORE = COLUMN);

output {
  ydb_storage {
    connection_string => "..."    # YDB connection string
    table_name => "logstash_demo" # the table name
    uuid_column => "uuid"         # the primary key column with a random UUID
    timestamp_column => "ts"      # the column for storing the event timestamp
  }
}

input {
  http {
    port => 9876 # Any free port
  }
}

curl -H "content-type: application/json" -XPUT 'http://127.0.0.1:9876/http/ping' -d '{ "user" : "demo_user", "message" : 
"demo message", "level": 4}'
curl -H "content-type: application/json" -XPUT 'http://127.0.0.1:9876/http/ping' -d '{ "user" : "test1", "level": 1}'
curl -H "content-type: application/json" -XPUT 'http://127.0.0.1:9876/http/ping' -d '{ "message" : "error", "level": 
-3}'

SELECT * FROM `logstash_demo`;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_logstash_usage-example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_logstash_creating-a-table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_logstash_setup-plugin-in-logstash-pipeline-config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_logstash_send-test-messages
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_logstash_check-that-the-messages-are-stored-in-ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_batch-upload
https://www.elastic.co/guide/en/logstash/current/configuration.html
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_scan-query


YDB Topic Input Plugin

This plugin allows reading messages from YDB topics and transforming them into Logstash  events.

Configuration

The plugin configuration is done by adding a ydb_topic  block to the input  section of the Logstash pipeline config. The plugin supports the
standard set of connection parameters and a few additional options:

topic_path  — the required the full path of the topic for reading.

consumer_name  — the required the name of the topic consumer.

schema  — the optional mode for processing of the YDB events. By default, the plugin reads and sends messages as binary data, but if you
specify the JSON  mode, each message will be parsed as a JSON object.

Usage example

Create a topic

Create a topic and add a consumer to it in any existing YDB database:

Setup plugin in Logstash pipeline config

To activate the plugin, add the ydb_topic  block in the input  section of the Logstash pipeline config. Additionally, add the stdout  plugin in the
output  section for logging all Logstash  events:

To apply these changes, restart Logstash.

Write a test message to the topic

Send a few test messages to the topic:

Check if Logstash processed the messages

The stdout  plugin writes the messages to the Logstash logs:

┌───────┬────────────────┬───────────────────────────────┬─────────────┬────────────────────────────────────────┐
│ level │ message        │ ts                            │  user       │ uuid                                   │
├───────┼────────────────┼───────────────────────────────┼─────────────┼────────────────────────────────────────┤
│ -3    │ "error"        │ "2024-05-22T13:16:06.491000Z" │  null       │ "74cd4048-0b61-4fb9-9385-308714e21881" │
│  1    │ null           │ "2024-05-22T13:15:56.591000Z" │ "test1"     │ "1df27d0a-9aa0-42c7-9ea2-ab69bc1f5d87" │
│  4    │ "demo message" │ "2024-05-22T13:15:38.760000Z" │ "demo_user" │ "b7468cb1-e1e3-46fa-965d-83e604e80a31" │
└───────┴────────────────┴───────────────────────────────┴─────────────┴────────────────────────────────────────┘

ydb -e grpc://localhost:2136 -d /local topic create /local/logstash_demo_topic
ydb -e grpc://localhost:2136 -d /local topic consumer add --consumer logstash-consumer /local/logstash_demo_topic

input {
  ydb_topic {
    connection_string => "grpc://localhost:2136/local" # YDB connection string
    topic_path => "/local/logstash_demo_topic"         # The full path of the topic to read
    consumer_name => "logstash-consumer"               # The consumer name
    schema => "JSON"                                   # Use JSON mode
  }
}

output {
  stdout { }
}

echo '{"message":"test"}' | ydb -e grpc://localhost:2136 -d /local topic write /local/logstash_demo_topic
echo '{"user":123}' | ydb -e grpc://localhost:2136 -d /local topic write /local/logstash_demo_topic

{
      "message" => "test",
      "@timestamp" => 2024-05-23T10:31:47.712896899Z,
      "@version" => "1"
}
{
      "user" => 123.0,
      "@timestamp" => 2024-05-23T10:34:08.574599108Z,

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_logstash_ydb-topic-input-plugin
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_logstash_configuration1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_logstash_usage-example1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_logstash_create-a-topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_logstash_setup-plugin-in-logstash-pipeline-config1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_logstash_write-a-test-message-to-the-topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_logstash_check-if-logstash-processed-the-messages
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic
https://www.elastic.co/guide/en/logstash/current/configuration.html
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_logstash_configure-ydb-connection
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_consumer
https://www.elastic.co/guide/en/logstash/current/configuration.html


YDB Topic Output Plugin

This plugin allows writing Logstash  events to a YDB topic.

Configuration

The plugin configuration is done by adding a ydb_topic  block to the output  section of the Logstash pipeline config. The plugin supports the
standard set of connection parameters and a few additional options:

topic_path  — the required the full path of the topic for writing.

Usage example

Create a topic

Create a topic in any existing YDB database:

Setup plugin in Logstash pipeline config

To activate the plugin, add the ydb_topic  block in the output  section of the Logstash pipeline config. Additionally, add the http  block in the
input  section for creating test messages via HTTP requests:

To apply these changes, restart Logstash.

Send a test message

Send a test message via the http  plugin:

The command returns ok  if the message has been sent successfully.

Reading the message from the topic

Check that the plugin wrote the message to the topic successfully by reading this message via CLI:

The latter command will return the message content:

      "@version" => "1"
}

ydb -e grpc://localhost:2136 -d /local topic create /local/logstash_demo_topic

output {
  ydb_topic {
    connection_string => "grpc://localhost:2136/local" # YDB connection string
    topic_path => "/local/logstash_demo_topic"         # The topic name for writing
  }
}

input {
  http {
    port => 9876 # Any free port
  }
}

curl -H "content-type: application/json" -XPUT 'http://127.0.0.1:9876/http/ping' -d '{ "user" : "demo_user", "message" : 
"demo message", "level": 4}'

ydb -e grpc://localhost:2136 -d /local topic consumer add --consumer logstash-consumer /local/logstash_demo_topic
ydb -e grpc://localhost:2136 -d /local topic read /local/logstash_demo_topic --consumer logstash-consumer --commit true

{"level":4,"message":"demo message","timestamp":1716470292640,"user":"demo_user"}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_logstash_ydb-topic-output-plugin
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_logstash_configuration2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_logstash_usage-example2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_logstash_create-a-topic1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_logstash_setup-plugin-in-logstash-pipeline-config2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_logstash_send-a-test-message
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_logstash_reading-the-message-from-the-topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic
https://www.elastic.co/guide/en/logstash/current/configuration.html
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_logstash_configure-ydb-connection
https://www.elastic.co/guide/en/logstash/current/configuration.html


Importing table structures and data from JDBC data sources to YDB

Introduction

Table structures and data can be imported into YDB from data sources accessible via JDBC drivers using the JDBC import tool. This can be useful
for migrating from other database management systems to YDB or just importing your real data to run some benchmarks on YDB.

Data import is performed using the following process:

1. The tool connects to the source database and determines the list of tables and custom SQL queries to be imported.

2. The structure of target YDB tables is generated and optionally saved as YQL script.

3. The target database is checked for the existence of the target tables. Missing tables are created, and already existing ones may be left as is or
re-created.

4. Row data is imported by reading from the source database using the SELECT statements and written into the target YDB database using the
Bulk Upsert mechanism.

All operations, including metadata extraction from the source database, table creation (and re-creation) in the target database, and row data import,
are performed in parallel mode (thread-per-table), using multiple concurrent threads and multiple open connections to both source and target
databases. The maximum degree of parallelism is configurable, although the number of concurrent operations can't exceed the number of imported
tables or custom SQL queries.

Import tool installation

To run the import tool, JDK 8 or later is required, with the java  executable available in the program search path. The tool has been built and tested
using OpenJDK 8.

Import tool binary distribution is available on the Releases page. The import tool is provided as the ZIP archive, which needs to be unpacked into
the local directory on the server where the tool is required to run.

The import tool distribution archive contains the configuration file examples as *.xml  files, sample tool startup script ydb-importer.sh , and the
executable code for the tool and its dependencies (including the YDB Java SDK) as lib/*.jar  files.

Before running the import tool, the JDBC drivers for the source databases should be put (as *.jar  files) into the lib  subdirectory of the tool
installation directory.

Using the import tool

The tool reads the XML configuration file on startup. When running the tool, the file name must be specified as a free command line argument.
Settings in the configuration file define:

source database type and connection preferences;

YDB target database connection preferences;

(optional) file name to save the generated YQL script with YDB target tables structure;

the rules to filter source tables' names;
the list of custom SQL queries to fetch data from the data source (can be used to define custom queries to get data from all or some of the
tables);

the rules to generate target tables' names based on the names of the source tables;

the degree of parallelism (which determines the worker pool size, plus the connection pool sizes for both source and target databases).

The configuration file based on one of the provided samples needs to be prepared before running the import tool.

The example command to run the tool is provided in the ydb-importer.sh file, which can also be used to run the tool as shown below:

Import tool limitations

The tested data sources include the following database management systems:

PostgreSQL

MySQL

Oracle Database

Microsoft SQL Server

IBM Db2

IBM Informix

Other data sources will likely work, too, as the tool uses the generic JDBC APIs to retrieve data and metadata.

Secondary indexes are not imported.

Some data types and table structures are known to be unsupported:

the embedded tables for Oracle Database

spatial data type for Microsoft SQL Server

./ydb-importer.sh my-import-config.xml

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_import-jdbc
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_import-jdbc_intro
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_import-jdbc_install
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_import-jdbc_use
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_import-jdbc_limitations
https://www.github.com/ydb-platform/ydb-importer/
https://github.com/ydb-platform/ydb-importer/releases
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_index
https://github.com/ydb-platform/ydb-importer/blob/main/scripts/ydb-importer.sh
https://www.postgresql.org/
https://www.mysql.com/
https://www.oracle.com/database/
https://www.microsoft.com/sql-server/
https://www.ibm.com/products/db2
https://www.ibm.com/products/informix


object data types for Informix

Handling tables without the primary key

Each YDB table must have a primary key. If a primary key (or at least a unique index) is defined on the source table, the tool creates the primary
key for the target YDB table with the columns and order determined by the original primary key. When multiple unique indexes are defined on the
source table, the tool prefers the index with the smallest number of columns.

In case the source table has no primary key and no unique indexes, primary key columns can be configured using the import settings in the
configuration file as a sequence of key-column  elements in the table-ref  section (see below the example in the description of the configuration
file format).

When no primary key is defined anywhere, the tool automatically adds the column ydb_synth_key  to the target table and uses it as the primary
key. The values of the synthetic primary key are computed as "SHA-256" hash code over the values of all row cells except the columns of the
BLOB  type.

If the input table contains several rows with completely identical values, the destination table will have only one row per each set of duplicate input
rows. This also means that the tool cannot import the table in which all columns are of BLOB  type.

Importing large objects (BLOB, XML)

For each BLOB field in the source database, the import tool creates an additional YDB target table (BLOB supplemental table) with the following
schema:

The name of the BLOB supplemental table is generated based on the table-options  / blob-name-format  setting in the configuration file.

Each BLOB field value is saved as a sequence of records in the BLOB supplemental table in YDB. Actual data is stored in the val  field, storing no
more than 64K bytes. The order of blocks stored is defined by the values of the pos  column, containing the integer values 1..N .

For each source BLOB value, a unique value of type Int64  is generated and stored in the id  field of the BLOB supplemental table.
This identifier is also stored in the "main" target table in a field that has the same name as the BLOB field in the source table.

For PostgreSQL, working with the EXTENSION lo  BLOBS may require extra permissions for the account used to connect to the data source. An
alternative option is to enable the compatibility mode on the database level using the following statement:

Configuration file format

Sample configuration files:

for PostgreSQL

for MySQL

for Oracle Database

for Microsoft SQL Server

for IBM Db2

for IBM Informix

Below is the explanation of the configuration file structure:

CREATE TABLE `blob_table`(
    `id` Int64,
    `pos` Int32,
    `val` String,
    PRIMARY KEY(`id`, `pos`)
)

ALTER DATABASE dbname SET lo_compat_privileges TO on;

<?xml version="1.0" encoding="UTF-8"?>
<ydb-importer>
    <workers>
        <!-- Number of worker threads (integer starting with 1).
             This setting also defines the maximum number of source and target database sessions.
         -->
        <pool size="4"/>
    </workers>
    <!-- Source database connection parameters.
         type - the required attribute defining the type of the data source
      -->
    <source type="generic|postgresql|mysql|oracle|mssql|db2|informix">
        <!-- JDBC driver class name to be used. Typical values:
              org.postgresql.Driver
              com.mysql.cj.jdbc.Driver
              org.mariadb.jdbc.Driver
              oracle.jdbc.driver.OracleDriver

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_import-jdbc_nopk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_import-jdbc_blob
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_ingestion_import-jdbc_config
https://github.com/ydb-platform/ydb-importer/blob/main/scripts/sample-postgres.xml
https://github.com/ydb-platform/ydb-importer/blob/main/scripts/sample-mysql.xml
https://github.com/ydb-platform/ydb-importer/blob/main/scripts/sample-oracle.xml
https://github.com/ydb-platform/ydb-importer/blob/main/scripts/sample-mssql.xml
https://github.com/ydb-platform/ydb-importer/blob/main/scripts/sample-db2.xml
https://github.com/ydb-platform/ydb-importer/blob/main/scripts/sample-informix.xml


              com.microsoft.sqlserver.jdbc.SQLServerDriver
              com.ibm.db2.jcc.DB2Driver
              com.informix.jdbc.IfxDriver
        -->
        <jdbc-class>driver-class-name</jdbc-class>
        <!-- JDBC driver URL. Value templates:
              jdbc:postgresql://hostname:5432/dbname
              jdbc:mysql://hostname:3306/dbname
              jdbc:mariadb://hostname:3306/dbname
              jdbc:oracle:thin:@//hostname:1521/serviceName
              jdbc:sqlserver://localhost;encrypt=true;trustServerCertificate=true;database=AdventureWorks2022;
              jdbc:db2://localhost:50000/SAMPLE
              jdbc:informix-sqli://localhost:9088/stores_demo:INFORMIXSERVER=informix
        -->
        <jdbc-url>jdbc-url</jdbc-url>
        <username>username</username>
        <password>password</password>
    </source>
    <!-- Target YDB database connection parameters. -->
    <target type="ydb">
        <!-- If the following tag is defined, the tool will import
             The YQL script is used to generate YDB tables in the file specified.
             It can also be used without specifying the connection string,
             if the actual target schema creation is not required.
        -->
        <script-file>sample-database.yql.tmp</script-file>
        <!-- Connection string: protocol + endpoint + database. Typical values:
            grpcs://ydb.serverless.yandexcloud.net:2135?database=/ru-central1/b1gfvslmokutuvt2g019/etn63999hrinbapmef6g
            grpcs://localhost:2135?database=/local
            grpc://localhost:2136?database=/Root/testdb
         -->
        <connection-string>ydb-connection-string</connection-string>
        <!-- Authentication mode:
          ENV      Configure authentication via environment variables
          NONE     Anonymous access, or static credentials in the connection string
          STATIC   Static credentials defined as login and password properties (see below)
          SAKEY    Service account key file authentication for YDB Managed Service
          METADATA Service account metadata authentication for YDB Managed Service
        -->
        <auth-mode>ENV</auth-mode>
        <!--
         For managed YDB in Yandex Cloud, authentication parameters can be specified
         in the environment variables, as specified in the documentation:
            https://ydb.tech/en/docs/reference/ydb-sdk/auth#env
         In case the Service Account authentication is used, either explicitly
         or through the YDB_SERVICE_ACCOUNT_KEY_FILE_CREDENTIALS env, the key file
         must be generated as written in the following document:
            https://yandex.cloud/en/docs/iam/operations/authorized-key/create
        -->
        <!-- Custom TLS certificates, if needed -->
        <tls-certificate-file>ca.crt</tls-certificate-file>
        <!-- For auth-mode: STATIC -->
        <static-login>username</static-login>
        <static-password>password</static-password>
        <!-- For auth-mode: SAKEY -->
        <sa-key-file>ydb-sa-keyfile.json</sa-key-file>
        <!-- Drop the already existing tables before loading the data -->
        <replace-existing>false</replace-existing>
        <!-- Should the tool actually load the data after creating tables? -->
        <load-data>true</load-data>
        <!-- Maximum rows per bulk upsert operation
             (used for writing into the main table) -->
        <max-batch-rows>1000</max-batch-rows>
        <!-- Maximum rows per blob bulk upsert operation
             (used for writing into the supplemental BLOB fields tables) -->
        <max-blob-rows>200</max-blob-rows>
    </target>
    <!-- Table name and structure conversion rules.
         Each rule is defined under a distinct name, and later referenced in the table mappings.
     -->
    <table-options name="default">
        <!--  Table name case conversion mode: ASIS (no changes, used by default), LOWER, UPPER. -->
        <case-mode>ASIS</case-mode>
        <!-- The template used to generate the full destination YDB table name,
             including the directory to put the table in.
             The values ${schema} and ${table} are used to substitute
             the schema and table name of the source table. -->
        <table-name-format>oraimp1/${schema}/${table}</table-name-format>



        <!-- The template used to generate the name of the supplemental table
             to store source BLOB field's data in YDB.
             The values ${schema}, ${table} and ${field}
             are used for source schema, table and BLOB field names. -->
        <blob-name-format>oraimp1/${schema}/${table}_${field}</blob-name-format>
        <!-- Date and timestamp data type values conversion mode.
             Possible values: DATE (use YDB Date datatype, default), INT, STR.
             DATE does not support input values before January, 1, 1970,
                 and there will be import errors for such values in the source
             INT saves date as 32-bit integer YYYYMMDD for dates,
                 and as a 64-bit milliseconds since epoch for timestamps.
             STR saves dates as character strings (Utf8) in format "YYYY-MM-DD",
                 and in "YYYY-MM-DD hh:mm:ss.xxx" for timestamps.
         -->
        <conv-date>INT</conv-date>
        <conv-timestamp>STR</conv-timestamp>
        <!-- If true, columns with unsupported types are skipped with warning,
             otherwise import error is generated, and the whole table is skipped. -->
        <skip-unknown-types>true</skip-unknown-types>
    </table-options>
    <!-- Table map filters the source tables and defines the conversion modes for them. -->
    <table-map options="default">
        <!-- Schemas to include, can be specified as regular expression or literal value -->
        <include-schemas regexp="true">.*</include-schemas>
        <!-- Schemas to exclude (of those included), as literal or regular expression -->
        <exclude-schemas>SOMESCHEMA</exclude-schemas>
        <!-- Particular tables can be included or excluded using the
             "include-tables" and "exclude-tables" tags,
             using literals or regular expressions as well. -->
    </table-map>
    <!-- Table reference may refer to a particular table in a particular schema
         and optionally specify the query to execute. The latter option allows to import
         virtual tables that do not actually exist on the data source. -->
    <table-ref options="default">
        <schema-name>ora$sys</schema-name>
        <table-name>all_tables</table-name>
        <!-- If the query text is defined, it is executed as shown. -->
        <query-text>SELECT * FROM all_tables</query-text>
        <!-- Primary key column names should be defined for the query result.  -->
        <key-column>OWNER</key-column>
        <key-column>TABLE_NAME</key-column>
    </table-ref>
</ydb-importer>



Migrating YDB data schemas with the Flyway migration tool

Introduction

Flyway is an open-source database migration tool. It strongly favors simplicity and convention over configuration. It has extensions for various
database management systems (DBMS), including YDB.

Install

To use Flyway with YDB in a Java / Kotlin application or a Gradle / Maven plugin, you need to add dependencies for the Flyway core, the Flyway
extension for YDB, and the YDB JDBC Driver:

To work with YDB via Flyway CLI, you need to install the flyway  utility itself using one of the recommended methods.

Then the utility must be extended with the YDB dialect and the JDBC driver:

Note

Flyway Desktop is currently not supported.

Migration management using Flyway

baseline

Command baseline initializes Flyway in an existing database, excluding all migrations up to and including the baselineVersion .

Maven

<!-- Set actual versions -->
<dependency>
    <groupId>org.flywaydb</groupId>
    <artifactId>flyway-core</artifactId>
    <version>${flyway.core.version}</version>
</dependency>

<dependency>
    <groupId>tech.ydb.jdbc</groupId>
    <artifactId>ydb-jdbc-driver</artifactId>
    <version>${ydb.jdbc.version}</version>
</dependency>

<dependency>
    <groupId>tech.ydb.dialects</groupId>
    <artifactId>flyway-ydb-dialect</artifactId>
    <version>${flyway.ydb.dialect.version}</version>
</dependency>

Gradle

dependencies {
    // Set actual versions
    implementation "org.flywaydb:flyway-core:$flywayCoreVersion"
    implementation "tech.ydb.dialects:flyway-ydb-dialect:$flywayYdbDialecVersion"
    implementation "tech.ydb.jdbc:ydb-jdbc-driver:$ydbJdbcVersion"
}

# install flyway
# cd $(which flyway) // prepare this command for your environment

cd libexec
# set actual versions of .jar files

cd drivers && curl -L -o ydb-jdbc-driver-shaded-2.1.0.jar https://repo.maven.apache.org/maven2/tech/ydb/jdbc/ydb-jdbc-
driver-shaded/2.1.0/ydb-jdbc-driver-shaded-2.1.0.jar

cd ..

cd lib && curl -L -o flyway-ydb-dialect.jar https://repo.maven.apache.org/maven2/tech/ydb/dialects/flyway-ydb-
dialect/1.0.0-RC0/flyway-ydb-dialect-1.0.0-RC0.jar

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_migration_flyway
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_migration_flyway_introduction
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_migration_flyway_install
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_migration_flyway_flyway-main-commands
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_migration_flyway_flyway-baseline
https://documentation.red-gate.com/fd/
https://github.com/ydb-platform/ydb-jdbc-driver
https://documentation.red-gate.com/fd/command-line-184127404.html
https://documentation.red-gate.com/fd/flyway-desktop-138346953.html
https://documentation.red-gate.com/flyway/flyway-cli-and-api/usage/command-line/command-line-baseline


Suppose we have an existing project with the current database schema:

Let's write down our existing migrations as follows:

Contents of SQL files:

Set baselineVersion = 3 , then run the following command:

db/migration:
  V1__create_series.sql
  V2__create_seasons.sql
  V3__create_episodes.sql

V1__create_series.sql

CREATE TABLE series -- series is the table name.
(                           -- Must be unique within the folder.
    series_id    Int64,
    title        Text,
    series_info  Text,
    release_date Int64,
    PRIMARY KEY (series_id) -- The primary key is a column or
    -- combination of columns that uniquely identifies
    -- each table row (contains only
    -- non-repeating values). A table can have
    -- only one primary key. For every table
    -- in YDB, the primary key is required.
);

V2__create_seasons.sql

CREATE TABLE seasons
(
    series_id Uint64,
    season_id Uint64,
    title Utf8,
    first_aired Uint64,
    last_aired Uint64,
    PRIMARY KEY (series_id, season_id)
);

V3__create_episodes.sql

CREATE TABLE episodes
(
    series_id Uint64,
    season_id Uint64,
    episode_id Uint64,
    title Utf8,
    air_date Uint64,
    PRIMARY KEY (series_id, season_id, episode_id)
);

flyway -url=jdbc:ydb:grpc://localhost:2136/local -locations=db/migration -baselineVersion=3 baseline



Note

All examples use a Docker container, which does not require any additional authentication parameters.

You can see how to connect to YDB in the next section.

As a result, a table named flyway_schema_history  will be created, and it will contain a baseline  record:

migrate

Command migrate evolves the database schema to the latest version. Flyway will create the schema history table automatically if it doesn't exist.

Let's add the migration of data downloads to the previous example:

db/migration:
  V1__create_series.sql
  V2__create_seasons.sql
  V3__create_episodes.sql
  V4__load_data.sql

The contents of V4__load_data.sql

INSERT INTO series (series_id, title, release_date, series_info)
VALUES

    -- By default, numeric literals have type Int32
    -- if the value is within the range.
    -- Otherwise, they automatically expand to Int64.
    (1,
     "IT Crowd",
     CAST(Date ("2006-02-03") AS Uint64), -- CAST converts one datatype into another.
        -- You can convert a string
        -- literal into a primitive literal.
        -- The Date() function converts a string
        -- literal in ISO 8601 format into a date.

     "The IT Crowd is a British sitcom produced by Channel 4, written by Graham Linehan, produced by Ash Atalla and 
starring Chris O'Dowd, Richard Ayoade, Katherine Parkinson, and Matt Berry."),
    (2,
     "Silicon Valley",
     CAST(Date ("2014-04-06") AS Uint64),
     "Silicon Valley is an American comedy television series created by Mike Judge, John Altschuler and Dave 
Krinsky. The series focuses on five young men who founded a startup company in Silicon Valley.")
;

INSERT INTO seasons (series_id, season_id, title, first_aired, last_aired)
VALUES (1, 1, "Season 1", CAST(Date ("2006-02-03") AS Uint64), CAST(Date ("2006-03-03") AS Uint64)),
       (1, 2, "Season 2", CAST(Date ("2007-08-24") AS Uint64), CAST(Date ("2007-09-28") AS Uint64)),
       (1, 3, "Season 3", CAST(Date ("2008-11-21") AS Uint64), CAST(Date ("2008-12-26") AS Uint64)),
       (1, 4, "Season 4", CAST(Date ("2010-06-25") AS Uint64), CAST(Date ("2010-07-30") AS Uint64)),
       (2, 1, "Season 1", CAST(Date ("2014-04-06") AS Uint64), CAST(Date ("2014-06-01") AS Uint64)),
       (2, 2, "Season 2", CAST(Date ("2015-04-12") AS Uint64), CAST(Date ("2015-06-14") AS Uint64)),

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_migration_flyway_flyway-migrate
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_migration_liquibase_connect-to-ydb
https://documentation.red-gate.com/flyway/flyway-cli-and-api/usage/command-line/command-line-migrate


       (2, 3, "Season 3", CAST(Date ("2016-04-24") AS Uint64), CAST(Date ("2016-06-26") AS Uint64)),
       (2, 4, "Season 4", CAST(Date ("2017-04-23") AS Uint64), CAST(Date ("2017-06-25") AS Uint64)),
       (2, 5, "Season 5", CAST(Date ("2018-03-25") AS Uint64), CAST(Date ("2018-05-13") AS Uint64))
;

INSERT INTO episodes (series_id, season_id, episode_id, title, air_date)
VALUES (1, 1, 1, "Yesterday's Jam", CAST(Date ("2006-02-03") AS Uint64)),
       (1, 1, 2, "Calamity Jen", CAST(Date ("2006-02-03") AS Uint64)),
       (1, 1, 3, "Fifty-Fifty", CAST(Date ("2006-02-10") AS Uint64)),
       (1, 1, 4, "The Red Door", CAST(Date ("2006-02-17") AS Uint64)),
       (1, 1, 5, "The Haunting of Bill Crouse", CAST(Date ("2006-02-24") AS Uint64)),
       (1, 1, 6, "Aunt Irma Visits", CAST(Date ("2006-03-03") AS Uint64)),
       (1, 2, 1, "The Work Outing", CAST(Date ("2006-08-24") AS Uint64)),
       (1, 2, 2, "Return of the Golden Child", CAST(Date ("2007-08-31") AS Uint64)),
       (1, 2, 3, "Moss and the German", CAST(Date ("2007-09-07") AS Uint64)),
       (1, 2, 4, "The Dinner Party", CAST(Date ("2007-09-14") AS Uint64)),
       (1, 2, 5, "Smoke and Mirrors", CAST(Date ("2007-09-21") AS Uint64)),
       (1, 2, 6, "Men Without Women", CAST(Date ("2007-09-28") AS Uint64)),
       (1, 3, 1, "From Hell", CAST(Date ("2008-11-21") AS Uint64)),
       (1, 3, 2, "Are We Not Men?", CAST(Date ("2008-11-28") AS Uint64)),
       (1, 3, 3, "Tramps Like Us", CAST(Date ("2008-12-05") AS Uint64)),
       (1, 3, 4, "The Speech", CAST(Date ("2008-12-12") AS Uint64)),
       (1, 3, 5, "Friendface", CAST(Date ("2008-12-19") AS Uint64)),
       (1, 3, 6, "Calendar Geeks", CAST(Date ("2008-12-26") AS Uint64)),
       (1, 4, 1, "Jen The Fredo", CAST(Date ("2010-06-25") AS Uint64)),
       (1, 4, 2, "The Final Countdown", CAST(Date ("2010-07-02") AS Uint64)),
       (1, 4, 3, "Something Happened", CAST(Date ("2010-07-09") AS Uint64)),
       (1, 4, 4, "Italian For Beginners", CAST(Date ("2010-07-16") AS Uint64)),
       (1, 4, 5, "Bad Boys", CAST(Date ("2010-07-23") AS Uint64)),
       (1, 4, 6, "Reynholm vs Reynholm", CAST(Date ("2010-07-30") AS Uint64)),
       (2, 1, 1, "Minimum Viable Product", CAST(Date ("2014-04-06") AS Uint64)),
       (2, 1, 2, "The Cap Table", CAST(Date ("2014-04-13") AS Uint64)),
       (2, 1, 3, "Articles of Incorporation", CAST(Date ("2014-04-20") AS Uint64)),
       (2, 1, 4, "Fiduciary Duties", CAST(Date ("2014-04-27") AS Uint64)),
       (2, 1, 5, "Signaling Risk", CAST(Date ("2014-05-04") AS Uint64)),
       (2, 1, 6, "Third Party Insourcing", CAST(Date ("2014-05-11") AS Uint64)),
       (2, 1, 7, "Proof of Concept", CAST(Date ("2014-05-18") AS Uint64)),
       (2, 1, 8, "Optimal Tip-to-Tip Efficiency", CAST(Date ("2014-06-01") AS Uint64)),
       (2, 2, 1, "Sand Hill Shuffle", CAST(Date ("2015-04-12") AS Uint64)),
       (2, 2, 2, "Runaway Devaluation", CAST(Date ("2015-04-19") AS Uint64)),
       (2, 2, 3, "Bad Money", CAST(Date ("2015-04-26") AS Uint64)),
       (2, 2, 4, "The Lady", CAST(Date ("2015-05-03") AS Uint64)),
       (2, 2, 5, "Server Space", CAST(Date ("2015-05-10") AS Uint64)),
       (2, 2, 6, "Homicide", CAST(Date ("2015-05-17") AS Uint64)),
       (2, 2, 7, "Adult Content", CAST(Date ("2015-05-24") AS Uint64)),
       (2, 2, 8, "White Hat/Black Hat", CAST(Date ("2015-05-31") AS Uint64)),
       (2, 2, 9, "Binding Arbitration", CAST(Date ("2015-06-07") AS Uint64)),
       (2, 2, 10, "Two Days of the Condor", CAST(Date ("2015-06-14") AS Uint64)),
       (2, 3, 1, "Founder Friendly", CAST(Date ("2016-04-24") AS Uint64)),
       (2, 3, 2, "Two in the Box", CAST(Date ("2016-05-01") AS Uint64)),
       (2, 3, 3, "Meinertzhagen's Haversack", CAST(Date ("2016-05-08") AS Uint64)),
       (2, 3, 4, "Maleant Data Systems Solutions", CAST(Date ("2016-05-15") AS Uint64)),
       (2, 3, 5, "The Empty Chair", CAST(Date ("2016-05-22") AS Uint64)),
       (2, 3, 6, "Bachmanity Insanity", CAST(Date ("2016-05-29") AS Uint64)),
       (2, 3, 7, "To Build a Better Beta", CAST(Date ("2016-06-05") AS Uint64)),
       (2, 3, 8, "Bachman's Earnings Over-Ride", CAST(Date ("2016-06-12") AS Uint64)),
       (2, 3, 9, "Daily Active Users", CAST(Date ("2016-06-19") AS Uint64)),
       (2, 3, 10, "The Uptick", CAST(Date ("2016-06-26") AS Uint64)),
       (2, 4, 1, "Success Failure", CAST(Date ("2017-04-23") AS Uint64)),
       (2, 4, 2, "Terms of Service", CAST(Date ("2017-04-30") AS Uint64)),
       (2, 4, 3, "Intellectual Property", CAST(Date ("2017-05-07") AS Uint64)),
       (2, 4, 4, "Teambuilding Exercise", CAST(Date ("2017-05-14") AS Uint64)),
       (2, 4, 5, "The Blood Boy", CAST(Date ("2017-05-21") AS Uint64)),
       (2, 4, 6, "Customer Service", CAST(Date ("2017-05-28") AS Uint64)),
       (2, 4, 7, "The Patent Troll", CAST(Date ("2017-06-04") AS Uint64)),
       (2, 4, 8, "The Keenan Vortex", CAST(Date ("2017-06-11") AS Uint64)),
       (2, 4, 9, "Hooli-Con", CAST(Date ("2017-06-18") AS Uint64)),
       (2, 4, 10, "Server Error", CAST(Date ("2017-06-25") AS Uint64)),
       (2, 5, 1, "Grow Fast or Die Slow", CAST(Date ("2018-03-25") AS Uint64)),
       (2, 5, 2, "Reorientation", CAST(Date ("2018-04-01") AS Uint64)),
       (2, 5, 3, "Chief Operating Officer", CAST(Date ("2018-04-08") AS Uint64)),
       (2, 5, 4, "Tech Evangelist", CAST(Date ("2018-04-15") AS Uint64)),
       (2, 5, 5, "Facial Recognition", CAST(Date ("2018-04-22") AS Uint64)),
       (2, 5, 6, "Artificial Emotional Intelligence", CAST(Date ("2018-04-29") AS Uint64)),
       (2, 5, 7, "Initial Coin Offering", CAST(Date ("2018-05-06") AS Uint64)),
       (2, 5, 8, "Fifty-One Percent", CAST(Date ("2018-05-13") AS Uint64));



Let's apply the latest migration using the following command:

As a result, series , season , and episode  tables will be created and filled with data:

Then, we evolve the schema by adding a secondary index to the series  table:

Let's apply the latest migration using the following command:

As a result, a secondary index for the series  table will be created:

info

Command info prints the details and status information about all the migrations.

flyway -url=jdbc:ydb:grpc://localhost:2136/local -locations=db/migration migrate

db/migration:
  V1__create_series.sql
  V2__create_seasons.sql
  V3__create_episodes.sql
  V4__load_data.sql
  V5__create_series_title_index.sql

The contents of V5__create_series_title_index.sql

ALTER TABLE `series` ADD INDEX `title_index` GLOBAL ON (`title`);

flyway -url=jdbc:ydb:grpc://localhost:2136/local -locations=db/migration migrate

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_migration_flyway_flyway-info
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_index
https://documentation.red-gate.com/flyway/flyway-cli-and-api/usage/command-line/command-line-info


Let's add another migration that renames the previously added secondary index:

The result of executing the flyway -url=jdbc:ydb:grpc://localhost:2136/local -locations=db/migration info  will provide detailed
information about the status of the migrations:

validate

Command validate validates the applied migrations against the available ones.

After applying the flyway -url=jdbc:ydb:grpc://localhost:2136/local -locations=db/migration validate  command with current
migrations, the logs will show that the latest migration was not applied to our database:

Let's apply this error by executing flyaway .. migrate  again. The validation will now be successful, and the secondary index will be renamed.

Next, we will modify the file of the previously applied migration V4__load_date.sql  by deleting comments from the SQL script.

After executing the validation command, we got a logical error because the checksum  differed in the modified migration:

repair

Command repair tries to fix the identified errors and discrepancies from the database schema history table.

Fix the problem with different checksum 's by running the following command:

The result will be an update to the checksum  column in the flyway_schema_history  table for the migration entry V4__load_data.sql :

db/migration:
  V1__create_series.sql
  V2__create_seasons.sql
  V3__create_episodes.sql
  V4__load_data.sql
  V5__create_series_title_index.sql
  V6__rename_series_title_index.sql

The contents of V6__rename_series_title_index.sql

ALTER TABLE `series` RENAME INDEX `title_index` TO `title_index_new`;

+-----------+---------+---------------------------+----------+---------------------+--------------------+----------+
| Category  | Version | Description               | Type     | Installed On        | State              | Undoable |
+-----------+---------+---------------------------+----------+---------------------+--------------------+----------+
| Versioned | 1       | create series             | SQL      |                     | Below Baseline     | No       |
| Versioned | 2       | create seasons            | SQL      |                     | Below Baseline     | No       |
| Versioned | 3       | create episodes           | SQL      |                     | Ignored (Baseline) | No       |
|           | 3       | << Flyway Baseline >>     | BASELINE | 2024-04-16 12:09:27 | Baseline           | No       |
| Versioned | 4       | load data                 | SQL      | 2024-04-16 12:35:12 | Success            | No       |
| Versioned | 5       | create series title index | SQL      | 2024-04-16 12:59:20 | Success            | No       |
| Versioned | 6       | rename series title index | SQL      |                     | Pending            | No       |
+-----------+---------+---------------------------+----------+---------------------+--------------------+----------+

ERROR: Validate failed: Migrations have failed validation
Detected resolved migration not applied to database: 6.
To fix this error, either run migrate, or set -ignoreMigrationPatterns='*:pending'.

ERROR: Validate failed: Migrations have failed validation
Migration checksum mismatch for migration version 4
-> Applied to database : 591649768
-> Resolved locally    : 1923849782

flyway -url=jdbc:ydb:grpc://localhost:2136/local -locations=db/migration repair

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_migration_flyway_flyway-validate
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_migration_flyway_flyway-repair
https://documentation.red-gate.com/flyway/flyway-cli-and-api/usage/command-line/command-line-validate
https://documentation.red-gate.com/flyway/flyway-cli-and-api/usage/command-line/command-line-repair


After restoring the log table, validation is successful.

Also, using the repair  command, you can delete a failed DDL script.

clean

Command clean drops all objects in the configured schemas.

Warning

Unlike other database management systems, YDB does not have a concept of SCHEMA . Thus, the clean  command drops all the
user tables in a given database.

Let's delete all the tables in our database using the following command:

The result will be an empty database:

flyway -url=jdbc:ydb:grpc://localhost:2136/local -locations=db/migration -cleanDisabled=false clean

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_migration_flyway_flyway-repair
https://documentation.red-gate.com/flyway/flyway-cli-and-api/usage/command-line/command-line-clean


Data schema versioning and migration in YDB using "goose"

Introduction

Goose is an open-source tool that helps to version the data schema in the database and manage migrations between these versions. Goose
supports many different database management systems, including YDB. Goose uses migration files and stores the state of migrations directly in the
database in a special table.

Install goose

Goose installation options are described in its documentation.

Launch arguments goose

After installation, the goose  command line utility can be called:

Where:

<DB>  - database engine, for YDB you should write goose ydb

<CONNECTION_STRING>  - database connection string.

<COMMAND>  - the command to be executed. A complete list of commands is available in the built-in help ( goose help ).

<COMMAND_ARGUMENTS>  - command arguments.

YDB connection string

To connect to YDB you should use a connection string like:

Where:

<protocol>  - connection protocol ( grpc  for an unsecured connection or grpcs  for a secure TLS connection). The secure connection
requires certificates. You should declare certificates like this: export YDB_SSL_ROOT_CERTIFICATES_FILE=/path/to/ydb/certs/CA.pem .

<host>  - hostname for connecting to YDB cluster.

<port>  - port for connecting to YDB cluster.

<database_path>  - database in the YDB cluster.

go_query_mode=scripting  - special scripting  mode for executing queries by default in the YDB driver. In this mode, all requests from
goose are sent to the YDB scripting  service, which allows processing of both DDL and DML SQL statements.

go_fake_tx=scripting  - support for transaction emulation in query execution mode through the YDB scripting  service. The fact is that in
YDB, executing DDL  SQL  statements in a transaction is impossible (or incurs significant overhead). In particular, the scripting  service
does not allow interactive transactions (with explicit Begin + Commit / Rollback ). Accordingly, the transaction emulation mode does not
actually do anything ( noop ) on the Begin + Commit / Rollback  calls from goose . This trick can, in rare cases, cause an individual
migration step to end up in an intermediate state. The YDB team is working on a new query  service that should eliminate this risk.

go_query_bind=declare,numeric  - support for bindings of auto-inference of YQL types from query parameters ( declare ) and support for
bindings of numbered parameters ( numeric ). YQL is a strongly typed language that requires you to explicitly specify the types of query
parameters in the body of the SQL  query itself using the special DECLARE  statement. Also, YQL only supports named query parameters (for
example, $my_arg ), while the goose core generates SQL queries with numbered parameters ( $1 , $2 , etc.) . The declare  and numeric
bindings modify the original queries from goose  at the YDB driver level.

If connecting to a local YDB docker container, the connection string could look like:

Let's store this connection string to an environment variable to re-use it later:

Further examples of calling goose  commands will contain exactly this connection string.

Directory with migration files

Let's create a migrations directory and then all goose  commands should be executed in this directory:

$ goose <DB> <CONNECTION_STRING> <COMMAND> <COMMAND_ARGUMENTS>

<protocol>://<host>:<port>/<database_path>?go_query_mode=scripting&go_fake_tx=scripting&go_query_bind=declare,numeric

grpc://localhost:2136/local?go_query_mode=scripting&go_fake_tx=scripting&go_query_bind=declare,numeric

export YDB_CONNECTION_STRING="grpc://localhost:2136/local?
go_query_mode=scripting&go_fake_tx=scripting&go_query_bind=declare,numeric"

$ mkdir migrations && cd migrations

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_migration_goose
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_migration_goose_introduction
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_migration_goose_install-goose
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_migration_goose_launch-arguments-goose
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_migration_goose_ydb-connection-string
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_migration_goose_directory-with-migration-files
https://github.com/pressly/goose
https://github.com/pressly/goose/blob/master/README.md#install
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Data_definition_language
https://en.wikipedia.org/wiki/Data_manipulation_language


Managing migrations using goose

Creating migration files and applying to database

The migration file can be generated using the goose create  command:

This means that the tool has created a new migration file <timestamp>_00001_create_table_users.sql :

After executing the goose create  command, a migration file <timestamp>_00001_create_table_users.sql  will be created with the following
content :

This migration file structure helps keep the instructions that lead to the next version of the database in context. It is also easy, without unnecessary
distractions, to write instructions that roll back a database change.

The migration file consists of two sections:

1. +goose Up  is an area where we can record the migration steps.

2. +goose Down  is an area where we can write queries to revert changes of the +goose Up  steps.

Goose carefully inserted placeholder queries:

And

So that we can replace them with the real migration SQL queries for change the schema for the YDB database, which is accessible through the
corresponding connection string.

Let's edit the migration file <timestamp>_00001_create_table_users.sql  so that when applying the migration we create a table with necessary
schema, and when rolling back the migration we delete the created table:

We can check status of migrations:

$ goose ydb $YDB_CONNECTION_STRING create 00001_create_first_table sql
2024/01/12 11:52:29 Created new file: 20240112115229_00001_create_first_table.sql

$ ls
20231215052248_00001_create_table_users.sql

-- +goose Up
-- +goose StatementBegin
SELECT 'up SQL query';
-- +goose StatementEnd

-- +goose Down
-- +goose StatementBegin
SELECT 'down SQL query';
-- +goose StatementEnd

SELECT 'up SQL query';

SELECT 'down SQL query';

-- +goose Up
-- +goose StatementBegin
CREATE TABLE users (
     id Uint64,
     username Text,
     created_at Timestamp,
     PRIMARY KEY (id)
);
-- +goose StatementEnd

-- +goose Down
-- +goose StatementBegin
DROP TABLE users;
-- +goose StatementEnd

$ goose ydb $YDB_CONNECTION_STRING status
2024/01/12 11:53:50     Applied At                  Migration
2024/01/12 11:53:50     =======================================
2024/01/12 11:53:50     Pending                  -- 20240112115229_00001_create_first_table.sql

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_migration_goose_managing-migrations-using-goose
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_migration_goose_creating-migration-files-and-applying-to-database


Status Pending  of migration means that migration has not been applied yet. You can apply such migrations with commands goose up  or goose 
up-by-one .

Let's apply migration using goose up :

Let's check the status of migration through goose status :

Status Pending  changed to timestamp Fri Jan 12 11:55:18 2024  - this means that migration applied.

There are alternative options to see the applied changes:

$ goose ydb $YDB_CONNECTION_STRING up
2024/01/12 11:55:18 OK   20240112115229_00001_create_first_table.sql (93.58ms)
2024/01/12 11:55:18 goose: successfully migrated database to version: 20240112115229

$ goose ydb $YDB_CONNECTION_STRING status
2024/01/12 11:56:00     Applied At                  Migration
2024/01/12 11:56:00     =======================================
2024/01/12 11:56:00     Fri Jan 12 11:55:18 2024 -- 20240112115229_00001_create_first_table.sql

Using YDB UI on `http://localhost:8765`

Using YDB CLI

$ ydb -e grpc://localhost:2136 -d /local scheme describe users
<table> users

Columns:
┌────────────┬────────────┬────────┬─────┐
│ Name       │ Type       │ Family │ Key │
├────────────┼────────────┼────────┼─────┤
│ id         │ Uint64?    │        │ K0  │
│ username   │ Utf8?      │        │     │
│ created_at │ Timestamp? │        │     │
└────────────┴────────────┴────────┴─────┘

Storage settings:
Store large values in "external blobs": false

Column families:
┌─────────┬──────┬─────────────┬────────────────┐
│ Name    │ Data │ Compression │ Keep in memory │
├─────────┼──────┼─────────────┼────────────────┤
│ default │      │ None        │                │
└─────────┴──────┴─────────────┴────────────────┘

Auto partitioning settings:



Let's make the second migration that adds a column password_hash  to the users  table:

Let's edit the migration file <timestamp>_00002_add_column_password_hash_into_table_users.sql :

We can check the migration statuses again:

Now we see the first migration in applied status and the second in pending status.

Let's apply the second migration using goose up-by-one :

Let's check the migration status through goose status :

Both migration are fully applied.

Let's use the same methods to see the new changes:

Partitioning by size: true
Partitioning by load: false
Preferred partition size (Mb): 2048
Min partitions count: 1

$ goose ydb $YDB_CONNECTION_STRING create 00002_add_column_password_hash_into_table_users sql
2024/01/12 12:00:57 Created new file: 20240112120057_00002_add_column_password_hash_into_table_users.sql

-- +goose Up
-- +goose StatementBegin
ALTER TABLE users ADD COLUMN password_hash Text;
-- +goose StatementEnd

-- +goose Down
-- +goose StatementBegin
ALTER TABLE users DROP COLUMN password_hash;
-- +goose StatementEnd

$ goose ydb $YDB_CONNECTION_STRING status
2024/01/12 12:02:40     Applied At                  Migration
2024/01/12 12:02:40     =======================================
2024/01/12 12:02:40     Fri Jan 12 11:55:18 2024 -- 20240112115229_00001_create_first_table.sql
2024/01/12 12:02:40     Pending                  -- 20240112120057_00002_add_column_password_hash_into_table_users.sql

$ goose ydb $YDB_CONNECTION_STRING up-by-one
2024/01/12 12:04:56 OK   20240112120057_00002_add_column_password_hash_into_table_users.sql (59.93ms)

$ goose ydb $YDB_CONNECTION_STRING status
2024/01/12 12:05:17     Applied At                  Migration
2024/01/12 12:05:17     =======================================
2024/01/12 12:05:17     Fri Jan 12 11:55:18 2024 -- 20240112115229_00001_create_first_table.sql
2024/01/12 12:05:17     Fri Jan 12 12:04:56 2024 -- 20240112120057_00002_add_column_password_hash_into_table_users.sql

Using YDB UI on `http://localhost:8765`



All subsequent migration files should be created in the same way.

Downgrading migrations

Let's downgrade (revert) the latest migration using goose down :

Let's check the migration statuses through goose status :

Using YDB CLI

$ ydb -e grpc://localhost:2136 -d /local scheme describe users
<table> users

Columns:
┌───────────────┬────────────┬────────┬─────┐
│ Name          │ Type       │ Family │ Key │
├───────────────┼────────────┼────────┼─────┤
│ id            │ Uint64?    │        │ K0  │
│ username      │ Utf8?      │        │     │
│ created_at    │ Timestamp? │        │     │
│ password_hash │ Utf8?      │        │     │
└───────────────┴────────────┴────────┴─────┘

Storage settings:
Store large values in "external blobs": false

Column families:
┌─────────┬──────┬─────────────┬────────────────┐
│ Name    │ Data │ Compression │ Keep in memory │
├─────────┼──────┼─────────────┼────────────────┤
│ default │      │ None        │                │
└─────────┴──────┴─────────────┴────────────────┘

Auto partitioning settings:
Partitioning by size: true
Partitioning by load: false
Preferred partition size (Mb): 2048
Min partitions count: 1

$ goose ydb $YDB_CONNECTION_STRING down
2024/01/12 13:07:18 OK   20240112120057_00002_add_column_password_hash_into_table_users.sql (43ms)

$ goose ydb $YDB_CONNECTION_STRING status
2024/01/12 13:07:36     Applied At                  Migration
2024/01/12 13:07:36     =======================================

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_migration_goose_downgrading-migrations


Status Fri Jan 12 12:04:56 2024  changed to Pending  - this means that the latest migration is no longer applied.

Let's check the changes again:

Short list of "goose" commands

The goose  utility allows you to manage migrations via the command line:

goose status  - view the status of applying migrations. For example, goose ydb $YDB_CONNECTION_STRING status .

goose up  - apply all known migrations. For example, goose ydb $YDB_CONNECTION_STRING up .

goose up-by-one  - apply exactly one “next” migration. For example, goose ydb $YDB_CONNECTION_STRING up-by-one .

goose redo  - re-apply the latest migration. For example, goose ydb $YDB_CONNECTION_STRING redo .

2024/01/12 13:07:36     Fri Jan 12 11:55:18 2024 -- 20240112115229_00001_create_first_table.sql
2024/01/12 13:07:36     Pending                  -- 20240112120057_00002_add_column_password_hash_into_table_users.sql

Using YDB UI on `http://localhost:8765`

Using YDB CLI

$ ydb -e grpc://localhost:2136 -d /local scheme describe users
<table> users

Columns:
┌────────────┬────────────┬────────┬─────┐
│ Name       │ Type       │ Family │ Key │
├────────────┼────────────┼────────┼─────┤
│ id         │ Uint64?    │        │ K0  │
│ username   │ Utf8?      │        │     │
│ created_at │ Timestamp? │        │     │
└────────────┴────────────┴────────┴─────┘

Storage settings:
Store large values in "external blobs": false

Column families:
┌─────────┬──────┬─────────────┬────────────────┐
│ Name    │ Data │ Compression │ Keep in memory │
├─────────┼──────┼─────────────┼────────────────┤
│ default │      │ None        │                │
└─────────┴──────┴─────────────┴────────────────┘

Auto partitioning settings:
Partitioning by size: true
Partitioning by load: false
Preferred partition size (Mb): 2048
Min partitions count: 1

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_migration_goose_short-list-of-goose-commands


goose down  - rollback the last migration. For example, goose ydb $YDB_CONNECTION_STRING down .

goose reset  - rollback all migrations. For example, goose ydb $YDB_CONNECTION_STRING reset .

Warning

Be careful: the goose reset  command will revert all your migrations using your statements in blocks +goose Down . In many cases it
might lead to all data in the database being erased. Make sure you regularly do backups and check that they can be restored to
minimize impact of this risk.



Migrating YDB data schemas with the Liquibase migration tool

Introduction

Liquibase is an open-source library for tracking, managing, and applying changes to database schemas. It is extended with dialects for different
database management systems (DBMS), including YDB.

Dialect is the main component in the Liquibase framework, which assists in creating SQL queries for a database, considering the specific features
of a given DBMS.

Features of the YDB Dialect

Liquibase's main functionality is the abstract description of database schemas in a .xml , .json , or .yaml  format. This ensures portability when
switching between different DBMSs.

The YDB dialect supports the following basic constructs in the standard migration description (changeset).

Creating a table

The сreateTable  changeset is responsible for creating a table. The descriptions of types from the SQL standard are mapped to primitive types in
YDB. For example, the bigint  type will be converted to Int64 .

Note

You can also explicitly specify the original type name, such as Int32 , Json , JsonDocument , Bytes , or Interval . However, in
this case, the schema won't be portable.

Table of comparison of Liquibase types descriptions with YDB types:

Liquibase types YDB type

boolean , java.sql.Types.BOOLEAN , java.lang.Boolean , bit , bool Bool

blob , longblob , longvarbinary , String , java.sql.Types.BLOB , java.sql.Types.LONGBLOB , 
java.sql.Types.LONGVARBINARY , java.sql.Types.VARBINARY , java.sql.Types.BINARY , varbinary , 
binary , image , tinyblob , mediumblob , long binary , long varbinary

Bytes  (synonym 
String )

java.sql.Types.DATE , smalldatetime , date Date

decimal , java.sql.Types.DECIMAL , java.math.BigDecimal Decimal(22,9)

double , java.sql.Types.DOUBLE , java.lang.Double Double

float , java.sql.Types.FLOAT , java.lang.Float , real , java.sql.Types.REAL Float

int , integer , java.sql.Types.INTEGER , java.lang.Integer , int4 , int32 Int32

bigint , java.sql.Types.BIGINT , java.math.BigInteger , java.lang.Long , integer8 , bigserial , long Int64

java.sql.Types.SMALLINT , int2 , smallserial , smallint Int16

java.sql.Types.TINYINT , tinyint Int8

char , java.sql.Types.CHAR , bpchar , character , nchar , java.sql.Types.NCHAR , nchar2 , text , 
varchar , java.sql.Types.VARCHAR , java.lang.String , varchar2 , character varying , nvarchar , 
java.sql.Types.NVARCHAR , nvarchar2 , national , clob , longvarchar , longtext , 
java.sql.Types.LONGVARCHAR , java.sql.Types.CLOB , nclob , longnvarchar , ntext , 
java.sql.Types.LONGNVARCHAR , java.sql.Types.NCLOB , tinytext , mediumtext , long varchar , 
long nvarchar

Text  (synonym 
Utf8 )

timestamp , java.sql.Types.TIMESTAMP , java.sql.Timestamp Timestamp

datetime , time , java.sql.Types.TIME , java.sql.Time Datetime

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_migration_liquibase
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_migration_liquibase_introduction
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_migration_liquibase_ydb-dialect
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_migration_liquibase_creating-a-table
https://www.liquibase.com/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_primitive


Warning

In YDB, the Timestamp  data type stores dates with microsecond precision. The java.sql.Timestamp  or java.time.Instant  store
timestamps with nanosecond precision, so you should be aware of this when using these data types.

The type names are case insensitive.

The dropTable  changeset - delete a table. For example: <dropTable tableName="episodes"/>

Changing the table structure

addColumn  - add a column to a table. For example:

createIndex  - create a secondary index. For example:

xml

<addColumn tableName="seasons">
    <column name="is_deleted" type="bool"/>
</addColumn>

json

"changes": [
    {
      "addColumn": {
        "tableName": "seasons",
        "columns": [
          {
            "column": {
              "name": "is_deleted",
              "type": "bool"
            }
          }
        ]
      }
    }
  ]

yaml

changes:
- addColumn:
    tableName: seasons
    columns:
    - column:
        name: is_deleted
        type: bool

xml

<createIndex tableName="episodes" indexName="episodes_index" unique="false">
    <column name="title"/>
</createIndex>

json

"changes": [
    {
      "createIndex": {
        "tableName": "episodes",
        "indexName": "episodes_index",
        "unique": "false",
        "columns": {
          "column": {
            "name": "title"
          }
        }

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_migration_liquibase_changing-the-table-structure


Warning

YDB doesn't support unique secondary indexes.

Note

Asynchronous indexes should be created using native SQL migrations.

dropIndex  - drop a secondary index. For example:

Ingesting data into a table

loadData , loadUpdateData  - upload data from a CSV  file into a table. loadUpdateData  loads data using the UPSERT INTO command.

insert  is a changeset that performs a single insert into a table using the INSERT INTO command. For example:

      }
    }

yaml

changes:
- createIndex:
    tableName: episodes
    indexName: episodes_index
    unique: false
    columns:
    - column:
        name: title

xml

<dropIndex tableName="series" indexName="series_index"/>

json

"changes": [
  {
    "dropIndex": {
      "tableName": "series",
      "indexName": "series_index"
    }
  }
]

yaml

changes:
- dropIndex:
    tableName: series
    indexName: series_index

xml

<insert tableName="episodes">
    <column name="series_id" valueNumeric="1"/>
    <column name="season_id" valueNumeric="1"/>
    <column name="episode_id" valueNumeric="1"/>
    <column name="title" value="Yesterday's Jam"/>
    <column name="air_date" valueDate="2023-04-03T08:46:23.456"/>
</insert>

json

"changes": [
  {

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_migration_liquibase_ingesting-data-into-a-table
https://docs.liquibase.com/concepts/changelogs/sql-format.html
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_upsert_into
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_insert_into


You can also specify any value in the value  field. Data from the value  field in insert  changeset or CSV  files will be automatically converted to
the required types, taking into account strict typing in YDB.

The type formatting table to load into the table:

    "insert": {
      "tableName": "episodes",
      "columns": [
        {
          "column": {
            "name": "series_id",
            "valueNumeric": "1"
          }
        },
        {
          "column": {
            "name": "season_id",
            "valueNumeric": "1"
          }
        },
        {
          "column": {
            "name": "episode_id",
            "valueNumeric": "1"
          }
        },
        {
          "column": {
            "name": "title",
            "value": "Yesterday's Jam"
          }
        },
        {
          "column": {
            "name": "air_date",
            "valueDate": "2023-04-03T08:46:23.456"
          }
        }
      ]
    }
  }
]

yaml

changes:
- insert:
    tableName: episodes
    columns:
      - column:
          name: series_id
          valueNumeric: 1
      - column:
          name: season_id
          valueNumeric: 1
      - column:
          name: episode_id
          valueNumeric: 1
      - column:
          name: title
          value: Yesterday's Jam
      - column:
          name: air_date
          valueDate: 2023-04-03T08:46:23.456

YDB type Description format

Bool true  or false



Example CSV  file:

Warning

To understand which SQL statements YDB can perform and what are the restrictions on data types, read the documentation for the
query language YQL.

Note

It is important to note that custom YQL instructions can be applied via native SQL queries.

How to use it?

There are two ways:

id,bool,bigint,smallint,tinyint,float,double,decimal,uint8,uint16,uint32,uint64,text,binary,json,jsondocument,date,datetime
2,true,123123,13000,112,1.123,1.123123,1.123123,12,13,14,15,kurdyukov-kir,binary,{"asd": "asd"},{"asd": "asd"},2014-04-
06,2023-09-16T12:30,2023-07-31T17:00:00.00Z,PT10S

Programmatically from Java / Kotlin applications

The project's README describes how to use it from Java or Kotlin in detail. There is also an example of a Spring Boot application using it.

Liquibase CLI

First, you need to install Liquibase itself using one of the recommended methods. Then you need to place the .jar  archives of YDB JDBC driver
and Liquibase YDB dialect into the internal/lib  folder.

# $(which liquibase)
cd ./internal/lib/

# you may need to sudo
# set actual versions of .jar files
curl -L -o ydb-jdbc-driver.jar https://repo.maven.apache.org/maven2/tech/ydb/jdbc/ydb-jdbc-driver-shaded/2.0.7/ydb-jdbc-
driver-shaded-2.0.7.jar

Int8 , Int16 , Int32 , 
Int64

A signed integer

Uint8 , Uint16 , Uint32 , 
Uint64

An unsigned integer

Text , Bytes , Json , 
JsonDocument

Represent as text

Float , Double , 
Decimal(22, 9)

A real number

Interval ISO-8601, corresponds to the java.time.Duration  in Java.

Date Pattern YYYY-MM-DD  calendar date from standard ISO-8601

Datetime Pattern YYYY-MM-DDThh:mm:ss , timezone will be set to UTC

Timestamp The timestamp from the ISO-8601 standard corresponds to the java.time.Instant  in Java, timezone 
will be set to UTC  (precision in microseconds - Timestamp  type YDB restriction)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_migration_liquibase_using
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_index
https://docs.liquibase.com/concepts/changelogs/sql-format.html
https://github.com/ydb-platform/ydb-java-dialects/tree/main/liquibase-dialect
https://github.com/ydb-platform/ydb-java-examples/tree/master/jdbc/spring-liquibase-app
https://docs.liquibase.com/start/install/home.html
https://github.com/ydb-platform/ydb-jdbc-driver/releases
https://mvnrepository.com/artifact/tech.ydb.dialects/liquibase-ydb-dialect/1.0.0
https://en.wikipedia.org/wiki/ISO_8601#Durations
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601


Liquibase usage scenarios

Initializing Liquibase on an empty YDB cluster

The main command is liquibase update , which applies migrations if the current schema in YDB lags behind the user-defined description.

Let's apply this changeset to an empty database:

After executing the liquibase update  command, Liquibase will print the following log:

After applying migrations, the data schema now looks like this:

For a more detailed description, see the Manual library management in Liquibase documentation.

Now the liquibase  command line utility can be used with YDB.

curl -L -o liquibase-ydb-dialect.jar https://repo.maven.apache.org/maven2/tech/ydb/dialects/liquibase-ydb-
dialect/1.0.0/liquibase-ydb-dialect-1.0.0.jar

<?xml version="1.0" encoding="UTF-8"?>
<databaseChangeLog
        xmlns="http://www.liquibase.org/xml/ns/dbchangelog"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog
                      http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-3.8.xsd">

    <changeSet id="episodes" author="kurdyukov-kir">
        <comment>Table episodes.</comment>

        <createTable tableName="episodes">
            <column name="series_id" type="bigint">
                <constraints primaryKey="true"/>
            </column>
            <column name="season_id" type="bigint">
                <constraints primaryKey="true"/>
            </column>
            <column name="episode_id" type="bigint">
                <constraints primaryKey="true"/>
            </column>

            <column name="title" type="text"/>
            <column name="air_date" type="timestamp"/>
        </createTable>
        <rollback>
            <dropTable tableName="episodes"/>
        </rollback>
    </changeSet>
    <changeSet id="index_episodes_title" author="kurdyukov-kir">
        <createIndex tableName="episodes" indexName="index_episodes_title" unique="false">
            <column name="title"/>
        </createIndex>
    </changeSet>
</databaseChangeLog>

UPDATE SUMMARY
Run:                          2
Previously run:               0
Filtered out:                 0
-------------------------------
Total change sets:            2

Liquibase: Update has been successful. Rows affected: 2
Liquibase command 'update' was executed successfully.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_migration_liquibase_liquibase-usage-scenarios
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_migration_liquibase_initializing-liquibase-on-an-empty-ydb-cluster
https://docs.liquibase.com/start/install/home.html


You can see that Liquibase has created two service tables: DATABASECHANGELOG , which is the migration log, and DATABASECHANGELOGLOCK , which
is a table for acquiring a distributed lock.

Example contents of the DATABASECHANGELOG  table:

Database schema evolution

Let's say we need to create a YDB topic and turn off the param AUTO_PARTITIONING_BY_SIZE  of the table. This can be done with a native SQL
script:

Also, let's add a new column is_deleted  and remove the index_episodes_title  index:

--liquibase formatted sql

--changeset kurdyukov-kir:create-a-topic
CREATE TOPIC `my_topic` (
    CONSUMER my_consumer
) WITH (
     retention_period = Interval('P1D')
);

--changeset kurdyukov-kir:auto-partitioning-disabled
ALTER TABLE episodes SET (AUTO_PARTITIONING_BY_SIZE = DISABLED);

<changeSet id="alter-episodes" author="kurdyukov-kir">
    <comment>Alter table episodes.</comment>

    <dropIndex tableName="episodes" indexName="index_episodes_title"/>

AUTHOR COMMENTS CONTEXTS DATEEXECUTED DEPLOYMENT_ID DESCRIPTION EXECTYPE FILENAME ID LABELS LIQUIBASE MD5SUM ORDEREXECUTED TAG

kurdyukov-
kir

Table 
episodes.

12:53:27 1544007500 createTable tableName=episodes EXECUTED migration/episodes.xml episodes 4.25.1 9:4067056a5ab61db09b379a93625870ca 1

kurdyukov-
kir

"" 12:53:28 1544007500 createIndex 
indexName=index_episodes_title, 
tableName=episodes

EXECUTED migration/episodes.xml index_episodes_title 4.25.1 9:49b8b0b22d18c7fd90a3d6b2c561455d 2

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_migration_liquibase_database-schema-evolution


After executing liquibase update , the database schema will be successfully updated with all of these changes:

The result will be deleting the index, adding the is_deleted  column, disabling the auto partitioning setting, and creating a topic:

Initializing liquibase in a project with a non-empty data schema

Let's suppose there's an existing project with the following database schema:

    <addColumn tableName="episodes">
        <column name="is_deleted" type="bool"/>
    </addColumn>
</changeSet>
<include file="/migration/sql/yql.sql" relativeToChangelogFile="true"/>

UPDATE SUMMARY
Run:                          3
Previously run:               2
Filtered out:                 0
-------------------------------
Total change sets:            5

Liquibase: Update has been successful. Rows affected: 3
Liquibase command 'update' was executed successfully.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_migration_liquibase_initializing-liquibase-in-a-project-with-a-non-empty-data-schema


In this case to start using Liquibase, you need to run:

The contents of the generated changelog.xml:

liquibase generate-changelog --changelog-file=changelog.xml

<changeSet author="kurdyukov-kir (generated)" id="1711556283305-1">
    <createTable tableName="all_types_table">
        <column name="id" type="INT32">
            <constraints nullable="false" primaryKey="true"/>
        </column>
        <column name="bool_column" type="BOOL"/>
        <column name="bigint_column" type="INT64"/>
        <column name="smallint_column" type="INT16"/>
        <column name="tinyint_column" type="INT8"/>
        <column name="float_column" type="FLOAT"/>
        <column name="double_column" type="DOUBLE"/>
        <column name="decimal_column" type="DECIMAL(22, 9)"/>
        <column name="uint8_column" type="UINT8"/>
        <column name="uint16_column" type="UINT16"/>
        <column name="unit32_column" type="UINT32"/>
        <column name="unit64_column" type="UINT64"/>
        <column name="text_column" type="TEXT"/>
        <column name="binary_column" type="BYTES"/>
        <column name="json_column" type="JSON"/>
        <column name="jsondocument_column" type="JSONDOCUMENT"/>
        <column name="date_column" type="DATE"/>
        <column name="datetime_column" type="DATETIME"/>
        <column name="timestamp_column" type="TIMESTAMP"/>
        <column name="interval_column" type="INTERVAL"/>
    </createTable>



Then you need to synchronize the generated changelog.xml the file, this is done by the command:

The result will be liquibase synchronization in your project:

Connecting to YDB

In the examples above, a Docker container was used, which didn't require any additional authentication settings.

List of different authentication options through URL parameters:

Local or remote Docker (anonymous authentication):
jdbc:ydb:grpc://localhost:2136/local

Self-hosted cluster:
jdbc:ydb:grpcs://<host>:2135/Root/testdb?secureConnectionCertificate=file:~/myca.cer

Connect with token to the cloud instance:
jdbc:ydb:grpcs://<host>:2135/path/to/database?token=file:~/my_token

Connect with service account to the cloud instance:
jdbc:ydb:grpcs://<host>:2135/path/to/database?saFile=file:~/sa_key.json

Also, if your cluster is configured using username and password, authentication is done through Liquibase parameters.

For more info about different authentication settings, refer to the section.

</changeSet>
<changeSet author="kurdyukov-kir (generated)" id="1711556283305-2">
    <createTable tableName="episodes">
        <column name="series_id" type="INT64">
            <constraints nullable="false" primaryKey="true"/>
        </column>
        <column name="season_id" type="INT64">
            <constraints nullable="false" primaryKey="true"/>
        </column>
        <column name="episode_id" type="INT64">
            <constraints nullable="false" primaryKey="true"/>
        </column>
        <column name="title" type="TEXT"/>
        <column name="air_date" type="DATE"/>
    </createTable>
</changeSet>
<changeSet author="kurdyukov-kir (generated)" id="1711556283305-3">
    <createIndex indexName="title_index" tableName="episodes">
        <column name="title"/>
    </createIndex>
</changeSet>

liquibase changelog-sync --changelog-file=changelog.xml

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_migration_liquibase_connect-to-ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication


YDB Dialect for Spring Data JDBC
This guide is intended for use with Spring Data JDBC and YDB.

Spring Data JDBC is part of the Spring Data ecosystem, providing a simplified way to interact with relational databases using SQL and Java
objects. Unlike Spring JPA, which relies on JPA (Java Persistence API), Spring Data offers a direct approach to working with databases, bypassing
complex ORM (Object-Relational Mapping) for simpler methods.

Installing the YDB dialect

To integrate YDB with a Spring Data JDBC project, it needs two dependencies: the YDB JDBC driver and the Spring Data JDBC extension for YDB.

Examples for different build systems:

Usage

After importing all the necessary dependencies, the dialect is ready for use. Below is a simple example of a Spring Data JDBC application.

Maven

<!-- Set actual versions -->
<dependency>
    <groupId>tech.ydb.jdbc</groupId>
    <artifactId>ydb-jdbc-driver</artifactId>
    <version>${ydb.jdbc.version}</version>
</dependency>

<dependency>
    <groupId>tech.ydb.dialects</groupId>
    <artifactId>spring-data-jdbc-ydb</artifactId>
    <version>${spring.data.jdbc.ydb}</version>
</dependency>

Gradle

dependencies {
    // Set actual versions
    implementation "tech.ydb.dialects:spring-data-jdbc-ydb:$ydbDialectVersion"
    implementation "tech.ydb.jdbc:ydb-jdbc-driver:$ydbJdbcVersion"
}

spring.datasource.driver-class-name=tech.ydb.jdbc.YdbDriver
spring.datasource.url=jdbc:ydb:<grpc/grpcs>://<host>:<2135/2136>/path/to/database[?saFile=file:~/sa_key.json]

@Table(name = "Users")
public class User implements Persistable<Long> {
    @Id
    private Long id = ThreadLocalRandom.current().nextLong();

    private String login;
    private String firstname;
    private String lastname;

    @Transient
    private boolean isNew;

    // Constructors, getters and setters

    @Override
    public Long getId() {
      return id;
    }

    @Override
    public boolean isNew() {
      return isNew;
    }

    public void setNew(boolean isNew) {
      this.isNew = isNew;
    }
}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orm_spring-data-jdbc
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orm_spring-data-jdbc_install-dialect
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orm_spring-data-jdbc_using
https://spring.io/projects/spring-data-jdbc
https://spring.io/projects/spring-data
https://github.com/ydb-platform/ydb-jdbc-driver/


Creating a repository for the User  entity in the Users  table:

Saving a new user and verifying that it has been successfully saved:

View Index

To generate VIEW INDEX  statements from repository methods, use the @ViewIndex  annotation. The @ViewIndex  annotation has two fields:

indexName : The index name.

tableName : The table name to which the VIEW INDEX  is bound, which is particularly useful when using the @MappedCollection  annotation.

Here is an example of an index on the Users table by the login  field:

The query generated by this method will look as follows:

YdbType

The @YdbType  annotation allows you to declare a specific YDB data type for an entity field. Here is an example of its usage:

public interface SimpleUserRepository extends CrudRepository<User, Long> {
}

@Component
public class UserRepositoryCommandLineRunner implements CommandLineRunner {

    @Autowired
    private SimpleUserRepository repository;

    @Override
    public void run(String... args) {
        User user = new User();
        user.setLogin("johndoe");
        user.setFirstname("John");
        user.setLastname("Doe");
        user.setNew(true);  // Setting the flag for the new entity

        // Save user
        User savedUser = repository.save(user);

        // Check saved user
        assertThat(repository.findById(savedUser.getId())).contains(savedUser);

        System.out.println("User saved with ID: " + savedUser.getId());
    }
}

public interface SimpleUserRepository extends CrudRepository<User, Long> {

    @ViewIndex(indexName = "login_index")
    User findByLogin(String login);
}

SELECT
    `Users`.`id` AS `id`,
    `Users`.`login` AS `login`,
    `Users`.`lastname` AS `lastname`,
    `Users`.`firstname` AS `firstname`
FROM `Users` VIEW login_index AS `Users` WHERE `Users`.`login` = ?

    @YdbType("Json")
    private String jsonColumn;
    @YdbType("JsonDocument")
    private String jsonDocumentColumn;
    @YdbType("Uint8")
    private byte uint8Column;
    @YdbType("Uint16")
    private short uint16Column;
    @YdbType("Uint32")
    private int uint32Column;
    @YdbType("Uint64")
    private long uint64Column;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orm_spring-data-jdbc_viewIndex
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orm_spring-data-jdbc_ydbType


Using the @YdbType  annotation allows you to accurately specify the data types supported by YDB, ensuring proper interaction with the database.

A complete example of a simple Spring Data JDBC repository is available on GitHub.

https://github.com/ydb-platform/ydb-java-examples/tree/master/jdbc/spring-data-jdbc


YDB dialect for Hibernate

Overview

This is a guide to using Hibernate with YDB.

Hibernate is an Object-Relational Mapping (ORM) framework for Java that facilitates the mapping of object-oriented models to SQL.

Installation

Add the following dependency to your project:

If you use Hibernate version 5, you need <artifactId>hibernate-ydb-dialect-v5</artifactId>  for Maven or implementation 
'tech.ydb.dialects:hibernate-ydb-dialect-v5:$version  for Gradle instead of the similar package without the -v5  suffix.

Configuration

Configure Hibernate to use the custom YDB dialect by updating your persistence.xml file:

Or, if you are using programmatic configuration:

Usage

Maven

<!-- Set actual versions -->
<dependency>
    <groupId>tech.ydb.jdbc</groupId>
    <artifactId>ydb-jdbc-driver</artifactId>
    <version>${ydb.jdbc.version}</version>
</dependency>

<dependency>
    <groupId>tech.ydb.dialects</groupId>
    <artifactId>hibernate-ydb-dialect</artifactId>
    <version>${hibernate.ydb.dialect.version}</version>
</dependency>

Gradle

dependencies {
    // Set actual versions
    implementation "tech.ydb.dialects:hibernate-ydb-dialect:$ydbDialectVersion"
    implementation "tech.ydb.jdbc:ydb-jdbc-driver:$ydbJdbcVersion"
}

<property name="hibernate.dialect">tech.ydb.hibernate.dialect.YdbDialect</property>

Java

import org.hibernate.cfg.AvailableSettings;
import org.hibernate.cfg.Configuration;

public static Configuration basedConfiguration() {
    return new Configuration()
            .setProperty(AvailableSettings.JAKARTA_JDBC_DRIVER, YdbDriver.class.getName())
            .setProperty(AvailableSettings.DIALECT, YdbDialect.class.getName());
}

Kotlin

import org.hibernate.cfg.AvailableSettings
import org.hibernate.cfg.Configuration

fun basedConfiguration(): Configuration = Configuration().apply {
    setProperty(AvailableSettings.JAKARTA_JDBC_DRIVER, YdbDriver::class.name)
    setProperty(AvailableSettings.DIALECT, YdbDialect::class.name)
}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orm_hibernate
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orm_hibernate_overview
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orm_hibernate_install-dialect
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orm_hibernate_configuration-dialect
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orm_hibernate_using
https://hibernate.org/
https://docs.jboss.org/hibernate/orm/6.4/introduction/html_single/Hibernate_Introduction.html#configuration-jpa


Use this custom dialect just like any other Hibernate dialect. Map your entity classes to database tables and use Hibernate's session factory to
perform database operations.

Table of comparison of Java types descriptions with YDB types:

YDB dialect supports database schema generation based on Hibernate entities.

For example, for the Group  class:

Java

@Getter
@Setter
@Entity
@Table(name = "Groups", indexes = @Index(name = "group_name_index", columnList = "GroupName"))
public class Group {

    @Id
    @Column(name = "GroupId")
    private int id;

    @Column(name = "GroupName")
    private String name;

    @OneToMany(mappedBy = "group")
    private List<Student> students;
}

Kotlin

@Entity
@Table(name = "Groups", indexes = [Index(name = "group_name_index", columnList = "GroupName")])
data class Group(
    @Id
    @Column(name = "GroupId")
    val id: Int,

    @Column(name = "GroupName")
    val name: String,

    @OneToMany(mappedBy = "group")
    val students: List<Student>
)

Java type YDB type

bool , Boolean Bool

String , enum with annotation @Enumerated(EnumType.STRING) Text  (synonym Utf8 )

java.time.LocalDate Date

java.math.BigDecimal , java.math.BigInteger Decimal(22,9)

double , Double Double

float , Float Float

int , java.lang.Integer Int32

long , java.lang.Long Int64

short , java.lang.Short Int16

byte , java.lang.Byte , enum with annotation @Enumerated(EnumType.ORDINAL) Int8

[]byte Bytes   (synonym String )

java.time.LocalDateTime  (timezone will be set to UTC ) Datetime

java.time.Instant  (timezone will be set to UTC ) Timestamp

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_primitive


The following Groups  table will be created, and the GroupName  will be indexed by a global secondary index named group_name_index :

If you evolve the Group entity by adding the deparment  field:

At the start of the application, Hibernate will update the database schema if the update  mode is set in properties:

The result of changing the schema is:

Warning

Hibernate is not designed to manage database schemas. You can manage your database schema using Liquibase or Flyway.

YDB dialect supports @OneToMany , @ManyToOne  and @ManyToMany  relationships.

For example, for @OneToMany  generates a SQL script:

CREATE TABLE Groups (
    GroupId Int32 NOT NULL,
    GroupName Text,
    PRIMARY KEY (GroupId)
);

ALTER TABLE Groups
  ADD INDEX group_name_index GLOBAL
    ON (GroupName);

Java

@Column
private String department;

Kotlin

@Column
val department: String

jakarta.persistence.schema-generation.database.action=update

ALTER TABLE Groups
   ADD COLUMN department Text

FetchType.LAZY

SELECT
    g1_0.GroupId,
    g1_0.GroupName
FROM
    Groups g1_0
WHERE
    g1_0.GroupName='M3439'

SELECT
    s1_0.GroupId,
    s1_0.StudentId,
    s1_0.StudentName
FROM
    Students s1_0
WHERE
    s1_0.GroupId=?

FetchType.EAGER

SELECT
    g1_0.GroupId,
    g1_0.GroupName,
    s1_0.GroupId,
    s1_0.StudentId,
    s1_0.StudentName

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_migration_liquibase
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_migration_flyway


Example with Spring Data JPA

Configure Spring Data JPA with Hibernate to use custom YDB dialect by updating your application.properties :

Create a simple entity and repository:

FROM
    Groups g1_0
JOIN
    Students s1_0
        on g1_0.GroupId=s1_0.GroupId
WHERE
    g1_0.GroupName='M3439'

spring.jpa.properties.hibernate.dialect=tech.ydb.hibernate.dialect.YdbDialect

spring.datasource.driver-class-name=tech.ydb.jdbc.YdbDriver
spring.datasource.url=jdbc:ydb:<grpc/grpcs>://<host>:<2135/2136>/path/to/database[?saFile=file:~/sa_key.json]

Java

@Data
@Entity
@Table(name = "employee")
public class Employee {
    @Id
    private long id;

    @Column(name = "full_name")
    private String fullName;

    @Column
    private String email;

    @Column(name = "hire_date")
    private LocalDate hireDate;

    @Column
    private java.math.BigDecimal salary;

    @Column(name = "is_active")
    private boolean isActive;

    @Column
    private String department;

    @Column
    private int age;
}

public interface EmployeeRepository implements CrudRepository<Employee, Long> {}

Kotlin

@Entity
@Table(name = "employee")
data class Employee(
    @Id
    val id: Long,

    @Column(name = "full_name")
    val fullName: String,

    @Column
    val email: String,

    @Column(name = "hire_date")
    val hireDate: LocalDate,

    @Column
    val salary: java.math.BigDecimal,

    @Column(name = "is_active")
    val isActive: Boolean,

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orm_hibernate_example-with-spring-data-jpa
https://spring.io/projects/spring-data-jpa/


Usage example:

An example of a simple Spring Data JPA repository can be found at the following link.

    @Column
    val department: String,

    @Column
    val age: Int,
)

interface EmployeeRepository : CrudRepository<Employee, Long>

fun EmployeeRepository.findByIdOrNull(id: Long): Employee? = this.findById(id).orElse(null)

Java

Employee employee = new Employee(
    1,
    "Example",
    "example@bk.com",
    LocalDate.parse("2023-12-20"),
    BigDecimal("500000.000000000"),
    true,
    "YDB AppTeam",
    23
);

/* The following SQL will be executed:
INSERT INTO employee (age,department,email,full_name,hire_date,is_active,limit_date_password,salary,id)
VALUES (?,?,?,?,?,?,?,?,?)
*/
employeeRepository.save(employee);

assertEquals(employee, employeeRepository.findById(employee.getId()).get());

/* The following SQL will be executed:
DELETE FROM employee WHERE id=?
 */
employeeRepository.delete(employee);

assertNull(employeeRepository.findById(employee.getId()).orElse(null));

Kotlin

val employee = Employee(
    1,
    "Example",
    "example@bk.com",
    LocalDate.parse("2023-12-20"),
    BigDecimal("500000.000000000"),
    true,
    "YDB AppTeam",
    23
)

/* The following SQL will be executed:
INSERT INTO employee (age,department,email,full_name,hire_date,is_active,limit_date_password,salary,id)
VALUES (?,?,?,?,?,?,?,?,?)
*/
employeeRepository.save(employee)

assertEquals(employee, employeeRepository.findByIdOrNull(employee.id))

/* The following SQL will be executed:
DELETE FROM employee WHERE id=?
 */
employeeRepository.delete(employee)

assertNull(employeeRepository.findByIdOrNull(employee.id))

https://github.com/ydb-platform/ydb-java-examples/tree/master/jdbc/spring-data-jpa


JOOQ extension for YDB
This guide explains how to use JOOQ with YDB.

JOOQ is a Java library that allows you to create type-safe SQL queries by generating Java classes from a database schema and providing
convenient query builders.

Generating Java Classes

You can generate Java classes using any of the tools provided on the official JOOQ website. Two dependencies are required: the YDB JDBC driver
and the JOOQ extension for YDB, along with two parameters:

database.name : tech.ydb.jooq.codegen.YdbDatabase  (mandatory setting)

strategy.name : tech.ydb.jooq.codegen.YdbGeneratorStrategy  (recommended setting)

An example using the maven  plugin:

Example of generated classes from YQL tutorial (full file contents are available on GitHub):

<plugin>
    <groupId>org.jooq</groupId>
    <artifactId>jooq-codegen-maven</artifactId>
    <version>3.19.11</version>
    <executions>
        <execution>
            <goals>
                <goal>generate</goal>
            </goals>
        </execution>
    </executions>
    <dependencies>
        <dependency>
            <groupId>tech.ydb.jdbc</groupId>
            <artifactId>ydb-jdbc-driver</artifactId>
            <version>${ydb.jdbc.version}</version>
        </dependency>
        <dependency>
            <groupId>tech.ydb.dialects</groupId>
            <artifactId>jooq-ydb-dialect</artifactId>
            <version>${jooq.ydb.version}</version>
        </dependency>
    </dependencies>
    <configuration>
        <jdbc>
            <driver>tech.ydb.jdbc.YdbDriver</driver>
            <url>jdbc:ydb:grpc://localhost:2136/local</url>
        </jdbc>
        <generator>
            <strategy>
                <name>tech.ydb.jooq.codegen.YdbGeneratorStrategy</name>
            </strategy>
            <database>
                <name>tech.ydb.jooq.codegen.YdbDatabase</name>
                <!-- excluding system tables -->
                <excludes>.sys.*</excludes>
            </database>
            <target>
                <packageName>ydb</packageName>
                <directory>./src/main/java</directory>
            </target>
        </generator>
    </configuration>
</plugin>

ydb/DefaultCatalog.java
ydb/default_schema
ydb/default_schema/tables
ydb/default_schema/tables/Seasons.java
ydb/default_schema/tables/records
ydb/default_schema/tables/records/SeriesRecord.java
ydb/default_schema/tables/records/EpisodesRecord.java
ydb/default_schema/tables/records/SeasonsRecord.java
ydb/default_schema/tables/Series.java
ydb/default_schema/tables/Episodes.java
ydb/default_schema/Indexes.java

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orm_jooq
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orm_jooq_generated-java-classes
https://www.jooq.org/
https://www.jooq.org/doc/latest/manual/code-generation/codegen-configuration/
https://github.com/ydb-platform/ydb-jdbc-driver
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_yql-tutorial_create_demo_tables
https://github.com/ydb-platform/ydb-java-examples/tree/master/jdbc/spring-jooq/src/main/java/ydb/default_schema


Usage

To integrate YDB with JOOQ into your project, you need to add two dependencies: YDB JDBC Driver and the JOOQ extension for YDB.

Examples for different build systems:

To obtain a YdbDSLContext  class instance (an extension of org.jooq.DSLContext ), use the tech.ydb.jooq.YDB  class. For example:

or

YdbDSLContext  is ready to use.

YQL statements

The following statements are available from the YQL syntax in YdbDSLContext :

UPSERT :

REPLACE :

ydb/default_schema/Keys.java
ydb/default_schema/Tables.java
ydb/default_schema/DefaultSchema.java

Maven

<!-- Set actual versions -->
<dependency>
    <groupId>tech.ydb.jdbc</groupId>
    <artifactId>ydb-jdbc-driver</artifactId>
    <version>${ydb.jdbc.version}</version>
</dependency>

<dependency>
    <groupId>tech.ydb.dialects</groupId>
    <artifactId>jooq-ydb-dialect</artifactId>
    <version>${jooq.ydb.dialect.version}</version>
</dependency>

Gradle

dependencies {
    // Set actual versions
    implementation "tech.ydb.dialects:jooq-ydb-dialect:$jooqYdbDialectVersion"
    implementation "tech.ydb.jdbc:ydb-jdbc-driver:$ydbJdbcVersion"
}

String url = "jdbc:ydb:<schema>://<host>:<port>/path/to/database[?saFile=file:~/sa_key.json]";
Connection conn = DriverManager.getConnection(url);

YdbDSLContext dsl = YDB.using(conn);

String url = "jdbc:ydb:<schema>://<host>:<port>/path/to/database[?saFile=file:~/sa_key.json]";
try(CloseableYdbDSLContext dsl = YDB.using(url)) {
    // ...
}

// generated SQL:
// upsert into `episodes` (`series_id`, `season_id`, `episode_id`, `title`, `air_date`) 
// values (?, ?, ?, ?, ?)
public void upsert(YdbDSLContext context) {
    context.upsertInto(EPISODES)
            .set(record)
            .execute();
}

// generated SQL:
// replace into `episodes` (`series_id`, `season_id`, `episode_id`, `title`, `air_date`) 
// values (?, ?, ?, ?, ?)
public void replace(YdbDSLContext context) {
    ydbDSLContext.replaceInto(EPISODES)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orm_jooq_usage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orm_jooq_yql-statements
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_upsert_into
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_replace_into


VIEW index_name :

In all other respects, the YDB dialect follows the JOOQ documentation.

Spring Boot Configuration

Extend JooqAutoConfiguration.DslContextConfiguration  with your own YdbDSLContext . For example:

A complete example of a simple Spring Boot application can be found on GitHub.

            .set(record)
            .execute();
}

// generated SQL:
// select `series`.`series_id`, `series`.`title`, `series`.`series_info`, `series`.`release_date` 
// from `series` view `title_name` where `series`.`title` = ?
var record = ydbDSLContext.selectFrom(SERIES.useIndex(Indexes.TITLE_NAME.name))
        .where(SERIES.TITLE.eq(title))
        .fetchOne();

@Configuration
public class YdbJooqConfiguration extends JooqAutoConfiguration.DslContextConfiguration {

    @Override
    public YdbDSLContextImpl dslContext(org.jooq.Configuration configuration) {
        return YdbDSLContextImpl(configuration);
    }
}

spring.datasource.driver-class-name=tech.ydb.jdbc.YdbDriver
spring.datasource.url=jdbc:ydb:<schema>://<host>:<port>/path/to/database[?saFile=file:~/sa_key.json]

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orm_jooq_spring-boot-configuration
https://www.jooq.org/doc/latest/manual/
https://github.com/ydb-platform/ydb-java-examples/tree/master/jdbc/spring-jooq


Using Dapper
Dapper is a micro ORM (Object-Relational Mapping) tool that provides a simple and flexible way to interact with databases. It operates on top of the
ADO.NET standard and offers various features that simplify database operations.

Getting started

To get started, you need an additional dependency Dapper.

Let's consider a complete example:

For more information, refer to the official documentation.

Important aspects

For Dapper to interpret DateTime  values as the YDB type DateTime , execute the following code:

By default, DateTime  is interpreted as Timestamp .

using Dapper;
using Ydb.Sdk.Ado;

await using var connection = await new YdbDataSource().OpenConnectionAsync();

await connection.ExecuteAsync("""
                              CREATE TABLE Users(
                                  Id Int32,
                                  Name Text,
                                  Email Text,
                                  PRIMARY KEY (Id)   
                              );
                              """);

await connection.ExecuteAsync("INSERT INTO Users(Id, Name, Email) VALUES (@Id, @Name, @Email)",
    new User { Id = 1, Name = "Name", Email = "Email" });

Console.WriteLine(await connection.QuerySingleAsync<User>("SELECT * FROM Users WHERE Id = @Id", new { Id = 1 }));

await connection.ExecuteAsync("DROP TABLE Users");

internal class User
{
    public int Id { get; init; }
    public string Name { get; init; } = null!;
    public string Email { get; init; } = null!;

    public override string ToString()
    {
        return $"Id: {Id}, Name: {Name}, Email: {Email}";
    }
}

SqlMapper.AddTypeMap(typeof(DateTime), DbType.DateTime);

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orm_dapper
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orm_dapper_getting-started
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orm_dapper_important-aspects
https://www.learndapper.com/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_index
https://www.nuget.org/packages/Dapper/
https://www.learndapper.com/


LangChain
Integration of YDB with langchain enables the use of YDB as a vector store for RAG applications.

This integration allows developers to efficiently manage, query, and retrieve vectorized data, which is fundamental for modern applications involving
natural language processing, search, and data analysis. By leveraging embedding models, users can create sophisticated systems that understand
and retrieve information based on semantic similarity.

Setup

To use this integration, install the following software:

langchain-ydb

To install langchain-ydb , run the following command:

embedding model

This tutorial uses HuggingFaceEmbeddings . To install this package, run the following command:

Local YDB

For more information, see Install and start YDB.

Initialization

Creating a YDB vector store requires specifying an embedding model. In this instance, HuggingFaceEmbeddings  is used:

Once the embedding model is created, the YDB vector store can be initiated:

Manage Vector Store

After the vector store has been established, you can start adding and removing items from the store.

Add items to vector store

The following code prepares the documents:

pip install -qU langchain-ydb

pip install -qU langchain-huggingface

from langchain_huggingface import HuggingFaceEmbeddings

embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")

from langchain_ydb.vectorstores import YDB, YDBSearchStrategy, YDBSettings

settings = YDBSettings(
    host="localhost",
    port=2136,
    database="/local",
    table="ydb_example",
    strategy=YDBSearchStrategy.COSINE_SIMILARITY,
)
vector_store = YDB(embeddings, config=settings)

from uuid import uuid4

from langchain_core.documents import Document

document_1 = Document(
    page_content="I had chocalate chip pancakes and scrambled eggs for breakfast this morning.",
    metadata={"source": "tweet"},
)

document_2 = Document(
    page_content="The weather forecast for tomorrow is cloudy and overcast, with a high of 62 degrees.",
    metadata={"source": "news"},
)

document_3 = Document(

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_vectorsearch_langchain
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_vectorsearch_langchain_setup
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_vectorsearch_langchain_initialization
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_vectorsearch_langchain_manage_vector_store
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_vectorsearch_langchain_add_items_to_vector_store
https://python.langchain.com/docs/introduction/
https://python.langchain.com/docs/concepts/vectorstores/
https://python.langchain.com/docs/concepts/rag/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_quickstart_install


Items are added to the vector store using the add_documents  function.

Output:

Delete items from vector store

To delete items from the vector store by ID, use the delete  function:

    page_content="Building an exciting new project with LangChain - come check it out!",
    metadata={"source": "tweet"},
)

document_4 = Document(
    page_content="Robbers broke into the city bank and stole $1 million in cash.",
    metadata={"source": "news"},
)

document_5 = Document(
    page_content="Wow! That was an amazing movie. I can't wait to see it again.",
    metadata={"source": "tweet"},
)

document_6 = Document(
    page_content="Is the new iPhone worth the price? Read this review to find out.",
    metadata={"source": "website"},
)

document_7 = Document(
    page_content="The top 10 soccer players in the world right now.",
    metadata={"source": "website"},
)

document_8 = Document(
    page_content="LangGraph is the best framework for building stateful, agentic applications!",
    metadata={"source": "tweet"},
)

document_9 = Document(
    page_content="The stock market is down 500 points today due to fears of a recession.",
    metadata={"source": "news"},
)

document_10 = Document(
    page_content="I have a bad feeling I am going to get deleted :(",
    metadata={"source": "tweet"},
)

documents = [
    document_1,
    document_2,
    document_3,
    document_4,
    document_5,
    document_6,
    document_7,
    document_8,
    document_9,
    document_10,
]
uuids = [str(uuid4()) for _ in range(len(documents))]

vector_store.add_documents(documents=documents, ids=uuids)

Inserting data...: 100%|██████████| 10/10 [00:00<00:00, 14.67it/s]
['947be6aa-d489-44c5-910e-62e4d58d2ffb',
 '7a62904d-9db3-412b-83b6-f01b34dd7de3',
 'e5a49c64-c985-4ed7-ac58-5ffa31ade699',
 '99cf4104-36ab-4bd5-b0da-e210d260e512',
 '5810bcd0-b46e-443e-a663-e888c9e028d1',
 '190c193d-844e-4dbb-9a4b-b8f5f16cfae6',
 'f8912944-f80a-4178-954e-4595bf59e341',
 '34fc7b09-6000-42c9-95f7-7d49f430b904',
 '0f6b6783-f300-4a4d-bb04-8025c4dfd409',
 '46c37ba9-7cf2-4ac8-9bd1-d84e2cb1155c']

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_vectorsearch_langchain_delete_items_from_vector_store


Output:

Query Vector Store

After establishing the vector store and adding relevant documents, you can query the store during chain or agent execution.

Query directly

Similarity search

A simple similarity search can be performed as follows:

Output:

Similarity search with score

To perform a similarity search with score, use the following code:

Output:

Filtering

Searching with filters is performed as described below:

Output:

Query by turning into retriever

The vector store can also be transformed into a retriever for easier use in chains.

Here's how to transform the vector store into a retriever and invoke it with a simple query and filter.

vector_store.delete(ids=[uuids[-1]])

True

results = vector_store.similarity_search(
    "LangChain provides abstractions to make working with LLMs easy", k=2
)
for res in results:
    print(f"* {res.page_content} [{res.metadata}]")

* Building an exciting new project with LangChain - come check it out! [{'source': 'tweet'}]
* LangGraph is the best framework for building stateful, agentic applications! [{'source': 'tweet'}]

results = vector_store.similarity_search_with_score("Will it be hot tomorrow?", k=3)
for res, score in results:
    print(f"* [SIM={score:.3f}] {res.page_content} [{res.metadata}]")

* [SIM=0.595] The weather forecast for tomorrow is cloudy and overcast, with a high of 62 degrees. [{'source': 'news'}]
* [SIM=0.212] I had chocalate chip pancakes and scrambled eggs for breakfast this morning. [{'source': 'tweet'}]
* [SIM=0.118] Wow! That was an amazing movie. I can't wait to see it again. [{'source': 'tweet'}]

results = vector_store.similarity_search_with_score(
    "What did I eat for breakfast?",
    k=4,
    filter={"source": "tweet"},
)
for res, _ in results:
    print(f"* {res.page_content} [{res.metadata}]")

* I had chocalate chip pancakes and scrambled eggs for breakfast this morning. [{'source': 'tweet'}]
* Wow! That was an amazing movie. I can't wait to see it again. [{'source': 'tweet'}]
* Building an exciting new project with LangChain - come check it out! [{'source': 'tweet'}]
* LangGraph is the best framework for building stateful, agentic applications! [{'source': 'tweet'}]

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_vectorsearch_langchain_query_vector_store
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_vectorsearch_langchain_query_directly
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_vectorsearch_langchain_similarity-search
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_vectorsearch_langchain_similarity-search-with-score
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_vectorsearch_langchain_filtering
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_vectorsearch_langchain_query_by_turning_into_retriever


Output:

retriever = vector_store.as_retriever(
    search_kwargs={"k": 2},
)
results = retriever.invoke(
    "Stealing from the bank is a crime", filter={"source": "news"}
)
for res in results:
    print(f"* {res.page_content} [{res.metadata}]")

* Robbers broke into the city bank and stole $1 million in cash. [{'source': 'news'}]
* The stock market is down 500 points today due to fears of a recession. [{'source': 'news'}]



Installing the YDB CLI

Linux

To install the YDB CLI, run the command:

The script will install the YDB CLI and add the executable file path to the PATH  environment variable.

Note

The script will update the PATH  variable only if you run it in the bash or zsh command shell. If you run the script in a different shell,
add the path to the CLI to the PATH  variable yourself.

To update the environment variables, restart the command shell.

curl -sSL https://install.ydb.tech/cli | bash

macOS

To install the YDB CLI, run the command:

The script will install the YDB CLI and add the executable file path to the PATH  environment variable.

To update the environment variables, restart the command shell.

curl -sSL https://install.ydb.tech/cli | bash

Windows

You can install the YDB CLI using:

PowerShell. To do this, run the command:

Specify whether to add the executable file path to the PATH  environment variable:

cmd. To do this, run the command:

Specify whether to add the executable file path to the PATH  environment variable:

To update the environment variables, restart the command shell.

Note

The YDB CLI uses Unicode characters in the output of some commands. If these characters aren't displayed correctly in the Windows
console, switch the encoding to UTF-8:

iex (New-Object System.Net.WebClient).DownloadString('https://install.ydb.tech/cli-windows')

Add ydb installation dir to your PATH? [Y/n]

@"%SystemRoot%\System32\WindowsPowerShell\v1.0\powershell.exe" -Command "iex ((New-Object 
System.Net.WebClient).DownloadString('https://install.ydb.tech/cli-windows'))"

Add ydb installation dir to your PATH? [Y/n]

chcp 65001

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_install


Connecting the CLI to and authenticating with a database
Most of the YDB CLI commands relate to operations on a YDB database and require establishing a connection to it to be executed.

The YDB CLI uses the following sources to determine the database to connect to and the authentication mode to use with it (listed in descending
priority):

1. The command line.

2. The profile set in the --profile  command-line option.

3. Environment variables.

4. The activated profile.

For the YDB CLI to try connecting to the database, these steps must result in the endpoint and database path.

If all the steps are completed, but the YDB CLI did not determine the authentication mode, requests will be sent to the YDB server without adding
authentication data. This may let you successfully work with locally deployed YDB clusters that require no authentication. For all databases
available over the network, such requests will be rejected by the server with an authentication error returned.

To learn about potential situations where the YDB CLI won't try to connect to the database, see the Error messages below.

Command line parameters

DB connection options in the command line are specified before defining the command and its parameters:

-e, --endpoint <endpoint>  is the endpoint, that is, the main connection parameter that allows finding a YDB server on the network. If no
port is specified, port 2135 is used. If no protocol is specified, gRPCs (with encryption) is used in YDB CLI public builds.

-d, --database <database>  is the database path.

The authentication mode and parameters are selected by setting one of the following options:

< path="options_cloud.md" keyword="undefined">

--user <username>  : The username and password based authentication mode is used with the username set in this option value.
Additionally , you can specify:

--password-file <filename>  : The password is read from the specified file.

--no-password  : Defines an empty password. The password will be requested interactively if none of the password identification options
listed above are specified in the command line parameters.

--oauth2-key-file <filepath> : Enables the OAuth 2.0 token exchange authentication mode, where the key and other parameters are
taken from the JSON file specified in this option. The --iam-endpoint  option sets the token exchange endpoint in the <schema>://<host>:
<port>/<path>  format (via the YDB CLI option, profile, or environment variable).

If several of the above options are set simultaneously in the command line, the CLI returns an error asking you to specify only one:

When using authentication modes that involve token rotation along with regularly re-requesting them from IAM (Refresh Token, Service Account
Key, or OAuth 2.0 token exchange), a special parameter can be set to indicate where the IAM service is located:

--iam-endpoint <URL>  : Sets the URL of the IAM service to request new tokens in authentication modes with token rotation. The default
value is "iam.api.cloud.yandex.net" .

Parameters from the profile set by the command-line option

If a certain connection parameter is not specified in the command line when calling the YDB CLI, it tries to determine it by the profile set in the --
profile  command-line option.

In the profile, you can define most of the variables that have counterparts in the Command line parameters section. Their values are processed in
the same way as command line parameters.

Parameters from environment variables

If you did not explicitly specify a profile or authentication parameters at the command line, the YDB CLI attempts to determine the authentication
mode and parameters from the YDB CLI environment as follows:

If the value of the IAM_TOKEN  environment variable is set, the Access Token authentication mode is used, where this variable value is
passed.

Otherwise, if the value of the YC_TOKEN  environment variable is set, the Refresh Token authentication mode is used and the token to transfer
to the IAM endpoint is taken from this variable value when repeating the request.

Otherwise, if the value of the USE_METADATA_CREDENTIALS  environment variable is set to 1, the Metadata authentication mode is used.

ydb <connection_options> <command> <command_options>

$ ydb --use-metadata-credentials --iam-token-file ~/.ydb/token scheme ls
More than one auth method were provided via options. Choose exactly one of them
Try "--help" option for more info.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_connect
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_connect_command-line-pars
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_connect_profile
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_connect_env
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#security_authentication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_connect_endpoint
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_connect_database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_connect_errors
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_connect_endpoint
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_connect_database
https://www.rfc-editor.org/rfc/rfc8693
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_reference_ydb-sdk_auth_oauth2-key-file-format
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_profile_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_connect_command-line-pars


Otherwise, if the value of the SA_KEY_FILE  environment variable is set, the Service Account Key authentication mode is used and the key is
taken from the file whose name is specified in this variable.

< path="env_static.md" keyword="undefined">

Otherwise, if the YDB_OAUTH2_KEY_FILE  environment variable value is set, the OAuth 2.0 token exchange authentication mode is used, and
the token exchange parameters are taken from a JSON file specified in this variable. The --iam-endpoint  option is used to set the token
exchange endpoint in the <schema>://<host>:<port>/<path>  format (via a YDB CLI option, profile, or environment variable).

Parameters from the activated profile

If some connection parameter could not be determined in the previous steps, and you did not explicitly specify a profile at the command line with
the --profile  option, the YDB CLI attempts to use the connection parameters from the activated profile.

Error messages

Errors before attempting to establish a DB connection

If the CLI completed all the steps listed at the beginning of this article but failed to determine the endpoint, the command terminates with the error
Missing required option 'endpoint' .

If the CLI completed all the steps listed at the beginning of this article but failed to determine the database path, the command terminates with the
error message Missing required option 'database' .

If the authentication mode is known, but the necessary additional parameters are not, the command is aborted and an error message describing the
issue is returned:

(No such file or directory) util/system/file.cpp:857: can't open "<filepath>" with mode RdOnly|Seq (0x00000028) : Couldn't
open and read the file <filepath>  specified in a parameter passing the file name and path.

Additional parameters

When using gRPCs (with encryption), you may need to select a root certificate.

--ca-file <filepath> : Root certificate PEM file for a TLS connection.

Authentication

The YDB CLI discovery whoami  auxiliary command lets you check the account that you actually used to authenticate with the server.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_connect_activated-profile
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_connect_errors
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_connect_errors-before-attempting-to-establish-a-db-connection
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_connect_additional
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_connect_whoami
https://www.rfc-editor.org/rfc/rfc8693
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_reference_ydb-sdk_auth_oauth2-key-file-format
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_profile_activate
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_connect_endpoint
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_connect_database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_connect_tls-cert
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_discovery-whoami


YDB CLI commands
General syntax for calling YDB CLI commands:

where:

ydb  is the command to run the YDBCLI from the OS command line.

[global options]  are global options that are common for all YDB CLI commands.

<command>  is the command.

[<subcomand> ...]  are subcommands specified if the selected command contains subcommands.

[command options]  are command options specific to each command and subcommands.

Commands

You can learn about the necessary commands by selecting the subject section in the menu on the left or using the alphabetical list below.

Any command can be run from the command line with the --help  option to get help on it. You can get a list of all commands supported by the
YDB CLI by running the YDB CLI with the --help  option, but without any command.

ydb [global options] <command> [<subcommand> ...] [command options]

Command / subcommand Brief description

config info Displaying connection parameters

config profile activate Activating a profile

config profile create Creating a profile

config profile delete Deleting a profile

config profile get Getting parameters of a profile

config profile list List of profiles

config profile set Activating a profile

discovery list List of endpoints

discovery whoami Authentication

export s3 Exporting data to S3 storage

import file csv Importing data from a CSV file

import file tsv Importing data from a TSV file

import s3 Importing data from S3 storage

init Initializing the CLI, creating a profile

monitoring healthcheck Health check

operation cancel Aborting long-running operations

operation forget Deleting long-running operations from the list

operation get Status of long-running operations

operation list List of long-running operations

scheme describe Description of a data schema object

scheme ls List of data schema objects

scheme mkdir Creating a directory

scheme permissions chown Change object owner

scheme permissions clear Clear permissions

scheme permissions grant Grant permission

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_list
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_global-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_service
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_config-info
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_connect
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_profile_activate
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_profile_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_profile_create
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_profile_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_profile_create
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_profile_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_profile_list-and-get
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_profile_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_profile_list-and-get
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_profile_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_profile_activate
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_profile_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_discovery-list
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_discovery-whoami
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_export-import_export-s3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_export-import_import-file
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_export-import_import-file
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_export-import_import-s3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_profile_create
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_profile_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_monitoring-healthcheck
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_operation-cancel
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_operation-forget
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_operation-get
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_operation-list
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_scheme-describe
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_scheme-ls
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_dir_mkdir
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_scheme-permissions_chown
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_scheme-permissions_clear
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_scheme-permissions_grant-revoke


scheme permissions revoke Revoke permission

scheme permissions set Set permissions

scheme permissions list View permissions

scheme permissions clear-inheritance Disable permission inheritance

scheme permissions set-inheritance Enable permission inheritance

scheme rmdir Deleting a directory

scripting yql Executing a YQL script (deprecated, use ydb sql )

sql Execute any query

table attribute add Adding a table attribute

table attribute drop Deleting a table attribute

table drop Deleting a table

table index add global-async Adding an asynchronous index

table index add global-sync Adding a synchronous index

table index drop Deleting an index

table query execute Executing a YQL query (deprecated, use ydb sql )

table query explain YQL query execution plan (deprecated, use ydb sql --explain )

table read Streaming table reads

table ttl set Setting TTL parameters

table ttl reset Resetting TTL parameters

tools copy Copying tables

tools dump Dumping a directory or table to the file system

tools rename Renaming tables

tools restore Restoring data from the file system

topic create Creating a topic

topic alter Updating topic parameters and consumers

topic drop Deleting a topic

topic consumer add Adding a consumer to a topic

topic consumer drop Deleting a consumer from a topic

topic consumer offset commit Saving a consumer offset

topic read Reading messages from a topic

topic write Writing messages to a topic

update Update the YDB CLI

version Output details about the YDB CLI version

workload Generate the workload

yql Execute a YQL script (deprecated, use ydb sql )

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_scheme-permissions_grant-revoke
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_scheme-permissions_set
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_scheme-permissions_list
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_scheme-permissions_clear-inheritance
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_scheme-permissions_set-inheritance
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_dir_rmdir
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_scripting-yql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_sql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_sql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_table-drop
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_secondary_index_add
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_secondary_index_add
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_secondary_index_drop
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_table-query-execute
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_sql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_explain-plan
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_sql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_readtable
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_table-ttl-set
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_table-ttl-reset
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_tools-copy
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_export-import_tools-dump
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_tools_rename
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_export-import_tools-restore
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_topic-create
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_topic-alter
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_topic-drop
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_topic-consumer-add
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_topic-consumer-drop
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_topic-consumer-offset-commit
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_topic-read
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_topic-write
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_service
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_service
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_workload_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_yql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_sql


Service commands
These commands have to do with the YDB CLI client itself and do not involve establishing a DB connection. They can be expressed either as a
parameter or as an option.

If it is not known whether the used YDB CLI build is public, you can find out if a particular service command is supported through help output.

Name Description

-? , -h , --help Output the YDB CLI syntax help

version Output the YDB CLI version (for public builds)

update Update the YDB CLI to the latest version (for public builds)

config info Displaying connection parameters

--license Show the license (for public builds)

--credits Show third-party product licenses (for public builds)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_service
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_connect


Global parameters

DB connection options

DB connection options are described in Connecting to and authenticating with a database.

Service options

--profile <name> : Indicates the use of the DB connection profile with the specified name when executing a YDB CLI command. Most
connection parameters can be stored in the profile.

-v, --verbose : Prints detailed information about all operations being executed. Specifying this option is helpful when locating DB connection
issues.

--profile-file : Use profiles from the specified file. By default, profiles from the ~/.ydb/config/config.yaml  file are used.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options_connection-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options_service-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_connect_command-line-pars


Managing YDB configuration

Note

Before YDB CLI 2.20.0, the ydb admin cluster config  commands had the following format: ydb admin config .

This section contains commands for managing the YDB cluster configuration.

Apply the dynconfig.yaml  configuration to the cluster:

Check if it is possible to apply the configuration dynconfig.yaml to the cluster (check all validators, the configuration version in the yaml file
must be 1 higher than the cluster configuration version, the cluster name must match):

Apply the dynconfig.yaml  configuration to the cluster, ignoring version and cluster checks (the version and cluster values will be overwritten
with correct values):

Fetch the main cluster configuration:

Generate all possible final configurations for dynconfig.yaml :

Generate the final configuration for dynconfig.yaml  with the tenant=/Root/test  and canary=true  labels:

Generate the final configuration for dynconfig.yaml  for labels from node 100:

Generate a dynamic configuration file, based on a static configuration on the cluster:

Initialize a directory with the configuration, using the path to the configuration file:

Initialize a directory with the configuration, using the configuration from the cluster:

Managing temporary configuration

This section contains commands for managing temporary configurations.

Fetch all temporary configurations from the cluster:

Fetch the temporary configuration with id 1 from the cluster:

ydb admin cluster config replace -f dynconfig.yaml

ydb admin cluster config replace -f dynconfig.yaml --dry-run

ydb admin cluster config replace -f dynconfig.yaml --force

ydb admin cluster config fetch

ydb admin cluster config resolve --all -f dynconfig.yaml

ydb admin cluster config resolve -f dynconfig.yaml --label tenant=/Root/test --label canary=true

ydb admin cluster config resolve -f dynconfig.yaml --node-id 100

ydb admin cluster config genereate

ydb admin node config init --config-dir <path_to_directory> --from-config <path_to_configuration_file>

ydb admin node config init --config-dir <path_to_directory> --seed-node <cluster_node_endpoint>

ydb admin volatile-config fetch --all --output-directory <dir>

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_configs_managing-ydb-configuration
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_configs
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_configs_managing-temporary-configuration
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_config-overview
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config-volatile-config


Apply the volatile.yaml  temporary configuration to the cluster:

Delete temporary configurations with ids 1 and 3 on the cluster:

Delete all temporary configurations on the cluster:

Parameters

-f, --filename <filename.yaml>  — read input from a file, -  for STDIN. For commands that accept multiple files (e.g., resolve), you can
specify it multiple times, the file type will be determined by the metadata field

--output-directory <dir>  — dump/resolve files to a directory

--strip-metadata  — remove the metadata field from the output

--all  — extends the output of commands to the entire configuration (see advanced configuration)

--allow-unknown-fields  — allows ignoring unknown fields in the configuration

Scenarios

Update the main cluster configuration

Similarly, in one line:

Command output:

View the configuration for a specific set of labels

Command output:

View the configuration for a specific node

ydb admin volatile-config fetch --id 1

ydb admin volatile-config add -f volatile.yaml

ydb admin volatile-config drop --id 1 --id 3

ydb admin volatile-config drop --all

# Fetch the cluster configuration
ydb admin cluster config fetch > dynconfig.yaml
# Edit the configuration with your favorite editor
vim dynconfig.yaml
# Apply the configuration dynconfig.yaml to the cluster
ydb admin cluster config replace -f dynconfig.yaml

ydb admin cluster config fetch | yq '.config.actor_system_config.scheduler.resolution = 128' | ydb admin cluster config 
replace -f -

OK

ydb admin cluster config resolve --remote --label tenant=/Root/db1 --label canary=true

---
label_sets:
- dynamic:
    type: COMMON
    value: true
config:
  actor_system_config:
    use_auto_config: true
    node_type: COMPUTE
    cpu_count: 4

ydb admin cluster config resolve --remote --node-id <node_id>

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_configs_parameters
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_configs_scenarios
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_configs_update-the-main-cluster-configuration
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_configs_view-the-configuration-for-a-specific-set-of-labels
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_configs_view-the-configuration-for-a-specific-node


Command output:

Save all configurations locally

Command output:

View all configurations locally

Command output:

View the final configuration for a specific node from the locally saved original configuration

Command output:

---
label_sets:
- dynamic:
    type: COMMON
    value: true
config:
  actor_system_config:
    use_auto_config: true
    node_type: COMPUTE
    cpu_count: 4

ydb admin cluster config fetch --all --output-directory <configs_dir>
ls <configs_dir>

dynconfig.yaml volatile_1.yaml volatile_3.yaml

ydb admin cluster config fetch --all

---
metadata:
  kind: main
  cluster: unknown
  version: 1
config:
  actor_system_config:
    use_auto_config: true
    node_type: COMPUTE
    cpu_count: 4
allowed_labels: {}
selector_config: []
---
metadata:
  kind: volatile
  cluster: unknown
  version: 1
  id: 1
# some comment example
selectors:
- description: test
  selector:
    tenant: /Root/db1
  config:
    actor_system_config: !inherit
      use_auto_config: true
      cpu_count: 12

ydb admin cluster config resolve -k <configs_dir> --node-id <node_id>

---
label_sets:
- dynamic:
    type: COMMON
    value: true
config:
  actor_system_config:

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_configs_save-all-configurations-locally
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_configs_view-all-configurations-locally
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_configs_view-the-final-configuration-for-a-specific-node-from-the-locally-saved-original-configuration


    use_auto_config: true
    node_type: COMPUTE
    cpu_count: 4



table attribute add
With the table attribute add  command, you can add a custom attribute to your table.

General format of the command:

global options : Global parameters.

options : Parameters of the subcommand.

table path : The table path.

Look up the description of the command to add a custom attribute:

Parameters of the subcommand

Examples

Add the custom attributes with the keys attr_key1 , attr_key2  and the respective values attr_value1 , attr_value2  to the my-table  table:

ydb [global options...] table attribute add [options...] <table path>

ydb table attribute add --help

ydb table attribute add --attribute attr_key1=attr_value1 --attribute attr_key2=attr_value2 my-table

Name Description

--attribute The custom attribute in the <key>=<value>  format. You can use --attribute  many times to add multiple attributes 
by a single command.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_table-attribute-add
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_table-attribute-add_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_table-attribute-add_examples-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_users-attr
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_table-attribute-add_options


table attribute drop
With the table attribute drop  command, you can drop a custom attribute from your table.

General format of the command:

global options : Global parameters.

options : Parameters of the subcommand.

table path : The table path.

Look up the description of the command to add a custom attribute:

Parameters of the subcommand

Examples

Drop the custom attributes with the keys attr_key1  and attr_key2  from the my-table  table:

ydb [global options...] table attribute drop [options...] <table path>

ydb table attribute drop --help

ydb table attribute drop --attributes attr_key1,attr_key2 my-table

Name Description

--attributes The key of the custom attribute to be dropped. You can list multiple keys separated by a comma ( , ).

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_table-attribute-drop
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_table-attribute-drop_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_table-attribute-drop_examples-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_users-attr
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_table-attribute-drop_options


List of objects
The scheme ls  command lets you get a list of scheme objects in the database:

where [connection options] are database connection options

Executing the command without parameters produces a compressed list of object names in the database's root directory.

In the path  parameter, you can specify the directory you want to list objects in.

The following options are available for the command:

-l : Full details about attributes of each object.

-R : Recursive traversal of all subdirectories.

-1 : Output a single schema object per row (for example, to be later handled in a script).

Examples

Note

The examples use the quickstart  profile. To learn more, see Creating a profile to connect to a test database.

Getting objects from the root database directory in a compressed format

Getting objects in all database directories in a compressed format

Getting objects from the given database directory in a compressed format

Getting objects in all subdirectories in the given directory in a compressed format

Getting complete information on objects in the root database directory

Getting complete information about objects in a given database directory

Getting complete information about objects in all database directories

Getting complete information on objects in all subdirectories of a given database directory

ydb [connection options] scheme ls [path] [-lR1]

ydb --profile quickstart scheme ls

ydb --profile quickstart scheme ls -R

ydb --profile quickstart scheme ls dir1
ydb --profile quickstart scheme ls dir1/dir2

ydb --profile quickstart scheme ls dir1 -R
ydb --profile quickstart scheme ls dir1/dir2 -R

ydb --profile quickstart scheme ls -l

ydb --profile quickstart scheme ls dir1 -l
ydb --profile quickstart scheme ls dir2/dir3 -l

ydb --profile quickstart scheme ls -lR

ydb --profile quickstart scheme ls dir1 -lR
ydb --profile quickstart scheme ls dir2/dir3 -lR

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_scheme-ls
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_scheme-ls_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_glossary_scheme-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_connect_command-line-pars
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_dir
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_reference_ydb-cli_profile_create_quickstart


Getting information about schema objects
Get information about a schema object:

Result:

ydb scheme describe episodes --stats

<table> episodes

┌────────────┬─────────┬────────┬─────┐
| Name       | Type    | Family | Key |
├────────────┼─────────┼────────┼─────┤
| air_date   | Uint64? |        |     |
| episode_id | Uint64? |        | K2  |
| season_id  | Uint64? |        | K1  |
| series_id  | Uint64? |        | K0  |
| title      | Utf8?   |        |     |
└────────────┴─────────┴────────┴─────┘

Storage settings:
Internal channel 0 commit log storage pool: ssd
Internal channel 1 commit log storage pool: ssd
Store large values in "external blobs": false

Column families:
┌─────────┬──────┬─────────────┬────────────────┐
| Name    | Data | Compression | Keep in memory |
├─────────┼──────┼─────────────┼────────────────┤
| default | ssd  | None        |                |
└─────────┴──────┴─────────────┴────────────────┘

Auto partitioning settings:
Partitioning by size: true
Partitioning by load: false
Preferred partition size (Mb): 2048

Table stats:
Partitions count: 1
Approximate number of rows: 70
Approximate size of table: 11.05 Kb
Last modified: Thu, 17 Jun 2021 11:01:06 UTC
Created: Thu, 17 Jun 2021 11:00:29 UTC

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_scheme-describe
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_glossary_scheme-object


Permissions

General list of commands

You can get a list of available commands via interactive help:

All commands have an additional parameter, which is not critical for them:
--timeout ms  - a technical parameter that sets the server response timeout.

grant, revoke

The grant  and revoke  commands allow you to establish and revoke, respectively, access rights to schema objects for a user or group of users.
Essentially, they are analogues of the corresponding YQL GRANT and REVOKE commands.

The syntax of the YDB CLI commands is as follows:

Parameters:

<path>  — the full path from the root of the cluster to the object whose rights need to be modified.
<subject>  — the name of the user or group whose access rights are being changed.

Additional parameters [options...] :

{-p|--permission} NAME  — the list of rights that need to be granted ( grant ) or revoked ( revoke ) for the user.

Each right must be passed as a separate parameter, for example:

set

The set  command allows you to set access rights to schema objects for a user or group of users.

Command syntax:

The values of all parameters are identical to the grant , revoke  commands. However, the key difference of the set  command from grant  and
revoke  is that it sets exactly those access rights to the specified object that are listed in the -p (--permission)  parameters. Other rights for the

specified user or group will be revoked.

For example, previously the user testuser  was granted rights to the object '/Root/db1'  such as "ydb.granular.select_row" ,
"ydb.granular.update_row" , "ydb.granular.erase_row" , "ydb.granular.read_attributes" , "ydb.granular.write_attributes" ,
"ydb.granular.create_directory" .

Then, as a result of executing the command, all rights to the specified object will be revoked (as if revoke  was called for each of the rights) and
only the right "ydb.granular.select_row"  specified in the set  command will remain:

ydb scheme permissions --help

Usage: ydb [global options...] scheme permissions [options...] <subcommand>

Description: Modify permissions

Subcommands:
permissions                 Modify permissions
├─ chown                    Change owner
├─ clear                    Clear permissions
├─ grant                    Grant permission (aliases: add)
├─ list                     List permissions
├─ revoke                   Revoke permission (aliases: remove)
├─ set                      Set permissions
├─ clear-inheritance        Do not inherit permissions from the parent
└─ set-inheritance          Inherit permissions from the parent

ydb [connection options] scheme permissions grant  [options...] <path> <subject>
ydb [connection options] scheme permissions revoke [options...] <path> <subject>

ydb scheme permissions grant -p "ydb.access.grant" -p "ydb.generic.read" '/Root/db1/MyApp/Orders' testuser

ydb [connection options] scheme permissions set  [options...] <path> <subject>

ydb scheme permissions set -p "ydb.granular.select_row" '/Root/db1' testuser

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_scheme-permissions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_scheme-permissions_general-list-of-commands
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_scheme-permissions_grant,-revoke
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_scheme-permissions_set
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_grant
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_revoke
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_scheme-permissions_grant-revoke


list

The list  command allows you to obtain the current list of access rights to schema objects.

Command syntax:

Parameters:
<path>  — the full path from the cluster's root to the object you want to get rights for.

Example result of executing list :

The result structure consists of three blocks:

Owner  — shows the owner of the schema object.

Permissions  — displays a list of rights directly given to this object.

Effective permissions  — displays a list of rights that are effectively applied to this schema object, taking into account the rules of rights
inheritance. This list also includes all the rights displayed in the Permissions  section.

clear

The clear  command allows you to revoke all previously granted rights to the schema object. Rights that apply to it by inheritance rules will
continue to apply.

Parameters:
<path>  — the full path from the root of the cluster to the object whose permissions need to be revoked.

For example, if you execute the command over the database state from the previous example list :

And then execute the list  command again on the object /Root/db1/MyApp , you will get the following result:

ydb [connection options] scheme permissions list [options...] <path>

ydb scheme permissions list '/Root/db1/MyApp'

Owner: root

Permissions:
user1:ydb.generic.read

Effective permissions:
USERS:ydb.database.connect
METADATA-READERS:ydb.generic.list
DATA-READERS:ydb.granular.select_row
DATA-WRITERS:ydb.tables.modify
DDL-
ADMINS:ydb.granular.create_directory,ydb.granular.write_attributes,ydb.granular.create_table,ydb.granular.remove_schema,ydb
ACCESS-ADMINS:ydb.access.grant
DATABASE-ADMINS:ydb.generic.manage
user1:ydb.generic.read

ydb [global options...] scheme permissions clear [options...] <path>

ydb scheme permissions clear '/Root/db1/MyApp'

Owner: root

Permissions:
none

Effective permissions:
USERS:ydb.database.connect
METADATA-READERS:ydb.generic.list
DATA-READERS:ydb.granular.select_row
DATA-WRITERS:ydb.tables.modify
DDL-
ADMINS:ydb.granular.create_directory,ydb.granular.write_attributes,ydb.granular.create_table,ydb.granular.remove_schema,ydb
ACCESS-ADMINS:ydb.access.grant
DATABASE-ADMINS:ydb.generic.manage

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_scheme-permissions_list
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_scheme-permissions_clear
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_scheme-permissions_list


Note that the Permissions  section is now empty. This means all permissions for this object have been revoked. Also, there have been changes in
the contents of the Effective permissions  section: it no longer lists the permissions that were granted directly to the object /Root/db1/MyApp .

chown

The chown  command allows you to change the owner of a schema object.

Command syntax:

Parameters:
<path>  — the full path from the root of the cluster to the object whose permissions need to be modified.
<owner>  — the name of the new owner (a user or a group) of the specified object.

Example of a chown  command:

Note

In the current version of YDB, there is a restriction that only the user who is the current owner of the schema object can change the
owner.

clear-inheritance

The clear-inheritance  command allows you to prohibit the inheritance of permissions for a schema object.

Command syntax:

Parameters:
<path>  — the full path from the cluster' root to the object whose permissions need to be modified.

Example of a clear-inheritance  command:

set-inheritance

The set-inheritance  command allows you to enable permission inheritance for a schema object.

Command syntax:

Parameters:
<path>  — the full path from the cluster's root to the object whose permissions need to be modified.

Example of a set-inheritance  command:

ydb [connection options] scheme permissions chown [options...] <path> <owner>

ydb scheme permissions chown '/Root/db1' testuser

ydb [connection options] scheme permissions clear-inheritance [options...] <path>

ydb scheme permissions clear-inheritance '/Root/db1'

ydb [connection options] scheme permissions set-inheritance [options...] <path>

ydb scheme permissions set-inheritance '/Root/db1'

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_scheme-permissions_chown
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_scheme-permissions_clear-inheritance
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_scheme-permissions_set-inheritance


Directories
The YDB database supports an internal directory structure that can host database objects.

YDB CLI supports operations to change the directory structure and to access schema objects by their directory name.

Creating a directory

The scheme mkdir  command creates the directories:

where [connection options] are database connection options

In the path  parameter, specify the relative path to the directory being created, from the root database directory. This command creates all the
directories that didn't exist at the path when the command was called.

If the destination directory had already existed at the path, then the command execution will be completed successfully (result code 0) with a
warning that no changes have been made:

It also supports the syntax of a full path beginning with / . The full path must begin with the path to the database specified in the connection
parameters or allowed by the current connection to the cluster.

Examples:

Creating a directory at the database root

Creating directories at the specified path from the database root

Deleting a directory

The scheme rmdir  command deletes a directory:

global options : Global parameters.

options : Parameters of the subcommand.

path : Path to the deleted directory.

Look up the description of the directory deletion command:

Parameters of the subcommand

ydb [connection options] scheme mkdir <path>

Status: SUCCESS
Issues:
<main>: Error: dst path fail checks, path: /<database>/<path>: path exist, request accepts it,
pathId: [OwnerId: <some>, LocalPathId: <some>], path type: EPathTypeDir, path state: EPathStateNoChanges

ydb --profile quickstart scheme mkdir dir1

ydb --profile quickstart scheme mkdir dir1/dir2/dir3

ydb [global options...] scheme rmdir [options...] <path>

ydb scheme rmdir --help

Name Description

-r , --recursive This option deletes the directory recursively, which all its child objects (subdirectories, tables, topics). If you use 
this option, the confirmation prompt is shown by default.

-f , --force Do not prompt for confirmation.

-i Prompt for deletion confirmation on each object.

-I Show a single confirmation prompt.

--timeout <value> Operation timeout, ms.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_dir
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_dir_mkdir
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_dir_rmdir
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_dir_rmdir-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_datamodel_dir
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_connect_command-line-pars
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_connect_database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_global-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_dir_rmdir-options


If you try to delete a non-empty directory without the -r  or --recursive  option, the command fails with an error.

Examples

Deleting an empty directory:

Deleting an empty directory with a confirmation prompt:

Recursively deleting a non-empty directory with a confirmation prompt:

Recursively deleting a non-empty directory without a confirmation prompt:

Recursively deleting a non-empty directory, showing a confirmation prompt on each object:

Using directories in other CLI commands

In all CLI commands to which the object name is passed by the parameter, it can be specified with a directory, for example, in scheme describe :

The scheme ls  command supports passing the path to the directory as a parameter:

Using directories in YQL

Names of objects used in YQL queries may contain paths to directories hosting such objects. This path will be concatenated with the path prefix
from the TablePathPrefix  pragma. If the pragma is omitted, the object name is resolved relative to the database root.

Implicit creation of directories during import

The data import command creates a directory tree mirroring the original imported catalog.

Status: SCHEME_ERROR
Issues:
<main>: Error: path table fail checks, path: /<database>/<path>: path has children, request
doesn't accept it, pathId: [OwnerId: <some>, LocalPathId: <some>], path type:
EPathTypeDir, path state: EPathStateNoChanges, alive children: <count>

ydb scheme rmdir dir1

ydb scheme rmdir -I dir1

ydb scheme rmdir -r dir1

ydb scheme rmdir -rf dir1

ydb scheme rmdir -ri dir1

ydb --profile quickstart scheme describe dir1/table_a

ydb --profile quickstart scheme ls dir1/dir2

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_dir_rmdir-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_dir_use
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_dir_yql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_dir_import
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_scheme-describe
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_scheme-ls
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#yql_reference_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#yql_reference_syntax_pragma_table-path-prefix


Creating and deleting secondary indexes
By using the table index  command, you can create and delete secondary indexes:

where [connection options] are database connection options

You can also add or delete a secondary index with the ADD INDEX and DROP INDEX directives of YQL ALTER TABLE.

To learn about secondary indexes and their use in application development, see Secondary indexes under "Recommendations".

Creating a secondary index

Secondary indexes are created with the table index add  command:

Parameters:

<sync-async> : The type of the secondary index. Use global-sync  to build an index updated synchronously or global-async  to build an index
updated asynchronously.

<table> : The path and name of the table you are building an index for

--index-name STR : A mandatory parameter that sets the name of the index. It is recommended that you specify the names of such indexes, so
that the columns included in them can be identified. Index names are unique in the context of the table.

--columns STR : A required parameter that defines the columns used in the index and their order in the index key. Column names are separated
by a comma, with no spaces. The index key will include both the columns listed and the columns from the table's primary key.

--cover STR : An optional parameter that defines the covering columns of the index. Their values won't be added to the index key, but will be
written to the index. This enables you to retrieve the values when searching the index without accessing the table.

When the command is executed, the DBMS starts building the index in the background, and the pseudographics-formatted id  field shows the
operation ID, so you can retrieve its status by operation get . When the index is being built, you can abort the process using operation 
cancel .

To forget an index-building operation (either completed or terminated), use operation forget .

To retrieve the status of all index-building operations, use operation list buildindex .

Examples

Note

The examples use the quickstart  profile. To learn more, see Creating a profile to connect to a test database.

Adding a synchronous index built on the air_date  column to the episodes  table created previously:

Adding to the previously created series  table an asynchronous index built on the release_date  and title  columns, copying to the index the
series_info  column value:

Result (the actual operation id might differ):

Getting the operation status (use the actual operation id):

ydb [connection options] table index [subcommand] [options]

ydb [connection options] table index add <sync-async> <table> \
  --index-name STR --columns STR [--cover STR]

ydb -p quickstart table index add global-sync episodes \
  --index-name idx_aired --columns air_date

ydb -p quickstart table index add global-async series \
  --index-name idx_rel_title --columns release_date,title --cover series_info

┌──────────────────────────────────┬───────┬────────┐
| id                               | ready | status |
├──────────────────────────────────┼───────┼────────┤
| ydb://buildindex/7?id=2814749869 | false |        |
└──────────────────────────────────┴───────┴────────┘

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_secondary_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_secondary_index_add
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_secondary_index_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_secondary_indexes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_connect_command-line-pars
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#yql_reference_syntax_alter_table_indexes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#dev_secondary-indexes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_secondary_indexes_sync
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_secondary_indexes_async
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_secondary_indexes_cover
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_reference_ydb-cli_profile_create_quickstart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#quickstart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#quickstart


Returned value:

Deleting the index-building details (use the actual operation id):

Deleting a index

Indexes are deleted by the table index drop  command:

Example

Note

The examples use the quickstart  profile. To learn more, see Creating a profile to connect to a test database.

Deleting the idx_aired  index from the episodes table (see the index-building example above):

Renaming a secondary index

To rename secondary indexes, use the table index rename  command:

If an index with the new name exists, the command returns an error.

To replace your existing index atomically, execute the rename command with the --replace  option:

Example

Note

The examples use the quickstart  profile. To learn more, see Creating a profile to connect to a test database.

Renaming the idx_aired  index built on the episodes table (see the example of index creation above):

ydb -p quickstart operation get ydb://buildindex/7?id=281474976866869

┌──────────────────────────────────┬───────┬─────────┬───────┬──────────┬─────────────────┬───────────┐
| id                               | ready | status  | state | progress | table           | index     |
├──────────────────────────────────┼───────┼─────────┼───────┼──────────┼─────────────────┼───────────┤
| ydb://buildindex/7?id=2814749869 | true  | SUCCESS | Done  | 100.00%  | /local/episodes | idx_aired |
└──────────────────────────────────┴───────┴─────────┴───────┴──────────┴─────────────────┴───────────┘

ydb -p quickstart operation forget ydb://buildindex/7?id=2814749869

ydb [connection options] table index drop <table> --index-name STR

ydb -p quickstart table index drop episodes --index-name idx_aired

ydb [connection options] table index rename <table> --index-name STR --to STR

ydb [connection options] table index rename <table> --index-name STR --to STR --replace

ydb -p quickstart table index rename episodes --index-name idx_aired --to idx_aired_renamed

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_secondary_index_drop
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_secondary_index_example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_secondary_index_rename
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_secondary_index_example1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_reference_ydb-cli_profile_create_quickstart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_reference_ydb-cli_profile_create_quickstart


Copying tables
Using the tools copy  subcommand, you can create a copy of one or more DB tables. The copy operation leaves the source table unchanged
while the copy contains all the source table data.

General format of the command:

global options : Global parameters.

options : Parameters of the subcommand.

View a description of the command to copy a table:

Parameters of the subcommand

Examples

Note

The examples use the quickstart  profile. To learn more, see Creating a profile to connect to a test database.

Create the backup  folder in the DB:

Copy the series  table to a table called series-v1 , the seasons  table to a table called seasons-v1 , and episodes  to episodes-v1  in the
backup  folder:

View the listing of objects in the backup  folder:

Result:

ydb [global options...] tools copy [options...]

ydb tools copy --help

ydb -p quickstart scheme mkdir backup

ydb -p quickstart tools copy --item destination=backup/series-v1,source=series --item destination=backup/seasons-
v1,source=seasons --item destination=backup/episodes-v1,source=episodes

ydb -p quickstart scheme ls backup

episodes-v1  seasons-v1  series-v1

Parameter name Parameter description

--timeout The time within which the operation should be completed on the server.

--item <property>=<value>,... Operation properties. You can specify the parameter more than once to copy several tables in a 
single transaction.
Required properties:

destination , dst , d : Path to target table. If the destination path contains folders, they 
must be created in advance. No table with the destination name should exist.

source , src , s : Path to source table.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_tools-copy
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_tools-copy_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_tools-copy_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_tools-copy_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_reference_ydb-cli_profile_create_quickstart


Renaming a table
Using the tools rename  subcommand, you can rename one or more tables at the same time, move a table to another directory within the same
database, replace one table with another one within the same transaction.

General command format:

global options : Global parameters.

options : Subcommand parameters.

View a description of the command to rename a table:

Subcommand parameters

A single run of the tools rename  command executes a single rename transaction that may include one or more operations to rename different
tables.

When including multiple rename operations in a single tools rename  call, they're executed in the specified order, but within a single transaction.
This lets you rotate the table under load without data loss: the first operation is renaming the working table to the backup one and the second is
renaming the new table to the working one.

Examples

Renaming a single table:

Renaming multiple tables within a single transaction:

Moving tables to a different directory:

Replacing a table

ydb [global options...] tools rename [options...]

ydb tools rename --help

ydb tools rename --item src=old_name,dst=new_name

ydb tools rename \
  --item source=new-project/main_table,destination=new-project/episodes \
  --item source=new-project/second_table,destination=new-project/seasons \
  --item source=new-project/third_table,destination=new-project/series

ydb tools rename \
  --item source=new-project/main_table,destination=cinema/main_table \
  --item source=new-project/second_table,destination=cinema/second_table \
  --item source=new-project/third_table,destination=cinema/third_table

Parameter name Parameter description

--item <property>=<value>,... Description of the rename operation. Can be specified multiple times if multiple rename operations 
need to be executed within a single transaction.

Required properties:

source , src , and s : Path to the source table.

destination , dst , and d : Path to the destination table. If the destination path contains 
folders, they must be created in advance.

Advanced properties:
 

replace , force : Overwrite the destination table. If True , the destination table is 
overwritten with its data deleted. False : If the destination table exists, an error is returned 
and the entire rename transaction is canceled. Default value: False .

--timeout <value> Operation timeout, ms.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_tools_rename
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_tools_rename_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_tools_rename_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_datamodel_table_rename
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_global-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_tools_rename_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_dir_mkdir


Rotating a table

ydb tools rename \
  --item replace=True,source=pre-prod-project/main_table,destination=prod-project/main_table

ydb tools rename \
  --item source=prod-project/main_table,destination=prod-project/main_table.backup \
  --item source=pre-prod-project/main_table,destination=prod-project/main_table



Setting TTL parameters
Use the table ttl set  subcommand to set TTL for the specified table.

General format of the command:

global options : Global parameters.

options : Parameters of the subcommand.

table path : The table path.

View a description of the TTL set command:

Parameters of the subcommand

Examples

Note

The examples use the quickstart  profile. To learn more, see Creating a profile to connect to a test database.

Set TTL for the series  table

ydb [global options...] table ttl set [options...] <table path>

ydb table ttl set --help

ydb -p quickstart table ttl set \
  --column createtime \
  --expire-after 3600 \
  --run-interval 1200 \
  series

Name Description

--column The name of the column that will be used to calculate the lifetime of the rows. The column must have the numeric or 
date and time type.
In case of the numeric type, the value will be interpreted as the time elapsed since the beginning of the Unix epoch. 
Measurement units must be specified in the --unit  parameter.

--expire-after Additional time before deleting that must elapse after the lifetime of the row has expired. Specified in seconds.
The default value is 0 .

--unit The value measurement units of the column specified in the --column  parameter. It is mandatory if the column has 
the numeric type.
Possible values:

seconds (s, sec) : Seconds.

milliseconds (ms, msec) : Milliseconds.

microseconds (us, usec) : Microseconds.

nanoseconds (ns, nsec) : Nanoseconds.

--run-interval The interval for running the operation to delete rows with expired TTL. Specified in seconds. The default database 
settings do not allow an interval of less than 15 minutes (900 seconds).
The default value is 3600 .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_table-ttl-set
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_table-ttl-set_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_table-ttl-set_examples-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_ttl
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_table-ttl-set_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_reference_ydb-cli_profile_create_quickstart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_primitive_numeric
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_primitive_datetime
https://en.wikipedia.org/wiki/Unix_time
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_types_primitive_numeric


Resetting TTL parameters
Use the table ttl reset  subcommand to reset TTL for the specified table.

General format of the command:

global options : Global parameters.

table path : The table path.

View the description of the TTL reset command:

Examples

Note

The examples use the quickstart  profile. To learn more, see Creating a profile to connect to a test database.

Reset TTL for the series  table:

ydb [global options...] table ttl reset <table path>

ydb table ttl reset --help

ydb -p quickstart table ttl reset \
  series

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_table-ttl-reset
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_table-ttl-reset_examples-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_ttl
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_reference_ydb-cli_profile_create_quickstart


Deleting a table
Using the table drop  subcommand, you can delete a specified table.

General format of the command:

global options : Global parameters.

options : Parameters of the subcommand.

table path : The table path.

To view a description of the table delete command:

Parameters of the subcommand

Examples

Note

The examples use the quickstart  profile. To learn more, see Creating a profile to connect to a test database.

To delete the table series :

ydb [global options...] table drop [options...] <table path>

ydb table drop --help

ydb -p quickstart table drop series

Name Description

--timeout The time within which the operation should be completed on the server.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_table-drop
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_table-drop_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_table-drop_examples-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_table-drop_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_reference_ydb-cli_profile_create_quickstart


Getting a query plan
Get a query plan:

The main section of the query plan, tables , contains information about querying tables. Reads are described in the reads  section and writes in
the writes  section. The key characteristic of any table query is its type.

Types of reads:

FullScan : Full table scan. All entries on all shards are read.

Scan : A read of a certain range of entries.

Lookup : A read by key or key prefix.

MultiLookup : Multiple reads by key or key prefix. Supported, for example, in JOINs.

Types of writes:

Upsert : Add a single entry.

MultiUpsert : Add multiple entries.

Erase : A single delete by key.

MultiErase : Multiple deletes.

Let's take the query plan from the example above.
The lookup_by  parameter shows what columns (key or key prefix) reads are made by.
The scan_by  parameter shows what columns a read of all entries in a certain range of values is made by.
The columns  parameter lists the columns whose values will be read from the table.

Example of query modification

Adjust the query so that you get only the first seasons of all the series:

This query plan implies that a FullScan  is made for the seasons  table and multiple reads are made for the series  table (the MultiLookup
type) by the key series_id  (lookup_by). The MultiLookup  read type and the lookup_by  section indicate that the series  table is subject to
multiple reads by the series_id  key.

ydb table query explain \
  -q "SELECT season_id, episode_id, title
  FROM episodes
  WHERE series_id = 1
  AND season_id > 1
  ORDER BY season_id, episode_id
  LIMIT 3"

ydb table query explain \
  -q "SELECT sa.title AS season_title, sr.title AS series_title, sr.series_id, sa.season_id
  FROM seasons AS sa
  INNER JOIN series AS sr ON sa.series_id = sr.series_id
  WHERE sa.season_id = 1"

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_explain-plan
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_explain-plan_examples


Streaming table reads
To read an entire table snapshot, use the read  subcommand. Data is transferred as a stream, which enables you to read any size table.

Read data:

Where:

--ordered : Order read entries by key.

--limit : Limit the number of entries to read.

--columns : Columns whose values should be read (all by default) in CSV format.

Result:

To only get the number of read entries, use the --count-only  parameter:

Result:

ydb table read episodes \
  --ordered \
  --limit 5 \
  --columns series_id,season_id,episode_id,title

┌───────────┬───────────┬────────────┬───────────────────────────────┐
| series_id | season_id | episode_id | title                         |
├───────────┼───────────┼────────────┼───────────────────────────────┤
| 1         | 1         | 1          | "Yesterday's Jam"             |
├───────────┼───────────┼────────────┼───────────────────────────────┤
| 1         | 1         | 2          | "Calamity Jen"                |
├───────────┼───────────┼────────────┼───────────────────────────────┤
| 1         | 1         | 3          | "Fifty-Fifty"                 |
├───────────┼───────────┼────────────┼───────────────────────────────┤
| 1         | 1         | 4          | "The Red Door"                |
├───────────┼───────────┼────────────┼───────────────────────────────┤
| 1         | 1         | 5          | "The Haunting of Bill Crouse" |
└───────────┴───────────┴────────────┴───────────────────────────────┘

ydb table read episodes \
  --columns series_id \
  --count-only

70

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_readtable


Performing scan queries

Warning

This command is deprecated.
The preferred way to run queries in YDB CLI is to use the ydb sql  command.

You can run a query using Scan Queries via the YDB CLI by adding the -t scan  flag to the ydb table query execute  command.

Run the data query:

Where:

--query : Query text.

Result:

ydb table query execute -t scan \
  --query "SELECT season_id, episode_id, title \
  FROM episodes \
  WHERE series_id = 1 AND season_id > 1 \
  ORDER BY season_id, episode_id \
  LIMIT 3"

┌───────────┬────────────┬──────────────────────────────┐
| season_id | episode_id | title                        |
├───────────┼────────────┼──────────────────────────────┤
| 2         | 1          | "The Work Outing"            |
├───────────┼────────────┼──────────────────────────────┤
| 2         | 2          | "Return of the Golden Child" |
├───────────┼────────────┼──────────────────────────────┤
| 2         | 3          | "Moss and the German"        |
└───────────┴────────────┴──────────────────────────────┘

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_scan-query
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_sql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_scan_query


Exporting and importing data
The YDB CLI contains a set of commands designed to export and import data and descriptions of data schema objects. Data can be exported to
create backups for subsequent recovery and for other purposes.

The export file structure is used for exporting data both to the file system and S3-compatible object storage.

Exporting data to the file system using tools dump

Importing data from the file system using tools restore

Connecting to and authenticating with S3-compatible object storage

Exporting data to S3-compatible object storage using export s3

Importing data from S3-compatible object storage using import s3

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_file-structure
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_tools-dump
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_tools-restore
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_auth-s3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-s3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_import-s3


File structure of an export
The file structure outlined below is used to export data both to the file system and an S3-compatible object storage. When working with S3, the file
path is added to the object key, and the key's prefix specifies the export directory.

Cluster

Note

A cluster can be exported only to the file system.

A cluster corresponds to a directory in the file structure, which contains:

Directories describing databases in the cluster, except:

Database schema objects

Database users and groups that are not administrators

The permissions.pb  file, which describes the cluster root ACL and its owner in text protobuf format

The create_user.sql  file, which describes the cluster users in YQL format

The create_group.sql  file, which describes the cluster groups in YQL format

The alter_group.sql  file, which describes user membership in the cluster groups in YQL format

Database

Note

You can export only database schema objects to an S3-compatible object storage.

A database corresponds to a directory in the file structure, which contains:

Directories describing the database schema objects, for example, tables
The database.pb  file, which describes the database settings in text protobuf format

The permissions.pb  file, which describes the cluster root ACL and its owner in text protobuf format

The create_user.sql  file, which describes the cluster users in YQL format

The create_group.sql  file, which describes the cluster groups in YQL format

The alter_group.sql  file, which describes user membership in the cluster groups in YQL format

Directories

Each database directory has a corresponding directory in the file structure. Each of them includes a permissions.pb  file, which describes the
directory ACL and owner in the text protobuf format. The directory hierarchy in the file structure mirrors the hierarchy in the database. If a database
directory contains no items (neither tables nor subdirectories), directory in the file structure includes an empty file named empty_dir .

Tables

For each table in the database, there's a same-name directory in the file structure's directory hierarchy that includes:

The scheme.pb  file describing the table structure and parameters in the text protobuf format

The permissions.pb  file describes the table ACL and owner in the text protobuf format

One or more data_XX.csv  files with the table data in csv  format, where XX  is the file's sequence number. The export starts with the
data_00.csv  file, with a next file created whenever the current file exceeds 100 MB

Directories describing the changefeeds. Directory names match the names of the changefeeds. Each directory contains the following files:

The changefeed_description.pb  file describing the changefeed in the text protobuf format

The topic_description.pb  file describing the underlying topic in the text protobuf format

Files with data

The format of data files is .csv , where each row corresponds to a record in the table (except the row with column headings). The urlencoded
format is used for rows. For example, the file row for the table with the uint64 and utf8 columns that includes the number 1 and the Russian string
"Привет" (translates to English as "Hi"), would look like this:

Checksums

1,"%D0%9F%D1%80%D0%B8%D0%B2%D0%B5%D1%82"

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_file-structure
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_file-structure_cluster
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_file-structure_db
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_file-structure_dir
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_file-structure_tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_file-structure_datafiles
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_file-structure_checksums
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_file-structure_db
https://developers.google.com/protocol-buffers/docs/reference/cpp/google.protobuf.text_format
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_file-structure_tables
https://developers.google.com/protocol-buffers/docs/reference/cpp/google.protobuf.text_format
https://developers.google.com/protocol-buffers/docs/reference/cpp/google.protobuf.text_format
https://developers.google.com/protocol-buffers/docs/reference/cpp/google.protobuf.text_format
https://developers.google.com/protocol-buffers/docs/reference/cpp/google.protobuf.text_format
https://developers.google.com/protocol-buffers/docs/reference/cpp/google.protobuf.text_format
https://ydb.tech/docs/en/concepts/cdc
https://developers.google.com/protocol-buffers/docs/reference/cpp/google.protobuf.text_format
https://developers.google.com/protocol-buffers/docs/reference/cpp/google.protobuf.text_format


Note

File checksums are only generated when exporting to S3-compatible object storage.

YDB generates a checksum for each export file and saves it to a corresponding file with the .sha256  suffix.

The file checksum can be validated using the sha256sum  console utility:

Examples

Cluster

When you export a cluster containing a database named /Root/db1  and a database named /Root/db2 , the system will create the following file
structure:

Database

When you export a database containing a table named episodes , the system will create the following file structure:

Tables

When you export the tables created under YDB Quick Start in Getting started, the system will create the following file structure:

$ sha256sum -c scheme.pb.sha256
scheme.pb: OK

backup
├─ Root
│  ├─ db1
│  │  ├─ alter_group.sql
│  │  ├─ create_group.sql
│  │  ├─ create_user.sql
│  │  ├─ permissions.pb
│  │  └─ database.pb
│  └─ db2
│    ├─ alter_group.sql
│    ├─ create_group.sql
│    ├─ create_user.sql
│    ├─ permissions.pb
│    └─ database.pb
├─ alter_group.sql
├─ create_group.sql
├─ create_user.sql
└─ permissions.pb

├─ episodes
│    ├─ data00.csv
│    ├─ scheme.pb
│    └─ permissions.pb
├─ alter_group.sql
├─ create_group.sql
├─ create_user.sql
├─ permissions.sql
└─ database.pb

├── episodes
│   ├── data_00.csv
│   ├── permissions.pb
│   └── scheme.pb
├── seasons
│   ├── data_00.csv
│   ├── permissions.pb
│   └── scheme.pb
└── series
    ├── data_00.csv
    ├── permissions.pb
    └── scheme.pb
    └── updates_feed

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_file-structure_example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_file-structure_example-cluster
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_file-structure_example-db
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_file-structure_example-table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#quickstart


Contents of the series/scheme.pb  file:

Contents of the series/update_feed/topic_description.pb  file:

Directories

When you export an empty directory series , the system will create the following file structure:

        └── changefeed_description.pb
        └── topic_description.pb

columns {
  name: "series_id"
  type {
    optional_type {
      item {
        type_id: UINT64
      }
    }
  }
}
columns {
  name: "title"
  type {
    optional_type {
      item {
        type_id: UTF8
      }
    }
  }
}
columns {
  name: "series_info"
  type {
    optional_type {
      item {
        type_id: UTF8
      }
    }
  }
}
columns {
  name: "release_date"
  type {
    optional_type {
      item {
        type_id: UINT64
      }
    }
  }
}
primary_key: "series_id"
storage_settings {
  store_external_blobs: DISABLED
}
column_families {
  name: "default"
  compression: COMPRESSION_NONE
}

retention_period {
  seconds: 86400
}
consumers {
  name: "my_consumer"
  read_from {
  }
  attributes {
    key: "_service_type"
    value: "data-streams"
  }
}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_file-structure_example-directory


When you export a directory series  with the nested table episodes , the system will create the following file structure:

└── series
    ├── permissions.pb
    └── empty_dir

└── series
    ├── permissions.pb
    └── episodes
        ├── data_00.csv
        ├── permissions.pb
        └── scheme.pb



Exporting data to the file system

Cluster

The admin cluster dump  command dumps the cluster' metadata to the client file system in the format described in the File structure of an export
article:

where [connection options] are database connection options

[options]  – command parameters:

-o <PATH>  or --output <PATH> : Path to the directory in the client file system where the data will be dumped.
If the directory doesn't exist, it will be created. However, the entire path to the directory must already exist.

If the specified directory exists, it must be empty.

If the parameter is omitted, the backup_YYYYDDMMTHHMMSS  directory will be created in the current directory, where YYYYDDMM  is the date and
HHMMSS  is the time when the dump process began, accroding to the system clock.

A cluster configuration is dumped separately using the ydb admin cluster config fetch  command.

Database

The admin database dump  command dumps the database' data and metadata to the client file system in the format described in File structure of
an export:

where [connection options] are database connection options

[options]  – command parameters:

-o <PATH>  or --output <PATH> : Path to the directory in the client file system where the data will be dumped.
If the directory doesn't exist, it will be created. However, the entire path to the directory must already exist.

If the specified directory exists, it must be empty.

If the parameter is omitted, the backup_YYYYDDMMTHHMMSS  directory will be created in the current directory, where YYYYDDMM  is the date and
HHMMSS  is the time when the dump process began, accroding to the system clock.

A database configuration is dumped separately using the ydb admin database config fetch  command.

Schema objects

The tools dump  command dumps the schema objects to the client file system in the format described in File structure of an export:

where [connection options] are database connection options

[options]  – command parameters:

-o <PATH>  or --output <PATH> : Path to the directory in the client file system where the data will be dumped.
If the directory doesn't exist, it will be created. However, the entire path to the directory must already exist.

If the specified directory exists, it must be empty.

If the parameter is omitted, the backup_YYYYDDMMTHHMMSS  directory will be created in the current directory, where YYYYDDMM  is the date and
HHMMSS  is the time when the dump process began, accroding to the system clock.

-p <PATH>  or --path <PATH> : Path to the database directory with objects or a path to the table to be dumped. The root database directory
is used by default. The dump includes all subdirectories whose names don't begin with a dot and the tables in them whose names don't begin
with a dot. To dump such tables or the contents of such directories, you can specify their names explicitly in this parameter.

--exclude <STRING> : Template (PCRE) to exclude paths from export. Specify this parameter multiple times to exclude more than one
template simultaneously.

--scheme-only : Dump only the details of the database schema objects without dumping their data.

--consistency-level <VAL> : The consistency level. Possible options:

database : A fully consistent dump, with one snapshot taken before starting the dump. Applied by default.

table : Consistency within each dumped table, taking individual independent snapshots for each table. Might run faster and have less
impact on the current workload processing in the database.

ydb [connection options] admin cluster dump [options]

ydb [connection options] admin database dump [options]

ydb [connection options] tools dump [options]

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-dump
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-dump_cluster
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-dump_database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-dump_schema-objects
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_file-structure
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_connect_command-line-pars
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#maintenance_manual_config-overview
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_file-structure
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_connect_command-line-pars
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#maintenance_manual_config-overview
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_file-structure
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_connect_command-line-pars
https://www.pcre.org/original/doc/html/pcrepattern.html


--avoid-copy : Do not create a snapshot before dumping. The default consistency snapshot might be inapplicable in some cases (for
example, for tables with external blobs).

--save-partial-result : Retain the result of a partial dump. Without this option, dumps that terminate with an error are deleted.

--preserve-pool-kinds : If enabled, the tools dump  command saves the storage device types specified for column groups of the tables to
the dump (see the DATA  parameter in Column groups for reference). To import such a dump, the same storage pools must be present in the
database. If at least one storage pool is missing, the import procedure will end with an error. By default, this option is disabled, and the import
procedure uses the default storage pool specified at the time of database creation (see Create a database for reference).

--ordered : Sorts rows in the exported tables by the primary key.

Examples

Note

The examples use the quickstart  profile. To learn more, see Creating a profile to connect to a test database.

Exporting a cluster

With automatic creation of the backup_...  directory in the current directory:

To a specific directory:

Exporting a database

To an automatically created backup_...  directory in the current directory:

To a specific directory:

Exporting a database schema objects

To an automatically created backup_...  directory in the current directory:

To a specific directory:

Dumping the table structure within a specified database directory (including subdirectories)

ydb -e <endpoint> admin cluster dump

ydb -e <endpoint> admin cluster dump -o ~/backup_cluster

ydb -e <endpoint> -d <database> admin database dump

ydb -e <endpoint> -d <database> admin database dump -o ~/backup_db

ydb --profile quickstart tools dump

ydb --profile quickstart tools dump -o ~/backup_quickstart

ydb --profile quickstart tools dump -p dir1 --scheme-only

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-dump_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-dump_exporting-a-cluster
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-dump_exporting-a-database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-dump_exporting-a-database-schema-objects
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-dump_dumping-the-table-structure-within-a-specified-database-directory-including-subdirectories
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#yql_reference_syntax_create_table_family
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_glossary_storage-pool
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#devops_manual_initial-deployment_create-db
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_reference_ydb-cli_profile_create_quickstart


Importing data from the file system

Cluster

The admin cluster restore  command restores a cluster from a backup on the file system. The backup must have been previously exported or
prepared manually as described in the File structure of an export article:

where [connection options] are database connection options

The destination cluster must be running and initialized before it can be restored.

When restoring a cluster' metadata, databases and their administrators are created. Refer to Database for further details on restoring databases.

The restore operation requires that for each database to be restored, its database nodes must be available. You can start database nodes before
running the restore command or while the restore operation is waiting for available nodes. If you encounter problems with available database
nodes, you can restart the restore operation.

A cluster configuration is restored separately using the following steps:

1. Load the saved configuration using the ydb admin cluster config replace  command.

2. Restart the cluster nodes.

Required parameters

-i <PATH>  or --input <PATH> : Path to the directory in the client system from which the data will be imported.

Optional parameters

[options]  – optional parameters of the command:

--wait-nodes-duration <DURATION> : The period of time that the restore command waits for available database nodes. Example: 10s , 5m ,
1h , 1.5d , 30 . Duration can be expressed in weeks, days, hours, minutes, seconds, microseconds, nanoseconds. If no suffix is specified, the

duration is seconds. The duration can be fractional. Combined duration like 1h30m  is not supported. If the duration is 0 , the restore command
does not wait for available nodes.

Database

The admin database restore  command restores the database from a backup on the file system. The backup must have been previously
exported with the admin database dump  command or prepared manually as described in the File structure of an export article:

where [connection options] are database connection options

The restore operation requires that for each database to be restored, its database nodes must be available. You can start database nodes before
running the restore command or while the restore operation is waiting for available nodes. If you encounter problems with available database
nodes, you can restart the restore operation.

Restoring database schema objects follows the same process described in Schema objects.

Database configuration is restored separately using the following steps:

1. Load the saved configuration using the ydb admin database config replace  command.

2. Restart the database nodes.

Required parameters

-i <PATH>  or --input <PATH> : Path to the directory in the client system from which the data will be imported.

Optional parameters

[options]  – optional parameters of the command:

--wait-nodes-duration <DURATION> : The period of time that the restore command waits for available database nodes. Example: 10s , 5m ,
1h , 1.5d , 30 . Duration can be expressed in weeks, days, hours, minutes, seconds, microseconds, nanoseconds. If no suffix is specified, the

duration is seconds. The duration can be fractional. Combined duration like 1h30m  is not supported. If the duration is 0 , the restore command
does not wait for available nodes.

Schema objets

The tools restore  command creates the items of the database schema in the database, and populates them with the data previously exported
there with the tools dump  command or prepared manually as per the rules from the File structure of an export article:

ydb [connection options] admin cluster restore -i <PATH> [options]

ydb [connection options] admin database restore -i <PATH> [options]

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-restore
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-restore_cluster
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-restore_mandatory
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-restore_optional
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-restore_db
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-restore_mandatory
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-restore_optional
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-restore_schema-objects
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_file-structure
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_connect_command-line-pars
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#devops_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-restore_db
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#maintenance_manual_config-overview
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_file-structure
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_connect_command-line-pars
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-restore_schema-objects
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#maintenance_manual_config-overview
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_file-structure


where [connection options] are database connection options

If the table or directory already exists in the database, no changes will be made to its schema and ACL. If some columns present in the imported
files are missing in the database or have mismatching types, this may lead to the data import operation failing.

To import data to the table, use the YQL REPLACE  command. If the table included any records before the import, the records whose keys are
present in the imported files are replaced by the data from the file. The records whose keys are absent in the imported files aren't affected.

Required parameters

-p <PATH>  or --path <PATH> : Path to the database directory the data will be imported to. To import data to the root directory, specify . . All
the missing directories along the path will be created.

-i <PATH>  or --input <PATH> : Path to the directory in the client system from which the data will be imported.

Optional parameters

[options]  – optional parameters of the command:

--restore-data <VAL> : Enables/disables data import, 1 (yes) or 0 (no), defaults to 1. If set to 0, the import only creates items in the schema
without populating them with data. If there's no data in the file system (only the schema has been exported), it doesn't make sense to change
this option.

--restore-indexes <VAL> : Enables/disables import of indexes, 1 (yes) or 0 (no), defaults to 1. If set to 0, the import won't either register
indexes in the data schema or populate them with data.

--restore-acl <VAL> : Enables/disables import of ACL, 1 (yes) or 0 (no), defaults to 1. If set to 0, the import creates items in the schema
with an empty ACL, and their owner will be the user who started the import.

--dry-run : Matching the data schemas in the database and file system without updating the database, 1 (yes) or 0 (no), defaults to 0. When
enabled, the system checks that:

All tables in the file system are present in the database

These items are based on the same schema, both in the file system and in the database

--save-partial-result : Save the partial import result. If disabled, an import error results in reverting to the database state before the
import.

--import-data : Use ImportData, a more efficient method for uploading data than the default approach. This method sends data to the server
partitioned by the client and in a lighter format. However, it returns an error when attempting to import exported data into an existing table that
already has indexes or is in the process of building them. To restore a table with indexes, ensure they are not already present in the schema
(for example, using the ydb scheme ls  command). By default, ImportData is disabled.

Workload restriction parameters

Using the below parameters, you can limit the import workload against the database.

Attention!

Some of the below parameters have default values. This means that the workload will be limited even if none of them is mentioned in
tools restore .

--rps <VAL> : Limits the number of queries used to upload batches to the database per second, the default value is 30.

--bandwidth <VAL> : Limit the workload per second, defaults to 0 (not set). <VAL>  specifies the data amount with a unit, for example, 2MiB.
If this value is set, the --rps  limit (see above) is not applied.

--in-flight <VAL> : Limits the number of queries that can be run in parallel, the default value is 10. To achieve maximum parallelism, set the
parameter value to the number of cores allocated for the restore process.

--upload-batch-rows <VAL> : Limits the number of records in the uploaded batch, the default value is 0 (unlimited). <VAL>  determines the
number of records and is set as a number with an optional unit, for example, 1K.

--upload-batch-bytes <VAL> : Limits the batch size of uploaded data, the default value is 512KB. <VAL>  specifies the data amount with a
unit, for example, 1MiB. Maximum value is 16 MiB.

--upload-batch-rus <VAL> : Applies only to Serverless databases to limit Request Units (RU) that can be consumed to upload one batch,
defaults to 30 RU. The batch size is selected to match the specified value. <VAL>  determines the number of RU and is set as a number with
an optional unit, for example, 100 or 1K.

Examples

Note

The examples use the quickstart  profile. To learn more, see Creating a profile to connect to a test database.

ydb [connection options] tools restore -p <PATH> -i <PATH> [options]

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-restore_mandatory
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-restore_optional
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-restore_limiters
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-restore_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_connect_command-line-pars
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#yql_reference_syntax_replace_into
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_ydb-cli_commands_scheme-ls
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_reference_ydb-cli_profile_create_quickstart


Restoring cluster

From the current file system directory:

From the specified file system directory:

Restoring database

From the current file system directory:

From the specified file system directory:

Importing schema objets to the database root

From the current file system directory:

From the current file system directory:

Uploading data to the specified directory in the database

From the current file system directory:

From the current file system directory:

Matching schemas between the database and file system:

Example options for better performance

ydb -e <endpoint> admin cluster restore -i .

ydb -e <endpoint> admin cluster restore -i ~/backup_cluster

ydb -e <endpoint> -d <database> admin database restore -i .

ydb -e <endpoint> -d <database> admin database restore -i ~/backup_db

ydb -p quickstart tools restore -p . -i .

ydb -p quickstart tools restore -p . -i ~/backup_quickstart

ydb -p quickstart tools restore -p dir1/dir2 -i .

ydb -p quickstart tools restore -p dir1/dir2 -i ~/backup_quickstart

ydb -p quickstart tools restore -p dir1/dir2 -i ~/backup_quickstart --dry-run

ydb -p quickstart tools restore -p . -i . --import-data --bandwidth=10GiB --in-flight=16 --upload-batch-bytes=16MiB

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-restore_restoring-cluster
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-restore_restoring-database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-restore_importing-schema-objets-to-the-database-root
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-restore_uploading-data-to-the-specified-directory-in-the-database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-restore_example-options-for-better-performance


Connecting to S3-compatible object storages
The commands used to export data from S3-compatible storages, export s3  and import s3 , use the same parameters for S3 connection and
authentication. To learn how to get these parameters for certain cloud providers, see Getting S3 connection parameters below.

Connecting

To connect with S3, you need to specify an endpoint and bucket:

--s3-endpoint HOST : An S3 endpoint. HOST : A valid host name, such as: storage.yandexcloud.net

--bucket STR : An S3 bucket. STR : A string containing the bucket name

Authentication

Except when you import data from a public bucket, to connect, log in with an account that has write access to the bucket (for export to it) and read
access to the bucket (for import from it).

You need two parameters to authenticate with S3:

Access key ID ( --access-key ).

Secret access key ( --secret-key ).

The YDB CLI takes values of these parameters from the following sources (listed in descending priority):

1. The command line.

2. Environment variables.

3. The ~/.aws/credentials  file.

Command line parameters

--access-key : Access key ID.

--secret-key : Secret access key.

--aws-profile : Profile name from the ~/.aws/credentials  file. The default value is default .

Environment variables

If a certain authentication parameter is omitted in the command line, the YDB CLI tries to retrieve it from the following environment variables:

AWS_ACCESS_KEY_ID : Access key ID.

AWS_SECRET_ACCESS_KEY : Secret access key.

AWS_PROFILE : Profile name from the ~/.aws/credentials  file.

AWS authentication file

If a certain authentication parameter is omitted in the command line and cannot be retrieved from an environment variable, the YDB CLI tries to get
it from the specified profile or the default profile in the ~/.aws/credentials  file used for authenticating the AWS CLI. You can create this file with
the aws configure  AWS CLI command.

Getting the S3 connection parameters

Yandex.Cloud

Below is an example of getting access keys for the Yandex.Cloud Object Storage using the Yandex.Cloud CLI.

1. Install and set up the Yandex.Cloud CLI.

2. Use the following command to get the ID of your cloud folder ( folder-id ) (you'll need to add it to the commands below):

The ID of your cloud folder is in the folder-id:  line in the result:

3. To create a service account, run the command:

You can indicate any account name instead of s3account , or use your existing account name (be sure to replace it when copying the
commands below).

yc config list

folder-id: b2ge70qdcff4bo9q6t19

yc iam service-account create --name s3account

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_auth-s3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_auth-s3_conn
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_auth-s3_auth
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_auth-s3_command-line-parameters
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_auth-s3_environment-variables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_auth-s3_aws-authentication-file
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_auth-s3_procure
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_auth-s3_yandexcloud
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_auth-s3_procure
https://aws.amazon.com/ru/cli/
https://yandex.cloud/docs/storage/
https://yandex.cloud/docs/cli/quickstart
https://yandex.cloud/docs/iam/operations/sa/create


Account id will be printed on creation.

To get the id of an existing account, use this command:

4. Grant roles to your service account according to your intended S3 access level by running the command:

Where <folder-id>  is the cloud folder ID that you retrieved at step 2 and <s3-account-id>  is the id of the account you created at step 3.

You can also read a full list of Yandex.Cloud roles.

5. Get static access keys by running the command:

If successful, the command will return the access_key attributes and the secret value:

In this result:

access_key.key_id  is the access key ID ( --access-key ).

secret  is the secret access key ( --secret-key ).

yc iam service-account get --name <account-name>

Read (to import data to the YDB database)

yc resource-manager folder add-access-binding <folder-id> \
  --role storage.viewer --subject serviceAccount:<s3-account-id>

Write (to export data from the YDB database)

yc resource-manager folder add-access-binding <folder-id> \
  --role storage.editor --subject serviceAccount:<s3-account-id>

yc iam access-key create --service-account-name s3account

access_key:
  id: aje6t3vsbj8lp9r4vk2u
  service_account_id: ajepg0mjt06siuj65usm
  created_at: "2018-11-22T14:37:51Z"
  key_id: 0n8X6WY6S24N7OjXQ0YQ
secret: JyTRFdqw8t1kh2-OJNz4JX5ZTz9Dj1rI9hxtzMP1

https://yandex.cloud/docs/iam/operations/sa/assign-role-for-sa
https://yandex.cloud/docs/iam/concepts/access-control/roles#object-storage
https://yandex.cloud/docs/iam/operations/sa/create-access-key


Exporting data to S3-compatible storage
The export s3  command starts exporting data and information on the server side about data schema objects to S3-compatible storage, in the
format described under File structure:

Warning

The export feature is available only for objects of the following types:

Directory

Row-oriented table

Secondary index

Vector index

where [connection options] are database connection options

Command line parameters

[options] : Command parameters:

S3 connection parameters

To run the command to export data to S3 storage, specify the S3 connection parameters. Since data is exported by the YDB server asynchronously,
the specified endpoint must be available to establish a connection on the server side.

List of exported items

--item STRING : Description of the item to export. You can specify the --item  parameter multiple times if you need to export multiple items.
STRING  is set in <property>=<value>,...  format with the following mandatory properties:

source , src , or s : Path to the exported directory or table, .  indicates the DB root directory. If you specify a directory, all of its items
whose names do not start with a dot and, recursively, all subdirectories whose names do not start with a dot are exported.

destination , dst , or d : Path (key prefix) in S3 storage to store exported items.

--exclude STRING : Template (PCRE) to exclude paths from export. Specify this parameter multiple times for different templates.

Additional parameters

Running the export command

Export result

ydb [connection options] export s3 [options]

Parameter Description

--description STRING Operation text description saved to the history of operations.

--retries NUM Number of export retries to be made by the server.
Defaults to 10 .

--compression STRING Compress exported data.
If the default compression level is used for the Zstandard algorithm, data can be compressed by 5-10 times. 
Compressing data uses the CPU and may affect the speed of performing other DB operations.
Possible values:

zstd : Compression using the Zstandard algorithm with the default compression level ( 3 ).

zstd-N : Compression using the Zstandard algorithm, where N  stands for the compression level ( 1  — 
22 ).

--format STRING Result format.
Possible values:

pretty : Human-readable format (default).

proto-json-base64 : Protocol Buffers in JSON format, binary strings are Base64-encoded.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_export-s3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_export-s3_pars
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_export-s3_s3-conn
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_export-s3_items
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_export-s3_aux
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_export-s3_exec
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_export-s3_result
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_file-structure
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_datamodel_dir
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_glossary_secondary-index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_glossary_vector-index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_connect_command-line-pars
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_auth-s3
https://www.pcre.org/original/doc/html/pcrepattern.html
https://en.wikipedia.org/wiki/Zstandard
https://en.wikipedia.org/wiki/Protocol_Buffers
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Base64


If successful, the export s3  command prints summary information about the enqueued operation to export data to S3, in the format specified in
the --format  option. The export itself is performed by the server asynchronously. The summary shows the operation ID that you can use later to
check the operation status and perform actions on it:

In the default pretty  mode, the operation ID is displayed in the id field with semigraphics formatting:

In the proto-json-base64 mode, the operation ID is in the "id" attribute:

Export status

Data is exported in the background. To find out the export status and progress, use the operation get  command with the operation ID enclosed
in quotation marks and passed as a command parameter. For example:

The operation get  format is also set by the --format  option.

Although the operation ID is in URL format, there is no guarantee that it is maintained in the future. It should only be interpreted as a string.

You can track the export progress by changes in the "progress" attribute:

In the default pretty  mode, successfully completed export operations are displayed as "Done" in the progress  field with semigraphics
formatting:

In the proto-json-base64 mode, the completed export operation is indicated with the PROGRESS_DONE  value of the progress  attribute:

Completing the export operation

When running the export operation, a directory named export_*  is created in the root directory, where *  is the numeric part of the export ID.
This directory stores tables with a consistent snapshot of exported data as of the export start time.

Once the export is done, use the operation forget  command to make sure the export is completed: the operation is removed from the list of
operations and all files created for it are deleted:

List of export operations

To get a list of export operations, run the operation list export/s3  command:

The operation list  format is also set by the --format  option.

Examples

┌───────────────────────────────────────────┬───────┬─────...
| id                                        | ready | stat...
├───────────────────────────────────────────┼───────┼─────...
| ydb://export/6?id=281474976788395&kind=s3 | true  | SUCC...
├╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴┴╴╴╴╴╴╴╴┴╴╴╴╴╴...
| StorageClass: NOT_SET
| Items:
...

{"id":"ydb://export/6?id=281474976788395&kind=s3","ready":true, ... }

ydb -p quickstart operation get "ydb://export/6?id=281474976788395&kind=s3"

┌───── ... ──┬───────┬─────────┬──────────┬─...
| id         | ready | status  | progress | ...
├──────... ──┼───────┼─────────┼──────────┼─...
| ydb:/...   | true  | SUCCESS | Done     | ...
├╴╴╴╴╴ ... ╴╴┴╴╴╴╴╴╴╴┴╴╴╴╴╴╴╴╴╴┴╴╴╴╴╴╴╴╴╴╴┴╴...
...

{"id":"ydb://...", ...,"progress":"PROGRESS_DONE",... }

ydb -p quickstart operation forget "ydb://export/6?id=281474976788395&kind=s3"

ydb -p quickstart operation list export/s3

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_export-s3_status
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_export-s3_forget
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_export-s3_list
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_export-s3_examples


Note

The examples use the quickstart  profile. To learn more, see Creating a profile to connect to a test database.

Exporting a database

Exporting all DB objects whose names do not start with a dot and that are not stored in directories whose names start with a dot to the export1
directory in mybucket  using the S3 authentication parameters from environment variables or the ~/.aws/credentials  file:

Exporting multiple directories

Exporting items from DB directories named dir1 and dir2 to the export1  directory in mybucket  using the explicitly set S3 authentication
parameters:

Getting operation IDs

To get a list of export operation IDs in a format suitable for handling in bash scripts, use the jq utility:

You'll get a result where each new line shows an operation's ID. For example:

You can use these IDs, for example, to run a loop to end all the current operations:

ydb -p quickstart export s3 \
  --s3-endpoint storage.yandexcloud.net --bucket mybucket \
  --item src=.,dst=export1

ydb -p quickstart export s3 \
  --s3-endpoint storage.yandexcloud.net --bucket mybucket \
  --access-key VJGSOScgs-5kDGeo2hO9 --secret-key fZ_VB1Wi5-fdKSqH6074a7w0J4X0 \
  --item src=dir1,dst=export1/dir1 --item src=dir2,dst=export1/dir2

ydb -p quickstart operation list export/s3 --format proto-json-base64 | jq -r ".operations[].id"

ydb://export/6?id=281474976789577&kind=s3
ydb://export/6?id=281474976789526&kind=s3
ydb://export/6?id=281474976788779&kind=s3

ydb -p quickstart operation list export/s3 --format proto-json-base64 | jq -r ".operations[].id" | while read line; do 
ydb -p quickstart operation forget $line;done

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_export-s3_example-full-db
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_export-s3_example-specific-dirs
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_export-s3_example-list-oneline
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_reference_ydb-cli_profile_create_quickstart
https://stedolan.github.io/jq/download/


Importing data from an S3 compatible storage
The import s3  command starts, on the server side, the process of importing data and schema object details from an S3-compatible storage, in
the format described in the File structure section:

where [connection options] are database connection options

As opposed to the tools restore  command, the import s3  command always creates objects in entirety, so none of the imported objects
(directories or tables) should already exist.

If you need to import some more data to your existing S3 tables (for example, using S3cmd), you can copy the S3 contents to the file system and
use the tools restore  command.

Command line parameters

[options] : Command parameters:

S3 connection parameters

To run the command to import data from an S3 storage, specify the S3 connection parameters. As data is imported by the YDB server
asynchronously, the specified endpoint must be available so that a connection can be established from the server side.

List of imported objects

--item STRING : Description of the item to import. You can specify the --item  parameter multiple times if you need to import multiple items.
STRING  is set in <property>=<value>,...  format with the following mandatory properties:

source , src  or s  is the path (key prefix) in S3 that hosts the imported directory or table

destination , dst , or d  is the database path to host the imported directory or table. The destination of the path must not exist. All the
directories along the path will be created if missing.

Additional parameters

--description STRING : A text description of the operation saved in the operation history.
--retries NUM : The number of import retries to be made by the server. The default value is 10.
--skip-checksum-validation : Skip the validating imported objects' checksums step.
--format STRING : The format of the results.

pretty : Human-readable format (default).

proto-json-base64 : Protobuf in JSON format, binary strings are Base64-encoded.

Importing

Export result

If successful, the import s3  command prints summary information about the enqueued operation to import data from S3 in the format specified in
the --format  option. The import itself is performed by the server asynchronously. The summary shows the operation ID that you can use later to
check the operation status and perform actions on it:

In the default pretty  mode, the operation ID is displayed in the id field with semigraphics formatting:

In the proto-json-base64 mode, the operation ID is in the "id" attribute:

Import status

Data is imported in the background. To get information on import status, use the operation get  command with the operation ID enclosed in
quotation marks and passed as a command parameter. For example:

ydb [connection options] import s3 [options]

┌───────────────────────────────────────────┬───────┬─────...
| id                                        | ready | stat...
├───────────────────────────────────────────┼───────┼─────...
| ydb://import/8?id=281474976788395&kind=s3 | true  | SUCC...
├╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴┴╴╴╴╴╴╴╴┴╴╴╴╴╴...
| Items:
...

{"id":"ydb://export/8?id=281474976788395&kind=s3","ready":true, ... }

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-s3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-s3_pars
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-s3_s3-conn
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-s3_items
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-s3_aux
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-s3_exec
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-s3_result
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-s3_status
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_file-structure
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_connect_command-line-pars
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_tools-restore
https://s3tools.org/s3cmd
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_tools-restore
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_auth-s3


The operation get  format is also set by the --format  option.

Although the operation ID is in URL format, there is no guarantee that it is maintained in the future. It should only be interpreted as a string.

You can track the import by changes in the "progress" attribute:

In the default pretty  mode, successfully completed export operations are displayed as "Done" in the progress  field with semigraphics
formatting:

In the proto-json-base64 mode, the completed export operation is indicated with the PROGRESS_DONE  value of the progress  attribute:

Completing the import operation

When the import is complete, use operation forget  to delete the import from the operation list:

List of import operations

To get a list of import operations, run the operation list import/s3  command:

The operation list  format is also set by the --format  option.

Examples

Note

The examples use the quickstart  profile. To learn more, see Creating a profile to connect to a test database.

Importing to the database root

Importing to the database root the contents of the export1  directory in the mybucket  bucket using the S3 authentication parameters taken from
the environment variables or the ~/.aws/credentials  file:

Importing multiple directories

Importing items from the dir1 and dir2 directories in the mybucket  S3 bucket to the same-name database directories using explicitly specified S3
authentication parameters:

Getting operation IDs

To get a list of import operation IDs in a bash-friendly format, use the jq utility:

ydb -p quickstart operation get "ydb://import/8?id=281474976788395&kind=s3"

┌───── ... ──┬───────┬─────────┬──────────┬─...
| id         | ready | status  | progress | ...
├──────... ──┼───────┼─────────┼──────────┼─...
| ydb:/...   | true  | SUCCESS | Done     | ...
├╴╴╴╴╴ ... ╴╴┴╴╴╴╴╴╴╴┴╴╴╴╴╴╴╴╴╴┴╴╴╴╴╴╴╴╴╴╴┴╴...
...

{"id":"ydb://...", ...,"progress":"PROGRESS_DONE",... }

ydb -p quickstart operation forget "ydb://import/8?id=281474976788395&kind=s3"

ydb -p quickstart operation list import/s3

ydb -p quickstart import s3 \
  --s3-endpoint storage.yandexcloud.net --bucket mybucket \
  --item src=export1,dst=.

ydb -p quickstart import s3 \
  --s3-endpoint storage.yandexcloud.net --bucket mybucket \
  --access-key VJGSOScgs-5kDGeo2hO9 --secret-key fZ_VB1Wi5-fdKSqH6074a7w0J4X0 \
  --item src=export/dir1,dst=dir1 --item src=export/dir2,dst=dir2

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-s3_forget
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-s3_list
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-s3_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-s3_example-full-db
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-s3_example-specific-dirs
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-s3_example-list-oneline
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_reference_ydb-cli_profile_create_quickstart
https://stedolan.github.io/jq/download/


You'll get a result where each new line shows an operation's ID. For example:

You can use these IDs, for example, to run a loop to end all the current operations:

ydb -p quickstart operation list import/s3 --format proto-json-base64 | jq -r ".operations[].id"

ydb://import/8?id=281474976789577&kind=s3
ydb://import/8?id=281474976789526&kind=s3
ydb://import/8?id=281474976788779&kind=s3

ydb -p quickstart operation list import/s3 --format proto-json-base64 | jq -r ".operations[].id" | while read line; do 
ydb -p quickstart operation forget $line;done



Importing data from a file to an existing table
With the import file  command, you can import data from CSV or TSV files to an existing table.

Data from an imported file is read in batches whose size is set in the --batch-bytes  option. An independent query is used to write each batch to
the database. The queries are executed asynchronously. When the number of executed queries reaches --max-in-flight , reading from the file
pauses. You can import data from multiple files using a single command. In this case, data from the files will be read asynchronously.

The command implements the BulkUpsert  method, which ensures high efficiency of multi-row bulk upserts with no atomicity guarantees. The
upsert process is split into multiple independent parallel transactions, each covering a single partition. When completed successfully, it guarantees
that all data is upserted.

If the table already includes data, it's replaced by imported data on primary key match.

The imported file must be in the UTF-8 encoding. Line feeds aren't supported in the data field.

General format of the command:

where [connection options] are database connection options

<input files> : Paths to local file system files you want to import.

Subcommand options

Required options

-p, --path STRING : A path to the table in the database.

Additional options

--timeout VAL : Time within which the operation should be completed on the server. Default: 300s .

--skip-rows NUM : A number of rows from the beginning of the file that will be skipped at import. The default value is 0 .

--header : Use this option if the first row (excluding the rows skipped by --skip-rows ) includes names of data columns to be mapped to
table columns. If the header row is missing, the data is mapped according to the order in the table schema.

--delimiter STRING : The data column delimiter character. You can't use the tabulation character as a delimiter in this option. For tab-
delimited import, use the import file tsv  subcommand. Default value: , .

--null-value STRING : The value to be imported as NULL . Default value: "" .

--batch-bytes VAL : Split the imported file into batches of specified sizes. If a row fails to fit into a batch completely, it's discarded and added
to the next batch. Whatever the batch size is, the batch must include at least one row. Default value: 1 MiB .

--max-in-flight VAL : The number of data batches imported in parallel. You can increase this option value to import large files faster. The
default value is 100 .

--threads VAL : Maximum number of threads used to import data. Default value: Number of logical processors.

--columns : List of data columns in the file delimited by a comma  (for csv  format) or by a tab character (for tsv  format). If you use the --
header  option, the column names in it will be replaced by column names from the list. If the number of columns in the list mismatches the
number of data columns, you will get an error.

--newline-delimited : This flag guarantees that there will be no line breaks in records. If this flag is set, and the data is loaded from a file,
then different upload streams will process different parts of the source file. This way you can distribute the workload across all partitions,
ensuring the maximum performance when uploading sorted datasets to partitioned tables.

Examples

Note

The examples use the quickstart  profile. To learn more, see Creating a profile to connect to a test database.

Before performing the examples, create a table named series .

Import file

The file includes data without any additional information. The ,  character is used as a delimiter.

ydb [connection options] import file csv|json|parquet|tsv [options] <input files...>

1,IT Crowd,The IT Crowd is a British sitcom.,13182
2,Silicon Valley,Silicon Valley is an American comedy television series.,16166

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-file
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-file_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-file_required
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-file_optional
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-file_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-file_simple
https://en.wikipedia.org/wiki/Comma-separated_values
https://en.wikipedia.org/wiki/Tab-separated_values
https://en.wikipedia.org/wiki/UTF-8
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_connect_command-line-pars
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_reference_ydb-cli_profile_create_quickstart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#quickstart


Note

The release_date  column in the series  table has the Date type, so the release date in the imported file has a numeric format. To
import values in the timestamp format, use string-type table columns for them. Alternatively, you can import them to a temporary table
and convert them to a relevant type.

To import such a file, use the command:

The following data will be imported:

Importing multiple files

The following files include CSV data without additional information:

series1.csv:

series2.csv:

To import such files, run the command:

Import file with the |  delimiter

The file includes data without any additional information. The |  character is used as a delimiter.

To import such a file, use |  in the --delimiter  option:

Skip rows and read column headers

The file includes additional information in the first and second row, as well as column headers in the third row. The order of data in the file rows
mismatches the order of columns in the table:

To skip comments in the first and second rows, use --skip-rows 2 . To process the third row as headers and map the file data to table columns,
use the --header  option:

Replace values to NULL

ydb import file csv -p series series.csv

┌──────────────┬───────────┬───────────────────────────────────────────────────────────┬──────────────────┐
| release_date | series_id | series_info                                               | title            |
├──────────────┼───────────┼───────────────────────────────────────────────────────────┼──────────────────┤
| "2006-02-03" | 1         | "The IT Crowd is a British sitcom."                       | "IT Crowd"       |
├──────────────┼───────────┼───────────────────────────────────────────────────────────┼──────────────────┤
| "2014-04-06" | 2         | "Silicon Valley is an American comedy television series." | "Silicon Valley" |
└──────────────┴───────────┴───────────────────────────────────────────────────────────┴──────────────────┘

1,IT Crowd,The IT Crowd is a British sitcom.,131822

2,Silicon Valley,Silicon Valley is an American comedy television series., 16166

ydb import file csv -p series series1.csv series2.csv

1|IT Crowd|The IT Crowd is a British sitcom.|13182
2|Silicon Valley|Silicon Valley is an American comedy television series.|16166

ydb import file csv -p series --delimiter "|" series.csv

#The file contains data about the series.
#
series_id,title,release_date,series_info
1,IT Crowd,13182,The IT Crowd is a British sitcom.
2,Silicon Valley,16166,Silicon Valley is an American comedy television series.

ydb import file csv -p series --skip-rows 2 --header series.csv

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-file_multiple-files
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-file_custom-delimiter
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-file_skip
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-file_replace-with-null
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#yql_reference_types_primitive_datetime
https://en.wikipedia.org/wiki/ISO_8601


The file includes the \N  sequence often used for NULL , as well as empty strings.

Use --null-value "\N"  so that \N  is interpreted as NULL :

The following data will be imported:

1,IT Crowd,The IT Crowd is a British sitcom.,13182
2,Silicon Valley,"",\N
3,Lost,,\N

ydb import file csv -p series --null-value "\N" series.csv

┌──────────────┬───────────┬─────────────────────────────────────┬──────────────────┐
| release_date | series_id | series_info                         | title            |
├──────────────┼───────────┼─────────────────────────────────────┼──────────────────┤
| "2006-02-03" | 1         | "The IT Crowd is a British sitcom." | "IT Crowd"       |
├──────────────┼───────────┼─────────────────────────────────────┼──────────────────┤
| null         | 2         | ""                                  | "Silicon Valley" |
├──────────────┼───────────┼─────────────────────────────────────┼──────────────────┤
| null         | 3         | ""                                  | "Lost"           |
└──────────────┴───────────┴─────────────────────────────────────┴──────────────────┘



Commands for topics
Using YDB CLI commands, you can perform the following operations:

Creating a topic.

Updating a topic.

Deleting a topic.

Adding a topic consumer.

Deleting a topic consumer.

Saving a consumer offset.

Reading messages from a topic.

Writing messages to a topic.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-overview
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-create
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-alter
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-drop
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-consumer-add
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-consumer-drop
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-consumer-offset-commit
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-read
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-write


Creating a topic
You can use the topic create  subcommand to create a new topic.

General format of the command:

global options : Global parameters.

options : Parameters of the subcommand.

topic-path : Topic path.

View the description of the create topic command:

Parameters of the subcommand

Examples

Note

The examples use the quickstart  profile. To learn more, see Creating a profile to connect to a test database.

Create a topic with 2 partitions, RAW  and GZIP  compression methods, message retention time of 2 hours, and the my-topic  path:

View parameters of the created topic:

ydb [global options...] topic create [options...] <topic-path>

ydb topic create --help

ydb -p quickstart topic create \
  --partitions-count 2 \
  --supported-codecs raw,gzip \
  --retention-period-hours 2 \
  my-topic

ydb -p quickstart scheme describe my-topic

Name Description

--partitions-count The number of topic partitions.
The default value is 1 .

--retention-period-hours Data retention time in a topic, set in hours.
The default value is 18 .

--partition-write-speed-kbps The maximum write speed to a partition, specified in KB/s.
The default value is 1024 .

--retention-storage-mb The maximum storage size, specified in MB. When the limit is reached, the oldest data will be 
deleted.
The default value is 0  (no limit).

--supported-codecs Supported data compression methods. Set with a comma.
The default value is raw .
Possible values:

RAW : No compression.

ZSTD : zstd compression.

GZIP : gzip compression.

LZOP : lzop compression.

--metering-mode The topic pricing method for a serverless database.
Possible values:

request-units : Based on actual usage.

reserved-capacity : Based on dedicated resources.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-create
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-create_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-create_examples-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-create_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_reference_ydb-cli_profile_create_quickstart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_partitioning
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_partitioning
https://en.wikipedia.org/wiki/Zstandard
https://en.wikipedia.org/wiki/Gzip
https://en.wikipedia.org/wiki/Lzop


Result:

RetentionPeriod: 2 hours
PartitionsCount: 2
SupportedCodecs: RAW, GZIP



Updating a topic
You can use the topic alter  subcommand to update a previously created topic.

General format of the command:

global options : Global parameters.

options : Parameters of the subcommand.

topic-path : Topic path.

View the description of the update topic command:

Parameters of the subcommand

The command changes the values of parameters specified in the command line. The other parameter values remain unchanged.

Examples

Note

The examples use the quickstart  profile. To learn more, see Creating a profile to connect to a test database.

Add a partition and the lzop  compression method to the previously created topic:

Make sure that the topic parameters have been updated:

Result:

ydb [global options...] topic alter [options...] <topic-path>

ydb topic alter --help

ydb -p quickstart topic alter \
  --partitions-count 3 \
  --supported-codecs raw,gzip,lzop \
  my-topic

ydb -p quickstart scheme describe my-topic

Name Description

--partitions-count The number of topic partitions. You can only increase the number of partitions.

--retention-period-hours The retention period for topic data, in hours.

--partition-write-speed-kbps The maximum write speed to a partition, specified in KB/s.
The default value is 1024 .

--retention-storage-mb The maximum storage size, specified in MB. When the limit is reached, the oldest data will be 
deleted.
The default value is 0  (no limit).

--supported-codecs Supported data compression methods.
Possible values:

RAW : No compression.

ZSTD : zstd compression.

GZIP : gzip compression.

LZOP : lzop compression.

--metering-mode The topic pricing method for a serverless database.
Possible values:

request-units : Based on actual usage.

reserved-capacity : Based on dedicated resources.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-alter
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-alter_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-alter_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-create
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-alter_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_reference_ydb-cli_profile_create_quickstart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-create
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_partitioning
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_partitioning
https://en.wikipedia.org/wiki/Zstandard
https://en.wikipedia.org/wiki/Gzip
https://en.wikipedia.org/wiki/Lzop


RetentionPeriod: 2 hours
PartitionsCount: 3
SupportedCodecs: RAW, GZIP, LZOP



Deleting a topic
You can use the topic drop  subcommand to delete a previously created topic.

Note

Deleting a topic also deletes all the consumers added for it.

General format of the command:

global options : Global parameters.

topic-path : Topic path.

View the description of the delete topic command:

Examples

Note

The examples use the quickstart  profile. To learn more, see Creating a profile to connect to a test database.

Delete the previously created topic:

ydb [global options...] topic drop <topic-path>

ydb topic drop --help

ydb -p quickstart topic drop my-topic

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-drop
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-drop_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-create
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_reference_ydb-cli_profile_create_quickstart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-create


Adding a topic consumer
You can use the topic consumer add  command to add a consumer for a previously created topic.

General format of the command:

global options : Global parameters.

options : Parameters of the subcommand.

topic-path : Topic path.

View the description of the add consumer command:

Parameters of the subcommand

Examples

Note

The examples use the quickstart  profile. To learn more, see Creating a profile to connect to a test database.

Create a consumer with the my-consumer  name for the previously created my-topic  topic. Consumption will start as soon as the first message is
received after August 15, 2022 13:00:00 GMT:

Make sure the consumer was created:

Result:

ydb [global options...] topic consumer add [options...] <topic-path>

ydb topic consumer add --help

ydb -p quickstart topic consumer add \
  --consumer my-consumer \
  --starting-message-timestamp 1660568400 \
  my-topic

ydb -p quickstart scheme describe my-topic

RetentionPeriod: 2 hours
PartitionsCount: 2
SupportedCodecs: RAW, GZIP

Consumers:
┌──────────────┬─────────────────┬───────────────────────────────┬───────────┐
| ConsumerName | SupportedCodecs | ReadFrom                      | Important |
├──────────────┼─────────────────┼───────────────────────────────┼───────────┤

Name Description

--consumer VAL Name of the consumer to be added.

--starting-message-timestamp VAL Time in UNIX timestamp format. Consumption starts as soon as the first message is received 
after the specified time. If the time is not specified, consumption will start from the oldest 
message in the topic.

--supported-codecs Supported data compression methods.
The default value is raw .
Possible values:

RAW : No compression.

ZSTD : zstd compression.

GZIP : gzip compression.

LZOP : lzop compression.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-consumer-add
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-consumer-add_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-consumer-add_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-create
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-consumer-add_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_reference_ydb-cli_profile_create_quickstart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-create
https://en.wikipedia.org/wiki/Unix_time
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_message
https://en.wikipedia.org/wiki/Zstandard
https://en.wikipedia.org/wiki/Gzip
https://en.wikipedia.org/wiki/Lzop


| my-consumer  | RAW, GZIP       | Mon, 15 Aug 2022 16:00:00 MSK | 0         |
└──────────────┴─────────────────┴───────────────────────────────┴───────────┘



Deleting a topic consumer
You can use the topic consumer drop  command to delete a previously added consumer.

General format of the command:

global options : Global parameters.

topic-path : Topic path.

View the description of the delete consumer command:

Parameters of the subcommand

Examples

Note

The examples use the quickstart  profile. To learn more, see Creating a profile to connect to a test database.

Delete the previously created consumer with the my-consumer  name for the my-topic  topic:

ydb [global options...] topic consumer drop <topic-path>

ydb topic consumer drop --help

ydb -p quickstart topic consumer drop \
  --consumer my-consumer \
  my-topic

Name Description

--consumer VAL Name of the consumer to be deleted.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-consumer-drop
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-consumer-drop_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-consumer-drop_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-consumer-add
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_reference_ydb-cli_profile_create_quickstart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-consumer-add


Saving a consumer offset
Each topic consumer has a consumer offset.

You can use the topic consumer offset commit  command to save the consumer offset for the consumer that you added.

General format of the command:

global options : Global parameters.

options : Parameters of the subcommand.

topic-path : Topic path.

Viewing the command description:

Parameters of the subcommand

Examples

Note

The examples use the quickstart  profile. To learn more, see Creating a profile to connect to a test database.

For my-consumer , set the offset of 123456789 in my-topic  and partition 1 :

ydb [global options...] topic consumer offset commit [options...] <topic-path>

ydb topic consumer offset commit --help

ydb -p db1 topic consumer offset commit \
  --consumer my-consumer \
  --partition 1 \
  --offset 123456789 \
  my-topic

Name Description

--consumer <value> Consumer name.

--partition <value> Partition number.

--offset <value> Offset value that you want to set.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-consumer-offset-commit
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-consumer-offset-commit_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-consumer-offset-commit_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_consumer-offset
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-consumer-add
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-consumer-offset-commit_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_reference_ydb-cli_profile_create_quickstart


Reading messages from a topic
The topic read  command reads messages from a topic and outputs them to a file or the command-line terminal:

where [connection options] are database connection options

Three command modes are supported:

1. Single message. No more than one message is read from a topic.

2. Batch mode. Messages are read from a topic until it runs out of messages for processing or their number exceeds the limit that must be set.

3. Streaming mode. Messages are read from a topic as they appear while waiting for new messages to arrive until you terminate the command
with Ctrl+C  or the number of messages exceeds the limit that is set optionally.

Parameters

Required parameters

<topic-path> : Topic path

Basic optional parameters

-c VAL , --consumer VAL : Topic consumer name.

If not set, then you need to specify partitions through --partition-ids to read without consumer

Message consumption starts from the current offset for this consumer (if the --timestamp  parameter is not specified).
If consumer name is not specified, message consumption will start from the first message in partition.

--format STR : Output format.

Specifies how to format messages at the output. Some formats don't support streaming mode.

List of supported formats:

--wait  ( -w ): Waiting for new messages to arrive.

Enables waiting for the first message to appear in a topic. If not set and the topic has no messages to handle, the command is terminated once
started. If the flag is set, the started read message command waits for the first message to arrive to be processed.

Enables streaming selection mode for the formats that support it, or else batch mode is used.

--limit INT : The maximum number of messages that can be consumed from a topic.

The default and acceptable values depend on the selected output format:

ydb [connection options] topic read <topic-path> --consumer STR \
  [--format STR] [--wait] [--limit INT] \
  [--transform STR] [--file STR] [--commit BOOL] \
  [additional parameters...]

Name Description
Is
streaming mode 
supported?

single-message

(default)
The contents of no more than one message are output without formatting. -

pretty Output to a pseudo-graphic table with columns containing message metadata. 
The message itself is output to the body  column.

No

newline-delimited Messages are output with a delimiter ( 0x0A  newline character) added after 
each message.

Yes

concatenated Messages are output one after another with no delimiter added. Yes

Does the format
support streaming selection mode?

Default limit value Acceptable values

No 10 1-500

Yes 0 (no limit) 0-500

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-read
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-read_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-read_required-parameters
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-read_basic-optional-parameters
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_connect_command-line-pars


--transform VAL : Method for transforming messages.

Defaults to none .

Possible values:
base64 : A message is transformed into Base64
none : The contents of a message are output byte by byte without transforming them.

--file VAL  ( -f VAL ): Write the messages read to the specified file. If not set, messages are output to stdout .

--commit BOOL : Commit message reads. Default value - false .

Possible values: true  or false .

If true , a consumer's current offset is shifted as topic messages are consumed.

If the value is set to false , messages will be read, but the reading progress won't be saved, and upon restart, the messages will be read
again. This functionality is useful for debugging: allowing messages to be read without affecting the production system (without offset commit).

Other optional parameters

Examples

Note

The examples use the quickstart  profile. To learn more, see Creating a profile to connect to a test database.

In all the examples below, a topic named topic1  and a consumer named c1  are used.

Reading a single message with output to the terminal: If the topic doesn't contain new messages for this consumer, the command terminates
with no data output:

Waiting for and reading a single message written to a file named message.bin . The command keeps running until new messages appear in
the topic for this consumer. However, you can terminate it with Ctrl+C :

ydb -p quickstart topic read topic1 -c c1

Name Description

--idle-timeout VAL Timeout for deciding if a topic is empty, meaning that it contains no messages for processing. 
The time is counted from the point when a connection is established once the command is run or when the 
last message is received. If no new messages arrive from the server during the specified timeout, the topic is 
considered to be empty.
Defaults to 1s  (1 second).

--timestamp VAL Message consumption starts from the point in time specified in UNIX timestamp format.
If not set, messages are consumed starting from the consumer's current offset in the topic.
If set, consumption starts from the first message received after the specified time.

--metadata-fields VAL List of message attributes whose values should be output in columns with metadata in pretty  format. If not 
set, columns with all attributes are output. 
Possible values:

write_time : The time a message is written to the server in UNIX timestamp format.

meta : Message metadata.

create_time : The time a message is created by the source in UNIX timestamp format.

seq_no : Message sequence number.

offset : Message sequence number within a partition.

message_group_id : Message group ID.

body : Message body.

--partition-ids VAL Comma-separated list of partition identifiers to read from.
If not specified, messages are read from all partitions.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-read_other-optional-parameters
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-read_examples
https://en.wikipedia.org/wiki/Base64
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_reference_ydb-cli_profile_create_quickstart
https://en.wikipedia.org/wiki/Unix_time
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_message
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_message
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_seqno
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_offset
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_producer-id
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_partitioning


Viewing information about messages waiting to be handled by the consumer without committing them. Up to 10 first messages are output:

Output messages to the terminal as they appear, using newline delimiter characters and transforming messages into Base64. The command
will be running until you terminate it with Ctrl+C :

Track when new messages with the ERROR  text appear in the topic and output them to the terminal once they arrive:

Receive another non-empty batch of no more than 150 messages transformed into base64, delimited with newline characters, and written to
the batch.txt  file:

Examples of YDB CLI command integration

ydb -p quickstart topic read topic1 -c c1 -w -f message.bin

ydb -p quickstart topic read topic1 -c c1 --format pretty --commit false

ydb -p quickstart topic read topic1 -c c1 -w --format newline-delimited --transform base64

ydb -p quickstart topic read topic1 -c c1 --format newline-delimited -w | grep ERROR

ydb -p quickstart topic read topic1 -c c1 \
  --format newline-delimited -w --limit 150 \
  --transform base64 -f batch.txt

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-pipeline


Writing messages to a topic
The topic write  command writes messages to a topic from a file or stdin :

where [connection options] are database connection options

Parameters

Basic parameters

<topic-path> : Topic path, the only required parameter.

--file VAL  ( -f VAL ): Read a stream of incoming messages and write them to a topic from the specified file. If not set, messages are read from
stdin .

--format STR : Format of the incoming message stream. Supported formats:

--transform VAL : Method for transforming messages.

Defaults to none .

Possible values:

base64 : Decode each message in the input stream from Base64 and write the output to the topic. If decoding fails, the command is
aborted with an error.

none : Write the contents of a message from the input stream to the topic byte by byte without transforming them.

Additional parameters

Examples

Note

The examples use the quickstart  profile. To learn more, see Creating a profile to connect to a test database.

All the examples given below use a topic named topic1 .

ydb [connection options] topic write <topic-path> \
  [--file STR] [--format STR] [--transform STR] \
  [additional parameters...]

Name Description

single-message

(default)
The entire input stream is treated as a single message to be written to the topic.

newline-delimited A stream at the input contains multiple messages delimited with the 0x0A  newline character.

Name Description

--delimiter STR Delimiter byte. The input stream is delimited into messages with the specified byte. Specified only if no 
--format  is set. Specified as an escaped string.

--message-group-id STR Message group string ID. If not set, all messages generated from the input stream are assigned the same 
ID value as a hexadecimal string representation of a random three-byte integer.

--codec STR Codec used for message compression on the client before sending them to the server. Possible values: 
RAW  (no compression, default), GZIP , and ZSTD . Compression causes higher CPU utilization on the 

client when reading and writing messages, but usually lets you reduce the volume of data transferred over 
the network and stored. When consumers read messages, they're automatically decompressed with the 
codec used when writing them, without specifying any special options. Make sure the specified codec is 
listed in the topic parameters as supported.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-write
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-write_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-write_basic-parameters
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-write_additional-parameters
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-write_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_connect_command-line-pars
https://en.wikipedia.org/wiki/Base64
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_reference_ydb-cli_profile_create_quickstart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-create_create-options


Writing a terminal input to a single message Once the command is run, you can type any multi-line text and press Ctrl+D  to input it.

Writing the contents of the message.bin  file to a single message compressed with the GZIP codec

Writing the contents of the example.txt  file delimited into messages line by line

Writing a resource downloaded via HTTP and delimited into messages with tab characters

Examples of YDB CLI command integration

ydb -p quickstart topic write topic1

ydb -p quickstart topic write topic1 -f message.bin --codec GZIP

ydb -p quickstart topic write topic1 -f example.txt --format newline-delimited

curl http://example.com/resource | ydb -p quickstart topic write topic1 --delimiter "\t"

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-pipeline


Message pipeline processing
The use of the topic read  and topic write  commands with standard I/O devices and support for reading messages in streaming mode lets
you build full-featured integration scenarios with message transfer across topics and their conversion. This section describes a number of these
scenarios.

Transferring a single message from topic1  in the quickstart  database to topic2  in db2 , waiting for it to appear in the source topic

Transferring all one-line messages that appear in topic1  in the quickstart  database to topic2  in db2  in background mode. You can
use this scenario if it's guaranteed that there are no 0x0A  bytes (newline) in source messages.

Transferring an exact binary copy of all messages that appear in topic1  in the quickstart  database to topic2  in db2  in background
mode with base64-encoding of messages in the transfer stream.

Transferring a limited batch of one-line messages filtered by the ERROR  substring

Writing YQL query results as messages to topic1

Running an SQL query with the transmission of messages from the topic as parameters

Running a YQL, passing each message read from topic1  as a parameter

Running a YQL query involving adaptive batching of parameters from messages read from topic1

ydb -p quickstart topic read topic1 -c c1 -w | ydb -p db2 topic write topic2

ydb -p quickstart topic read topic1 -c c1 --format newline-delimited -w | \
ydb -p db2 topic write topic2 --format newline-delimited

ydb -p quickstart topic read topic1 -c c1 --format newline-delimited -w --transform base64 | \
ydb -p quickstart topic write topic2 --format newline-delimited --transform base64

ydb -p quickstart topic read topic1 -c c1 --format newline-delimited | \
grep ERROR | \
ydb -p db2 topic write topic2 --format newline-delimited

ydb -p quickstart yql -s "select * from series" --format json-unicode | \
ydb -p quickstart topic write topic1 --format newline-delimited

ydb -p quickstart topic read topic1 -c c1 --format newline-delimited -w | \
ydb -p quickstart sql -s 'declare $s as String;select Len($s) as Bytes' \
--input-framing newline-delimited --input-param-name s --input-format raw

ydb -p quickstart topic read topic1 -c c1 --format newline-delimited -w | \
ydb -p quickstart sql \
-s 'declare $s as List<String>;select ListLength($s) as Count, $s as Items' \
--input-framing newline-delimited --input-param-name s --input-format raw \
--input-batch adaptive

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-pipeline
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-pipeline_example-read-to-yql-param


Overview
You can use the following YDB CLI commands to run queries:

ydb sql: A single command to execute any SQL query supported by YDB.

ydb: Switches the console to interactive mode to execute queries.

Query parameterization is explained separately.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_yql-query-overview
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_sql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_interactive-cli
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-query-execution


Query execution
You can use the ydb sql  subcommand to execute an SQL query. The query can be of any type (DDL, DML, etc.) and can consist of several
subqueries. The ydb sql  subcommand establishes a streaming connection and retrieves data through it. With in-stream query execution, no limit
is imposed on the amount of data read. Data can also be written using this command, which is more efficient when executing repeated queries with
data passed through parameters.

General format of the command:

global options : Global parameters.

options : Subcommand parameters.

View the description of this command by calling it with --help  option:

Parameters of the subcommand

ydb [global options...] sql [options...]

ydb sql --help

Name Description

-h , --help Print general usage help.

-hh Print complete usage help, including specific options not shown with --help .

-s , --script Script (query) text to execute.

-f , --file Path to a file with query text to execute. Path -  means reading query text from stdin  which disables passing 
parameters via stdin .

--stats Statistics mode.
Available options:

none  (default): Do not collect statistics.

basic : Collect aggregated statistics for updates and deletes per table.

full : Include execution statistics and plan in addition to basic .

profile : Collect detailed execution statistics, including statistics for individual tasks and channels.

--explain Execute an explain request for the query. Displays the query's logical plan. The query is not actually executed 
and does not affect database data.

--explain-ast Same as --explain , but in addition to the query's logical plan, an abstract syntax tree (AST) is printed. The 
AST section contains a representation in the internal miniKQL language.

--explain-analyze Execute the query in EXPLAIN ANALYZE  mode. Displays the query execution plan. Query results are ignored.
Important note: The query is actually executed, so any changes will be applied to the database.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_sql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_sql_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_sql_options
https://en.wikipedia.org/wiki/Abstract_syntax_tree
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_minikql


Working with parameterized queries

For a detailed description with examples on how to use parameterized queries, see Running parameterized queries.

Examples

Note

The examples use the quickstart  profile. To learn more, see Creating a profile to connect to a test database.

A script to create a table, populate it with data, and select data from the table:

Command output:

Running a script from the example above saved as the script1.yql  file, with results output in JSON  format:

Command output:

ydb -p quickstart sql -s '
    CREATE TABLE series (series_id Uint64, title Utf8, series_info Utf8, release_date Date, PRIMARY KEY (series_id));
    COMMIT;
    UPSERT INTO series (series_id, title, series_info, release_date) values (1, "Title1", "Info1", Cast("2023-04-20" as 
Date));
    COMMIT;
    SELECT * from series;
  '

┌──────────────┬───────────┬─────────────┬──────────┐
| release_date | series_id | series_info | title    |
├──────────────┼───────────┼─────────────┼──────────┤
| "2023-04-20" | 1         | "Info1"     | "Title1" |
└──────────────┴───────────┴─────────────┴──────────┘

ydb -p quickstart sql -f script1.yql --format json

--format Output format.
Available options:

pretty  (default): Human-readable format.

json-unicode : JSON output with binary strings Unicode-encoded and each JSON string in a separate line.

json-unicode-array : JSON output with binary strings Unicode-encoded and the result output as an array 
of JSON strings with each JSON string in a separate line.

json-base64 : JSON output with binary strings Base64-encoded and each JSON string in a separate line.

json-base64-array : JSON output with binary strings Base64-encoded and the result output as an array of 
JSON strings with each JSON string in a separate line;

parquet : Output in Apache Parquet format.

csv : Output in CSV format.

tsv : Output in TSV format.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_sql_parameterized-query
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_sql_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-query-execution
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_reference_ydb-cli_profile_create_quickstart
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/Base64
https://parquet.apache.org/docs/
https://en.wikipedia.org/wiki/CSV
https://en.wikipedia.org/wiki/Tab-separated_values


You can find examples of passing parameters to queries in the article on how to pass parameters to ydb sql .

{"release_date":"2023-04-20","series_id":1,"series_info":"Info1","title":"Title1"}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-query-execution


Running parameterized queries

Overview

YDB CLI can execute parameterized queries. To use parameters, you need to declare them using the YQL DECLARE  command in your query text.

The preferred way to run parameterized queries in YDB CLI is to use the ydb sql  command.

Parameter values can be set via the command-line arguments, uploaded from JSON files, and read from stdin  in binary or JSON format. Binary
data can be encoded as base64 or UTF-8. While reading from stdin  or a file, you can stream multiple parameter values, triggering multiple query
executions with batching options.

Why use parameterized queries?

Using parameterized queries offers several key advantages:

Enhanced Performance: Parameterized queries significantly boost performance when executing multiple similar queries that differ only in
input parameters. This is achieved through the use of prepared statements. The query is compiled once and then cached on the server.
Subsequent requests with the same query text bypass the compilation phase, allowing for immediate execution.

Protection Against SQL Injection: Another critical benefit of using parameterized queries is the protection they offer against SQL injection
attacks. This security feature ensures that the input parameters are appropriately handled, mitigating the risk of malicious code execution.

Executing a single query

To provide parameters for a single query execution, you can use the command-line arguments, JSON files, or stdin , using the following YDB CLI
options:

Name Description

-p, --param The value of a single query parameter in the name=value  or $name=value  format, where name  is the 
parameter name and value  is its value (a valid JSON value). This option can be specified multiple times.

All specified parameters must be declared in the query using the DECLARE operator. Otherwise, you will 
receive the "Query does not contain parameter" error. If you specify the same parameter multiple times, 
you will receive the "Parameter value found in more than one source" error.

Depending on your operating system, you might need to escape the $  character or enclose your 
expression in single quotes ( ' ).

--input-file The name of a file in JSON format and UTF-8 encoding that contains parameter values matched against 
the query parameters by key names. Only one input file can be used.

If values for the same parameter are found in multiple files or set by the --param  command-line option, 
you will receive the "Parameter value found in more than one source" error.

Keys that are present in the file but not declared in the query will be ignored without an error message.

--input-format The format of parameter values applied to all sources of parameters (command line, file, or stdin ).
Available options:

json  (default): JSON format.

csv : CSV format.

tsv : TSV format.

raw : Input is read as parameter values with no transformation or parsing. The parameter name 
should be set with the --input-param-name  option.

--input-binary-strings The input binary string encoding format. Defines how binary strings in the input should be interpreted.
Available options:

unicode : Every byte in binary strings that is not a printable ASCII symbol (codes 32-126) should be 
encoded as UTF-8.

base64 : Binary strings should be fully encoded with base64.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-query-execution
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-query-execution_overview
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-query-execution_why-use-parameterized-queries
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-query-execution_one-request
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_declare
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_sql
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Prepared_statement
https://en.wikipedia.org/wiki/SQL_injection
https://www.json.org/json-en.html
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_declare
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/Comma-separated_values
https://en.wikipedia.org/wiki/Tab-separated_values


If values are specified for all non-optional (i.e., NOT NULL) parameters in the DECLARE  clause, the query will be executed on the server. If a value
is absent for even one such parameter, the command fails with the error message "Missing value for parameter".

More specific options for input parameters

The following options are not described in the --help  output. To see their descriptions, use the -hh  option instead.

Examples

Note

The examples use the quickstart  profile. To learn more, see Creating a profile to connect to a test database.

Passing the value of a single parameter

From the command line using --param  option:

Name Description

--input-framing The input framing format. Defines how parameter sets are delimited in the input.
Available options:

no-framing  (default): Data from the input is taken as a single set of parameters.

newline-delimited : A newline character delimits parameter sets in the input and triggers 
processing according to the --input-batch  option.

--input-param-name The parameter name in the input stream, required when the input format contains only values (that is, 
when --input-format raw  is used).

--input-columns A string with column names that replaces the CSV/TSV header. Relevant only when passing parameters 
in CSV/TSV format. It is assumed that the file does not contain a header.

--input-skip-rows The number of CSV/TSV header rows to skip in the input data (excluding the row of column names if the 
--header  option is used). Relevant only when passing parameters in CSV/TSV format.

--input-batch The batch mode applied to parameter sets from stdin  or --input-file .
Available options:

iterative  (default): Executes the query for each parameter set (exactly one execution when 
no-framing  is specified for --input-framing ).

full : A simplified batch mode where the query runs only once and all the parameter sets received 
from the input ( stdin  or --input-file ) are wrapped into a List<...> .

adaptive : Executes the query with a JSON list of parameter sets when either the number of sets 
reaches --input-batch-max-rows  or the waiting time reaches --input-batch-max-delay .

--input-batch-max-rows The maximum size of the list for the input adaptive batching mode (default: 1000).

--input-batch-max-delay The maximum delay before submitting a received parameter set for processing in the adaptive  batch 
mode. The value is specified as a number with a time unit: s  (seconds), ms  (milliseconds), m  
(minutes), etc. Default value: 1s  (1 second).

The YDB CLI starts a timer when it receives the first set of parameters for the batch from the input and 
sends the accumulated batch for execution once the timer expires. This parameter enables efficient 
batching when the arrival rate of new parameter sets is unpredictable.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-query-execution_specific-param-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-query-execution_examples-one-request
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-query-execution_example-simple
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_declare
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_reference_ydb-cli_profile_create_quickstart


Using a file in JSON format (which is used by default):

Via stdin  passing a JSON string as a set of one parameter:

Via stdin  passing only a parameter value and setting a parameter name via the --input-param-name  option:

Passing the values of parameters of different types from multiple sources

Command output:

Passing Base64-encoded binary strings

Command output:

Passing raw binary content directly

Command output (the exact number of bytes may vary):

ydb -p quickstart sql -s 'DECLARE $a AS Int64; SELECT $a' --param '$a=10'

echo '{"a":10}' > p1.json
ydb -p quickstart sql -s 'DECLARE $a AS Int64; SELECT $a' --input-file p1.json

echo '{"a":10}' | ydb -p quickstart sql -s 'DECLARE $a AS Int64; SELECT $a'

echo '10' | ydb -p quickstart sql -s 'DECLARE $a AS Int64; SELECT $a' --input-param-name a

# Create a JSON file with fields 'a', 'b', and 'x', where 'x' will be ignored in the query
echo '{ "a":10, "b":"Some text", "x":"Ignore me" }' > p1.json

# Run the query using ydb-cli, passing in 'a' and 'b' from the input file, and 'c' as a direct parameter
ydb -p quickstart sql \
  -s 'DECLARE $a AS Int64;
      DECLARE $b AS Utf8;
      DECLARE $c AS Int64;

      SELECT $a, $b, $c' \
  --input-file p1.json \
  --param '$c=30'

┌─────────┬─────────────┬─────────┐
│ column0 │ column1     │ column2 │
├─────────┼─────────────┼─────────┤
│ 10      │ "Some text" │ 30      │
└─────────┴─────────────┴─────────┘

ydb -p quickstart sql \
  -s 'DECLARE $a AS String;
      SELECT $a' \
  --input-format json \
  --input-binary-strings base64 \
  --param '$a="SGVsbG8sIHdvcmxkCg=="'

┌──────────────────┐
| column0          |
├──────────────────┤
| "Hello, world\n" |
└──────────────────┘

curl -Ls http://ydb.tech/docs/en | ydb -p quickstart sql \
  -s 'DECLARE $a AS String;
      SELECT LEN($a)' \
  --input-format raw \
  --input-param-name a

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-query-execution_example-multisource
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-query-execution_example-base64
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-query-execution_example-raw


Passing CSV data

Command output:

Iterative streaming processing

YDB CLI supports executing a query multiple times with different sets of parameter values provided via stdin  or an input file (but not both). In this
case, the database connection is established once, and the query execution plan is cached. This approach significantly improves performance
compared to making separate CLI calls.

To use this feature, stream different sets of values for the same parameters to the command input ( stdin  or --input-file ) one after another,
specifying a rule for the YDB CLI to separate the sets.

The query is executed as many times as there are parameter value sets received from the input. Each set is combined with the parameter values
defined using the --param  options. The command completes once the input stream is closed. Each query is executed within a dedicated
transaction.

A rule for separating parameter sets (framing) complements the --input-format  option:

Warning

When using a newline character as a separator between parameter sets, ensure that newline characters are not used inside the
parameter sets. Quoting a text value does not allow newlines within the text. Multiline JSON documents are also not allowed.

Example

Streaming processing of multiple parameter sets

┌─────────┐
| column0 |
├─────────┤
| 66426   |
└─────────┘

echo '10,Some text' | ydb -p quickstart sql \
  -s 'DECLARE $a AS Int32;
      DECLARE $b AS String;
      SELECT $a, $b' \
  --input-format csv \
  --input-columns 'a,b'

┌─────────┬─────────────┐
| column0 | column1     |
├─────────┼─────────────┤
| 10      | "Some text" |
└─────────┴─────────────┘

JSON

Suppose you need to run your query three times with the following sets of values for the a  and b  parameters:

1. a  = 10, b  = 20

2. a  = 15, b  = 25

3. a  = 35, b  = 48

Let's create a file that contains lines with JSON representations of these sets:

Name Description

--input-framing Input framing format. Defines how parameter sets are delimited on the input.
Available options:

no-framing  (default): Data from the input is taken as a single set of parameters.

newline-delimited : A newline character delimits parameter sets in the input and triggers processing 
according to the --input-batch  option.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-query-execution_example-csv
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-query-execution_streaming-iterate
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-query-execution_example-streaming-iterate
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-query-execution_example-iterate


Command output:

Let's execute the query by passing the content of this file to stdin , formatting the output as JSON:

Command output:

Or just by passing the input file name to the --input-file  option:

Command output:

This output can be passed as input to the next query command if it has a column0  parameter.

echo -e '{"a":10,"b":20}\n{"a":15,"b":25}\n{"a":35,"b":48}' | tee par1.txt

{"a":10,"b":20}
{"a":15,"b":25}
{"a":35,"b":48}

cat par1.txt | \
ydb -p quickstart sql \
  -s 'DECLARE $a AS Int64;
      DECLARE $b AS Int64;
      SELECT $a + $b' \
  --input-framing newline-delimited \
  --format json-unicode

{"column0":30}
{"column0":40}
{"column0":83}

ydb -p quickstart sql \
  -s 'DECLARE $a AS Int64;
      DECLARE $b AS Int64;
      SELECT $a + $b' \
  --input-file par1.txt \
  --input-framing newline-delimited \
  --format json-unicode

{"column0":30}
{"column0":40}
{"column0":83}

CSV

Suppose you need to run your query three times with the following sets of values for the a  and b  parameters:

1. a  = 10, b  = 20

2. a  = 15, b  = 25

3. a  = 35, b  = 48

Let's create a file that contains lines with CSV representations of these sets:

Command output:

Let's execute the query by passing the content of this file to stdin , formatting the output as CSV:

echo -e 'a,b\n10,20\n15,25\n35,48' | tee par1.txt

a,b
10,20
15,25
35,48

cat par1.txt | \
ydb -p quickstart sql \
  -s 'DECLARE $a AS Int64;
      DECLARE $b AS Int64;
      SELECT $a + $b' \
  --input-format csv \



Command output:

Or just by passing the input file name to the --input-file  option:

Command output:

This output can be passed as input to another command running a different parameterized query.

  --input-framing newline-delimited \
  --format csv

30
40
83

ydb -p quickstart sql \
  -s 'DECLARE $a AS Int64;
      DECLARE $b AS Int64;
      SELECT $a + $b' \
  --input-file par1.txt \
  --input-format csv \
  --input-framing newline-delimited \
  --format csv

30
40
83

TSV

Suppose you need to run your query three times, with the following sets of values for the a  and b  parameters:

1. a  = 10, b  = 20

2. a  = 15, b  = 25

3. a  = 35, b  = 48

Let's create a file that includes lines with TSV representations of these sets:

Command output:

Let's execute the query by passing the content of this file to stdin , formatting the output as TSV:

Command output:

Or just by passing the input file name to the --input-file  option:

echo -e 'a\tb\n10\t20\n15\t25\n35\t48' | tee par1.txt

a  b
10 20
15 25
35 48

cat par1.txt | \
ydb -p quickstart sql \
  -s 'DECLARE $a AS Int64;
      DECLARE $b AS Int64;
      SELECT $a + $b' \
  --input-format tsv \
  --input-framing newline-delimited \
  --format tsv

30
40
83

ydb -p quickstart sql \
  -s 'DECLARE $a AS Int64;
      DECLARE $b AS Int64;



Streaming processing with joining parameter values from different sources

For example, you need to run your query three times with the following sets of values for the a  and b  parameters:

1. a  = 10, b  = 100

2. a  = 15, b  = 100

3. a  = 35, b  = 100

Command output:

Batched streaming processing

The YDB CLI supports automatic conversion of multiple consecutive parameter sets to a List<...> , enabling you to process them in a single
request and transaction. As a result, you can achieve a substantial performance gain compared to one-by-one query processing.

Two batch modes are supported:

Full

Adaptive

Full batch mode

The full  mode is a simplified batch mode where the query runs only once, and all the parameter sets received from the input ( stdin  or --
input-file ) are wrapped into a List<...> . If the request is too large, you will receive an error.

Use this batch mode when you want to ensure transaction atomicity by applying all the parameters within a single transaction.

Adaptive batch mode

In the adaptive  mode, the input stream is split into multiple transactions, with the batch size automatically determined for each of them.

In this mode, you can process a broad range of dynamic workloads with unpredictable or infinite amounts of data, as well as workloads with an
unpredictable or significantly varying rate of new sets appearing in the input. For example, this scenario is common when sending the output of
another command to stdin  using the |  operator.

The adaptive mode solves two key issues of dynamic stream processing:

1. Limiting the maximum batch size.

2. Limiting the maximum data processing delay.

Syntax

To use the batching capabilities, define the List<...>  or List<Struct<...>>  parameter in the query's DECLARE  clause, and use the following
options:

Command output:

This output can be passed as input to the next query command.

      SELECT $a + $b' \
  --input-file par1.txt \
  --input-format tsv \
  --input-framing newline-delimited \
  --format tsv

30
40
83

echo -e '10\n15\n35' | \
ydb -p quickstart sql \
  -s 'DECLARE $a AS Int64;
      DECLARE $b AS Int64;
      SELECT $a + $b AS sum1' \
  --param '$b=100' \
  --input-framing newline-delimited \
  --input-param-name a \
  --format json-unicode

{"sum1":110}
{"sum1":115}
{"sum1":135}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-query-execution_example-iterate-union
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-query-execution_streaming-batch
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-query-execution_batch-full
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-query-execution_batch-adaptive
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-query-execution_batch-syntax


In the adaptive batch mode, you can use the following additional parameters:

Examples: Full batch processing

Command output:

Examples: Adaptive batch processing

Limiting the maximum data processing delay

This example demonstrates adaptive batching triggered by a processing delay. In the first line of the command below, we generate 1,000 rows with
a delay of 0.2 seconds on stdout  and pipe them to stdin  for the ydb sql  query execution command. The query execution command displays
the parameter batches in each subsequent query call.

echo -e '{"a":10,"b":20}\n{"a":15,"b":25}\n{"a":35,"b":48}' | \
ydb -p quickstart sql \
  -s 'DECLARE $x AS List<Struct<a:Int64,b:Int64>>;
      SELECT ListLength($x), $x' \
  --input-framing newline-delimited \
  --input-param-name x \
  --input-batch full

┌─────────┬───────────────────────────────────────────────────┐
| column0 | column1                                           |
├─────────┼───────────────────────────────────────────────────┤
| 3       | [{"a":10,"b":20},{"a":15,"b":25},{"a":35,"b":48}] |
└─────────┴───────────────────────────────────────────────────┘

for i in $(seq 1 1000); do echo "Line$i"; sleep 0.2; done | \
ydb -p quickstart sql \
  -s 'DECLARE $x AS List<Utf8>;

Name Description

--input-batch The batch mode applied to parameter sets on stdin  or --input-file .
Available options:

iterative  (default): Executes the query for each parameter set (exactly one execution when no-framing  is 
specified for --input-framing ).

full : A simplified batch mode where the query runs only once and all the parameter sets received from the 
input ( stdin  or --input-file ) are wrapped into a List<...> .

adaptive : Executes the query with a JSON list of parameter sets whenever the number of sets reaches 
--input-batch-max-rows  or the waiting time reaches --input-batch-max-delay .

Name Description

--input-batch-max-rows The maximum number of parameter sets per batch in the adaptive  batch mode. The next batch will be 
sent with the query if the number of parameter sets reaches the specified limit. When set to 0 , there is no 
limit.

Default value: 1000 .

Parameter values are sent to each query execution without streaming, so the total size per gRPC request 
that includes the parameter values has an upper limit of about 5 MB.

--input-batch-max-delay The maximum delay before submitting a received parameter set for processing in the adaptive  batch 
mode. The value is specified as a number with a time unit: s  (seconds), ms  (milliseconds), m  
(minutes), etc. Default value: 1s  (1 second).

The YDB CLI starts a timer when it receives the first set of parameters for the batch from the input and 
sends the accumulated batch for execution once the timer expires. This parameter enables efficient 
batching when the arrival rate of new parameter sets is unpredictable.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-query-execution_example-batch-full
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-query-execution_example-batch-adaptive
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-query-execution_example-adaptive-delay


Command output (the actual values may differ):

The first batch includes all the rows accumulated at the input while the database connection was being established, which is why it is larger than the
subsequent ones.

You can terminate the command by pressing Ctrl+C or wait 200 seconds until the input generation is finished.

Limit on the number of records

This example demonstrates adaptive batching triggered by the number of parameter sets. In the first line of the command below, we generate 200
rows. The command displays parameter batches in each subsequent query call, applying the specified limit --input-batch-max-rows  of 20 (the
default limit is 1,000).

This example also demonstrates the option to join parameters from different sources and generate JSON as output.

Command output:

Deleting multiple records from a YDB table based on primary keys

Warning

Supported only for row-oriented tables. Support for column-oriented tables is currently under development.

      SELECT ListLength($x), $x' \
  --input-framing newline-delimited \
  --input-format raw \
  --input-param-name x \
  --input-batch adaptive

┌─────────┬────────────────────────────────────────────────────────────────────────────────────────────────────────────────
| column0 | column1                                                                                                        
|
├─────────┼────────────────────────────────────────────────────────────────────────────────────────────────────────────────
| 14      | 
["Line1","Line2","Line3","Line4","Line5","Line6","Line7","Line8","Line9","Line10","Line11","Line12","Line13","Line14"] |
└─────────┴────────────────────────────────────────────────────────────────────────────────────────────────────────────────
┌─────────┬─────────────────────────────────────────────────────────┐
| column0 | column1                                                 |
├─────────┼─────────────────────────────────────────────────────────┤
| 6       | ["Line15","Line16","Line17","Line18","Line19","Line20"] |
└─────────┴─────────────────────────────────────────────────────────┘
┌─────────┬─────────────────────────────────────────────────────────┐
| column0 | column1                                                 |
├─────────┼─────────────────────────────────────────────────────────┤
| 6       | ["Line21","Line22","Line23","Line24","Line25","Line26"] |
└─────────┴─────────────────────────────────────────────────────────┘
^C

for i in $(seq 1 200); do echo "Line$i"; done | \
ydb -p quickstart sql \
  -s 'DECLARE $x AS List<Utf8>;
      DECLARE $p2 AS Int64;
      SELECT ListLength($x) AS count, $p2 AS p2, $x AS items' \
  --input-framing newline-delimited \
  --input-format raw \
  --input-param-name x \
  --input-batch adaptive \
  --input-batch-max-rows 20 \
  --param '$p2=10' \
  --format json-unicode

{"count":20,"p2":10,"items":
["Line1","Line2","Line3","Line4","Line5","Line6","Line7","Line8","Line9","Line10","Line11","Line12","Line13","Line14","Line
{"count":20,"p2":10,"items":
["Line21","Line22","Line23","Line24","Line25","Line26","Line27","Line28","Line29","Line30","Line31","Line32","Line33","Line
...
{"count":20,"p2":10,"items":
["Line161","Line162","Line163","Line164","Line165","Line166","Line167","Line168","Line169","Line170","Line171","Line172","L
{"count":20,"p2":10,"items":
["Line181","Line182","Line183","Line184","Line185","Line186","Line187","Line188","Line189","Line190","Line191","Line192","L

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-query-execution_example-adaptive-limit
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-query-execution_example-adaptive-delete-pk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_concepts_datamodel_table_column-oriented-tables


If you attempt to delete a large number of rows from a substantial table using a simple DELETE FROM large_table WHERE id > 10;  statement,
you may encounter an error due to exceeding the transaction record limit. This example shows how to delete an unlimited number of records from
YDB tables without breaching this limitation.

Let's create a test table:

Add 100,000 records to it:

Delete all records with id  greater than 10:

Processing messages read from a topic

Examples of processing messages read from a topic are provided in Running an SQL query with the transmission of messages from the topic as
parameters.

See also

Parameterized queries in YDB SDK

ydb -p quickstart sql -s 'CREATE TABLE test_delete_1(id UInt64 NOT NULL, PRIMARY KEY (id))'

for i in $(seq 1 100000); do echo "$i"; done | \
ydb -p quickstart import file csv -p test_delete_1

ydb -p quickstart sql \
  -s 'SELECT t.id FROM test_delete_1 AS t WHERE t.id > 10' \
  --format json-unicode | \
ydb -p quickstart sql \
  -s 'DECLARE $lines AS List<Struct<id:UInt64>>;
      DELETE FROM test_delete_1 WHERE id IN (SELECT tl.id FROM AS_TABLE($lines) AS tl)' \
  --input-framing newline-delimited \
  --input-param-name lines \
  --input-batch adaptive \
  --input-batch-max-rows 10000

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-query-execution_example-adaptive-pipeline-from-topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-query-execution_see-also
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-pipeline_example-read-to-yql-param
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_parameterized_queries


Interactive query execution mode
After executing ydb  command without subcommands, the interactive query execution mode will be launched. The console or terminal will be
switched to interactive mode. After that, you can enter queries directly into the console or terminal, and when you enter a newline character, the
query is considered complete and it starts to execute. The query text can be either a YQL query or a special command. Also, query history is saved
between runs, command autocomplete is available, and there is a search function for query history.

General format of the command:

global options  — global parameters.

Hotkeys

Special commands

Special commands are CLI-specific commands and are not part of the YQL syntax. They are intended for performing various functions that cannot
be accomplished through a YQL query.

List of internal variables

Internal variables determine the behavior of commands and are set using the special command SET .

Examples

Executing a query in the full  statistics collection mode:

ydb [global options...]

$ ydb
ydb> SET stats = full
ydb> select * from table1 limit 1
┌────┬─────┬───────┐
│ id │ key │ value │
├────┼─────┼───────┤
│ 10 │ 0   │ ""    │
└────┴─────┴───────┘

Hotkey Description

CTRL + D Allows you to exit interactive mode.

Up arrow Scrolls through query history toward older queries.

Down arrow Scrolls through query history toward newer queries.

TAB Autocompletes the entered text to a suitable YQL command.

CTRL + R Allows searching for a query in history containing a specified substring.

Command Description

SET param = value The SET  command sets the value of the internal variable param  to value .

EXPLAIN query-text Outputs the query plan for query-text . Equivalent to the command ydb table query explain.

EXPLAIN AST query-text Outputs the query plan for query-text  along with the AST. Equivalent to the command ydb table query 
explain --ast.

Variable Description

stats The statistics collection mode for subsequent queries.
Acceptable values:

none  (default): Do not collect.

basic : Collect statistics.

full : Collect statistics and query plan.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_interactive-cli
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_interactive-cli_hotkeys
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_interactive-cli_spec-commands
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_interactive-cli_internal-vars
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_interactive-cli_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_interactive-cli_spec-commands
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_interactive-cli_spec-commands
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_interactive-cli_internal-vars
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_explain-plan_explain-plan
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_explain-plan
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_explain-plan_ast


Statistics:
query_phases {
  duration_us: 14987
  table_access {
    name: "/ru-central1/a1v7bqj3vtf10qjleyow/laebarufb61tguph3g22/table1"
    reads {
      rows: 9937
      bytes: 248426
    }
  }
  cpu_time_us: 2925
  affected_shards: 1
}
process_cpu_time_us: 3816
total_duration_us: 79530
total_cpu_time_us: 6741

Full statistics:
Query 0:
ResultSet
└──Limit (Limit: 1)
   TotalCpuTimeUs: 175
   TotalTasks: 1
   TotalInputBytes: 6
   TotalInputRows: 1
   TotalOutputBytes: 16
   TotalDurationMs: 0
   TotalOutputRows: 1
   └──<UnionAll>
      └──Limit (Limit: 1)
      └──TableFullScan (ReadColumns: ["id","key","value"], ReadRanges: ["key (-∞, +∞)"], Table: impex_table)
         Tables: ["table1"]
         TotalCpuTimeUs: 154
         TotalTasks: 1
         TotalInputBytes: 0
         TotalInputRows: 0
         TotalOutputBytes: 16
         TotalDurationMs: 0
         TotalOutputRows: 1



Running a script (with streaming support)

Warning

This command is deprecated.
The preferred way to run queries in YDB CLI is to use the ydb sql  command.

You can use the yql  subcommand to run a YQL script. The script can include queries of different types. Unlike scripting yql , the yql
subcommand establishes a streaming connection and retrieves data through it. With the in-stream query execution, no limit is imposed on the
amount of data read.

General format of the command:

global options : Global parameters.

options : Parameters of the subcommand.

View the description of the YQL script command:

Parameters of the subcommand

ydb [global options...] yql [options...]

ydb yql --help

Name Description

--timeout The time within which the operation should be completed on the server.

--stats Statistics mode.

Acceptable values:

none  (default): Do not collect.

basic : Collect statistics for basic events.

full : Collect statistics for all events.

-s , 
--script

Text of the YQL query to be executed.

-f , --file Path to the text of the YQL query to be executed.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_yql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_yql_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_sql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_yql_options


Working with parameterized queries

A brief help is provided below. For a detailed description with examples, see Running parametrized YQL queries and scripts.

--format Result format.

Possible values:

pretty  (default): Human-readable format.

json-unicode : JSON output with binary strings Unicode-encoded and each JSON string in a separate line.

json-unicode-array : JSON output with binary strings Unicode-encoded and the result output as an array of 
JSON strings with each JSON string in a separate line.

json-base64 : JSON output with binary strings Base64-encoded and each JSON string in a separate line.

json-base64-array : JSON output with binary strings Base64-encoded and the result output as an array of JSON 
strings with each JSON string in a separate line;

parquet : Output in Apache Parquet format.

csv : Output in CSV format.

tsv : Output in TSV format.

Name Description

-p, --param The value of a single parameter of a YQL query, in the format: $name=value , where $name  is the parameter 
name and value  is its value (a valid JSON value).

--param-file Name of the file in JSON format and in UTF-8 encoding that specifies values of the parameters matched against 
the YQL query parameters by key names.

--input-format Format of parameter values. Applies to all the methods of parameter transmission (among command parameters, 
in a file or using stdin ).
Acceptable values:

json-unicode  (default):JSON.

json-base64 : JSON format in which values of binary string parameters ( DECLARE $par AS String ) are 
Base64-encoded.

--stdin-format The parameter format and framing for stdin . To set both values, specify the parameter twice.
Format of parameter encoding for stdin
Acceptable values:

json-unicode : JSON.

json-base64 : JSON format in which values of binary string parameters ( DECLARE $par AS String ) are 
Base64-encoded.

raw  is binary data; the parameter name is set in --stdin-par .

If the format of parameter encoding for stdin  isn't specified, the format set in --input-format  is used.

Classification of parameter sets for stdin  (framing)
Acceptable values:

no-framing  (default): Framing isn't used

newline-delimited : The newline character is used in stdin  to end a given parameter set, separating it 
from the next one.

--stdin-par The name of the parameter whose value will be sent over stdin  is specified without a $ .

--batch The batch mode of transmitting parameter sets received via stdin .
Acceptable values:

iterative  (default): Batch mode is disabled

full : Full-scale batch mode is enabled

adaptive : Adaptive batching is enabled

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_yql_parameterized-query
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_reference_ydb-cli_parameterized-queries-cli
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/Base64
https://parquet.apache.org/docs/
https://en.wikipedia.org/wiki/CSV
https://en.wikipedia.org/wiki/Tab-separated_values
https://www.json.org/json-ru.html
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Base64


Examples

Note

The examples use the quickstart  profile. To learn more, see Creating a profile to connect to a test database.

A script to create a table, populate it with data, and select data from the table:

Command output:

Running a script from the example above saved as the script1.yql  file, with results output in JSON  format:

Command output:

You can find examples of passing parameters to scripts in the article on how to pass parameters to YQL execution commands.

ydb -p quickstart yql -s '
    CREATE TABLE series (series_id Uint64, title Utf8, series_info Utf8, release_date Date, PRIMARY KEY (series_id));
    COMMIT;
    UPSERT INTO series (series_id, title, series_info, release_date) values (1, "Title1", "Info1", Cast("2023-04-20" as 
Date));
    COMMIT;
    SELECT * from series;
  '

┌──────────────┬───────────┬─────────────┬──────────┐
| release_date | series_id | series_info | title    |
├──────────────┼───────────┼─────────────┼──────────┤
| "2023-04-20" | 1         | "Info1"     | "Title1" |
└──────────────┴───────────┴─────────────┴──────────┘

ydb -p quickstart yql -f script1.yql --format json-unicode

{"release_date":"2023-04-20","series_id":1,"series_info":"Info1","title":"Title1"}

--batch-limit A maximum number of sets of parameters per batch in the adaptive batch mode. The setting of 0  removes the 
limit.

The default value is 1000 .

--batch-max-delay The maximum delay related to processing the resulting parameter set in the adaptive batch mode. It's set as a 
number of s , ms , m .

Default value: 1s  (1 second).

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_yql_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_reference_ydb-cli_profile_create_quickstart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-queries-cli


Running a script

Warning

This command is deprecated.
The preferred way to run queries in YDB CLI is to use the ydb sql  command.

You can use the scripting yql  subcommand to run a YQL script. The script can include queries of different types. Unlike yql , the scripting 
yql  command has a limit on the number of returned rows and accessed data.

General format of the command:

global options : Global parameters.

options : Parameters of the subcommand.

View the description of the YQL script command:

Parameters of the subcommand

ydb [global options...] scripting yql [options...]

ydb scripting yql --help

Name Description

--timeout The time within which the operation should be completed on the server.

--stats Statistics mode.

Acceptable values:

none : Do not collect statistics.

basic : Collect statistics for basic events.

full : Collect statistics for all events.

Defaults to none .

-s , --script Text of the YQL query to be executed.

-f , --file Path to the text of the YQL query to be executed.

--explain Show the query execution plan.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_scripting-yql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_scripting-yql_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_sql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_scripting-yql_options


Working with parameterized queries

A brief help is provided below. For a detailed description with examples, see Running parametrized YQL queries and scripts.

--show-response-metadata Show the response metadata.

--format Result format.

Default value: pretty .

Acceptable values:

pretty  (default): Human-readable format.

json-unicode : JSON output with binary strings Unicode-encoded and each JSON string in a 
separate line.

json-unicode-array : JSON output with binary strings Unicode-encoded and the result output as 
an array of JSON strings with each JSON string in a separate line.

json-base64 : JSON output with binary strings Base64-encoded and each JSON string in a 
separate line.

json-base64-array : JSON output with binary strings Base64-encoded and the result output as an 
array of JSON strings with each JSON string in a separate line;

parquet : Output in Apache Parquet format.

Name Description

-p, --param The value of a single parameter of a YQL query, in the format: $name=value , where $name  is the parameter 
name and value  is its value (a valid JSON value).

--param-file Name of the file in JSON format and in UTF-8 encoding that specifies values of the parameters matched against 
the YQL query parameters by key names.

--input-format Format of parameter values. Applies to all the methods of parameter transmission (among command parameters, 
in a file or using stdin ).
Acceptable values:

json-unicode  (default):JSON.

json-base64 : JSON format in which values of binary string parameters ( DECLARE $par AS String ) are 
Base64-encoded.

--stdin-format The parameter format and framing for stdin . To set both values, specify the parameter twice.
Format of parameter encoding for stdin
Acceptable values:

json-unicode : JSON.

json-base64 : JSON format in which values of binary string parameters ( DECLARE $par AS String ) are 
Base64-encoded.

raw  is binary data; the parameter name is set in --stdin-par .

If the format of parameter encoding for stdin  isn't specified, the format set in --input-format  is used.

Classification of parameter sets for stdin  (framing)
Acceptable values:

no-framing  (default): Framing isn't used

newline-delimited : The newline character is used in stdin  to end a given parameter set, separating it 
from the next one.

--stdin-par The name of the parameter whose value will be sent over stdin  is specified without a $ .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_scripting-yql_parameterized-query
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_reference_ydb-cli_parameterized-queries-cli
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/Base64
https://parquet.apache.org/docs/
https://www.json.org/json-ru.html
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Base64


Examples

Note

The examples use the quickstart  profile. To learn more, see Creating a profile to connect to a test database.

A script to create a table, populate it with data, and select data from the table:

Command output:

Running a script from the example above saved as the script1.yql  file, with results output in JSON  format:

Command output:

You can find examples of passing parameters to scripts in the article on how to pass parameters to YQL execution commands.

ydb -p quickstart scripting yql -s '
    CREATE TABLE series (series_id Uint64, title Utf8, series_info Utf8, release_date Date, PRIMARY KEY (series_id));
    COMMIT;
    UPSERT INTO series (series_id, title, series_info, release_date) values (1, "Title1", "Info1", Cast("2023-04-20" as 
Date));
    COMMIT;
    SELECT * from series;
  '

┌──────────────┬───────────┬─────────────┬──────────┐
| release_date | series_id | series_info | title    |
├──────────────┼───────────┼─────────────┼──────────┤
| "2023-04-20" | 1         | "Info1"     | "Title1" |
└──────────────┴───────────┴─────────────┴──────────┘

ydb -p quickstart scripting yql -f script1.yql --format json-unicode

{"release_date":"2023-04-20","series_id":1,"series_info":"Info1","title":"Title1"}

--batch The batch mode of transmitting parameter sets received via stdin .
Acceptable values:

iterative  (default): Batch mode is disabled

full : Full-scale batch mode is enabled

adaptive : Adaptive batching is enabled

--batch-limit A maximum number of sets of parameters per batch in the adaptive batch mode. The setting of 0  removes the 
limit.

The default value is 1000 .

--batch-max-delay The maximum delay related to processing the resulting parameter set in the adaptive batch mode. It's set as a 
number of s , ms , m .

Default value: 1s  (1 second).

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_scripting-yql_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_reference_ydb-cli_profile_create_quickstart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-queries-cli


Running a query

Warning

This command is deprecated.
The preferred way to run queries in YDB CLI is to use the ydb sql  command.

The table query execute  subcommand is designed for reliable execution of YQL queries. With this sub-command, you can successfully execute
your query when certain table partitions are unavailable for a short time (for example, due to being split or merged) by using built-in retry policies.

General format of the command:

global options : Global parameters.

options : Parameters of the subcommand.

View the description of the YQL query command:

Parameters of the subcommand

ydb [global options...] table query execute [options...]

ydb table query execute --help

Name Description

--timeout The time within which the operation should be completed on the server.

-t , 
--type

Query type.

Acceptable values:

data : A YQL query that includes DML operations; it can be used both to update data in the database and fetch 
several selections limited to 1,000 rows per selection.

scan : A YQL query of the scan type. It can only be used to read data from the database. It returns a single 
selection, but without a limit on the number of records in it. The algorithm of executing a scan  query on the server is 
more sophisticated compared to a data  query. Hence, if you don't need to return more than 1,000 rows, data  
queries are more effective.

scheme : A YQL query that includes DDL operations.

The default value is data .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_table-query-execute
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_table-query-execute_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_sql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_partitioning
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_table-query-execute_options
https://en.wikipedia.org/wiki/Data_Manipulation_Language
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_scan_query
https://en.wikipedia.org/wiki/Data_Definition_Language


Working with parameterized queries

A brief help is provided below. For a detailed description with examples, see Running parametrized YQL queries and scripts.

--stats Statistics mode.

Acceptable values:

none : Do not collect statistics.

basic : Collect statistics for basic events.

full : Collect statistics for all events.

Defaults to none .

-s Enable statistics collection in the basic  mode.

--tx-mode Transaction mode (for data  queries).

Acceptable values:

serializable-rw : The result of parallel transactions is equivalent to their serial execution.

online-ro : Each of the reads in the transaction reads data that is most recent at the time of its execution.

stale-ro : Data reads in a transaction return results with a possible delay (fractions of a second).Default value: 
serializable-rw .

-q , 
--query

Text of the YQL query to be executed.

-f,  
--file

Path to the text of the YQL query to be executed.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_table-query-execute_parameterized-query
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_reference_ydb-cli_parameterized-queries-cli
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_transactions_modes


Examples

Note

The examples use the quickstart  profile. To learn more, see Creating a profile to connect to a test database.

Creating tables

ydb -p quickstart table query execute \
  --type scheme \
  -q '

--format Result format.

Possible values:

pretty  (default): Human-readable format.

json-unicode : JSON output with binary strings Unicode-encoded and each JSON string in a separate line.

json-unicode-array : JSON output with binary strings Unicode-encoded and the result output as an array of JSON 
strings with each JSON string in a separate line.

json-base64 : JSON output with binary strings Base64-encoded and each JSON string in a separate line.

json-base64-array : JSON output with binary strings Base64-encoded and the result output as an array of JSON 
strings with each JSON string in a separate line;

parquet : Output in Apache Parquet format.

csv : Output in CSV format.

tsv : Output in TSV format.

Name Description

-p, --param The value of a single parameter of a YQL query, in the format: $name=value , where $name  is the parameter 
name and value  is its value (a valid JSON value).

--param-file Name of the file in JSON format and in UTF-8 encoding that specifies values of the parameters matched against 
the YQL query parameters by key names.

--input-format Format of parameter values. Applies to all the methods of parameter transmission (among command parameters, 
in a file or using stdin ).
Acceptable values:

json-unicode  (default):JSON.

json-base64 : JSON format in which values of binary string parameters ( DECLARE $par AS String ) are 
Base64-encoded.

--stdin-format The parameter format and framing for stdin . To set both values, specify the parameter twice.
Format of parameter encoding for stdin
Acceptable values:

json-unicode : JSON.

json-base64 : JSON format in which values of binary string parameters ( DECLARE $par AS String ) are 
Base64-encoded.

raw  is binary data; the parameter name is set in --stdin-par .

If the format of parameter encoding for stdin  isn't specified, the format set in --input-format  is used.

Classification of parameter sets for stdin  (framing)
Acceptable values:

no-framing  (default): Framing isn't used

newline-delimited : The newline character is used in stdin  to end a given parameter set, separating it 
from the next one.

--stdin-par The name of the parameter whose value will be sent over stdin  is specified without a $ .

--batch The batch mode of transmitting parameter sets received via stdin .
Acceptable values:

iterative  (default): Batch mode is disabled

full : Full-scale batch mode is enabled

adaptive : Adaptive batching is enabled

--batch-limit A maximum number of sets of parameters per batch in the adaptive batch mode. The setting of 0  removes the 
limit.

The default value is 1000 .

--batch-max-delay The maximum delay related to processing the resulting parameter set in the adaptive batch mode. It's set as a 
number of s , ms , m .

Default value: 1s  (1 second).

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_table-query-execute_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_table-query-execute_examples-create-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_reference_ydb-cli_profile_create_quickstart
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/Base64
https://parquet.apache.org/docs/
https://en.wikipedia.org/wiki/CSV
https://en.wikipedia.org/wiki/Tab-separated_values
https://www.json.org/json-ru.html
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Base64


Populating the table with data

Simple data selection

Result:

Unlimited selection for automated processing

Selecting data by a query whose text is saved to a file, without a limit on the number of rows in the selection and data output in the format: Newline-
delimited JSON stream.

Let's write the query text to the request1.yql  file.

Now, run the query:

Result:

  CREATE TABLE series (series_id Uint64 NOT NULL, title Utf8, series_info Utf8, release_date Date, PRIMARY KEY 
(series_id));
  CREATE TABLE seasons (series_id Uint64, season_id Uint64, title Utf8, first_aired Date, last_aired Date, PRIMARY KEY 
(series_id, season_id));
  CREATE TABLE episodes (series_id Uint64, season_id Uint64, episode_id Uint64, title Utf8, air_date Date, PRIMARY KEY 
(series_id, season_id, episode_id));
  '

ydb -p quickstart table query execute \
  -q '
UPSERT INTO series (series_id, title, release_date, series_info) VALUES
  (1, "IT Crowd", Date("2006-02-03"), "The IT Crowd is a British sitcom produced by Channel 4, written by Graham 
Linehan, produced by Ash Atalla and starring Chris O'"'"'Dowd, Richard Ayoade, Katherine Parkinson, and Matt Berry."),
  (2, "Silicon Valley", Date("2014-04-06"), "Silicon Valley is an American comedy television series created by Mike 
Judge, John Altschuler and Dave Krinsky. The series focuses on five young men who founded a startup company in Silicon 
Valley.");

UPSERT INTO seasons (series_id, season_id, title, first_aired, last_aired) VALUES
    (1, 1, "Season 1", Date("2006-02-03"), Date("2006-03-03")),
    (1, 2, "Season 2", Date("2007-08-24"), Date("2007-09-28")),
    (2, 1, "Season 1", Date("2014-04-06"), Date("2014-06-01")),
    (2, 2, "Season 2", Date("2015-04-12"), Date("2015-06-14"));

UPSERT INTO episodes (series_id, season_id, episode_id, title, air_date) VALUES
    (1, 1, 1, "Yesterday'"'"'s Jam", Date("2006-02-03")),
    (1, 1, 2, "Calamity Jen", Date("2006-02-03")),
    (2, 1, 1, "Minimum Viable Product", Date("2014-04-06")),
    (2, 1, 2, "The Cap Table", Date("2014-04-13"));
'

ydb -p quickstart table query execute -q '
  SELECT season_id, episode_id, title
  FROM episodes
  WHERE series_id = 1
'

┌───────────┬────────────┬───────────────────┐
| season_id | episode_id | title             |
├───────────┼────────────┼───────────────────┤
| 1         | 1          | "Yesterday's Jam" |
├───────────┼────────────┼───────────────────┤
| 1         | 2          | "Calamity Jen"    |
└───────────┴────────────┴───────────────────┘

echo 'SELECT season_id, episode_id, title FROM episodes' > request1.yql

ydb -p quickstart table query execute -f request1.yql --type scan --format json-unicode

{"season_id":1,"episode_id":1,"title":"Yesterday's Jam"}
{"season_id":1,"episode_id":2,"title":"Calamity Jen"}
{"season_id":1,"episode_id":1,"title":"Minimum Viable Product"}
{"season_id":1,"episode_id":2,"title":"The Cap Table"}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_table-query-execute_examples-upsert
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_table-query-execute_examples-simple-query
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_table-query-execute_examples-query-stream
https://en.wikipedia.org/wiki/JSON_streaming


Passing parameters

You can find examples of executing parameterized queries, including streamed processing, in the Passing parameters to YQL execution commands
article.

Warning

This page is outdated. Please refer to Running parameterized queries for up-to-date information.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_table-query-execute_examples-params
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-queries-cli
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-query-execution


Running parametrized YQL queries and scripts

Overview

YDB CLI can execute parameterized YQL queries. To use parameters you need to declare them using the YQL DECLARE  command in your YQL
query text.

To run parameterized YQL queries you can use the following YDB CLI commands:

ydb yql.

ydb scripting yql.

ydb table query execute.

These commands support the same query parametrization options. Parameter values can be set on the command line, uploaded from JSON files,
and read from stdin  in binary or JSON format. On stdin  you can stream multiple parameter values triggering multiple YQL query executions
with batching options.

Warning

Among the above commands, only the table query execute  applies retry policies. Such policies ensure reliable query execution
and continuity when certain data ranges are unavailable for a short time because of partition changes or other regular processes in a
distributed database.

Executing a single YQL query

To provide parameters for a YQL query execution, you can use command line, JSON files, and stdin , using the following YDB CLI options:

Name Description

-p, --param An expression in the format $name=value , where $name  is the name of the YQL query parameter and value  is its 
value (a correct JSON value). The option can be specified repeatedly.

All the specified parameters must be declared in the YQL query by the DECLARE operator; otherwise, you will get an 
error "Query does not contain parameter". If you specify the same parameter several times, you will get an error 
"Parameter value found in more than one source".

Depending on your operating system, you might need to escape the $  character or enclose your expression in 
single quotes ( ' ).

--param-file Name of a file in JSON format in UTF-8 encoding that contains parameter values matched against the YQL query 
parameters by key names. The option can be specified repeatedly.

If values of the same parameter are found in multiple files or set by the --param  command line option, you'll get an 
error "Parameter value found in more than one source".

Names of keys in the JSON file are expected without the leading $  sign. Keys that are present in the file but aren't 
declared in the YQL query will be ignored without an error message.

--input-format Format of parameter values, applied to all sources of parameters (command line, file, or stdin ).
Available options:

json-unicode  (default):JSON.

json-base64 : JSON with values of binary string parameters ( DECLARE $par AS String ) are Base64-
encoded. This feature enables you to process binary data, being decoded from Base64 by the YDB CLI.

--stdin-format Format of parameter values for stdin .
The YDB CLI automatically detects that a file or an output of another shell command has been redirected to the 
standard input device stdin . In this case, the CLI interprets the incoming data based on the following available 
options:

json-unicode : JSON.

json-base64 : JSON with values of binary string parameters ( DECLARE $par AS String ) are Base64-
encoded.

raw : Binary data.

If format of parameter values for stdin  isn't specified, the --input-format  is used.

--stdin-par Name of a parameter whose value is provided on stdin , without a $  sign. This name is required when you use 
the raw  format in --stdin-format .

When used with JSON formats, stdin  is interpreted not as a JSON document but as a JSON value passed to the 
parameter with the specified name.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-queries-cli
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-queries-cli_overview
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-queries-cli_one-request
https://en.wikipedia.org/wiki/Prepared_statement
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_declare
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_yql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_scripting-yql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_table-query-execute
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON
https://www.json.org/json-ru.html
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_declare
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Base64


The query will be executed on the server once, provided that values are specified for all the parameters in the DECLARE  clause. If a value is absent
for at least one parameter, the command fails with the "Missing value for parameter" message.

Examples

In our examples, we use the table query execute  command, but you can also run them using the yql  and scripting yql  commands.

Note

The examples use the quickstart  profile. To learn more, see Creating a profile to connect to a test database.

Passing the value of a single parameter

From the command line:

Using a file:

Via stdin :

Passing the values of parameters of different types from multiple sources

Command output:

Passing Base64-encoded binary strings

ydb -p quickstart table query execute -q 'declare $a as Int64;select $a' --param '$a=10'

echo '{"a":10}' > p1.json
ydb -p quickstart table query execute -q 'declare $a as Int64;select $a' --param-file p1.json

echo '{"a":10}' | ydb -p quickstart table query execute -q 'declare $a as Int64;select $a'

echo '10' | ydb -p quickstart table query execute -q 'declare $a as Int64;select $a' --stdin-par a

echo '{ "a":10, "b":"Some text", "x":"Ignore me" }' > p1.json
echo '{ "c":"2012-04-23T18:25:43.511Z" }' | ydb -p quickstart table query execute \
  -q 'declare $a as Int64;
      declare $b as Utf8;
      declare $c as DateTime;
      declare $d as Int64;

      select $a, $b, $c, $d' \
  --param-file p1.json \
  --param '$d=30'

┌─────────┬─────────────┬────────────────────────┬─────────┐
| column0 | column1     | column2                | column3 |
├─────────┼─────────────┼────────────────────────┼─────────┤
| 10      | "Some text" | "2012-04-23T18:25:43Z" | 30      |
└─────────┴─────────────┴────────────────────────┴─────────┘

ydb -p quickstart table query execute \
  -q 'DECLARE $a AS String;
      SELECT $a' \

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-queries-cli_examples-one-request
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-queries-cli_example-simple
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-queries-cli_example-multisource
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-queries-cli_example-base64
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_declare
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_reference_ydb-cli_profile_create_quickstart


Command output:

Passing binary content directly

Command output (exact number of bytes may vary):

Iterative streaming processing

YDB CLI supports execution of a YQL query multiple times with different sets of parameter values provided on stdin . In this case, the database
connection is established once and the query execution plan is cached. This substantially increases the performance of such an approach
compared to separate CLI calls.

To use this feature, you need to stream different sets of the same parameters to stdin  one after another, specifying a rule for the YDB CLI on how
to separate the sets from each other.

The YQL query runs as many times as many parameter value sets received on stdin . Each set received on stdin  is joined with the parameter
values defined on other sources ( --param , --param-file ). The command will complete once the stdin  stream is closed. Each query is
executed within a dedicated transaction.

A rule for separating parameter sets from one another (framing) complements the stdin  format specified by the --stdin-format  option:

Warning

When using a newline character as a separator between the parameter sets, make sure that it isn't used inside the parameter sets.
Putting some text value in quotes does not enable newlines within the text. Multiline JSON documents are not allowed.

Example

Streaming processing of multiple parameter sets

Suppose you need to run your query thrice, with the following sets of values for the a  and b  parameters:

1. a  = 10, b  = 20

2. a  = 15, b  = 25

3. a  = 35, b  = 48

  --input-format json-base64 \
  --param '$a="SGVsbG8sIHdvcmxkCg=="'

┌──────────────────┐
| column0          |
├──────────────────┤
| "Hello, world\n" |
└──────────────────┘

curl -Ls http://ydb.tech/docs | ydb -p quickstart table query execute \
  -q 'DECLARE $a AS String;
      SELECT LEN($a)' \
  --stdin-format raw \
  --stdin-par a

┌─────────┐
| column0 |
├─────────┤
| 66426   |
└─────────┘

Name Description

--stdin-format Defines the stdin  framing. 
Available options:

no-framing  (default): No framing, stdin  expects a single set of parameters, and the YQL query is executed 
only once when the stdin  stream is closed.

newline-delimited : A newline character marks the end of one set of parameter values on stdin , separating 
it from the next one. The YQL query is executed each time a newline character is read from stdin .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-queries-cli_example-raw
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-queries-cli_streaming-iterate
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-queries-cli_example-streaming-iterate
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-queries-cli_example-iterate


Let's create a file that includes lines with JSON representations of these sets:

Command output:

Let's execute the query by passing the content of this file to stdin , formatting the output as JSON:

Command output:

This output can be passed as input to the next YQL query command.

Streaming processing with joining parameter values from different sources

For example, you need to run your query thrice, with the following sets of values for the a  and b  parameters:

1. a  = 10, b  = 100

2. a  = 15, b  = 100

3. a  = 35, b  = 100

Command output:

Batched streaming processing

The YDB CLI supports automatic conversion of multiple consecutive parameter sets to a List<> , enabling you to process them in a single request
and transaction. As a result, you can have a substantial performance gain compared to one-by-one query processing.

Two batch modes are supported:

Full

Adaptive

Full batch mode

The full  mode is a simplified batch mode where the query runs only once, and all the parameter sets received through stdin  are wrapped into
a List<> . If the request is too large, you will get an error.

Use this batch mode when you want to ensure transaction atomicity by applying all the parameters within a single transaction.

echo -e '{"a":10,"b":20}\n{"a":15,"b":25}\n{"a":35,"b":48}' > par1.txt
cat par1.txt

{"a":10,"b":20}
{"a":15,"b":25}
{"a":35,"b":48}

cat par1.txt | \
ydb -p quickstart table query execute \
  -q 'DECLARE $a AS Int64;
      DECLARE $b AS Int64;
      SELECT $a + $b' \
  --stdin-format newline-delimited \
  --format json-unicode

{"column0":30}
{"column0":40}
{"column0":83}

echo -e '10\n15\n35' | \
ydb -p quickstart table query execute \
  -q 'DECLARE $a AS Int64;
      DECLARE $b AS Int64;
      SELECT $a + $b AS sum1' \
  --param '$b=100' \
  --stdin-format newline-delimited \
  --stdin-par a \
  --format json-unicode

{"sum1":110}
{"sum1":115}
{"sum1":135}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-queries-cli_example-iterate-union
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-queries-cli_streaming-batch
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-queries-cli_batch-full


Adaptive batch mode

In the adaptive  mode, the input stream is split into multiple transactions, with the batch size automatically determined for each of them.

In this mode, you can process a broad range of dynamic workloads with unpredictable or infinite amounts of data, as well as with unpredictable or
significantly varying rate of new sets appearance at the input. For example, such a profile is typical when sending the output of another command to
stdin  using the |  operator.

The adaptive mode solves two basic issues of dynamic stream processing:

1. Limiting the maximum batch size.

2. Limiting the maximum data processing delay.

Syntax

To use the batching capbilities, define the List<...>  or List<Struct<...>>  parameter in the YQL query's DECLARE clause, and use the
following options:

In the adaptive batch mode, you can use the following additional parameters:

Examples: Full batch processing

Command output:

echo -e '{"a":10,"b":20}\n{"a":15,"b":25}\n{"a":35,"b":48}' | \
ydb -p quickstart table query execute \
  -q 'DECLARE $x AS List<Struct<a:Int64,b:Int64>>;
      SELECT ListLength($x), $x' \
  --stdin-format newline-delimited \
  --stdin-par x \
  --batch full

Name Description

--batch The batch mode applied to parameter sets on stdin .
Available options:

iterative  (default): Batching is disabled.

full : Full batch mode. The YQL query runs only once when stdin  is closed, with all the received sets of parameters 
wrapped into List<> , the parameter name is set by the --stdin-par  option.

adaptive : Adaptive batch mode. The YQL query runs every time when limits are exceeded either on the number of 
parameter sets per query ( --batch-limit ) or on the batch processing delay ( --batch-max-delay ). All the sets of 
parameters received by that moment are wrapped into a List<> , the parameter name is set by the --stdin-par  
option.

Name Description

--batch-limit The maximum number of sets of parameters per batch in the adaptive batch mode. The next batch will be sent to 
the YQL query if the number of parameter sets in it reaches the specified limit. When it's 0 , there's no limit.

Default value: 1000 .

Parameter values are sent to each YQL execution without streaming, so the total size per GRPC request that 
includes the parameter values has the upper limit of about 5 MB.

--batch-max-delay The maximum delay to submit a received parameter set for processing in the adaptive batch mode. It's set as a 
number with a time unit - s , ms , m .

Default value: 1s  (1 second).

The YDB CLI starts a timer when it receives a first set of parameters for the batch on stdin , and sends the 
whole accumulated batch for execution once the timer expires. With this parameter, you can batch efficiently 
when new parameter sets arrival rate on stdin  is unpredictable.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-queries-cli_batch-adaptive
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-queries-cli_batch-syntax
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-queries-cli_example-batch-full
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-queries-cli_streaming-iterate


Examples: Adaptive batch processing

Limiting the maximum data processing delay

This example demonstrates the adaptive batching triggered by a processing delay. In the first line of the command below, we generate 1,000 rows
at a delay of 0.2 seconds on stdout  and pipe them to stdin  to the YQL query execution command. The YQL query execution command shows
the parameter batches in each subsequent YQL query call.

Command output (actual values may differ):

The first batch includes all the rows accumulated at the input while the database connection has had been establishing, that's why it's larger than
the next ones.

You can terminate the command by Ctrl+C or wait 200 seconds until the input generation is finished.

Limit on the number of records

This example demonstrates the adaptive batching triggered by a number of parameter sets. In the first line of the command below, we generate 200
rows. The command will show parameter batches in each subsequent YQL query call, applying the given limit --batch-limit  of 20 (the default
limit is 1,000).

In this example, we also demonstrate the option to join parameters from different sources and generate JSON at the output.

Command output:

┌─────────┬───────────────────────────────────────────────────┐
| column0 | column1                                           |
├─────────┼───────────────────────────────────────────────────┤
| 3       | [{"a":10,"b":20},{"a":15,"b":25},{"a":35,"b":48}] |
└─────────┴───────────────────────────────────────────────────┘

for i in $(seq 1 1000); do echo "Line$i"; sleep 0.2; done | \
ydb -p quickstart table query execute \
  -q 'DECLARE $x AS List<Utf8>;
      SELECT ListLength($x), $x' \
  --stdin-format newline-delimited \
  --stdin-format raw \
  --stdin-par x \
  --batch adaptive

┌─────────┬────────────────────────────────────────────────────────────────────────────────────────────────────────────────
| column0 | column1                                                                                                        
|
├─────────┼────────────────────────────────────────────────────────────────────────────────────────────────────────────────
| 14      | 
["Line1","Line2","Line3","Line4","Line5","Line6","Line7","Line8","Line9","Line10","Line11","Line12","Line13","Line14"] |
└─────────┴────────────────────────────────────────────────────────────────────────────────────────────────────────────────
┌─────────┬─────────────────────────────────────────────────────────┐
| column0 | column1                                                 |
├─────────┼─────────────────────────────────────────────────────────┤
| 6       | ["Line15","Line16","Line17","Line18","Line19","Line20"] |
└─────────┴─────────────────────────────────────────────────────────┘
┌─────────┬─────────────────────────────────────────────────────────┐
| column0 | column1                                                 |
├─────────┼─────────────────────────────────────────────────────────┤
| 6       | ["Line21","Line22","Line23","Line24","Line25","Line26"] |
└─────────┴─────────────────────────────────────────────────────────┘
^C

for i in $(seq 1 200); do echo "Line$i"; done | \
ydb -p quickstart table query execute \
  -q 'DECLARE $x AS List<Utf8>;
      DECLARE $p2 AS Int64;
      SELECT ListLength($x) AS count, $p2 AS p2, $x AS items' \
  --stdin-format newline-delimited \
  --stdin-format raw \
  --stdin-par x \
  --batch adaptive \
  --batch-limit 20 \
  --param '$p2=10' \
  --format json-unicode

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-queries-cli_example-batch-adaptive
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-queries-cli_example-adaptive-delay
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-queries-cli_example-adaptive-limit


Deleting multiple records from a YDB table based on primary keys

This example shows how you can delete an unlimited number of records from YDB tables without risking exceeding the limit on the number of
records per transaction.

Let's create a test table:

Add 100,000 records to it:

Delete all records with ID > 10:

Processing of messages read from a topic

Examples of processing messages read from a topic are given in Running an SQL query with the transmission of messages from the topic as
parameters.

See also

Parameterized YQL queries in YDB SDK

{"count":20,"p2":10,"items":
["Line1","Line2","Line3","Line4","Line5","Line6","Line7","Line8","Line9","Line10","Line11","Line12","Line13","Line14","Line
{"count":20,"p2":10,"items":
["Line21","Line22","Line23","Line24","Line25","Line26","Line27","Line28","Line29","Line30","Line31","Line32","Line33","Line
...
{"count":20,"p2":10,"items":
["Line161","Line162","Line163","Line164","Line165","Line166","Line167","Line168","Line169","Line170","Line171","Line172","L
{"count":20,"p2":10,"items":
["Line181","Line182","Line183","Line184","Line185","Line186","Line187","Line188","Line189","Line190","Line191","Line192","L

ydb -p quickstart yql -s 'create table test_delete_1( id UInt64 not null, primary key (id))'

for i in $(seq 1 100000); do echo "$i"; done | \
ydb -p quickstart import file csv -p test_delete_1

ydb -p quickstart table query execute -t scan \
  -q 'SELECT t.id FROM test_delete_1 AS t WHERE t.id > 10' \
  --format json-unicode | \
ydb -p quickstart table query execute \
  -q 'DECLARE $lines AS List<Struct<id:UInt64>>;
      DELETE FROM test_delete_1 WHERE id IN (SELECT tl.id FROM AS_TABLE($lines) AS tl)' \
  --stdin-format newline-delimited \
  --stdin-par lines \
  --batch adaptive \
  --batch-limit 10000

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-queries-cli_example-adaptive-delete-pk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-queries-cli_example-adaptive-pipeline-from-topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-queries-cli_see-also
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-pipeline_example-read-to-yql-param
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_parameterized_queries


Getting a list of long-running operations
Use the ydb operation list  subcommand to get a list of long-running operations of the specified type.

General format of the command:

global options : Global parameters.

options : Parameters of the subcommand.

kind : The type of operation. Possible values:

buildindex : The build index operations.

export/s3 : The export operations.

import/s3 : The import operations.

View a description of the command to get a list of long-running operations:

Parameters of the subcommand

Examples

Note

The examples use the quickstart  profile. To learn more, see Creating a profile to connect to a test database.

Get a list of long-running build index operations for the series  table:

Result:

ydb [global options...] operation list [options...] <kind>

ydb operation list --help

ydb -p quickstart operation list \
  buildindex

┌───────────────────────────────────────┬───────┬─────────┬───────┬──────────┬─────────────────────┬─────────────┐
| id                                    | ready | status  | state | progress | table               | index       |
├───────────────────────────────────────┼───────┼─────────┼───────┼──────────┼─────────────────────┼─────────────┤
| ydb://buildindex/7?id=281489389055514 | true  | SUCCESS | Done  | 100.00%  | /my-database/series | idx_release |
└───────────────────────────────────────┴───────┴─────────┴───────┴──────────┴─────────────────────┴─────────────┘

Next page token: 0

Name Description

-s , 
--page-size

Number of operations on one page. If the list of operations contains more strings than specified in the --page-size  
parameter, the result will be split into several pages. To get the next page, specify the --page-token  parameter.

-t , 
--page-token

Page token.

--format Input format.
Default value: pretty .
Acceptable values:

pretty : A human-readable format.

proto-json-base64 : Protobuf result in JSON format, binary strings are encoded in Base64.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_operation-list
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_operation-list_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_operation-list_examples-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_operation-list_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_reference_ydb-cli_profile_create_quickstart
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Base64


Obtaining the status of long-running operations
Use the ydb operation get  subcommand to obtain the status of the specified long-running operation.

General format of the command:

global options : Global parameters.

options : Parameters of the subcommand.

id : The ID of the long-running operation. The ID contains characters that can be interpreted by your command shell. If necessary, use
shielding, for example, '<id>'  for bash.

View a description of the command to obtain the status of a long-running operation:

Parameters of the subcommand

Examples

Note

The examples use the quickstart  profile. To learn more, see Creating a profile to connect to a test database.

Obtain the status of the long-running operation with the ydb://buildindex/7?id=281489389055514  ID:

Result:

ydb [global options...] operation get [options...] <id>

ydb operation get --help

ydb -p quickstart operation get \
  'ydb://buildindex/7?id=281489389055514'

┌───────────────────────────────────────┬───────┬─────────┬───────┬──────────┬─────────────────────┬─────────────┐
| id                                    | ready | status  | state | progress | table               | index       |
├───────────────────────────────────────┼───────┼─────────┼───────┼──────────┼─────────────────────┼─────────────┤
| ydb://buildindex/7?id=281489389055514 | true  | SUCCESS | Done  | 100.00%  | /my-database/series | idx_release |
└───────────────────────────────────────┴───────┴─────────┴───────┴──────────┴─────────────────────┴─────────────┘

Name Description

--format Input format.
Default value: pretty .
Acceptable values:

pretty : A human-readable format.

proto-json-base64 : Protobuf result in JSON format, binary strings are encoded in Base64.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_operation-get
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_operation-get_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_operation-get_examples-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_operation-get_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_reference_ydb-cli_profile_create_quickstart
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Base64


Canceling long-running operations
Use the ydb operation cancel  subcommand to cancel the specified long-running operation. Only an incomplete operation can be canceled.

General format of the command:

global options : Global parameters.

id : The ID of the long-running operation. The ID contains characters that can be interpreted by your command shell. If necessary, use
shielding, for example, '<id>'  for bash.

View a description of the command to obtain the status of a long-running operation:

Examples

Note

The examples use the quickstart  profile. To learn more, see Creating a profile to connect to a test database.

ydb [global options...] operation cancel <id>

ydb operation cancel --help

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_operation-cancel
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_operation-cancel_examples-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_reference_ydb-cli_profile_create_quickstart


Deleting long running operations from the list
Use the ydb operation forget  subcommand to delete information about the specified long running operation from the list. The operation must
be complete.

General format of the command:

global options : Global parameters.

id : The ID of the long running operation. The ID contains characters that can be interpreted by your command shell. If necessary, use
shielding, for example, '<id>'  for bash.

View a description of the command to delete information about the specified long running operation:

Examples

Note

The examples use the quickstart  profile. To learn more, see Creating a profile to connect to a test database.

Delete the long running operation with the ydb://buildindex/7?id=281489389055514  ID from the list:

ydb [global options...] operation forget <id>

ydb operation forget --help

ydb -p db1 operation forget \
  'ydb://buildindex/7?id=281489389055514'

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_operation-forget
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_operation-forget_examples-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_reference_ydb-cli_profile_create_quickstart


Managing profiles
A profile is a named set of DB connection parameters stored in a configuration file in the local file system. With profiles, you can reuse data about
DB location and authentication parameters, making a CLI call much shorter:

Calling the scheme ls  command without a profile:

Calling the same scheme ls  command using a profile:

Profile management commands

Creating a profile

Using a profile

Getting a list of profiles and profile parameters

Deleting a profile

Activating a profile and using the activated profile

Where profiles are stored

Profiles are stored locally in a file named ~/ydb/config/config.yaml .

ydb \
-e grpsc://some.host.in.some.domain:2136 \
-d /some_long_identifier1/some_long_identifier2/database_name \
--yc-token-file ~/secrets/token_database1 \
scheme ls

ydb -p quickstart scheme ls

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_index_commands
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_index_location
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_create
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_use
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_list-and-get
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_delete
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_activate


Creating and updating profiles
You can set connection parameter values for the profile being created or updated through the command line or request them in interactive mode in
the console.

Command line

To create or update a profile, the command line uses the profile create , profile update , and profile replace  commands.

They only use the values entered directly on the command line without accessing environment variables or the activated profile.

Profile create

Profile create  creates a new profile with the specified parameter values:

Where:

<profile_name>  is the required profile name.

<connection options>  are connection parameters to be written to the profile. You need to specify at least one connection parameter;
otherwise the command will run in interactive mode.

If a profile with the specified name exists, the command will return an error.

Profile replace

Profile replace  creates or replaces a profile with the specified parameter values:

Where:

<profile_name>  is the required profile name.

<connection options>  are optional connection parameters to be written to the profile.

If a profile with the specified name already exists, it will be overwritten with a new one with the passed-in parameters. If you specify no connection
parameters, the profile will be empty once the command completes.

Profile update

Profile update  modifies the properties of an existing profile:

Where:

<profile_name>  is the required profile name.

<connection options>  are optional connection parameters to be written to the profile.

<reset options>  are optional settings for deleting parameters from an existing profile. Possible values:

--no-endpoint : Delete an endpoint from the profile

--no-database : Delete the database path from the profile

--no-auth : Delete authentication information from the profile

--no-iam-endpoint : Delete the IAM server URL

The profile will update with the parameters entered on the command line. Any properties not listed on the command line will remain unchanged.

Examples

Creating a profile to connect to a test database

To connect to a DB in a single-node YDB cluster, you can use the quickstart  profile:

path_database : Database path. Specify one of these values:

/Root/test : If you used an executable to deploy your cluster.

/local : If you deployed your cluster from a Docker image.

ydb config profile create <profile_name> <connection_options>

ydb config profile replace <profile_name> [connection_options]

ydb config profile update <profile_name> [connection_options] [reset-options]

ydb config profile create quickstart --endpoint grpc://localhost:2136 --database <path_database>

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_create
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_create_cmdline
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_create_create
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_create_replace
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_create_update
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_create_create-cmdline-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_create_quickstart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_create_cmdline
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_create_interactive
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_connect_command-line-pars
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_create_interactive
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_connect_command-line-pars
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_connect_command-line-pars


Creating a profile from previous connection settings

Any command with explicit connection settings performing a YDB database transaction can be converted to a profile create command by moving
connection properties from global options to options specific to the config profile create  command.

For instance, if you successfully ran the scheme Is  command with the following properties:

You can create a profile to connect to the accessed database using the following command:

You can now use much shorter syntax to re-write the original command:

Profile to connect to a local database

Creating/replacing a local  profile to connect to a local YDB database deployed using quick start:

Defining the login and password authentication method in the local  profile:

Interactive mode

You can use the commands below to create and update profiles in interactive mode:

or

Where:

[profile_name]  is an optional name of the profile to create or update.

[connection_options]  are optional connection settings to write to the profile.

The init  command always runs in interactive mode while config profile create  launches in interactive mode unless you specify a profile
name or none of the connection settings on the command line.

The interactive scenario starts differently for the init  and the profile create  commands:

ydb \
  -e grpcs://example.com:2135 -d /Root/somedatabase --sa-key-file ~/sa_key.json \
  scheme ls

ydb \
  config profile create db1 \
  -e grpcs://example.com:2135 -d /Root/somedatabase --sa-key-file ~/sa_key.json

ydb -p db1 scheme ls

ydb config profile replace local --endpoint grpc://localhost:2136 --database /Root/local

ydb config profile update local --user user1 --password-file ~/pwd.txt

ydb init

ydb config profile create [profile_name] [connection_options]

Init

1. Prints a list of existing profiles (if any) and prompts you to make a choice: Create a new or update the configuration of an existing profile:

2. If no profiles exist or you select option 1  in the previous step, the name of a profile to create is requested:

3. If you enter the name of an existing profile at this point, the YDB CLI proceeds to updating its parameters as if an option with the name of this
profile was selected at once.

Please choose profile to configure:
[1] Create a new profile
[2] test
[3] local

Please enter name for a new profile:

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_create_cmdline-example-from-explicit
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_create_cmdline-example-local
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_create_interactive
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#quickstart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_connect_command-line-pars


Next, you'll be prompted to sequentially perform the following actions with each connection parameter that can be saved in the profile:

Don't save

Set a new value or Use

Use current value (this option is available when updating an existing profile)

Example

Creating a new mydb1  profile:

1. Run this command:

2. Enter the endpoint or don't save this parameter for the profile:

3. Enter the database name or don't save this parameter for the profile:

4. Select the authentication mode or don't save this parameter for the profile:

All the available authentication methods are described in Authentication. The set of methods and text of the hints may differ from those given in
this example.

If the method you choose involves specifying an additional parameter, you'll be prompted to enter it. For example, if you select 4  (Use service
account key file):

5. In the last step, you'll be prompted to activate the created profile to be used by default. Choose 'n' (No) until you read the article about
Activating a profile and using the activated profile:

Profile Create

If no profile name is specified on the command line, it is requested:

Please enter configuration profile name to create or re-configure:

ydb config profile create mydb1

Pick desired action to configure endpoint:
 [1] Set a new endpoint value
 [2] Don't save endpoint for profile "mydb1"
Please enter your numeric choice:

Pick desired action to configure database:
 [1] Set a new database value
 [2] Don't save database for profile "mydb1"
Please enter your numeric choice:

Pick desired action to configure authentication method:
  [1] Use static credentials (user & password)
  [2] Use IAM token (iam-token) yandex.cloud/docs/iam/concepts/authorization/iam-token
  [3] Use OAuth token of a Yandex Passport user (yc-token). Doesn't work with federative accounts. 
yandex.cloud/docs/iam/concepts/authorization/oauth-token
  [4] Use metadata service on a virtual machine (use-metadata-credentials) yandex.cloud/docs/compute/operations/vm-
connect/auth-inside-vm
  [5] Use service account key file (sa-key-file) yandex.cloud/docs/iam/operations/iam-token/create-for-sa
  [6] Set new access token (ydb-token)
  [7] Don't save authentication data for profile "mydb1"
Please enter your numeric choice:

Please enter Path to service account key file (sa-key-file):

Activate profile "mydb1" to use by default? (current active profile is not set) y/n: n

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_create_interactive-example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_connect_endpoint
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_connect_database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#security_authentication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_activate


Using a profile

Connection based on a selected profile

A profile can be applied when running a YDB CLI command with the --profile  or the -p  option:

For example:

In this case, all DB connection parameters are taken from the profile. At the same time, if the authentication parameters are not specified in the
profile, the YDB CLI will try to define them based on environment variables, as described in Connecting to and authenticating with a database —
Environment variable.

Connection based on a selected profile and specified command line parameters

The --profile  ( -p ) option doesn't need to be the only connection setting specified on the command line. For example:

In this case, the connection parameters specified on the command line have priority over those stored in the profile. This format lets you reuse
profiles to connect to different databases or under different accounts. In addition, specifying the authentication parameter on the command line
(such as --user alex  in the example above) disables environment variable checks regardless of their presence in the profile.

Connection based on an activated profile

If the --profile  ( -p ) option is not specified on the command line, the YDB CLI will attempt to take all the connection parameters that it couldn't
otherwise determine (from the command-line options or environment variables, as described in Connecting to and authenticating with a database)
from the currently activated profile.

Implicit use of the activated profile may cause errors, so we recommend that you read the Activated profile article before using this mode.

ydb -p <profile_name> <command and command options>

ydb -p mydb1 scheme ls -l

ydb -p mydb1 -d /local2 scheme ls -l

ydb -p mydb1 --user alex scheme ls -l

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_use
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_use_explicit
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_use_explicit-and-pars
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_use_implicit
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_connect_env
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_connect
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_activate


Getting profile information

Getting a list of profiles

Getting a list of profiles:

If there is a currently activated profile, it will be marked as (active)  in the output list, for example:

Getting detailed profile information

Getting parameters saved in the specified profile:

For example:

Getting profiles with content

Full information on all profiles and parameters stored in them:

The output of this command combines the output of the command to get a list of profiles (with the active profile marked) and the parameters of each
profile in the lines following its name.

ydb config profile list

prod
test (active)
local

ydb config profile get <profile_name>

$ ydb config profile get local1
  endpoint: grpcs://ydb.serverless.yandexcloud.net:2135
  database: /rul1/b1g8skp/etn02099
  sa-key-file: /Users/username/secrets/sa_key_test.json

ydb config profile list --with-content

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_list-and-get
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_list-and-get_list
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_list-and-get_get
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_list-and-get_get-all
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_activate


Deleting a profile
Currently, you can only delete profiles interactively with the following command:

where <profile_name>  is the profile name.

The YDB CLI will request confirmation to delete the profile:

Choose y  (Yes) to delete the profile.

Example

Deleting the mydb1  profile:

Deleting a profile without interactive input

Although this mode is not supported by the YDB CLI, if necessary, you can use input redirection in your OS to automatically respond y  to the
request to confirm the deletion:

The efficiency of this method is not guaranteed in any way.

ydb config profile delete <profile_name>

Profile "<profile_name>" will be permanently removed. Continue? (y/n):

$ ydb config profile delete mydb1
Profile "mydb1" will be permanently removed. Continue? (y/n): y
Profile "mydb1" was removed.

echo y | ydb config profile delete my_profile

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_delete
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_delete_example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_delete_non-interactive


Activated profile
Executing YDB CLI commands on a database require establishing a connection to the database. If the YDB CLI couldn't identify a certain
connection parameter by command-line parameters and environment variables, it's taken from the activated profile.

Profile activation is an easy way to get started with the YDB CLI, since the connection parameters that are set once will be applied automatically to
any command, without the need to specify any connection parameters in the command line.

However, this simplicity may lead to undesirable behavior in further operation, as soon as you need to work with multiple databases:

The activated profile is applied implicitly, meaning that it can be applied by mistake when a certain connection parameter is missing in the
command line.

The activated profile is applied implicitly, meaning that it can be applied by mistake when a typo is made in the name of an environment
variable.

The activated profile cannot be used in scripts, since it is saved in a file and its change in one terminal window will affect all other windows,
possibly leading to an unexpected change of the DB in the middle of the loop being executed in the script.

When you need to connect to any new database other than the initial one for the first time, we recommend that you deactivate the profile and
always select it explicitly using the --profile  option.

Activating a profile with a command

Profile activation is performed by running the command

where [profile_name]  is an optional profile name.

If the profile name is specified, it is activated. If a profile with the specified name does not exist, an error is returned prompting you to view the list of
available profiles:

If the profile name is not specified, you'll be asked to choose between the following options in interactive mode:

1  terminates the command execution and keeps the currently activated profile activated. It's marked as (active)  in the list of existing
profiles starting from item 3.

2  deactivates the currently activated profile. If no profile has been activated before, nothing changes.

3  and so on activates the selected profile. The currently activated profile is marked as (active) .

If the profile is successfully activated, the execution ends with a message saying

Example

Activating a profile named mydb1 :

Activating a profile during its initialization

As the last step during the interactive execution of the command to create or update the profile ydb config profile create , you're prompted to
activate the created (or updated) profile:

Choose y  (Yes) to activate the profile.

Deactivating a profile

ydb config profile activate [profile_name]

No existing profile "<profile_name>". Run "ydb config profile list" without arguments to see existing profiles

Please choose profile to activate:
 [1] Don't do anything, just exit
 [2] Deactivate current active profile (if any)
 [3] <profile_name_1> (active)
 [4] <profile_name_2>
 ...
Please enter your numeric choice:

Profile "<profile_name>" was activated.

$ ydb config profile activate mydb1
Profile "mydb1" was activated.

Activate profile "<profile_name>" to use by default? (current active profile is not set) y/n:

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_activate
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_activate_activate
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_activate_example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_activate_init
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_activate_deactivate
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_connect
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_create


Currently, the YDB CLI only supports profile deactivation in interactive mode, when calling the activation command without specifying the profile
(choosing item 2  in the above activation command).

If necessary, you can use input redirection in your OS to automatically select option 2  in interactive input:

The efficiency of this method is not guaranteed in any way.

echo 2 | ydb config profile activate

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_activate_activate


List of endpoints
Using the discovery list  information command, you can get a list of YDB cluster endponts that you can connect to in order to access your
database:

where [connection options] are database connection options

The output rows in the response contain the following information:

1. Endpoint, including protocol and port

2. Availability zone (in square brackets)

3. The #  character is used for the list of YDB services available on this endpoint

An endpoint discovery request to the YDB cluster is executed in the YDB SDK at driver initialization so that you can use the discovery list  CLI
command to localize connection issues.

Example

ydb [connection options] discovery list

$ ydb -p quickstart discovery list
grpcs://vm-etn01q5-ysor.etn01q5k.ydb.mdb.yandexcloud.net:2135 [sas] #table_service #scripting #discovery #rate_limiter 
#locking #kesus
grpcs://vm-etn01q5-arum.etn01ftr.ydb.mdb.yandexcloud.net:2135 [vla] #table_service #scripting #discovery #rate_limiter 
#locking #kesus
grpcs://vm-etn01q5beftr.ydb.mdb.yandexcloud.net:2135 [myt] #table_service #scripting #discovery #rate_limiter #locking 
#kesus

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_discovery-list
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_discovery-list_example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_connect_endpoint
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_connect_command-line-pars


Authentication
The discovery whoami  information command lets you check the account on behalf of which the server actually accepts requests:

where [connection options] are database connection options

The response includes the account name (User SID) and, if the -g  option is specified, the information whether the account belongs to groups.

If authentication is not enabled on the YDB server (for example, in the case of an independent local deployment), the command will fail with an
error.

Support for the -g  option depends on the server configuration. If disabled, you'll receive User has no groups  in response, regardless of the
actual inclusion of your account in any groups.

Example

ydb [connection options] discovery whoami [-g]

$ ydb -p quickstart discovery whoami -g
User SID: aje5kkjdgs0puc18976co@as

User has no groups

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_discovery-whoami
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_discovery-whoami_example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_connect_command-line-pars


Displaying connection parameters
config info  is a service command for debugging various issues with connection and authentication. The command displays the final connection

parameters, such as the endpoint and database path, obtained by considering parameters from all possible sources. With these parameters, the
CLI would connect when executing a command that implies a connection to the database. When specifying the global option -v , in addition to the
final connection parameters, values of all connection parameters from all sources that the CLI managed to detect will be displayed, along with the
names of those sources in order of priority

General format of the command:

global options  — global parameters.

Connection parameter list

endpoint — URL of database cluster.

database — Database path.

Authentication parameters:

token — Access Token.

yc-token — Refresh Token.

sa-key-file — Service Account Key.

use-metadata-credentials — Metadata.

user

password

ca-file — Root certificate.

iam-endpoint — URL of IAM service.

Examples

Display final connection parameters

Display all connection parameters along with their sources

ydb [global options...] config info

$ ydb -e grpcs://another.endpoint:2135 --ca-file some_certs.crt -p db123 config info
endpoint: another.endpoint:2135
yc-token: SOME_A12****************21_TOKEN
iam-endpoint: iam.api.cloud.yandex.net
ca-file: some_certs.crt

$ ydb -e grpcs://another.endpoint:2135 --ca-file some_certs.crt -p db123 -v config info
Using Yandex.Cloud Passport token from YC_TOKEN env variable

endpoint: another.endpoint:2135
yc-token: SOME_A12****************21_TOKEN
iam-endpoint: iam.api.cloud.yandex.net
ca-file: some_certs.crt
current auth method: yc-token

"ca-file" sources:
  1. Value: some_certs.crt. Got from: explicit --ca-file option

"database" sources:
  1. Value: /some/path. Got from: active profile "test_config_info"

"endpoint" sources:
  1. Value: another.endpoint:2135. Got from: explicit --endpoint option
  2. Value: db123.endpoint:2135. Got from: profile "db123" from explicit --profile option
  3. Value: some.endpoint:2135. Got from: active profile "test_config_info"

"iam-endpoint" sources:
  1. Value: iam.api.cloud.yandex.net. Got from: default value

"sa-key-file" sources:
  1. Value: /Users/username/some-sa-key-file. Got from: active profile "test_config_info"

"yc-token" sources:
  1. Value: SOME_A12****************21_TOKEN. Got from: YC_TOKEN enviroment variable

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_config-info
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_config-info_parameters-list
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_config-info_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_config-info_basic-example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_config-info_verbose-example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_connect
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_connect_endpoint
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_connect_database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_connect_endpoint
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_connect_database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_iam
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_iam
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_iam
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_iam
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_static-credentials
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_static-credentials
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_connect_tls-cert
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_iam


Getting YDB CLI version
Use the version  subcommand to find out the version of the YDB CLI installed and manage new version availability auto checks.

New version availability auto checks are made when you run any YDB CLI command, except ydb version --enable-checks  and ydb version 
--disable-checks , but only once in 24 hours. The result and time of the last check are saved to the YDB CLI configuration file.

General format of the command:

global options : Global parameters.

options : Parameters of the subcommand.

View a description of the command:

Parameters of the subcommand

Examples

Disable new version availability checks

When running YDB CLI commands, the system automatically checks if a new version is available. If the host where the command is run doesn't
have internet access, this causes a delay and the corresponding warning appears during command execution. To disable auto checks for updates,
run:

Result:

Getting only the version number

To facilitate data handling in scripts, you can limit result to the YDB CLI version number:

Result:

ydb [global options...] version [options...]

ydb version --help

ydb version --disable-checks

Latest version checks disabled

ydb version --semantic

1.9.1

Parameter Description

--semantic Get only the version number.

--check Check if a new version is available.

--disable-checks Disable new version availability checks.

--enable-checks Enable new version availability checks.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_version
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_version_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_version_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_version_disable-checks
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_version_semantic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_version_options


Health check
YDB has a built-in self-diagnostic system that provides a brief report on the cluster status and information about existing issues. This report can be
obtained via YDB CLI using the command explained below.

General command format:

global options  — global options,

options  — subcommand options.

Subcommand options

Examples

Health check result in pretty format

Database is in good condition:

Database is degraded:

Health check result in JSON format

Database is in good condition:

ydb [global options...] monitoring healthcheck [options...]

ydb --profile quickstart monitoring healthcheck --format pretty

Healthcheck status: GOOD

Healthcheck status: DEGRADED

ydb --profile quickstart monitoring healthcheck --format json

{
 "self_check_result": "GOOD",
 "location": {
  "id": 51059,
  "host": "my-host.net",
  "port": 19001

Name Description

--timeout The time, in milliseconds, within which the operation should be completed on the server.

--format Output format. Available options:

pretty  — overall database status. Possible values are provided in the table.

json  — a detailed JSON response containing a hierarchical list of detected problems. Possible issues are listed in 
the Healthcheck API documentation.

Default: pretty .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_monitoring-healthcheck
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_monitoring-healthcheck_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_monitoring-healthcheck_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_monitoring-healthcheck_example-pretty
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_monitoring-healthcheck_example-json
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_monitoring-healthcheck_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_selfcheck-result
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_issues


Database is degraded:

 }
}

{
 "self_check_result": "DEGRADED",
 "issue_log": [
  {
   "id": "YELLOW-b3c0-70fb",
   "status": "YELLOW",
   "message": "Database has multiple issues",
   "location": {
    "database": {
     "name": "/my-cluster/my-database"
    }
   },
   "reason": [
    "YELLOW-b3c0-1ba8",
    "YELLOW-b3c0-1c83"
   ],
   "type": "DATABASE",
   "level": 1
  },
  {
   "id": "YELLOW-b3c0-1ba8",
   "status": "YELLOW",
   "message": "Compute is overloaded",
   "location": {
    "database": {
     "name": "/my-cluster/my-database"
    }
   },
   "reason": [
    "YELLOW-b3c0-343a-51059-User"
   ],
   "type": "COMPUTE",
   "level": 2
  },
  {
   "id": "YELLOW-b3c0-343a-51059-User",
   "status": "YELLOW",
   "message": "Pool usage is over than 99%",
   "location": {
    "compute": {
     "node": {
      "id": 51059,
      "host": "my-host.net",
      "port": 31043
     },
     "pool": {
      "name": "User"
     }
    },
    "database": {
     "name": "/my-cluster/my-database"
    }
   },
   "type": "COMPUTE_POOL",
   "level": 4
  },
  {
   "id": "YELLOW-b3c0-1c83",
   "status": "YELLOW",
   "message": "Storage usage over 75%",
   "location": {
    "database": {
     "name": "/my-cluster/my-database"
    }
   },
   "type": "STORAGE",
   "level": 2
  }
 ],
 "location": {
  "id": 117,
  "host": "my-host.net",



  "port": 19001
 }
}



Load testing
You can use the workload  command to run different types of workload against your DB.

General format of the command:

global options : Global options.

subcommands : The subcommands.

See the description of the command to run the data load:

Available subcommands

The following types of load tests are supported at the moment:

Stock: An online store warehouse simulator.

Key-value: Key-Value load.

ClickBench: ClickBench analytical benchmark.

TPC-H: TPC-H benchmark.

TPC-DS: TPC-DS benchmark.

Topic: Topic load.
Transfer: Transfer load.

ydb [global options...] workload [subcommands...]

ydb workload --help

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_index_subcommands
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_commands_global-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_index_subcommands
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_stock
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_workload-kv
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_workload-click-bench
https://github.com/ClickHouse/ClickBench
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_workload-tpch
https://www.tpc.org/tpch/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_workload-tpcds
https://www.tpc.org/tpcds/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_workload-topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_workload-transfer


Stock load
Simulates a warehouse of an online store: creates multi-product orders, gets a list of orders per customer.

Types of load

This load test runs 5 types of load:

user-hist: Reads the specified number of orders made by the customer with id = 10000. This creates a workload to read the same rows from
different threads.

rand-user-hist: Reads the specified number of orders made by a randomly selected customer. A load that reads data from different threads is
created.

add-rand-order: Generates an order at random. For example, a customer has created an order of 2 products, but hasn't yet paid for it, hence
the quantities in stock aren't decreased for the products. The database writes the data about the order and products. The read/write load is
created (the INSERT checks for an existing entry before inserting the data).

put-rand-order: Generates an order at random and processes it. For example, a customer has created and paid an order of 2 products. The
data about the order and products is written to the database, product availability is checked and quantities in stock are decreased. A mixed
data load is created.

put-same-order: Creates orders with the same set of products. For example, all customers buy the same set of products (a newly released
phone and a charger). This creates a workload of competing updates of the same rows in the table.

Load test initialization

To get started, create tables and populate them with data:

init options : Initialization options.

See the description of the command to init the data load:

Available parameters

3 tables are created using the following DDL statements:

Examples of load initialization

Creating a database with 1000 products, 10000 items of each product, and no orders:

ydb workload stock init [init options...]

ydb workload init --help

CREATE TABLE `stock`(product Utf8, quantity Int64, PRIMARY KEY(product)) WITH (AUTO_PARTITIONING_BY_LOAD = ENABLED, 
AUTO_PARTITIONING_MIN_PARTITIONS_COUNT = <min-partitions>);
CREATE TABLE `orders`(id Uint64, customer Utf8, created Datetime, processed Datetime, PRIMARY KEY(id), INDEX ix_cust 
GLOBAL ON (customer, created)) WITH (READ_REPLICAS_SETTINGS = "per_az:1", AUTO_PARTITIONING_BY_LOAD = ENABLED, 
AUTO_PARTITIONING_MIN_PARTITIONS_COUNT = <min-partitions>, UNIFORM_PARTITIONS = <min-partitions>, 
AUTO_PARTITIONING_MAX_PARTITIONS_COUNT = 1000);
CREATE TABLE `orderLines`(id_order Uint64, product Utf8, quantity Int64, PRIMARY KEY(id_order, product)) WITH 
(AUTO_PARTITIONING_BY_LOAD = ENABLED, AUTO_PARTITIONING_MIN_PARTITIONS_COUNT = <min-partitions>, UNIFORM_PARTITIONS = 
<min-partitions>, AUTO_PARTITIONING_MAX_PARTITIONS_COUNT = 1000);

ydb workload stock init -p 1000 -q 10000 -o 0

Parameter name Short name Parameter description

--products <value> -p <value> Number of products. Valid values: between 1 and 500000. Default: 100.

--quantity <value> -q <value> Quantity of each product in stock. Default: 1000.

--orders <value> -o <value> Initial number of orders in the database. Default: 100.

--min-partitions <value> - Minimum number of shards for tables. Default: 40.

--auto-partition <value> - Enabling/disabling auto-sharding. Possible values: 0 or 1. Default: 1.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_workload_types
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_init
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_init_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_init-stock-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_get-customer-history
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_get-random-customer-history
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_insert-random-order
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_submit-random-order
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_submit-same-order
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_init_options


Creating a database with 10 products, 100 items of each product, 10 orders, and a minimum number of shards equal 100:

Running a load test

To run the load, execute the command:

During this test, workload statistics for each time window are displayed on the screen.

workload type : The types of workload.

global workload options : The global options for all types of load.

specific workload options : Options of a specific load type.

See the description of the command to run the data load:

Global parameters for all types of load

The user-hist workload

This type of load reads the specified number of orders for the customer with id = 10000.

YQL query:

To run this type of load, execute the command:

global workload options : The global options for all types of load.

specific workload options : Options of a specific load type.

Parameters for user-hist

ydb workload stock init -p 10 -q 100 -o 10 --min-partitions 100

ydb workload stock run [workload type...] [global workload options...] [specific workload options...]

ydb workload run --help

DECLARE $cust AS Utf8;
DECLARE $limit AS UInt32;

SELECT id, customer, created FROM orders view ix_cust
    WHERE customer = 'Name10000'
    ORDER BY customer DESC, created DESC
    LIMIT $limit;

ydb workload stock run user-hist [global workload options...] [specific workload options...]

Parameter name Short name Parameter description

--seconds <value> -s <value> Duration of the test, in seconds. Default: 10.

--threads <value> -t <value> The number of parallel threads creating the load. Default: 10.

--rate <value> - Total rate for all threads, in transactions per second. Default: 0 (no rate limit).

--quiet - Outputs only the total result.

--print-timestamp - Print the time together with the statistics of each time window.

--client-timeout - Transport timeout in milliseconds.

--operation-timeout - Operation timeout in milliseconds.

--cancel-after - Timeout for canceling an operation in milliseconds.

--window - Statistics collection window in seconds. Default: 1.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_run
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_global_workload_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_get-customer-history
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_customer_history_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_workload_types
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_global_workload_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_global_workload_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_customer_history_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#dev_timeouts
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#dev_timeouts
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#dev_timeouts


The rand-user-hist workload

This type of load reads the specified number of orders from randomly selected customers.

YQL query:

To run this type of load, execute the command:

global workload options : The global options for all types of load.

specific workload options : Options of a specific load type.

Parameters for rand-user-hist

The add-rand-order workload

This type of load creates a randomly generated order. The order includes several different products, 1 item per product. The number of products in
the order is generated randomly based on an exponential distribution.

YQL query:

To run this type of load, execute the command:

global workload options : The global options for all types of load.

specific workload options : Options of a specific load type.

Parameters for add-rand-order

The put-rand-order workload

This type of load creates a randomly generated order and processes it. The order includes several different products, 1 item per product. The
number of products in the order is generated randomly based on an exponential distribution. Order processing consists in decreasing the number of
ordered products in stock.

DECLARE $cust AS Utf8;
DECLARE $limit AS UInt32;

SELECT id, customer, created FROM orders view ix_cust
    WHERE customer = $cust
    ORDER BY customer DESC, created DESC
    LIMIT $limit;

ydb workload stock run rand-user-hist [global workload options...] [specific workload options...]

DECLARE $ido AS UInt64;
DECLARE $cust AS Utf8;
DECLARE $lines AS List<Struct<product:Utf8,quantity:Int64>>;
DECLARE $time AS DateTime;

INSERT INTO `orders`(id, customer, created) VALUES
    ($ido, $cust, $time);
UPSERT INTO `orderLines`(id_order, product, quantity)
    SELECT $ido, product, quantity FROM AS_TABLE( $lines );

ydb workload stock run add-rand-order [global workload options...] [specific workload options...]

Parameter name Short name Parameter description

--limit <value> -l <value> The required number of orders. Default: 10.

Parameter name Short name Parameter description

--limit <value> -l <value> The required number of orders. Default: 10.

Parameter name Short name Parameter description

--products <value> -p <value> Number of products in the test. Default: 100.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_get-random-customer-history
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_random_customer_history_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_insert-random-order
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_insert_random_order_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_submit-random-order
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_global_workload_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_random_customer_history_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_global_workload_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_insert_random_order_options


YQL query:

To run this type of load, execute the command:

global workload options : The global options for all types of load.

specific workload options : Options of a specific load type.

Parameters for put-rand-order

The put-same-order workload

This type of load creates an order with the same set of products and processes it. Order processing consists in decreasing the number of ordered
products in stock.

YQL query:

DECLARE $ido AS UInt64;
DECLARE $cust AS Utf8;
DECLARE $lines AS List<Struct<product:Utf8,quantity:Int64>>;
DECLARE $time AS DateTime;

INSERT INTO `orders`(id, customer, created) VALUES
    ($ido, $cust, $time);

UPSERT INTO `orderLines`(id_order, product, quantity)
    SELECT $ido, product, quantity FROM AS_TABLE( $lines );

$prods = SELECT * FROM orderLines AS p WHERE p.id_order = $ido;

$cnt = SELECT COUNT(*) FROM $prods;

$newq =
    SELECT
        p.product AS product,
        COALESCE(s.quantity, 0) - p.quantity AS quantity
    FROM $prods AS p
    LEFT JOIN stock AS s
    ON s.product = p.product;

$check = SELECT COUNT(*) AS cntd FROM $newq as q WHERE q.quantity >= 0;

UPSERT INTO stock
    SELECT product, quantity FROM $newq WHERE $check=$cnt;

$upo = SELECT id, $time AS tm FROM orders WHERE id = $ido AND $check = $cnt;

UPSERT INTO orders SELECT id, tm AS processed FROM $upo;

SELECT * FROM $newq AS q WHERE q.quantity < 0

ydb workload stock run put-rand-order [global workload options...] [specific workload options...]

DECLARE $ido AS UInt64;
DECLARE $cust AS Utf8;
DECLARE $lines AS List<Struct<product:Utf8,quantity:Int64>>;
DECLARE $time AS DateTime;

INSERT INTO `orders`(id, customer, created) VALUES
    ($ido, $cust, $time);

UPSERT INTO `orderLines`(id_order, product, quantity)
    SELECT $ido, product, quantity FROM AS_TABLE( $lines );

$prods = SELECT * FROM orderLines AS p WHERE p.id_order = $ido;

$cnt = SELECT COUNT(*) FROM $prods;

$newq =

Parameter name Short name Parameter description

--products <value> -p <value> Number of products in the test. Default: 100.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_submit_random_order_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_submit-same-order
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_global_workload_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_submit_random_order_options


To run this type of load, execute the command:

global workload options : The global options for all types of load.

specific workload options : Options of a specific load type.

Parameters for put-same-order

Examples of running the loads

Run the add-rand-order  workload for 5 seconds across 10 threads with 1000 products.

Possible result:

Run the put-same-order  workload for 5 seconds across 5 threads with 2 products per order, printing out only final results.

Possible result:

Run the rand-user-hist  workload for 5 seconds across 100 threads, printing out time for each time window.

Possible result:

    SELECT
        p.product AS product,
        COALESCE(s.quantity, 0) - p.quantity AS quantity
    FROM $prods AS p
    LEFT JOIN stock AS s
    ON s.product = p.product;

$check = SELECT COUNT(*) AS cntd FROM $newq as q WHERE q.quantity >= 0;

UPSERT INTO stock
    SELECT product, quantity FROM $newq WHERE $check=$cnt;

$upo = SELECT id, $time AS tm FROM orders WHERE id = $ido AND $check = $cnt;

UPSERT INTO orders SELECT id, tm AS processed FROM $upo;

SELECT * FROM $newq AS q WHERE q.quantity < 0

ydb workload stock run put-same-order [global workload options...] [specific workload options...]

ydb workload stock run add-rand-order -s 5 -t 10 -p 1000

Elapsed Txs/Sec Retries Errors  p50(ms) p95(ms) p99(ms) pMax(ms)
1           132 0       0       69      108     132     157
2           157 0       0       63      88      97      104
3           156 0       0       62      84      104     120
4           160 0       0       62      77      90      94
5           174 0       0       61      77      97      100

Txs     Txs/Sec Retries Errors  p50(ms) p95(ms) p99(ms) pMax(ms)
779       155.8 0       0       62      89      108     157

ydb workload stock run put-same-order -s 5 -t 5 -p 1000 --quiet

Txs     Txs/Sec Retries Errors  p50(ms) p95(ms) p99(ms) pMax(ms)
16          3.2 67      3       855     1407    1799    1799

ydb workload stock run rand-user-hist -s 5 -t 10 --print-timestamp

Elapsed Txs/Sec Retries Errors  p50(ms) p95(ms) p99(ms) pMax(ms)        Timestamp
1          1046 0       0       7       16      25      50      2022-02-08T17:47:26Z
2          1070 0       0       7       17      22      28      2022-02-08T17:47:27Z
3          1041 0       0       7       17      22      28      2022-02-08T17:47:28Z

Parameter name Short name Parameter description

--products <value> -p <value> Number of products per order. Default: 100.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_submit_same_order_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_examples-of-running-the-loads
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_global_workload_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_submit_same_order_options


Interpretation of results

Elapsed : Time window ID. By default, a time window is 1 second.

Txs/sec : Number of successful load transactions in the time window.

Retries : The number of repeat attempts to execute the transaction by the client in the time window.

Errors : The number of errors that occurred in the time window.

p50(ms) : 50th percentile of request latency, in ms.

p95(ms) : 95th percentile of request latency, in ms.

p99(ms) : 99th percentile of request latency, in ms.

pMax(ms) : 100th percentile of request latency, in ms.

Timestamp : Timestamp of the end of the time window.

4          1045 0       0       7       17      23      31      2022-02-08T17:47:29Z
5           998 0       0       8       18      23      42      2022-02-08T17:47:30Z

Txs     Txs/Sec Retries Errors  p50(ms) p95(ms) p99(ms) pMax(ms)
5200       1040 0       0       8       17      23      50

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock_interpretation-of-results


ClickBench load
The load is based on data and queries from the https://github.com/ClickHouse/ClickBench repository, and the queries and table layout are adapted
to YDB.

The benchmark generates typical workload in the following areas: clickstream and traffic analysis, web analytics, machine-generated data,
structured logs, and event data. It covers typical queries in analytics and real-time dashboards.

The dataset for this benchmark was obtained from an actual traffic recording of one of the world's largest web analytics platforms. It has been
anonymized while keeping all the essential data distributions. The query set was improvised to reflect realistic workloads, while the queries are not
directly from production.

Common command options

All commands support the common option --path , which specifies the path to a table in the database:

Available options

Initializing a load test

Before running the benchmark, create a table:

See the description of the command to init the data load:

Available parameters

Loading data into a table

Download the data archive, then load the data into the table:

ydb workload clickbench --path clickbench/hits ...

ydb workload clickbench --path clickbench/hits init

ydb workload clickbench init --help

Name Description Default value

--path  or -p Specifies the table path. clickbench/hits

Name Description Default value

--store <value> Table storage type. Possible values: row , 
column , external-s3 .

row .

--external-s3-prefix <value> Only relevant for external tables. Root path to the 
dataset in S3 storage.

--external-s3-endpoint <value>  or 
-e <value>

Only relevant for external tables. Link to S3 
Bucket with data.

--string Use String  type for text fields. Utf8  is used by 
default.

--datetime Use Date , Datetime  and Timestamp  type for 
time-related fields.

Date32 , Datetime64  and 
Timestamp64

--clear If the table at the specified path has already been 
created, it will be deleted.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-click-bench
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-click-bench_common-command-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-click-bench_common_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-click-bench_init
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-click-bench_init_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-click-bench_load
https://github.com/ClickHouse/ClickBench


For source files, you can use CSV and TSV files, as well as directories containing such files. They can be either compressed or not.

Available parameters

Common parameters of the import command

Run a load test

Run the load:

During the test, load statistics are displayed for each request.

See the command description to run the load:

Common parameters for all load types

wget https://datasets.clickhouse.com/hits_compatible/hits.csv.gz
ydb workload clickbench --path clickbench/hits import files --input hits.csv.gz

ydb workload clickbench --path clickbench/hits run

ydb workload clickbench run --help

Name Description
Default 
value

--input <path>  or 
-i <path>

Path to the source data files. Both unpacked and packed CSV and TSV files, as well as 
directories containing such files, are supported. Data can be downloaded from the official 
ClickBench website: csv.gz, tsv.gz. To speed up the process, these files can be split into smaller 
parts, allowing parallel downloads.

--state <path> Path to the download state file. If the download is interrupted, it will resume from the same point 
when restarted.

--clear-state Relevant if the --state  parameter is specified. Clears the state file and restarts the download 
from the beginning.

Name Description Default value

--upload-threads <value>  or 
-t <value>

The number of execution threads for data preparation. The number of available cores 
on the client.

--bulk-size <value> The size of the chunk for sending data, in rows. 10000

--max-in-flight <value> The maximum number of data chunks that can be 
processed simultaneously.

128

Name Description Default value

--output <value> The name of the file where the query execution results will be saved. results.out

--iterations <value> The number of times each load query will be executed. 1

--json <name> The name of the file where query execution statistics will be saved in json  
format.

Not saved by 
default

--ministat <name> The name of the file where query execution statistics will be saved in 
ministat  format.

Not saved by 
default

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-click-bench_load_files_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-click-bench_load_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-click-bench_run
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-click-bench_run_options
https://datasets.clickhouse.com/hits_compatible/hits.csv.gz
https://datasets.clickhouse.com/hits_compatible/hits.tsv.gz


ClickBench-specific options

Cleanup test data

Run cleanup:

The command has no parameters.

ydb workload clickbench --path clickbench/hits clean

--plan <name> The name of the file to save the query plan. Files like 
<name>.<query number>.explain  and 
<name>.<query number>.<iteration number>  will be saved in formats: 
ast , json , svg .

Not saved by 
default

--query-settings <setting> Query execution settings. Each setting is added as a separate line at the 
beginning of each query. Use multiple times for multiple settings.

Not specified by 
default

--include Query numbers or segments to be executed as part of the load. All queries 
executed

--exclude Query numbers or segments to be excluded from the load. None excluded 
by default

--executer Query execution engine. Available values: scan , generic . generic

--verbose  or -v Print additional information to the screen during query execution.

Name Description
Default 
value

--ext-queries <queries>  or 
-q <queries>

External queries to execute during the load, separated by semicolons.

--ext-queries-file <name> Name of the file containing external queries to execute during the load, 
separated by semicolons.

--ext-query-dir <name> Directory containing external queries for the load. Queries should be in files 
named q[0-42].sql .

--ext-results-dir <name> Directory containing external query results for comparison. Results should 
be in files named q[0-42].sql .

--check-canonical  or -c Use special deterministic internal queries and compare the results against 
canonical ones.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-click-bench_run_clickbench_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-click-bench_cleanup


Key-Value load
A simple load type using a YDB database as a Key-Value storage.

Types of load

This load test runs several types of load:

upsert: Using the UPSERT operation, inserts rows that are tuples (key1, key2, ... keyK, value1, value2, ... valueN) into the table created
previously with the init command, the K and N numbers are specified in the settings.

insert: The function is the same as the upsert load, only the INSERT operation is used for insertion.

select: Reads data using the SELECT * WHERE key = $key operation. A query always affects all table columns, but isn't always a point query,
and the number of primary key variations can be controlled using parameters.

read-rows: Reads data using the ReadRows operation, which performs faster key reading than select operation. A query always affects all
table columns, but isn't always a point query, and the number of primary key variations can be controlled using parameters.

mixed: Simultaneously writes and reads data, additionally checking that all written data is successfully read.

Load test initialization

To get started, you must create tables. When creating them, you can specify how many rows to insert during initialization:

init options : Initialization options.

View a description of the command to initialize the table:

Available parameters

The following command is used to create a table:

ydb workload kv init [init options...]

ydb workload kv init --help

CREATE TABLE `kv_test`(
    c0 Uint64,
    c1 Uint64,
    ...
    cI Uint64,
    cI+1 String,
    ...
    cN String,
    PRIMARY KEY(c0, c1, ... cK)) WITH (
        AUTO_PARTITIONING_BY_LOAD = ENABLED,
        AUTO_PARTITIONING_MIN_PARTITIONS_COUNT = partsNum,

Parameter name Parameter description

--init-upserts <value> Number of insertion operations to be performed during initialization. Default: 1000.

--min-partitions Minimum number of shards for tables. Default: 40.

--partition-size Maximum size of one shard (the AUTO_PARTITIONING_PARTITION_SIZE_MB  setting). Default: 2000.

--auto-partition Enabling/disabling auto-sharding. Possible values: 0 or 1. Default: 1.

--max-first-key Maximum value of the primary key of the table. Default: .

--len The size of the rows in bytes that are inserted into the table as values. Default: 8.

--cols Number of columns in the table. Default: 2 counting Key.

--int-cols Number of first columns in the table that will have the Uint64  type; subsequent columns will have the 
String  type. Default: 1.

--key-cols Number of first columns in the table included in the key. Default: 1.

--rows Number of affected rows in one query. Default: 1.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_workload-types
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_init
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_init-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_upsert-kv
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_insert-kv
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_select-kv
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_read-rows-kv
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_mixed-kv
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_init-options


Examples of load initialization

Example of a command to create a table with 1000 rows:

Deleting a table

When the work is complete, you can delete the table:

The following YQL command is executed:

Examples of using clean

Running a load test

To run the load, execute the command:

During this test, workload statistics for each time window are displayed on the screen.

workload type : The types of workload.

global workload options : The global options for all types of load.

specific workload options : Options of a specific load type.

See the description of the command to run the data load:

Global parameters for all types of load

        UNIFORM_PARTITIONS = partsNum,
        AUTO_PARTITIONING_PARTITION_SIZE_MB = partSize,
        AUTO_PARTITIONING_MAX_PARTITIONS_COUNT = 1000
    )
)

ydb workload kv init --init-upserts 1000

ydb workload kv clean

DROP TABLE `kv_test`

ydb workload kv clean

ydb workload kv run [workload type...] [global workload options...] [specific workload options...]

ydb workload kv run --help

Parameter name Short name Parameter description

--seconds <value> -s <value> Duration of the test, in seconds. Default: 10.

--threads <value> -t <value> The number of parallel threads creating the load. Default: 10.

--rate <value> - Total rate for all threads, in requests per second. Default: 0 (no rate limit).

--quiet - Outputs only the total result.

--print-timestamp - Print the time together with the statistics of each time window.

--client-timeout - Transport timeout in milliseconds.

--operation-timeout - Operation timeout in milliseconds.

--cancel-after - Timeout for canceling an operation in milliseconds.

--window - Statistics collection window in seconds. Default: 1.

--max-first-key - Maximum value of the primary key of the table. Default: .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_init-kv-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_clean
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_clean-kv-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_run
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_global-workload-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_workload-types
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_global-workload-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_timeouts
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_timeouts
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_timeouts


Upsert load

This load type inserts tuples (key, value1, value2, ..., valueN)

To run this type of load, execute the command:

global workload options : The global options for all types of load.

specific workload options : Options of a specific load type.

For example, for the parameters --rows 2 --cols 3 --int-cols 2 , the YQL query will look like this:

Parameters for upsert

Insert load

This load type inserts tuples (key, value1, value2, ..., valueN)

To run this type of load, execute the command:

global workload options : The global options for all types of load.

specific workload options : Options of a specific load type.

For example, for the parameters --rows 2 --cols 3 --int-cols 2 , the YQL query will look like this:

Parameters for insert

ydb workload kv run upsert [global workload options...] [specific workload options...]

DECLARE $c0_0 AS Uint64;
DECLARE $c0_1 AS Uint64;
DECLARE $c0_2 AS String;
DECLARE $c1_0 AS Uint64;
DECLARE $c1_1 AS Uint64;
DECLARE $c1_2 AS String;
UPSERT INTO `kv_test` (c0, c1, c2) VALUES ($c0_0, $c0_1, $c0_2), ($c1_0, $c1_1, $c1_2)

ydb workload kv run insert [global workload options...] [specific workload options...]

DECLARE $c0_0 AS Uint64;
DECLARE $c0_1 AS Uint64;
DECLARE $c0_2 AS String;
DECLARE $c1_0 AS Uint64;
DECLARE $c1_1 AS Uint64;
DECLARE $c1_2 AS String;
INSERT INTO `kv_test` (c0, c1, c2) VALUES ($c0_0, $c0_1, $c0_2), ($c1_0, $c1_1, $c1_2)

--cols - Number of columns in the table. Default: 2 counting Key.

--int-cols - Number of first columns in the table that will have the Uint64  type; subsequent columns 
will have the String  type. Default: 1.

--key-cols - Number of first columns in the table included in the key. Default: 1.

--rows - Number of affected rows in one query. Default: 1.

Parameter name Parameter description

--len The size of the rows in bytes that are inserted into the table as values. Default: 8.

Parameter name Parameter description

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_upsert-kv
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_upsert-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_insert-kv
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_insert-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_global-workload-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_upsert-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_global-workload-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_insert-options


Select load

This type of load creates SELECT queries that return rows based on an exact match of the primary key.

To run this type of load, execute the command:

global workload options : The global options for all types of load.

For example, for the parameters --rows 2 --cols 3 --int-cols 2 , the YQL query will look like this:

Read-rows load

This type of load creates ReadRows queries that return rows based on an exact match of the primary key.

To run this type of load, execute the command:

global workload options : The global options for all types of load.

Mixed load

This type of load simultaneously writes and reads tuples (key, value1, value2, ..., valueN), additionally checking that all written data is successfully
read.

To run this type of load, execute the command:

global workload options : The global options for all types of load.

specific workload options  - Options of a specific load type.

Parameters for mixed

ydb workload kv run select [global workload options...]

DECLARE $r0_0 AS Uint64;
DECLARE $r0_1 AS Uint64;
DECLARE $r1_0 AS Uint64;
DECLARE $r1_1 AS Uint64;
SELECT c0, c1, c2 FROM `kv_test` WHERE c0 = $r0_0 AND c1 = $r0_1 OR c0 = $r1_0 AND c1 = $r1_1

ydb workload kv run read-rows [global workload options...]

ydb workload kv run mixed [global workload options...] [specific workload options...]

--len The size of the rows in bytes that are inserted into the table as values. Default: 8.

Parameter name Parameter description

--len The size of the rows in bytes that are inserted into the table as values. Default: 8.

--change-partitions-size Enabling/disabling random modification of the AUTO_PARTITIONING_PARTITION_SIZE_MB  setting. 
Possible values: 0 or 1. Default: 0.

--do-select Enabling/disabling reads using the select query. Possible values: 0 or 1. Default: 1.

--do-read-rows Enabling/disabling reads using the read-rows query. Possible values: 0 or 1. Default: 1.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_select-kv
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_read-rows-kv
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_mixed-kv
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_mixed-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_global-workload-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_global-workload-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_global-workload-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_mixed-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_select-kv
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_read-rows-kv


Topic load
Applies load to your YDB topics, using them as message queues. You can use a variety of input parameters to simulate production load: message
number, message size, target write rate, and number of consumers and producers.

As you apply load to your topic, the console displays the results (the number of written messages, message write rate, and others).

To generate load against your topic:

1. Initialize the load.

2. Run one of the available load types:

write: Generate messages and write them to the topic asynchronously.

read: Read messages from the topic asynchronously.

full: Read and write messages asynchronously in parallel.

Note

The examples use the quickstart  profile. To learn more, see Creating a profile to connect to a test database.

Initializing a load test

Before executing the load, you need to initialize it. During initialization, you will create a topic named workload-topic  with the specified options.
To initialize the load, run the following command:

global options : Global options.

options : Subcommand options.

Subcommand options:

Write load

This load type generates and writes messages to the topic asynchronously.

General format of the command that generates the write load:

global options : Global options.

options : Subcommand options.

View the description of the command that generates the write load:

ydb [global options...] workload topic init [options...]

To create a topic with 256  partitions and 2  consumers, run this command:

ydb --profile quickstart workload topic init --partitions 256 --consumers 2

ydb [global options...] workload topic run write [options...]

ydb workload topic run write --help

Option name Option description

--topic Topic name.
Default value: workload-topic .

--partitions , -p Number of topic partitions.
Default value: 128 .

--consumers , -c Number of topic consumers.
Default value: 1 .

--consumer-prefix Consumer name prefix.
Default value: workload-consumer .
For example, if the number of consumers --consumers  is 2  and the prefix --consumer-prefix  is 
workload-consumer , then the following consumer names will be used: workload-consumer-0 , 
workload-consumer-1 .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-topic_init
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-topic_run-write
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-topic_init
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-topic_run-write
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-topic_run-read
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-topic_run-full
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_reference_ydb-cli_profile_create_quickstart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options


Subcommand options:

To write data to 100  producer threads at the target rate of 80  MB/s for 10  seconds, run this command:

You will see statistics for in-progress time windows and final statistics when the test is complete:

ydb --profile quickstart workload topic run write --threads 100 --byte-rate 80M

Option name Option description

--seconds , -s Test duration in seconds.
Default value: 60 .

--window , -w Statistics window in seconds.
Default value: 1 .

--quiet , -q Output only the final test result.

--print-timestamp Print the time together with the statistics of each time window.

--warmup Test warm-up period (in seconds).
Within the period, no statistics are calculated. It's needed to eliminate the effect of transition processes at 
startup.
Default value: 5 .

--percentile Percentile that is output in statistics.
Default value: 50 .

--topic Topic name.
Default value: workload-topic .

--threads , -t Number of producer threads. Each thread will write to all partitions of the specified topic.
Default value: 1 .

--message-size , -m Message size in bytes. Use the K , M , or G  suffix to set the size in KB, MB, or GB, respectively.
Default value: 10K .

--message-rate Total target write rate in messages per second. Can't be used together with the --byte-rate  option.
Default value: 0  (no limit).

--byte-rate Total target write rate in bytes per second. Can't be used together with the --message-rate  option. Use the 
K , M , or G  suffix to set the rate in KB/s, MB/s, or GB/s, respectively.

Default value: 0  (no limit).

--codec Codec used to compress messages on the client before sending them to the server.
Compression increases CPU usage on the client when reading and writing messages, but usually enables 
you to reduce the amounts of data stored and transmitted over the network. When consumers read 
messages, they decompress them by the codec that was used to write the messages, with no special options 
needed.
Acceptable values: RAW  - no compression (default), GZIP , ZSTD .

--use-tx Use transactions.
Disabled by default.

--tx-commit-interval Transaction commit interval, in milliseconds. A transaction is committed if the time specified in the 
--tx-commit-interval  parameter elapses or if the number of messages specified in the 
--tx-commit-messages  parameter is written.

Default value: 1000 .

--tx-commit-messages Number of messages required to commit a transaction. A transaction is committed if the time specified in the 
--tx-commit-interval  parameter elapses or if the number of messages specified in the 
--tx-commit-messages  parameter is written.

Default value: 1 000 000 .



Window : Sequence number of the statistics window.

Write speed : Message write rate in messages per second and MB/s.

Write time : Percentile of the message write time, in milliseconds.

Inflight : Maximum number of messages awaiting commit across all partitions.

If you enable transactions, the command output will also include the Commit time  column. It displays the percentile of transaction commit time, in
milliseconds.

Read load

This type of load reads messages from the topic asynchronously. To make sure that the topic includes messages, run the write load before you start
reading.

General format of the command to generate the read load:

global options : Global options.

options : Subcommand options.

View the description of the command to generate the read load:

Subcommand options:

Window  Write speed     Write time      Inflight
#       msg/s   MB/s    percentile,ms   percentile,msg
1       20      0       1079            72
2       8025    78      1415            78
3       7987    78      1431            79
4       7888    77      1471            101
5       8126    79      1815            116
6       7018    68      1447            79
7       8938    87      2511            159
8       7055    68      1463            78
9       7062    69      1455            79
10      9912    96      3679            250
Window  Write speed     Write time      Inflight
#       msg/s   MB/s    percentile,ms   percentile,msg
Total   7203    70      3023            250

ydb [global options...] workload topic run read [options...]

ydb workload topic run read --help

Option name Option description

--seconds , -s Test duration in seconds.
Default value: 60 .

--window , -w Statistics window in seconds.
Default value: 1 .

--quiet , -q Output only the final test result.

--print-timestamp Print the time together with the statistics of each time window.

--warmup Test warm-up period (in seconds).
Within the period, no statistics are calculated. It's needed to eliminate the effect of transition processes at startup.
Default value: 5 .

--percentile Percentile that is output in statistics.
Default value: 50 .

--topic Topic name.
Default value: workload-topic .

--consumers , -c Number of consumers.
Default value: 1 .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-topic_run-read
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-topic_run-write
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options


To use 2  consumers to read data from the topic, with 100  threads per consumer, run the following command:

You will see statistics for in-progress time windows and final statistics when the test is complete:

Window : Sequence number of the statistics window.

Lag : Maximum consumer lag in the statistics window. Messages across all partitions are included.

Lag time : Percentile of the message lag time in milliseconds.

Read : Message read rate for the consumer (in messages per second and MB/s).

Full time : Percentile of the full message processing time (from writing by the producer to reading by the consumer), in milliseconds.

Read and write load

This type of load both reads messages from the topic and writes them to the topic asynchronously. This command is equivalent to running both read
and write loads in parallel.

General format of the command to generate the read and write load:

global options : Global options.

options : Subcommand options.

View the description of the command to run the read and write load:

Subcommand options:

ydb --profile quickstart workload topic run read --consumers 2 --threads 100

Window  Lag             Lag time        Read speed      Full time
#       percentile,msg  percentile,ms   msg/s   MB/s    percentile,ms
1       0               0               0       0       0
2       30176           0               66578   650     0
3       30176           0               68999   674     0
4       30176           0               66907   653     0
5       27835           0               67628   661     0
6       30176           0               67938   664     0
7       30176           0               71628   700     0
8       20338           0               61367   599     0
9       30176           0               61770   603     0
10      30176           0               58291   569     0
Window  Lag             Lag time        Read speed      Full time
#       percentile,msg  percentile,ms   msg/s   MB/s    percentile,ms
Total   30176           0               80267   784     0

ydb [global options...] workload topic run full [options...]

ydb workload topic run full --help

--consumer-prefix Consumer name prefix.
Default value: workload-consumer .
For example, if the number of consumers --consumers  is 2  and the prefix --consumer-prefix  is 
workload-consumer , then the following consumer names will be used: workload-consumer-0 , 
workload-consumer-1 .

--threads , -t Number of consumer threads.
Default value: 1 .

Option name Option description

--seconds , -s Test duration in seconds.
Default value: 60 .

--window , -w Statistics window in seconds.
Default value: 1 .

--quiet , -q Output only the final test result.

--print-timestamp Print the time together with the statistics of each time window.

--warmup Test warm-up period (in seconds).
Within the period, no statistics are calculated. It's needed to eliminate the effect of transition processes at 
startup.
Default value: 5 .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-topic_run-full
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options


Example of a command that reads 50  threads by 2  consumers and writes data to 100  producer threads at the target rate of 80  MB/s and
duration of 10  seconds:

You will see statistics for in-progress time windows and final statistics when the test is complete:

ydb --profile quickstart workload topic run full --producer-threads 100 --consumers 2 --consumer-threads 50 --byte-rate 
80M

Window  Write speed     Write time      Inflight        Lag             Lag time        Read speed      Full time
#       msg/s   MB/s    percentile,ms   percentile,msg  percentile,msg  percentile,ms   msg/s   MB/s    percentile,ms
1       0       0       0               0               0               0               0       0       0
2       1091    10      2143            8               2076            20607           40156   392     30941
3       1552    15      2991            12              7224            21887           41040   401     31886

--percentile Percentile that is output in statistics.
Default value: 50 .

--topic Topic name.
Default value: workload-topic .

--producer-threads , 
-p

Number of producer threads. Each thread will write to all partitions of the specified topic.
Default value: 1 .

--message-size , -m Message size in bytes. Use the K , M , or G  suffix to set the size in KB, MB, or GB, respectively.
Default value: 10K .

--message-rate Total target write rate in messages per second. Can't be used together with the --message-rate  option.
Default value: 0  (no limit).

--byte-rate Total target write rate in bytes per second. Can't be used together with the --byte-rate  option. Use the K , 
M , or G  suffix to set the rate in KB/s, MB/s, or GB/s, respectively.

Default value: 0  (no limit).

--codec Codec used to compress messages on the client before sending them to the server.
Compression increases CPU usage on the client when reading and writing messages, but usually enables 
you to reduce the amounts of data stored and transmitted over the network. When consumers read 
messages, they decompress them by the codec that was used to write the messages, with no special options 
needed.
Acceptable values: RAW  - no compression (default), GZIP , ZSTD .

--consumers , -c Number of consumers.
Default value: 1 .

--consumer-prefix Consumer name prefix.
Default value: workload-consumer .
For example, if the number of consumers --consumers  is 2  and the prefix --consumer-prefix  is 
workload-consumer , then the following consumer names will be used: workload-consumer-0 , 
workload-consumer-1 .

--threads , -t Number of consumer threads.
Default value: 1 .

--use-tx Use transactions.
Disabled by default.

--tx-commit-interval Transaction commit interval, in milliseconds. A transaction is committed if the time specified in the 
--tx-commit-interval  parameter elapses or if the number of messages specified in the 
--tx-commit-messages  parameter is written.

Default value: 1000 .

--tx-commit-messages Number of messages required to commit a transaction. A transaction is committed if the time specified in the 
--tx-commit-interval  parameter elapses or if the number of messages specified in the 
--tx-commit-messages  parameter is written.

Default value: 1 000 000 .



Window : Sequence number of the statistics window.

Write speed : Message write rate in messages per second and MB/s.

Write time : Percentile of the message write time, in milliseconds.

Inflight : Maximum number of messages awaiting commit across all partitions.

Lag : Maximum number of messages awaiting reading, in the statistics window. Messages across all partitions are included.

Lag time : Percentile of the message lag time in milliseconds.

Read : Message read rate for the consumer (in messages per second and MB/s).

Full time : Percentile of the full message processing time, from writing by the producer to reading by the consumer, in milliseconds.

Deleting a topic

When the work is complete, you can delete the test topic: General format of the topic deletion command:

global options : Global options.

options : Subcommand options.

Subcommand options:

To delete the workload-topic  test topic, run the following command:

4       1733    16      3711            15              10036           22783           38488   376     32577
5       1900    18      4319            15              10668           23551           34784   340     33372
6       2793    27      5247            21              9461            24575           33267   325     34893
7       2904    28      6015            22              12150           25727           34423   336     35507
8       2191    21      5087            21              12150           26623           29393   287     36407
9       1952    19      2543            10              7627            27391           33284   325     37814
10      1992    19      2655            9               10104           28671           29101   284     38797
Window  Write speed     Write time      Inflight        Lag             Lag time        Read speed      Full time
#       msg/s   MB/s    percentile,ms   percentile,msg  percentile,msg  percentile,ms   msg/s   MB/s    percentile,ms
Total   1814    17      5247            22              12150           28671           44827   438     40252

ydb [global options...] workload topic clean [options...]

ydb --profile quickstart workload topic clean

Option name Option description

--topic Topic name.
Default value: workload-topic .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-topic_clean
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options


Transfer load
Starts the load in the form of transactions YDB involving topics and tables simultaneously. The data is read from the topic and written to the table.
To simulate a real load, you can set various input parameters: the number of messages, the size of messages, the target write speed, the number
of consumers and producers, the number of partitions. During operation, the console displays the results: the number of written messages, the
speed of writing messages, etc.

Note

The examples use the quickstart  profile. To learn more, see Creating a profile to connect to a test database.

Initializing the test environment

Before starting the load, it is necessary to initialize the test environment. You can use the command ydb workload transfer topic-to-table 
init  to do this. It will create a topic and a table with the necessary parameters.

Command syntax:

global options  — global parameters.

options  - parameters of the subcommand.

View the command description:

Parameters of the subcommand:

After executing the init  subcommand, a table, topic and consumers will be created. Reader names are created by the rule
${CONSUMER_PREFIX}-${INDEX} . The value of ${INDEX}  is an integer from 0 to the value of the parameter --consumers  minus 1.

For example, the command ydb --profile quickstart workload transfer topic-to-table init --consumers 2 --topic-partitions 143 
--table-partitions 237  will create a topic transfer-topic  with 2 consumers, 143 partitions, and a table transfer-table  with 237 partitions.
The consumer names are workload-consumer-0  and workload-consumer-1 .

Running a load test

The test simulates the load from an application that receives messages from a topic, processes them and writes the processing results to a
database table.

During the operation of the program, two types of work streams are simulated:

Input stream: messages are written to the topic in the non-transaction mode. The user can control the writing speed, the message size, the
number of producers.

Processing flow: messages are read from the topic and written to the table using the YDB transaction.

The following actions are performed in the processing flow within a single transaction:

messages from the topic are being read until the --commit-period  period has expired;

one UPSERT  command and a COMMIT  command are executed on the table to commit the transaction after the period expires.

Command syntax:

ydb [global options...] workload transfer topic-to-table init [options...]

ydb workload transfer topic-to-table init --help

ydb [global options...] workload transfer topic-to-table run [options...]

Parameter name Parameter description Default value

--topic Topic name transfer-topic

--consumer-prefix Prefix of the consumers name workload-consumer

--table Table name transfer-table

--consumers Number of topic consumers 1

--topic-partitions Number of topic partitions 128

--table-partitions Number of table partitions 128

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-transfer
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-transfer_init
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-transfer_run
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_reference_ydb-cli_profile_create_quickstart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options


global options  — global parameters.

options  - parameters of the subcommand.

View the command description:

Parameters of the subcommand:

ydb workload transfer topic-to-table run --help

Parameter name Parameter Description Default value

--seconds , -s Duration of the test in seconds 60

--window , -w Duration of the statistics collection window in seconds 1

--quiet , -q Output only the final test result 0

--print-timestamp Print the time together with the statistics of each time window 0

--percentile Percentile in statistics output 50

--warmup The warm-up time of the test in seconds. No statistics are calculated during this 
time

5

--topic Topic name transfer-topic

--consumer-prefix Prefix of the consumers name workload-consumer

--table Table name transfer-table

--producer-threads , 
-p

Number of producer threads 1

--consumer-threads , 
-t

Number of consumer threads 1

--consumers , -c Number of consumers 1

--message-size , -m Message size in bytes. It is possible to specify in KB, MB, GB by adding suffixes 
K , M , G  respectively

10240

--message-rate Target total write speed. In messages per second. Excludes the use of the 
--byte-rate  parameter

0

--byte-rate Target total write speed. In bytes per second. Excludes the use of the 
--message-rate  parameter. It is possible to specify in KB/s, MB/s, GB/s by 

adding suffixes K , M , G  respectively

0

--tx-commit-interval The period between transaction COMMIT  calls. In milliseconds 1000

--tx-commit-messages The period between transaction COMMIT  calls. In number of messages 1000000

--only-topic-in-tx Only topic partitions are forced to participate in transactions. Excludes the use of 
the --only-table-in-tx  parameter

0

--only-table-in-tx Only table shards are forced to participate in transactions. Excludes the use of 
the --only-topic-in-tx  parameter

0

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options


For example, the command ydb --profile quickstart workload transfer topic-to-table run  will run a test lasting 60 seconds. The data
for the first 5 seconds will not be taken into account in the work statistics. Example of console output:

Window  — the serial number of the time window for collecting statistics.

Write speed  — the speed of writing messages by producers. In messages per second and in megabytes per second.

Write time  — the specified percentile of the message writing time in ms.

Inflight  — the maximum number of messages waiting for confirmation for all batches.

Lag  — the specified percentile of maximum number of messages waiting to be read in the statistics collection window. Messages for all
batches are taken into account.

Lag time  — the specified percentile of message delay time in ms.

Read speed  — the speed of reading messages by consumers. In messages per second and in megabytes per second.

Select time , Upsert time , Commit time  — the specified percentile of the execution time of Select, Insert, Commit operations in ms.

Removing the test environment

After the test is completed, you can delete the test environment.

Command syntax:

global options  — global parameters.

options  - parameters of the subcommand.

View the command description:

Parameters of the subcommand:

Window  Write speed     Write time      Inflight        Read speed      Topic time      Select time     Upsert time     
Commit time
#       msg/s   MB/s    percentile,ms   percentile,msg  msg/s   MB/s    percentile,ms   percentile,ms   percentile,ms   
percentile,ms
1       0       0       0               0               0       0       0               0               0               
0
2       0       0       0               0               0       0       0               0               0               
0
3       0       0       0               0               0       0       0               0               0               
0
4       0       0       0               0               0       0       0               0               0               
0
5       0       0       0               0               0       0       0               0               0               
0
6       103     1       1023            83              103     1       1025            0               0               
0
7       103     1       999             78              103     1       1001            0               0               
0
8       103     1       1003            93              103     1       1002            0               0               
0
9       103     1       1003            88              103     1       1003            0               0               
0
10      103     1       999             79              103     1       999             0               0               
0
11      103     1       1119            89              0       0       0               0               0               
0
12      103     1       1023            90              206     2       1028            90              223             
695
13      103     1       975             84              103     1       976             0               0               
0
14      103     1       1003            91              103     1       1006            0               0               
0
15      103     1       1003            93              103     1       1005            0               0               
0
16      103     1       1103            89              103     1       1100            0               0               
0
17      103     1       1063            89              103     1       1061            0               0               
0
...

ydb [global options...] workload transfer topic-to-table clean [options...]

ydb workload transfer topic-to-table clean --help

Parameter Name Parameter Description Default value

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-transfer_clean
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options


For example, the command ydb --profile quickstart workload transfer topic-to-table clean  will delete the topic transfer-topic , its
consumers and the table transfer-table .

--topic Topic name transfer-topic

--table Table name transfer-table



TPC-H workload
The workload is based on the TPC-H documentation, with the queries and table schemas adapted for YDB.

The benchmark generates a workload typical for decision support systems.

Common command options

All commands support the common --path  option, which specifies the path to the directory containing tables in the database:

Available options

Initializing a load test

Before running the benchmark, create a table:

See the command description:

Available parameters

Loading data into a table

The data will be generated and loaded into a table directly by ydb:

ydb workload tpch --path tpch/s1 ...

ydb workload tpch --path tpch/s1 init

ydb workload tpch init --help

Name Description Default value

--path  or -p Path to the directory with tables. /

Name Description Default value

--store <value> Table storage type. Possible values: row , column , external-s3 . row

--external-s3-prefix <value> Relevant only for external tables. Root path to the dataset in S3 
storage.

--external-s3-endpoint <value>  or 
-e <value>

Relevant only for external tables. Link to the S3 bucket with data.

--string Use the String  type for text fields. Utf8

--datetime Use for time-related fields of type Date , Datetime , and 
Timestamp .

Date32 , 
Datetime64 , 
Timestamp64

--float-mode <value> Specifies the data type to use for fractional fields. Possible values are 
float , decimal , and decimal_ydb . float  uses the Float  

type, decimal  uses Decimal  with dimensions specified by the test 
standard, and decimal_ydb  uses Decimal(22,9)  — the only type 
currently supported by YDB.

float

--clear If the table at the specified path already exists, it will be deleted.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpch
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpch_common-command-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpch_common_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpch_init
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpch_init_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpch_load
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf


See the command description:

Available options

Common parameters of the import command

Run the load test

Run the load:

During the test, load statistics are displayed for each request.

See the command description:

Common parameters for all load types

ydb workload tpch --path tpch/s1 import generator --scale 1

ydb workload tpch import --help

ydb workload tpch --path tpch/s1 run

ydb workload tpch run --help

Name Description
Default 
value

--scale <value> Data scale. Powers of ten are usually used.

--tables <value> Comma-separated list of tables to generate. Available tables: customer , 
nation , order_line , part_psupp , region , supplier .

All tables

--proccess-count <value>  or 
-C <value>

Data generation can be split into several processes, this parameter specifies the 
number of processes.

1

--proccess-index <value>  or 
-i <value>

Data generation can be split into several processes, this parameter specifies the 
process number.

0

--state <path> Path to the generation state file. If the generation was interrupted for some 
reason, the download will be continued from the same place when it is started 
again.

--clear-state Relevant if the --state  parameter is specified. Clear the state file and start the 
download from the beginning.

Name Description Default value

--upload-threads <value>  or 
-t <value>

The number of execution threads for data preparation. The number of available cores 
on the client.

--bulk-size <value> The size of the chunk for sending data, in rows. 10000

--max-in-flight <value> The maximum number of data chunks that can be 
processed simultaneously.

128

Name Description Default value

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpch_load_files_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpch_load_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpch_run
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpch_run_options


TPC-H-specific options

Test data cleaning

Run cleaning:

The command has no parameters.

ydb workload tpch --path tpch/s1 clean

--output <value> The name of the file where the query execution results will be saved. results.out

--iterations <value> The number of times each load query will be executed. 1

--json <name> The name of the file where query execution statistics will be saved in json  
format.

Not saved by 
default

--ministat <name> The name of the file where query execution statistics will be saved in 
ministat  format.

Not saved by 
default

--plan <name> The name of the file to save the query plan. Files like 
<name>.<query number>.explain  and 
<name>.<query number>.<iteration number>  will be saved in formats: 
ast , json , svg .

Not saved by 
default

--query-settings <setting> Query execution settings. Each setting is added as a separate line at the 
beginning of each query. Use multiple times for multiple settings.

Not specified by 
default

--include Query numbers or segments to be executed as part of the load. All queries 
executed

--exclude Query numbers or segments to be excluded from the load. None excluded 
by default

--executer Query execution engine. Available values: scan , generic . generic

--verbose  or -v Print additional information to the screen during query execution.

Name Description
Default 
value

--ext-query-dir <name> Directory with external queries for load execution. Queries should be in files named 
q[1-23].sql .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpch_run_tpch_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpch_cleanup


TPC-DS workload
The workload is based on the TPC-DS documentation, with the queries and table schemas adapted for YDB.

This benchmark generates a workload typical for decision support systems.

Common command options

All commands support the common option --path , which specifies the path to the directory containing benchmark tables in the database:

Available options

Initializing the load test

Before running the benchmark, create a table:

See the command description to run the load:

Available parameters

Loading data into the table

The data will be generated and loaded into the table directly by YDB CLI:

ydb workload tpcds --path tpcds/s1 ...

ydb workload tpcds --path tpcds/s1 init

ydb workload tpcds init --help

Name Description Default value

--path  or -p Path to the directory with tables. /

Name Description Default value

--store <value> Table storage type. Possible values: row , column , external-s3 . row

--external-s3-prefix <value> Relevant only for external tables. Root path to the dataset in S3 
storage.

--external-s3-endpoint <value>  or 
-e <value>

Relevant only for external tables. Link to the S3 bucket with data.

--string Use the String  type for text fields. Utf8

--datetime Use for time-related fields of type Date , Datetime , and 
Timestamp .

Date32 , 
Datetime64 , 
Timestamp64

--float-mode <value> Specifies the data type to use for fractional fields. Possible values are 
float , decimal , and decimal_ydb . float  uses the Float  

type, decimal  uses Decimal  with dimensions specified by the test 
standard, and decimal_ydb  uses Decimal(22,9)  — the only type 
currently supported by YDB.

float

--clear If the table at the specified path already exists, it will be deleted.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpcds
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpcds_common-command-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpcds_common_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpcds_init
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpcds_init_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpcds_load
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-DS_v3.2.0.pdf


See the command description:

Available options

Common parameters of the import command

Run the load test

Run the load:

During the benchmark, load statistics are displayed for each request.

See the command description:

Common parameters for all load types

ydb workload tpcds --path tpcds/s1 import generator --scale 1

ydb workload tpcds import --help

ydb workload tpcds --path tpcds/s1 run

ydb workload tpcds run --help

Name Description
Default 
value

--scale <value> Data scale. Typically, powers of ten are used.

--tables <value> Comma-separated list of tables to generate. Available tables: customer , 
nation , order_line , part_psupp , region , supplier .

All tables

--process-count <value>  or 
-C <value>

Specifies the number of processes for parallel data generation. 1

--process-index <value>  or 
-i <value>

Specifies the process number when data generation is split into multiple 
processes.

0

--state <path> Path to the state file for resuming generation. If the generation is interrupted, it 
will resume from the same point when restarted.

--clear-state Relevant if the --state  parameter is specified. Clears the state file and 
restarts the download from the beginning.

Name Description Default value

--upload-threads <value>  or 
-t <value>

The number of execution threads for data preparation. The number of available cores 
on the client.

--bulk-size <value> The size of the chunk for sending data, in rows. 10000

--max-in-flight <value> The maximum number of data chunks that can be 
processed simultaneously.

128

Name Description Default value

--output <value> The name of the file where the query execution results will be saved. results.out

--iterations <value> The number of times each load query will be executed. 1

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpcds_load_files_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpcds_load_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpcds_run
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpcds_run_options


TPC-DS-specific options

Test data cleanup

Run cleanup:

The command has no parameters.

ydb workload tpcds --path tpcds/s1 clean

--json <name> The name of the file where query execution statistics will be saved in json  
format.

Not saved by 
default

--ministat <name> The name of the file where query execution statistics will be saved in 
ministat  format.

Not saved by 
default

--plan <name> The name of the file to save the query plan. Files like 
<name>.<query number>.explain  and 
<name>.<query number>.<iteration number>  will be saved in formats: 
ast , json , svg .

Not saved by 
default

--query-settings <setting> Query execution settings. Each setting is added as a separate line at the 
beginning of each query. Use multiple times for multiple settings.

Not specified by 
default

--include Query numbers or segments to be executed as part of the load. All queries 
executed

--exclude Query numbers or segments to be excluded from the load. None excluded 
by default

--executer Query execution engine. Available values: scan , generic . generic

--verbose  or -v Print additional information to the screen during query execution.

Name Description
Default 
value

--ext-query-dir <name> Directory with external queries for load execution. Queries should be in files named 
q[1-99].sql .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpcds_run_tpcds_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpcds_cleanup


Configuration Management
The YDB CLI provides commands for managing the dynamic configuration at different levels of the system.

General command syntax:

global options  — Global parameters.

scope  — Configuration scope ( cluster , node ).

subcommands  — Subcommands for managing configuration.

View the command description:

Available Configuration Scopes

Cluster Configuration

Managing cluster-level configuration:

Available subcommands:

fetch - Fetches the current dynamic cluster configuration.

generate - Generates dynamic configuration based on the static configuration on the cluster.

replace - Replaces the dynamic configuration.

Node Configuration

Managing node-level configuration:

Available subcommands:

init - Initializes the directory for node configuration.

ydb [global options...] admin [scope] config [subcommands...]

ydb admin --help

ydb admin cluster config [subcommands...]

ydb admin node config [subcommands...]

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_configuration_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_configuration_index_scopes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_configuration_index_cluster
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_configuration_index_node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_configuration_cluster_fetch
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_configuration_cluster_generate
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_configuration_cluster_replace
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_configuration_node_init


Cluster Configuration Management Commands
Cluster configuration management commands are designed for working with the configuration at the level of the entire YDB cluster. These
commands allow cluster administrators to view, modify, and manage settings that apply to all cluster nodes.

Alert

Commands in this section can harm your cluster if used incorrectly. Due to the potentially dangerous nature of these commands, ALL
global parameters must be specified explicitly. Profiles are disabled by default and are only used when explicitly specified (--profile ).
Some commands do not require global options that are otherwise mandatory.

General syntax for calling cluster configuration management commands:

Where:

ydb  – The command to run the YDB CLI from the operating system command line.

[global options]  – Global options, common to all YDB CLI commands.

admin cluster config  – The command for managing cluster configuration.

[command options]  – Command options specific to each command and subcommand.

<subcommand>  – The subcommand.

Commands

The following is a list of available subcommands for managing cluster configuration. Any command can be called from the command line with the -
-help  option to get help for it.

ydb [global options] admin cluster config [command options] <subcommand>

Command / Subcommand Brief Description

admin cluster config fetch Fetch the current dynamic configuration (aliases: get , dump )

admin cluster config generate Generate dynamic configuration from the static startup configuration

admin cluster config replace Replace the dynamic configuration

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_configuration_cluster_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_configuration_cluster_index_list
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_configuration_cluster_fetch
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_configuration_cluster_generate
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_configuration_cluster_replace


Node Configuration Management Commands
Node configuration management commands are designed for working with the configuration at the level of individual YDB cluster nodes. These
commands allow cluster administrators to initialize, update, and manage the settings of individual nodes.

Alert

Commands in this section can harm your cluster if used incorrectly. Due to the potentially dangerous nature of these commands, ALL
global parameters must be specified explicitly. Profiles are disabled by default and are only used when explicitly specified (--profile ).
Some commands do not require global options that are otherwise mandatory.

General syntax for calling node configuration management commands:

ydb  – The command to run the YDB CLI from the operating system command line.

[global options]  – Global options, common to all YDB CLI commands.

admin node config  – The command for managing node configuration.

[command options]  – Command options specific to each command and subcommand.

<subcommand>  – The subcommand.

Commands

The following is a list of available subcommands for managing node configuration. Any command can be called from the command line with the --
help  option to get help for it.

ydb [global options] admin node config [command options] <subcommand>

Command / Subcommand Brief Description

admin node config init Initialize the directory for node configuration

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_configuration_node_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_configuration_node_index_list
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_configuration_node_init


admin cluster config generate
With the admin cluster config generate  command, you can generate a dynamic configuration file based on the static configuration file on the
YDB cluster.
The dynamic configuration uses the format of an extended static configuration; the command automates the conversion process.

General command syntax:

global options  — Global parameters.

View the description of the dynamic configuration generation command:

Examples

Generate the dynamic configuration based on the static configuration:

After executing this command, the config.yaml  file will contain a YAML document in the following format:

Using the Generated Dynamic Configuration

After generating the dynamic configuration, you can perform the following steps:

1. Add configuration parameters to the dynamic configuration file.

2. Apply the dynamic configuration to the cluster using the admin cluster config replace  command.

ydb [global options...] admin cluster config generate

ydb admin cluster config generate --help

ydb admin cluster config generate > config.yaml

metadata:
  kind: MainConfig
  cluster: ""
  version: 0
config:
  <static cluster configuration>

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_configuration_cluster_generate
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_configuration_cluster_generate_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_configuration_cluster_generate_using-the-generated-dynamic-configuration
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_configuration_cluster_replace


admin cluster config fetch
With the admin cluster config fetch  command, you can retrieve the current dynamic configuration of the YDB cluster.

General command syntax:

global options  — Global parameters.

View the description of the dynamic configuration fetch command:

Examples

Fetch the current dynamic configuration of the cluster:

ydb [global options...] admin cluster config fetch

ydb admin cluster config fetch --help

ydb --endpoint grpc://localhost:2135 admin cluster config fetch > config.yaml

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_configuration_cluster_fetch
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_configuration_cluster_fetch_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config


admin cluster config replace
With the admin cluster config replace  command, you can upload a dynamic configuration to the YDB cluster.

Alert

Commands in this section can harm your cluster if used incorrectly. Due to the potentially dangerous nature of these commands, ALL
global parameters must be specified explicitly. Profiles are disabled by default and are only used when explicitly specified (--profile ).
Some commands do not require global options that are otherwise mandatory.

General command syntax:

global options  — Global parameters.

options  — Subcommand parameters.

View the description of the dynamic configuration replacement command:

Subcommand Parameters

Examples

Upload the dynamic configuration file to the cluster:

Upload the dynamic configuration file to the cluster, ignoring local applicability checks:

Upload the dynamic configuration file to the cluster, ignoring the check for unknown fields:

ydb [global options...] admin cluster config replace [options...]

ydb admin cluster config replace --help

ydb admin cluster config replace --filename config.yaml

ydb admin cluster config replace -f config.yaml --ignore-local-validation

ydb admin cluster config replace -f config.yaml --allow-unknown-fields

Name Description

-f , --filename Path to the file containing the configuration.

--allow-unknown-fields Allow unknown fields in the configuration.

If the flag is not set, unknown fields in the configuration result in an error.

--ignore-local-validation Ignore basic client-side configuration validation.

If the flag is not set, YDB CLI performs basic client-side configuration validation.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_configuration_cluster_replace
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_configuration_cluster_replace_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_configuration_cluster_replace_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_configuration_cluster_replace_options


admin node config init
When deploying a new YDB cluster or adding nodes to an existing one (scaling out), each node requires a directory to store its configuration. The
admin node config init  command creates and prepares this directory by placing a specified configuration file in it or retrieving the configuration

from another cluster node (seed node).

General command syntax:

global options  — Global parameters.

options  — Subcommand parameters.

View the description of the node configuration initialization command:

Subcommand Parameters

Examples

Initialize the node's configuration directory using the specified configuration file:

Initialize the node's configuration by retrieving it from a source node:

Usage

After successfully initializing the node's configuration directory, you can start the ydbd  process on this node by adding the --config-dir
parameter specifying the path to the directory. From this point on, when the cluster configuration is updated, the system automatically saves the
updated config to the specified directory, eliminating the need to manually update the configuration file on the node.

When the node restarts, it automatically loads the current configuration from this directory.

ydb [global options...] admin node config init [options...]

ydb admin node config init --help

ydb admin node config init --config-dir /opt/ydb/cfg-dir --from-config config.yaml

ydb admin node config init --config-dir /opt/ydb/cfg-dir --seed-node <node.ydb.tech>:2135

Name Description

-d , 
--config-dir

Required. Path to the directory for storing the configuration file.

-f , 
--from-config

Path to the initial configuration file. Required for initial cluster deployment. Can also be used for scaling out if a file 
with the current cluster configuration has been delivered to the node beforehand.

-s , --seed-node Endpoint of the source node (seed node) from which the configuration will be retrieved. Used for scaling out the 
cluster.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_configuration_node_init
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_configuration_node_init_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_configuration_node_init_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_configuration_node_init_usage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_configuration_node_init_options


Installing the YDB SDK
Follow the instructions below to quickly install the OpenSource SDK. Make sure to preinstall and configure tools for working with the selected
programming language and package managers on your workstation.

The build process using the source code is described in the source code repositories on GitHub. Follow the links given on the YDB SDK - Overview
page.

Python

Run the command from the command line:

If the command fails, make sure your environment has Python 3.8 or newer installed with the pip package manager enabled.

python3 -m pip install ydb

Go

Run the command from the command line:

To ensure that the installation is successful, make sure that your environment is running Go 1.17 or higher.

go get -u github.com/ydb-platform/ydb-go-sdk/v3

C# (.NET)

dotnet add package Ydb.Sdk

Java

Add dependencies to the Maven project as described in the "Install the SDK" step of the readme.md  file in the source code repository.

PHP

composer require ydb-platform/ydb-php-sdk

Node.JS

npm install ydb-sdk

Rust

Add to Cargo.toml last version of ydb crate.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_install
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_index
https://www.python.org/downloads/
https://pypi.org/project/pip/
https://go.dev/doc/install
https://github.com/ydb-platform/ydb-java-sdk#install-the-sdk
https://crates.io/crates/ydb


Authentication in the SDK
As we discussed in the YDB server connection article, the client must add an authentication token to each request. The authentication token is
checked by the server. If the authentication is successful, the request is authorized and executed. Otherwise, the Unauthenticated  error returns.

The YDB SDK uses an object that is responsible for generating these tokens. SDK provides built-in methods for getting such an object:

1. The methods that pass parameters explicitly, with each method implementing a certain authentication mode.

2. The method that determines the authentication mode and relevant parameters based on environmental variables.

Usually, you create a token generation object before you initialize the YDB driver, and you pass the object to the driver constructor as a parameter.
The C++ and Go SDKs additionally let you work with multiple databases and token generation objects through a single driver.

If the token generation object is not defined, the driver won't add any authentication data to the requests. This approach enables you to successfully
connect to locally deployed YDB clusters without enabling mandatory authentication. If you enable mandatory authentication, database requests
without an authentication token will be rejected with an authentication error.

Methods for creating token generation objects

You can click any of the methods below to go to the source code of an example in the repository. You can also learn about the authentication code
recipes.

Python

Go

Mode Method

Anonymous ydb.AnonymousCredentials()

Access Token ydb.AccessTokenCredentials(token)

Metadata ydb.iam.MetadataUrlCredentials()

Service Account Key ydb.iam.ServiceAccountCredentials.from_file(
key_file, iam_endpoint=None, iam_channel_credentials=None)

Static Credentials ydb.StaticCredentials.from_user_password(user, password)

OAuth 2.0 token exchange ydb.oauth2_token_exchange.Oauth2TokenExchangeCredentials(),
ydb.oauth2_token_exchange.Oauth2TokenExchangeCredentials.from_file(cfg_file, 
iam_endpoint=None)

Determined by environment 
variables

ydb.credentials_from_env_variables()

Mode Package Method

Anonymous ydb-go-sdk/v3 ydb.WithAnonymousCredentials()

Access Token ydb-go-sdk/v3 ydb.WithAccessTokenCredentials(token)

Metadata ydb-go-yc yc.WithMetadataCredentials(ctx)

Service Account Key ydb-go-yc yc.WithServiceAccountKeyFileCredentials(key_file)

Static Credentials ydb-go-sdk/v3 ydb.WithStaticCredentials(user, password)

OAuth 2.0 token exchange ydb-go-sdk/v3 ydb.WithOauth2TokenExchangeCredentials(options...),
ydb.WithOauth2TokenExchangeCredentialsFile(configFilePath)

Determined by environment variables ydb-go-sdk-auth-environ environ.WithEnvironCredentials(ctx)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_auth
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_auth_auth-provider
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_connect
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#security_authentication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#security_authentication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#recipes_ydb-sdk_auth
https://github.com/yandex-cloud/ydb-python-sdk/tree/master/examples/anonymous-credentials
https://github.com/yandex-cloud/ydb-python-sdk/tree/master/examples/access-token-credentials
https://github.com/yandex-cloud/ydb-python-sdk/tree/master/examples/metadata-credentials
https://github.com/yandex-cloud/ydb-python-sdk/tree/master/examples/service-account-credentials
https://github.com/ydb-platform/ydb-python-sdk/blob/main/examples/static-credentials/example.py
https://github.com/ydb-platform/ydb-python-sdk/blob/main/ydb/oauth2_token_exchange/token_exchange.py
https://github.com/ydb-platform/ydb-python-sdk/blob/main/ydb/oauth2_token_exchange/token_exchange.py
https://github.com/ydb-platform/ydb-go-sdk/
https://github.com/ydb-platform/ydb-go-examples/tree/master/auth/anonymous_credentials
https://github.com/ydb-platform/ydb-go-sdk/
https://github.com/ydb-platform/ydb-go-examples/tree/master/auth/access_token_credentials
https://github.com/ydb-platform/ydb-go-yc/
https://github.com/ydb-platform/ydb-go-examples/tree/master/auth/metadata_credentials
https://github.com/ydb-platform/ydb-go-yc/
https://github.com/ydb-platform/ydb-go-examples/tree/master/auth/service_account_credentials
https://github.com/ydb-platform/ydb-go-sdk/
https://github.com/ydb-platform/ydb-go-examples/tree/master/auth/static_credentials
https://github.com/ydb-platform/ydb-go-sdk/
https://github.com/ydb-platform/ydb-go-sdk/blob/master/options.go
https://github.com/ydb-platform/ydb-go-sdk/blob/master/options.go
https://github.com/ydb-platform/ydb-go-sdk-auth-environ/
https://github.com/ydb-platform/ydb-go-examples/tree/master/auth/environ


Java

Node.js

Rust

PHP

Mode Method

Anonymous tech.ydb.core.auth.NopAuthProvider.INSTANCE

Access Token new tech.ydb.core.auth.TokenAuthProvider(accessToken);

Metadata tech.ydb.auth.iam.CloudAuthHelper.getMetadataAuthProvider();

Service Account Key tech.ydb.auth.iam.CloudAuthHelper.getServiceAccountFileAuthProvider(saKeyFile);

OAuth 2.0 token exchange tech.ydb.auth.OAuth2TokenExchangeProvider.fromFile(cfgFile);

Determined by environment variables tech.ydb.auth.iam.CloudAuthHelper.getAuthProviderFromEnviron();

Mode Method

Anonymous AnonymousAuthService()

Access Token TokenAuthService(accessToken, database)

Metadata MetadataAuthService(database)

Service Account Key getSACredentialsFromJson(saKeyFile)

Static Credentials StaticCredentialsAuthService(user, password, endpoint)

Determined by environment variables getCredentialsFromEnv(entryPoint, database, logger)

Mode Method

Anonymous ydb::StaticToken("")

Access Token ydb::StaticToken(token)

Metadata ydb::GCEMetadata, ydb::YandexMetadata

Static Credentials ydb::StaticCredentialsAuth

Service Account Key not supported

Determined by 
environment 
variables

not supported

Execution of an 
external command

ydb.CommandLineYcToken (for example, for authentication using a Yandex.Cloud IAM token from the 
developer's computer ydb::CommandLineYcToken.from_cmd("yc iam create-token") )

Mode Method

Anonymous AnonymousAuthentication()

Access Token AccessTokenAuthentication($accessToken)

Oauth Token OAuthTokenAuthentication($oauthToken)

https://github.com/ydb-platform/ydb-java-examples/tree/master/auth/anonymous_credentials
https://github.com/ydb-platform/ydb-java-examples/tree/master/auth/access_token_credentials
https://github.com/ydb-platform/ydb-java-examples/tree/master/auth/metadata_credentials
https://github.com/ydb-platform/ydb-java-examples/tree/master/auth/service_account_credentials
https://github.com/ydb-platform/ydb-java-sdk/blob/master/auth-providers/oauth2-provider/src/main/java/tech/ydb/auth/OAuth2TokenExchangeProvider.java
https://github.com/ydb-platform/ydb-java-examples/tree/master/auth/environ
https://github.com/ydb-platform/ydb-nodejs-sdk/tree/main/examples/auth/anonymous-credentials
https://github.com/ydb-platform/ydb-nodejs-sdk/tree/main/examples/auth/access-token-credentials
https://github.com/ydb-platform/ydb-nodejs-sdk/tree/main/examples/auth/metadata-credentials
https://github.com/ydb-platform/ydb-nodejs-sdk/tree/main/examples/auth/service-account-credentials
https://github.com/ydb-platform/ydb-nodejs-sdk/tree/main/examples/auth/static-credentials
https://github.com/ydb-platform/ydb-nodejs-sdk/tree/main/examples/auth/environ
https://github.com/ydb-platform/ydb-rs-sdk/blob/master/ydb/examples/auth-static-credentials.rs
https://yandex.cloud/en/docs/iam/concepts/authorization/iam-token
https://github.com/ydb-platform/ydb-php-sdk#anonymous
https://github.com/ydb-platform/ydb-php-sdk#access-token
https://github.com/ydb-platform/ydb-php-sdk#oauth-token


Procedure for determining the authentication mode and parameters from the environment

The following algorithm that is the same for all SDKs applies:

1. If the value of the YDB_SERVICE_ACCOUNT_KEY_FILE_CREDENTIALS  environment variable is set, the System Account Key authentication
mode is used and the key is taken from the file whose name is specified in this variable.

2. Otherwise, if the value of the YDB_ANONYMOUS_CREDENTIALS  environment variable is set to 1, the anonymous authentication mode is used.

3. Otherwise, if the value of the YDB_METADATA_CREDENTIALS  environment variable is set to 1, the Metadata authentication mode is used.

4. Otherwise, if the value of the YDB_ACCESS_TOKEN_CREDENTIALS  environment variable is set, the Access token authentication mode is used,
where the this variable value is passed.

5. Otherwise, if the value of the YDB_OAUTH2_KEY_FILE  environment variable is set, the OAuth 2.0 token exchange authentication mode is
used, and the parameters are taken from the JSON file specified in this variable.

6. Otherwise, the Metadata authentication mode is used.

If the last step of the algorithm is selecting the Metadata mode, you can deploy a working application on VMs and in Yandex.Cloud Cloud Functions
without setting any environment variables.

File format for OAuth 2.0 token exchange authentication mode parameters

Description of fields of JSON file with OAuth 2.0 token exchange authentication mode parameters. The set of fields depends on the original token
type, JWT  and FIXED .

In the table below, creds_json  means a JSON with parameters for exchanging the original token for an access token.

Fields not described in this table are ignored.

Example

An example for JWT token exchange

Peculiarities of YDB Python SDK v2 (deprecated version)

Warning

The behavior of the YDB Python SDK v2 (deprecated version) differs from the above-described version.

The algorithm of the construct_credentials_from_environ()  function from the YDB Python SDK v2:

If the value of the USE_METADATA_CREDENTIALS  environment variable is set to 1, the Metadata authentication mode is used.

Otherwise, if the value of the YDB_TOKEN  environment variable is set, the Access Token authentication mode is used, where this
variable value is passed.

Otherwise, if the value of the SA_KEY_FILE  environment variable is set, the System Account Key authentication mode is used and the
key is taken from the file whose name is specified in this variable.

Or else, no authentication information is added to requests.

If no object responsible for generating tokens is passed when initializing the driver, the general procedure for reading environment variables
applies.

{
  "subject-credentials": {
    "type": "JWT",
    "alg": "RS256",
    "private-key": "-----BEGIN RSA PRIVATE KEY-----\n...-----END RSA PRIVATE KEY-----\n",
    "kid": "my_key_id",
    "sub": "account_id"
  }
}

Metadata MetadataAuthentication()

Service Account Key JwtWithJsonAuthentication(key_id, $service_account_id, $privateKeyFile)

Determined by environment variables EnvironCredentials()

Static Credentials StaticAuthentication($user, $password)

Field Type Description Default value/optionality

grant-type string Grant type urn:ietf:params:oauth:grant-type:token-exchange

res string | list 
of strings

Resource optional

aud string | list 
of strings

Audience option for token exchange 
request

optional

scope string | list 
of strings

Scope optional

requested-token-type string Requested token type urn:ietf:params:oauth:token-type:access_token

subject-credentials creds_json Subject credentials optional

actor-credentials creds_json Actor credentials optional

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_auth_env
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_auth_oauth2-key-file-format
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_auth_example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_auth_peculiarities-of-ydb-python-sdk-v2-deprecated-version
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_auth_oauth2-key-file-format
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_auth_env
https://github.com/ydb-platform/ydb-php-sdk#metadata-url
https://github.com/ydb-platform/ydb-php-sdk#jwt--private-key
https://github.com/ydb-platform/ydb-php-sdk#determined-by-environment-variables
https://github.com/ydb-platform/ydb-php-sdk#static-credentials
https://www.rfc-editor.org/rfc/rfc8693


Parameterized queries
YDB supports and recommends the use of so-called parameterized queries. In such queries, the data is transmitted separately from the request
body itself, and in the SQL query, special parameters are used to indicate the location of the data.

Request with data in the request body:

The corresponding parameterized query:

Parameterized queries are written in the form of a template in which certain types of names are replaced with specific parameters each time the
query is executed. Tokens starting with the sign $  such as $seriesId  and $seasonId  in the query above are used to denote parameters.

Parameterized queries provide the following advantages:

For repeated requests, the database server has the ability to cache the query plan for parameterized requests. This radically reduces CPU
consumption and increases system throughput.

The use of parameterized queries saves from vulnerabilities like SQL Injection.

YDB SDK automatically caches parameterized query plans by default, the setting KeepInCache = true  is usually used for this.

SELECT sa.title AS season_title, sr.title AS series_title
FROM seasons AS sa INNER JOIN series AS sr ON sa.series_id = sr.series_id
WHERE sa.series_id = 15 AND sa.season_id = 3

DECLARE $seriesId AS Uint64;
DECLARE $seasonId AS Uint64;

SELECT sa.title AS season_title, sr.title AS series_title
FROM seasons AS sa INNER JOIN series AS sr ON sa.series_id = sr.series_id
WHERE sa.series_id = $seriesId AND sa.season_id = $seasonId

token-endpoint string Token endpoint. In the case of YDB CLI, it 
is overridden by the --iam-endpoint  
option.

optional

Description of fields of creds_json  (JWT)

type string Token source type. Set JWT

alg string Algorithm for JWT signature. Supported 
algorithms: ES256, ES384, ES512, 
HS256, HS384, HS512, PS256, PS384, 
PS512, RS256, RS384, RS512

private-key string (Private) key in PEM format (for algorithms 
ES* , PS* , RS* ) or Base64 format (for 

algorithms HS* ) for JWT signature

kid string kid  JWT standard claim (key id) optional

iss string iss  JWT standard claim (issuer) optional

sub string sub  JWT standard claim (subject) optional

aud string aud  JWT standard claim (audience) optional

jti string jti  JWT standard claim (JWT id) optional

ttl string JWT token TTL 1h

Description of fields of creds_json  (FIXED)

type string Token source type. Set FIXED

token string Token value

token-type string Token type value. It will become 
subject_token_type/actor_token_type  

parameter in token exchange request.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_parameterized_queries_parameterized-queries
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_parameterized_queries
https://en.wikipedia.org/wiki/Prepared_statement
https://en.wikipedia.org/wiki/SQL_injection
https://www.rfc-editor.org/rfc/rfc8693


Working with topics
This article provides examples of how to use the YDB SDK to work with topics.

Before performing the examples, create a topic and add a consumer.

Topic usage examples

Initializing a connection

C++

Reader example on GitHub

Go

Examples on GitHub

Java

Examples on GitHub

Python

Examples on GitHub

C#

Examples on GitHub

C++

To interact with YDB Topics, create an instance of the YDB driver and topic client.

The YDB driver lets the app and YDB interact at the transport layer. The driver must exist during the YDB access lifecycle and be initialized before
creating a client.

Topic client (source code) requires the YDB driver for work. It handles topics and manages read and write sessions.

App code snippet for driver initialization:

This example uses authentication token from the YDB_TOKEN  environment variable. For details see Connecting to a database and Authentication
pages.

App code snippet for creating a client:

auto driverConfig = TDriverConfig()
    .SetEndpoint(opts.Endpoint)
    .SetDatabase(opts.Database)
    .SetAuthToken(GetEnv("YDB_TOKEN"));

TDriver driver(driverConfig);

TTopicClient topicClient(driver);

Java

To interact with YDB Topics, create an instance of the YDB transport and topic client.

The YDB transport lets the app and YDB interact at the transport layer. The transport must exist during the YDB access lifecycle and be initialized
before creating a client.

App code snippet for transport initialization:

In this example CloudAuthHelper.getAuthProviderFromEnviron()  helper method is used which retrieves auth token from environment
variables.
For example, YDB_ACCESS_TOKEN_CREDENTIALS .
For details see Connecting to a database and Authentication pages.

Topic client (source code) uses YDB transport and handles all topics topic operations, manages read and write sessions.

App code snippet for creating a client:

try (GrpcTransport transport = GrpcTransport.forConnectionString(connString)
        .withAuthProvider(CloudAuthHelper.getAuthProviderFromEnviron())
        .build()) {
    // Use YDB transport
}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_topic-usage-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_init
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-create
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-consumer-add
https://github.com/ydb-platform/ydb/tree/main/ydb/public/sdk/cpp/examples/topic_reader
https://github.com/ydb-platform/ydb-go-sdk/tree/master/examples/topic
https://github.com/ydb-platform/ydb-java-examples/tree/master/ydb-cookbook/src/main/java/tech/ydb/examples/topic
https://github.com/ydb-platform/ydb-python-sdk/tree/main/examples/topic
https://github.com/ydb-platform/ydb-dotnet-sdk/tree/main/examples/src/Topic
https://github.com/ydb-platform/ydb/blob/d2d07d368cd8ffd9458cc2e33798ee4ac86c733c/ydb/public/sdk/cpp/client/ydb_topic/topic.h#L1589
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_connect
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_connect
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication
https://github.com/ydb-platform/ydb-java-sdk/blob/master/topic/src/main/java/tech/ydb/topic/TopicClient.java#L34


Managing topics

Creating a topic

Both provided examples use (try-with-resources) block.
It allows to automatically close client and transport on leaving this block, considering both classes extends AutoCloseable .

try (TopicClient topicClient = TopicClient.newClient(transport)
              .setCompressionExecutor(compressionExecutor)
              .build()) {
  // Use topic client
}

C#

To interact with YDB Topics, create an instance of the YDB driver and topic client.

The YDB transport allows the app and YDB to interact at the transport layer. The transport must exist during the YDB access lifecycle and be
initialized before creating a client.

App code snippet for transport initialization:

This example uses anonymous authentication. For details, see Connecting to a database and Authentication.

App code snippet for creating various clients:

var config = new DriverConfig(
    endpoint: "grpc://localhost:2136",
    database: "/local"
);

await using var driver = await Driver.CreateInitialized(
    config: config,
    loggerFactory: loggerFactory
);

var topicClient = new TopicClient(driver);

await using var writer = new WriterBuilder<string>(driver, topicName)
{
    ProducerId = "ProducerId_Example"
}.Build();

await using var reader = new ReaderBuilder<string>(driver)
{
    ConsumerName = "Consumer_Example",
    SubscribeSettings = { new SubscribeSettings(topicName) }
}.Build();

C++

For a full list of supported parameters, see the source code.

Example of creating a topic with three partitions and ZSTD codec support:

auto settings = NYdb::NTopic::TCreateTopicSettings()
    .PartitioningSettings(3, 3)
    .AppendSupportedCodecs(NYdb::NTopic::ECodec::ZSTD);

auto status = topicClient
    .CreateTopic("my-topic", settings)  // returns TFuture<TStatus>
    .GetValueSync();

Go

For a full list of supported parameters, see the SDK documentation.

Example of creating a topic with a list of supported codecs and a minimum number of partitions:

err := db.Topic().Create(ctx, "topic-path",
  // optional
  topicoptions.CreateWithSupportedCodecs(topictypes.CodecRaw, topictypes.CodecGzip),

  // optional

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_manage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_create-topic
https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_connect
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication
https://github.com/ydb-platform/ydb/blob/d2d07d368cd8ffd9458cc2e33798ee4ac86c733c/ydb/public/sdk/cpp/client/ydb_topic/topic.h#L394
https://pkg.go.dev/github.com/ydb-platform/ydb-go-sdk/v3/topic/topicoptions#CreateOption


Updating a topic

When you update a topic, you must specify the topic path and the parameters to be changed.

  topicoptions.CreateWithMinActivePartitions(3),
)

Python

Example of creating a topic with a list of supported codecs and a minimum number of partitions:

driver.topic_client.create_topic(topic_path,
    supported_codecs=[ydb.TopicCodec.RAW, ydb.TopicCodec.GZIP], # optional
    min_active_partitions=3,                                    # optional
)

Java

For a full list of supported parameters, see the source code.

topicClient.createTopic(topicPath, CreateTopicSettings.newBuilder()
                // Optional
                .setSupportedCodecs(SupportedCodecs.newBuilder()
                        .addCodec(Codec.RAW)
                        .addCodec(Codec.GZIP)
                        .build())
                // Optional
                .setPartitioningSettings(PartitioningSettings.newBuilder()
                        .setMinActivePartitions(3)
                        .build())
                .build());

С#

Example of creating a topic with a list of supported codecs and a minimum number of partitions:

await topicClient.CreateTopic(new CreateTopicSettings
{
    Path = topicName,
    Consumers = { new Consumer("Consumer_Example") },
    SupportedCodecs = { Codec.Raw, Codec.Gzip },
    PartitioningSettings = new PartitioningSettings
    {
        MinActivePartitions = 3
    }
});

C++

For a full list of supported parameters, see the source code.

Example of adding an important consumer and setting two days retention time for the topic:

auto alterSettings = NYdb::NTopic::TAlterTopicSettings()
    .BeginAddConsumer("my-consumer")
        .Important(true)
    .EndAddConsumer()
    .SetRetentionPeriod(TDuration::Days(2));

auto status = topicClient
    .AlterTopic("my-topic", alterSettings)  // returns TFuture<TStatus>
    .GetValueSync();

Go

For a full list of supported parameters, see the SDK documentation.

Example of adding a consumer to a topic:

err := db.Topic().Alter(ctx, "topic-path",
  topicoptions.AlterWithAddConsumers(topictypes.Consumer{
    Name:            "new-consumer",
    SupportedCodecs: []topictypes.Codec{topictypes.CodecRaw, topictypes.CodecGzip}, // optional

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_alter-topic
https://github.com/ydb-platform/ydb-java-sdk/blob/master/topic/src/main/java/tech/ydb/topic/settings/CreateTopicSettings.java#L97
https://github.com/ydb-platform/ydb/blob/d2d07d368cd8ffd9458cc2e33798ee4ac86c733c/ydb/public/sdk/cpp/client/ydb_topic/topic.h#L458
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_important-consumer
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_retention-time
https://pkg.go.dev/github.com/ydb-platform/ydb-go-sdk/v3/topic/topicoptions#AlterOption


Getting topic information

Deleting a topic

To delete a topic, just specify the path to it.

  }),
)

Python

Example of updating a topic's list of supported codecs and minimum number of partitions:

driver.topic_client.create_topic(topic_path,
    set_supported_codecs=[ydb.TopicCodec.RAW, ydb.TopicCodec.GZIP], # optional
    set_min_active_partitions=3,                                    # optional
)

Java

For a full list of supported parameters, see the source code.

topicClient.alterTopic(topicPath, AlterTopicSettings.newBuilder()
                .addAddConsumer(Consumer.newBuilder()
                        .setName("new-consumer")
                        .setSupportedCodecs(SupportedCodecs.newBuilder()
                                .addCodec(Codec.RAW)
                                .addCodec(Codec.GZIP)
                                .build())
                        .build())
                .build());

C++

Use DescribeTopic  method to get information about topic.

For a full list of description fields, see the source code.

Example of using topic description:

There is another method DescribeConsumer  to get informtaion about consumer.

auto result = topicClient.DescribeTopic("my-topic").GetValueSync();
if (result.IsSuccess()) {
    const auto& description = result.GetTopicDescription();
    std::cout << "Topic description: " << GetProto(description) << std::endl;
}

Go

  descResult, err := db.Topic().Describe(ctx, "topic-path")
if err != nil {
  log.Fatalf("failed drop topic: %v", err)
  return
}
fmt.Printf("describe: %#v\n", descResult)

Python

info = driver.topic_client.describe_topic(topic_path)
print(info)

Java

Use describeTopic  method to get information about topic.

For a full list of description fields, see the source code.

Result<TopicDescription> topicDescriptionResult = topicClient.describeTopic(topicPath)
        .join();
TopicDescription description = topicDescriptionResult.getValue();

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_describe-topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_drop-topic
https://github.com/ydb-platform/ydb-java-sdk/blob/master/topic/src/main/java/tech/ydb/topic/settings/AlterTopicSettings.java#L23
https://github.com/ydb-platform/ydb/blob/d2d07d368cd8ffd9458cc2e33798ee4ac86c733c/ydb/public/sdk/cpp/client/ydb_topic/topic.h#L163
https://github.com/ydb-platform/ydb-java-sdk/blob/master/topic/src/main/java/tech/ydb/topic/description/TopicDescription.java#L19


Message writes

Connecting to a topic for message writes

Only connections with matching producer and message group identifiers are currently supported ( producer_id  shoud be equal to
message_group_id ). This restriction will be removed in the future.

C++

auto status = topicClient.DropTopic("my-topic").GetValueSync();

Go

  err := db.Topic().Drop(ctx, "topic-path")

Python

driver.topic_client.drop_topic(topic_path)

Java

topicClient.dropTopic(topicPath);

C#

await topicClient.DropTopic(topicName);

C++

The write session object with IWriteSession  interface is used to connect to a topic for writing.

For a full list of write session settings, see the source code.

Example of creating a write session:

TString producerAndGroupID = "group-id";
auto settings = TWriteSessionSettings()
    .Path("my-topic")
    .ProducerId(producerAndGroupID)
    .MessageGroupId(producerAndGroupID);

auto session = topicClient.CreateWriteSession(settings);

Go

producerAndGroupID := "group-id"
writer, err := db.Topic().StartWriter(producerAndGroupID, "topicName",
  topicoptions.WithMessageGroupID(producerAndGroupID),
)
if err != nil {
    return err
}

Python

writer = driver.topic_client.writer(topic_path)

Java (sync)

Writer settings initialization:

String producerAndGroupID = "group-id";
WriterSettings settings = WriterSettings.newBuilder()
      .setTopicPath(topicPath)
      .setProducerId(producerAndGroupID)
      .setMessageGroupId(producerAndGroupID)
      .build();

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_write
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_start-writer
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_producer-id
https://github.com/ydb-platform/ydb/blob/d2d07d368cd8ffd9458cc2e33798ee4ac86c733c/ydb/public/sdk/cpp/client/ydb_topic/topic.h#L1199


Writing messages

Sync writer creation:

Writer should be initialized after it is created. There are two methods to do that:

init() : non-blocking, launches initialization in background and doesn't wait for it to finish.

initAndWait() : blocking, launches initialization and waits for it to finish.
If an error occurs during this process, exception will be thrown.

SyncWriter writer = topicClient.createSyncWriter(settings);

writer.init();

try {
    writer.initAndWait();
    logger.info("Init finished succsessfully");
} catch (Exception exception) {
    logger.error("Exception while initializing writer: ", exception);
    return;
}

Java (async)

Writer settings initialization:

Async writer creation and initialization:

String producerAndGroupID = "group-id";
WriterSettings settings = WriterSettings.newBuilder()
      .setTopicPath(topicPath)
      .setProducerId(producerAndGroupID)
      .setMessageGroupId(producerAndGroupID)
      .build();

AsyncWriter writer = topicClient.createAsyncWriter(settings);

// Init in background
writer.init()
        .thenRun(() -> logger.info("Init finished successfully"))
        .exceptionally(ex -> {
            logger.error("Init failed with ex: ", ex);
            return null;
        });

C#

await using var writer = new WriterBuilder<string>(driver, topicName)
{
    ProducerId = "ProducerId_Example"
}.Build();

C++
IWriteSession  interface allows asynchronous write.

The user processes three kinds of events in a loop: TReadyToAcceptEvent , TAcksEvent , and TSessionClosedEvent .

For each kind of event user can set a handler in write session settings before session creation. Also, a common handler can be set.

If handler is not set for a particular event, it will be delivered to SDK client via GetEvent  / GetEvents  methods. WaitEvent  method allows user
to await for a next event in non-blocking way with TFuture<void>()  interface.

To write a message, user uses a move-only TContinuationToken  object, which has been created by the SDK and has been delivered to the user
with a TReadyToAcceptEvent  event. During write user can set an arbitrary sequential number and a message creation timestamp. By default they
are generated by the SDK.

Write  is asynchronous. Data from messages is processed and stored in the internal buffer. Settings MaxMemoryUsage , MaxInflightCount ,
BatchFlushInterval , and BatchFlushSizeBytes  control sending in the background. Write session reconnects to the YDB if the connection fails

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_writing-messages


and resends the message if possible, with regard to RetryPolicy  setting. If an error that cannot be repeated is received, write session stops and
sends TSessionClosedEvent  to the client.

Example of writing using event loop without any handlers set up:

// Event loop
while (true) {
    // Get event
    // May block for a while if write session is busy
    TMaybe<TWriteSessionEvent::TEvent> event = session->GetEvent(/*block=*/true);

    if (auto* readyEvent = std::get_if<TWriteSessionEvent::TReadyToAcceptEvent>(&*event)) {
        session->Write(std::move(event.ContinuationToken), "This is yet another message.");

    } else if (auto* ackEvent = std::get_if<TWriteSessionEvent::TAcksEvent>(&*event)) {
        std::cout << ackEvent->DebugString() << std::endl;

    } else if (auto* closeSessionEvent = std::get_if<TSessionClosedEvent>(&*event)) {
        break;
    }
}

Go

To send a message, just save Reader in the Data field, from which the data can be read. You can expect the data of each message to be read once
(or until the first error). By the time you return the data from Write, it will already have been read and stored in the internal buffer.

By default, SeqNo and the message creation date are set automatically.

By default, Write is performed asynchronously: data from messages is processed and stored in the internal buffer, sending is done in the
background. Writer reconnects to the YDB if the connection fails and resends the message if possible. If an error that cannot be repeated is
received , Writer stops and subsequent Write calls will end with an error.

err := writer.Write(ctx,
  topicwriter.Message{Data: strings.NewReader("1")},
  topicwriter.Message{Data: bytes.NewReader([]byte{1,2,3})},
  topicwriter.Message{Data: strings.NewReader("3")},
)
if err != nil {
  return err
}

Python

To deliver messages, you can either simply transmit message content (bytes, str) or set certain properties manually. You can send objects one-by-
one or as a list. The write  method is asynchronous. The method returns immediately once messages are put to the client's internal buffer; this is
usually a fast process. If the internal buffer is filled up, you might need to wait until part of the data is sent to the server.

# Simple delivery of messages, without explicit metadata.
# Easy to get started, easy to use if everything you need is the message content.
writer = driver.topic_client.writer(topic_path)
writer.write("mess")  # Rows will be transmitted in UTF-8; this is the easiest way to send
                      # text messages.
writer.write(bytes([1, 2, 3]))  # These bytes will be transmitted as they are, this is the easiest way to send
                                # binary data.
writer.write(["mess-1", "mess-2"])  # This line multiple messages per call
                                    # to decrease overheads on internal SDK processes.
                                    # This makes sense when the message stream is high.

# This is the full form; it is used when except the message content you need to manually specify its properties.
writer = driver.topic_client.writer(topic="topic-path", auto_seqno=False, auto_created_at=False)

writer.write(ydb.TopicWriterMessage("asd", seqno=123, created_at=datetime.datetime.now()))
writer.write(ydb.TopicWriterMessage(bytes([1, 2, 3]), seqno=124, created_at=datetime.datetime.now()))

# In the full form, you can also send multiple messages per function call.
# This approach is useful when the message stream is high, and you want to
# reduce overheads on SDK internal calls.
writer.write([
  ydb.TopicWriterMessage("asd", seqno=123, created_at=datetime.datetime.now()),
  ydb.TopicWriterMessage(bytes([1, 2, 3]), seqno=124, created_at=datetime.datetime.now(),
  ])

Java (sync)



Message writes with storage confirmation on the server

Method send  blocks until a message is put into writers sending queue.
Putting a message into this queue means that the writer will do its best to deliver it.
For example, if a writing session will be accidentally closed, the writer will reconnect and try to resend this message on a new session.
But putting a message into message queue has no guarantees that this message will be written.
For example, there could be errors that will lead to writer shutdown before messages from the queue are sent.
If you have to be sure for each message that it is written, use async writer and check status returned by send  method.

writer.send(Message.of("11".getBytes()));

long timeoutSeconds = 5; // How long should we wait for a message to be put into sending buffer
try {
    writer.send(
            Message.newBuilder()
                    .setData("22".getBytes())
                    .setCreateTimestamp(Instant.now().minusSeconds(5))
                    .build(),
            timeoutSeconds,
            TimeUnit.SECONDS
    );
} catch (TimeoutException exception) {
    logger.error("Send queue is full. Couldn't put message into sending queue within {} seconds", timeoutSeconds);
} catch (InterruptedException | ExecutionException exception) {
    logger.error("Couldn't put the message into sending queue due to exception: ", exception);
}

Java (async)

Method send  puts a message into writer's sending queue.
Method returns CompletableFuture<WriteAck>  which allows checking if the message was really written.
In case if the queue is full, QueueOverflowException  exception will be thrown.
It is a way to signal a user that writing speed should be slowed down.
In this case a message write should be skipped or retried with exponential backoff.
Client buffer size can be also increased ( setMaxSendBufferMemorySize ) to be able to store more messages in memory before this exception is
thrown.

try {
    // Non-blocking. Throws QueueOverflowException if send queue is full
    writer.send(Message.of("33".getBytes()));
} catch (QueueOverflowException exception) {
    // Send queue is full. Need to retry with backoff or skip
}

C#

Asynchronous writing of a message to a topic.

var asyncWriteTask = writer.WriteAsync("Hello, Example YDB Topics!"); // Task<WriteResult>

C++
IWriteSession  interface allows getting server acknowledgments for writes.

Status of server-side message write is represented with TAcksEvent . One event can contain the statuses of several previously sent
messages.Status is one of the following: message write is confirmed ( EES_WRITTEN ), message is discarded as a duplicate of a previously written
message ( EES_ALREADY_WRITTEN ) or message is discarded because of failure ( EES_DISCARDED ).

Example of setting TAcksEvent handler for a write session:

auto settings = TWriteSessionSettings()
  // other settings are set here
  .EventHandlers(
    TWriteSessionSettings::TEventHandlers()
      .AcksHandler(
        [&](TWriteSessionEvent::TAcksEvent& event) {
          for (const auto& ack : event.Acks) {
            if (ack.State == TWriteAck::EEventState::EES_WRITTEN) {
              ackedSeqNo.insert(ack.SeqNo);
              std::cout << "Acknowledged message with seqNo " << ack.SeqNo << std::endl;
            }
          }
        }

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_message-writes-with-storage-confirmation-on-the-server


In this write session user does not receive TAcksEvent  events in the GetEvent  / GetEvents  loop. Instead, SDK will call given handler on every
acknowledgment coming from server. In the same way user can set up handlers for other types of events.

      )
  );

auto session = topicClient.CreateWriteSession(settings);

Go

When connected, you can specify the synchronous message write option: topicoptions.WithSyncWrite(true). Then Write will only return after
receiving a confirmation from the server that all messages passed in the call have been saved. If necessary, the SDK will reconnect and retry
sending messages as usual. In this mode, the context only controls the response time from the SDK, meaning the SDK will continue trying to send
messages even after the context is canceled.

producerAndGroupID := "group-id"
writer, _ := db.Topic().StartWriter(producerAndGroupID, "topicName",
  topicoptions.WithMessageGroupID(producerAndGroupID),
  topicoptions.WithSyncWrite(true),
)

err = writer.Write(ctx,
  topicwriter.Message{Data: strings.NewReader("1")},
  topicwriter.Message{Data: bytes.NewReader([]byte{1,2,3})},
  topicwriter.Message{Data: strings.NewReader("3")},
)
if err != nil {
  return err
}

Python

There are two ways to get a message write acknowledgement from the server:

write_with_ack(...) : Sends a message and waits for the acknowledgement of its delivery from the server. This method is slow when you
are sending multiple messages in a row.

# Put multiple messages to the internal buffer and then wait
# until all of them are delivered to the server.
for mess in messages:
    writer.write(mess)

writer.flush()

# You can send multiple messages and wait for an acknowledgment for the entire group.
writer.write_with_ack(["mess-1", "mess-2"])

# Waiting on sending each message: this method will return the result only after an
# acknowledgment from the server.
# This is the slowest message delivery option; use it when this mode is
# absolutely needed.
writer.write_with_ack("message")

Java (sync)

Blocking method flush()  waits until all the messages previously written to the internal buffer are acknowledged:

for (byte[] message : messages) {
    writer.send(Message.of(message));
}
writer.flush();

Java (async)

send  method returns CompletableFuture<WriteAck> .
Its successful completion means that the fact that this message is written is confirmed by server.
WriteAck  struct contains seqNo, offset and write status:

writer.send(Message.of(message))
        .whenComplete((result, ex) -> {
            if (ex != null) {
                logger.error("Exception on writing message message: ", ex);
            } else {
                switch (result.getState()) {
                    case WRITTEN:



Selecting a codec for message compression

For more details on using data compression for topics, see here.

                        WriteAck.Details details = result.getDetails();
                        StringBuilder str = new StringBuilder("Message was written successfully");
                        if (details != null) {
                            str.append(", offset: ").append(details.getOffset());
                        }
                        logger.debug(str.toString());
                        break;
                    case ALREADY_WRITTEN:
                        logger.warn("Message has already been written");
                        break;
                    default:
                        break;
                }
            }
        });

С#

Asynchronous writing of a message to a topic. If the internal buffer overflows, it waits for the buffer to be released before resending.

If the server is unavailable, messages may accumulate while waiting to be sent. In this case, you can pass a cancellation token
( CancellationToken ) to control waiting. However, if the user cancels the recorded message, it will still be canceled.

await writer.WriteAsync("Hello, Example YDB Topics!");

var writeCts = new CancellationTokenSource();
writeCts.CancelAfter(TimeSpan.FromSeconds(3));

await writer.WriteAsync("Hello, Example YDB Topics!", writeCts.Token);

C++

The message compression can be set on the write session creation with Codec  and CompressionLevel  settings. By default, GZIP codec is
chosen.

Example of creating a write session with no data compression:

Write session allows sending a message compressed with other codec. For this use WriteEncoded  method, specify codec used and original
message byte size. The codec must be allowed in topic settings.

auto settings = TWriteSessionSettings()
  // other settings are set here
  .Codec(ECodec::RAW);

auto session = topicClient.CreateWriteSession(settings);

Go

By default, the SDK selects the codec automatically based on topic settings. In automatic mode, the SDK first sends one group of messages with
each of the allowed codecs, then it sometimes tries to compress messages with all the available codecs, and then selects the codec that yields the
smallest message size. If the list of allowed codecs for the topic is empty, the SDK makes automatic selection between Raw and Gzip codecs.

If necessary, a fixed codec can be set in the connection options. It will then be used and no measurements will be taken.

producerAndGroupID := "group-id"
writer, _ := db.Topic().StartWriter(producerAndGroupID, "topicName",
  topicoptions.WithMessageGroupID(producerAndGroupID),
  topicoptions.WithCodec(topictypes.CodecGzip),
)

Python

By default, the SDK selects the codec automatically based on topic settings. In automatic mode, the SDK first sends one group of messages with
each of the allowed codecs, then it sometimes tries to compress messages with all the available codecs, and then selects the codec that yields the
smallest message size. If the list of allowed codecs for the topic is empty, the SDK makes automatic selection between Raw and Gzip codecs.

If necessary, a fixed codec can be set in the connection options. It will then be used and no measurements will be taken.

writer = driver.topic_client.writer(topic_path,
    codec=ydb.TopicCodec.GZIP,

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_codec
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_message-codec
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_start-writer


Writing messages in no-deduplication mode

Using message metadata feature

You can provide some metadata for any particular message when writing. This metadata can be a list of up to 100 key-value pairs per message.
All the metadata provided when writing a message is sent to a consumer with the message during reading.

)

Java

String producerAndGroupID = "group-id";
WriterSettings settings = WriterSettings.newBuilder()
        .setTopicPath(topicPath)
        .setProducerId(producerAndGroupID)
        .setMessageGroupId(producerAndGroupID)
        .setCodec(Codec.ZSTD)
        .build();

C++

C++

To take advantage of message metadata feature, use the Write()  method with TWriteMessage argument as below:

auto settings = TWriteSessionSettings()
    .Path(myTopicPath)
//set all oter settings;
;

auto session = topicClient.CreateWriteSession(settings);

TMaybe<TWriteSessionEvent::TEvent> event = session->GetEvent(/*block=*/true);
TWriteMessage message("This is yet another message").MessageMeta({
    {"meta-key", "meta-value"},
    {"another-key", "value"}
});

if (auto* readyEvent = std::get_if<TWriteSessionEvent::TReadyToAcceptEvent>(&*event)) {
    session->Write(std::move(event.ContinuationToken), std::move(message));
};

Java

Construct messages with the builder to take advantage of the message metadata feature. You can add MetadataItem  objects to a message. Each
item consists of a key of type String  and a value of type byte[] .

MetadataItem s can be set as a List :

Or each MetadataItem  can be added individually:

While reading, metadata can be received from a Message  with the getMetadataItems()  method:

List<MetadataItem> metadataItems = Arrays.asList(
        new MetadataItem("meta-key", "meta-value".getBytes()),
        new MetadataItem("another-key", "value".getBytes())
);
writer.send(
        Message.newBuilder()
                .setMetadataItems(metadataItems)
                .build()
);

writer.send(
        Message.newBuilder()
                .addMetadataItem(new MetadataItem("meta-key", "meta-value".getBytes()))
                .addMetadataItem(new MetadataItem("another-key", "value".getBytes()))
                .build()
);

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_writing-messages-in-no-deduplication-mode
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_messagemeta


Write in a transaction

Message message = reader.receive();
List<MetadataItem> metadata = message.getMetadataItems();

Python

To write a message that includes metadata, create the TopicWriterMessage  object with the metadata_items  argument as shown below:

While reading, retrieve metadata from the metadata_items  field of the PublicMessage  object:

message = ydb.TopicWriterMessage(data=f"message-data", metadata_items={"meta-key": "meta-value"})
writer.write(message)

message = reader.receive_message()
for meta_key, meta_value in message.metadata_items.items():
    print(f"{meta_key}: {meta_value}")

C#

await writer.WriteAsync(
    new Ydb.Sdk.Services.Topic.Writer.Message<string>("Hello Example YDB Topics!")
        { Metadata = { new Metadata("meta-key", "meta-value"u8.ToArray()) } }
);

C++

To write to a topic within a transaction, it is necessary to pass a transaction object reference to the Write  method of the writing session.

  auto tableSession = tableClient.GetSession().GetValueSync().GetSession();
  auto transaction = tableSession.BeginTransaction().GetValueSync().GetTransaction();
  NYdb::NTopic::TWriteMessage writeMessage("message");

  topicSession->Write(std::move(writeMessage), transaction);
  transaction.Commit().GetValueSync();

Go

To write to a topic within a transaction, create a transactional writer by calling TopicClient.StartTransactionalWriter with the tx  argument. Once
created, you can send messages as usual. There's no need to close the transactional writer manually, as it will be closed automatically when the
transaction ends.

Example on GitHub

err := db.Query().DoTx(ctx, func(ctx context.Context, tx query.TxActor) error {
  writer, err := db.Topic().StartTransactionalWriter(tx, topicName)
  if err != nil {
    return err
  }

  return writer.Write(ctx, topicwriter.Message{Data: strings.NewReader("asd")})
})

Python

To write to a topic within a transaction, create a transactional writer by calling topic_client.tx_writer  with the tx  argument. Once created,
you can send messages as usual. There's no need to close the transactional writer manually, as it will be closed automatically when the transaction
ends.

In the example below, there is no explicit call to tx.commit() ; it occurs implicitly upon the successful execution of the callee  lambda.

Example on GitHub

with ydb.QuerySessionPool(driver) as session_pool:

    def callee(tx: ydb.QueryTxContext):
        tx_writer: ydb.TopicTxWriter = driver.topic_client.tx_writer(tx, topic)

        for i in range(message_count):
            result_stream = tx.execute(query=f"select {i} as res;")
            for result_set in result_stream:

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_write-tx
https://pkg.go.dev/github.com/ydb-platform/ydb-go-sdk/v3/topic#Client.StartTransactionalWriter
https://github.com/ydb-platform/ydb-go-sdk/blob/master/examples/topic/topicwriter/topic_writer_transaction.go
https://github.com/ydb-platform/ydb-python-sdk/blob/main/examples/topic/topic_transactions_example.py


                message = str(result_set.rows[0]["res"])
                tx_writer.write(ydb.TopicWriterMessage(message))
                print(f"Message {message} was written with tx.")

    session_pool.retry_tx_sync(callee)

Python (asyncio)

To write to a topic within a transaction, create a transactional writer by calling topic_client.tx_writer  with the tx  argument. Once created,
you can send messages as usual. There's no need to close the transactional writer manually, as it will be closed automatically when the transaction
ends.

In the example below, there is no explicit call to tx.commit() ; it occurs implicitly upon the successful execution of the callee  lambda.

Example on GitHub

async with ydb.aio.QuerySessionPool(driver) as session_pool:

    async def callee(tx: ydb.aio.QueryTxContext):
        tx_writer: ydb.TopicTxWriterAsyncIO = driver.topic_client.tx_writer(tx, topic)

        for i in range(message_count):
            async with await tx.execute(query=f"select {i} as res;") as result_stream:
                async for result_set in result_stream:
                    message = str(result_set.rows[0]["res"])
                    await tx_writer.write(ydb.TopicWriterMessage(message))
                    print(f"Message {result_set.rows[0]['res']} was written with tx.")

    await session_pool.retry_tx_async(callee)

Java (sync)

Example on GitHub

Transaction can be set in the SendSettings  argument of the send  method while sending a message.
Such a message will be written on the transaction commit.

// creating a session in the table service
Result<Session> sessionResult = tableClient.createSession(Duration.ofSeconds(10)).join();
if (!sessionResult.isSuccess()) {
    logger.error("Couldn't get a session from the pool: {}", sessionResult);
    return; // retry or shutdown
}
Session session = sessionResult.getValue();
// creating a transaction in the table service
// this transaction is not yet active and has no id
TableTransaction transaction = session.createNewTransaction(TxMode.SERIALIZABLE_RW);

// get message text within the transaction
Result<DataQueryResult> dataQueryResult = transaction.executeDataQuery("SELECT \"Hello, world!\";")
        .join();
if (!dataQueryResult.isSuccess()) {
    logger.error("Couldn't execute DataQuery: {}", dataQueryResult);
    return; // retry or shutdown
}
// now the transaction is active and has an id

ResultSetReader rsReader = dataQueryResult.getValue().getResultSet(0);
byte[] message;
if (rsReader.next()) {
    message = rsReader.getColumn(0).getBytes();
} else {
    return; // retry or shutdown
}

writer.send(
        Message.of(message),
        SendSettings.newBuilder()
                .setTransaction(transaction)
                .build()
);

// flush to wait until all messages reach server
writer.flush();

Status commitStatus = transaction.commit().join();
analyzeCommitStatus(commitStatus);

https://github.com/ydb-platform/ydb-python-sdk/blob/main/examples/topic/topic_transactions_async_example.py
https://github.com/ydb-platform/ydb-java-examples/blob/develop/ydb-cookbook/src/main/java/tech/ydb/examples/topic/transactions/TransactionWriteSync.java


Note

Transaction requirements:

It should be an active transaction (that has an id) from one of YDB services. I.e., Table or Query.

Only the SERIALIZABLE_RW  transaction isolation level is supported in the Topic Service.

Java (async)

Example on GitHub

Transaction can be set in the SendSettings  argument of the send  method while sending a message.
Such a message will be written on the transaction commit.

// creating a session in the table service
Result<Session> sessionResult = tableClient.createSession(Duration.ofSeconds(10)).join();
if (!sessionResult.isSuccess()) {
    logger.error("Couldn't get a session from the pool: {}", sessionResult);
    return; // retry or shutdown
}
Session session = sessionResult.getValue();
// creating a transaction in the table service
// this transaction is not yet active and has no id
TableTransaction transaction = session.createNewTransaction(TxMode.SERIALIZABLE_RW);

// get message text within the transaction
Result<DataQueryResult> dataQueryResult = transaction.executeDataQuery("SELECT \"Hello, world!\";")
        .join();
if (!dataQueryResult.isSuccess()) {
    logger.error("Couldn't execute DataQuery: {}", dataQueryResult);
    return; // retry or shutdown
}
// now the transaction is active and has an id

ResultSetReader rsReader = dataQueryResult.getValue().getResultSet(0);
byte[] message;
if (rsReader.next()) {
    message = rsReader.getColumn(0).getBytes();
} else {
    return; // retry or shutdown
}

try {
    writer.send(Message.newBuilder()
                            .setData(message)
                            .build(),
                    SendSettings.newBuilder()
                            .setTransaction(transaction)
                            .build())
            .whenComplete((result, ex) -> {
                if (ex != null) {
                    logger.error("Exception while sending a message: ", ex);
                } else {
                    switch (result.getState()) {
                        case WRITTEN:
                            WriteAck.Details details = result.getDetails();
                            logger.info("Message was written successfully, offset: " + details.getOffset());
                            break;
                        case ALREADY_WRITTEN:
                            logger.info("Message has already been written");
                            break;
                        default:
                            break;
                    }
                }
            })
            // Waiting for the message to reach the server before committing the transaction
            .join();

    Status commitStatus = transaction.commit().join();
    analyzeCommitStatus(commitStatus);
} catch (QueueOverflowException exception) {
    logger.error("Queue overflow exception while sending a message{}: ", index, exception);

https://github.com/ydb-platform/ydb-java-sdk/blob/master/table/src/main/java/tech/ydb/table/transaction/TableTransaction.java
https://github.com/ydb-platform/ydb-java-sdk/blob/master/query/src/main/java/tech/ydb/query/QueryTransaction.java
https://github.com/ydb-platform/ydb-java-examples/blob/develop/ydb-cookbook/src/main/java/tech/ydb/examples/topic/transactions/TransactionWriteAsync.java


Reading messages

Connecting to a topic for message reads

Reading messages from a topic can be done by specifying a Consumer associated with that topic, as well as without a Consumer. If a Consumer is
not specified, the client application must calculate the offset for reading messages on its own. A more detailed example of reading without a
Consumer is discussed in the relevant section.

A Consumer can be created on creating or altering a topic.
Topic can have several Consumers and for each of them server stores its own reading progress.

Note

Transaction requirements:

It should be an active transaction (that has an id) from one of YDB services. I.e., Table or Query.

Only the SERIALIZABLE_RW  transaction isolation level is supported in the Topic Service.

    // Send queue is full. Need to retry with backoff or skip
}

C++

The read session object with IReadSession  interface is used to connect to one or more topics for reading.

For a full list of read session settings, see TReadSessionSettings  class in the source code.

To establish a connection to the existing my-topic  topic using the added my-consumer  consumer, use the following code:

auto settings = TReadSessionSettings()
    .ConsumerName("my-consumer")
    .AppendTopics("my-topic");

auto session = topicClient.CreateReadSession(settings);

Go

To establish a connection to the existing my-topic  topic using the added my-consumer  consumer, use the following code:

reader, err := db.Topic().StartReader("my-consumer", topicoptions.ReadTopic("my-topic"))
if err != nil {
    return err
}

Python

To establish a connection to the existing my-topic  topic using the added my-consumer  consumer, use the following code:

reader = driver.topic_client.reader(topic="my-topic", consumer="my-consumer")

Java (sync)

Reader settings initialization:

Sync reader creation:

After a reader is created, it has to be initialized. Sync reader has two methods for this:

init() : non-blocking, launches initialization in background and does not wait for it to finish.

ReaderSettings settings = ReaderSettings.newBuilder()
        .setConsumerName(consumerName)
        .addTopic(TopicReadSettings.newBuilder()
                .setPath(topicPath)
                .setReadFrom(Instant.now().minus(Duration.ofHours(24))) // Optional
                .setMaxLag(Duration.ofMinutes(30)) // Optional
                .build())
        .build();

SyncReader reader = topicClient.createSyncReader(settings);

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_reading
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_start-reader
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_no-consumer
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_create-topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_alter-topic
https://github.com/ydb-platform/ydb-java-sdk/blob/master/table/src/main/java/tech/ydb/table/transaction/TableTransaction.java
https://github.com/ydb-platform/ydb-java-sdk/blob/master/query/src/main/java/tech/ydb/query/QueryTransaction.java
https://github.com/ydb-platform/ydb/blob/d2d07d368cd8ffd9458cc2e33798ee4ac86c733c/ydb/public/sdk/cpp/client/ydb_topic/topic.h#L1344


initAndWait() : blocking, launches initialization and waits for it to finish.
If an error occurs during this process, exception will be thrown.

reader.init();

try {
    reader.initAndWait();
    logger.info("Init finished succsessfully");
} catch (Exception exception) {
    logger.error("Exception while initializing reader: ", exception);
    return;
}

Java (async)

Reader settings initialization:

For async reader, ReadEventHandlersSettings  also have to be provided with an implementation of ReadEventHandler .
It describes how events should be handled during reading.

Optionally, an executor for message handling can be also provided in ReadEventHandlersSettings .
To implement a Handler, default abstract class AbstractReadEventHandler  can be used.
It is enough to override the onMessages  method that describes message handling. Implementation example:

Async reader creation and initialization:

ReaderSettings settings = ReaderSettings.newBuilder()
        .setConsumerName(consumerName)
        .addTopic(TopicReadSettings.newBuilder()
                .setPath(topicPath)
                .setReadFrom(Instant.now().minus(Duration.ofHours(24))) // Optional
                .setMaxLag(Duration.ofMinutes(30)) // Optional
                .build())
        .build();

ReadEventHandlersSettings handlerSettings = ReadEventHandlersSettings.newBuilder()
    .setEventHandler(new Handler())
    .build();

private class Handler extends AbstractReadEventHandler {
    @Override
    public void onMessages(DataReceivedEvent event) {
        for (Message message : event.getMessages()) {
            StringBuilder str = new StringBuilder();
            logger.info("Message received. SeqNo={}, offset={}", message.getSeqNo(), message.getOffset());

            process(message);

            message.commit().thenRun(() -> {
                logger.info("Message committed");
            });
        }
    }
}

AsyncReader reader = topicClient.createAsyncReader(readerSettings, handlerSettings);
// Init in background
reader.init()
        .thenRun(() -> logger.info("Init finished successfully"))
        .exceptionally(ex -> {
            logger.error("Init failed with ex: ", ex);
            return null;
        });

С#

await using var reader = new ReaderBuilder<string>(driver)
{
    ConsumerName = "Consumer_Example",



Additional options are used to specify multiple topics and other parameters.
To establish a connection to the my-topic  and my-specific-topic  topics using the my-consumer  consumer and also set the time to start
reading messages, use the following code:

Reading messages

The server stores the consumer offset. After reading a message, the client should send a commit to the server. The consumer offset changes and
only uncommitted messages will be read in case of a new connection.

You can read messages without a commit as well. In this case, all uncommited messages, including those processed, will be read if there is a new
connection.

    SubscribeSettings = { new SubscribeSettings(topicName) }
}.Build();

C++

auto settings = TReadSessionSettings()
    .ConsumerName("my-consumer")
    .AppendTopics("my-topic")
    .AppendTopics(
        TTopicReadSettings("my-specific-topic")
            .ReadFromTimestamp(someTimestamp)
    );

auto session = topicClient.CreateReadSession(settings);

Go

reader, err := db.Topic().StartReader("my-consumer", []topicoptions.ReadSelector{
    {
        Path: "my-topic",
    },
    {
        Path:       "my-specific-topic",
        ReadFrom:   time.Date(2022, 7, 1, 10, 15, 0, 0, time.UTC),
    },
    },
)
if err != nil {
    return err
}

Python

This feature is under development.

Java

ReaderSettings settings = ReaderSettings.newBuilder()
        .setConsumerName(consumerName)
        .addTopic(TopicReadSettings.newBuilder()
                .setPath("my-topic")
                .build())
        .addTopic(TopicReadSettings.newBuilder()
                .setPath("my-specific-topic")
                .setReadFrom(Instant.now().minus(Duration.ofHours(24))) // Optional
                .setMaxLag(Duration.ofMinutes(30)) // Optional
                .build())
        .build();

C#

await using var reader = new ReaderBuilder<string>(driver)
{
    ConsumerName = "Consumer_Example",
    SubscribeSettings =
    {
        new SubscribeSettings(topicName),
        new SubscribeSettings(topicName + "_another") { ReadFrom = DateTime.Now }
    }
}.Build();

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_reading-messages
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_consumer-offset
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_commit
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_no-commit


Information about which messages have already been processed can be saved on the client side by sending the starting consumer offset to the
server when creating a new connection. This does not change the consumer offset on the server.

Data from topics can be read in the context of transactions. In this case, the reading offset will only advance when the transaction is committed. On
reconnect, all uncommitted messages will be read again.

Reading without a commit

Reading messages one by one

C++

The user processes several kinds of events in a loop: TDataReceivedEvent , TCommitOffsetAcknowledgementEvent ,
TStartPartitionSessionEvent , TStopPartitionSessionEvent , TPartitionSessionStatusEvent , TPartitionSessionClosedEvent  and
TSessionClosedEvent .

For each kind of event user can set a handler in read session settings before session creation. Also, a common handler can be set.

If handler is not set for a particular event, it will be delivered to SDK client via GetEvent  / GetEvents  methods. The WaitEvent  method allows
user to await for a next event in non-blocking way with TFuture<void>()  interface.

Go

The SDK receives data from the server in batches and buffers it. Depending on the task, the client code can read messages from the buffer one by
one or in batches.

Python

The SDK receives data from the server in batches and buffers it. Depending on the task, the client code can read messages from the buffer one by
one or in batches.

Java

The SDK receives data from the server in batches and buffers it. Depending on the task, the client code can read messages from the buffer one by
one or in batches.

C#

The SDK receives data from the server in batches and buffers it. Depending on the task, the client code can read messages from the buffer one by
one or in batches.

C++

Reading messages one-by-one is not supported in the C++ SDK. Class TDataReceivedEvent  represents a batch of read messages.

Go

func SimpleReadMessages(ctx context.Context, r *topicreader.Reader) error {
    for {
        mess, err := r.ReadMessage(ctx)
        if err != nil {
            return err
        }
        processMessage(mess)
    }
}

Python

while True:
    message = reader.receive_message()
    process(message)

Java (sync)

To read messages one-by-one without commit just do not call the commit  method on messages:

while(true) {
    Message message = reader.receive();
    process(message);
}

Java (async)

Reading messages one-by-one is not supported in async Reader.

C#

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_no-commit
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_reading-messages-one-by-one
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_client-commit
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_read-tx


Reading message batches

try
{
    while (!readerCts.IsCancellationRequested)
    {
        var message = await reader.ReadAsync(readerCts.Token);

        logger.LogInformation("Received message: [{MessageData}]", message.Data);
    }
}
catch (OperationCanceledException)
{
}

C++

One simple way to read messages is to use SimpleDataHandlers  setting when creating a read session. With it you only set a handler for a
TDataReceivedEvent . SDK will call it for each batch of messages that came from server. By default, SDK does not send back acknowledgments

of successful reads.

In this example client creates read session and just awaits session close in the main thread. All other event types are handled by SDK.

auto settings = TReadSessionSettings()
    .EventHandlers_.SimpleDataHandlers(
        [](TReadSessionEvent::TDataReceivedEvent& event) {
            std::cout << "Get data event " << DebugString(event);
        }
    );

auto session = topicClient.CreateReadSession(settings);

// Wait SessionClosed event.
ReadSession->GetEvent(/* block = */true);

Go

func SimpleReadBatches(ctx context.Context, r *topicreader.Reader) error {
    for {
        batch, err := r.ReadMessageBatch(ctx)
        if err != nil {
            return err
        }
        processBatch(batch)
    }
}

Python

while True:
  batch = reader.receive_batch()
  process(batch)

Java (sync)

Reading messages in batches is not supported in sync Reader.

Java (async)

To read messages without commit just do not call the commit  method:

private class Handler extends AbstractReadEventHandler {
    @Override
    public void onMessages(DataReceivedEvent event) {
        for (Message message : event.getMessages()) {
            process(message);
        }
    }
}

C#

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_reading-message-batches


Reading with a commit

Confirmation of message processing (commit) informs the server that the message from the topic has been processed by the recipient and does
not need to be sent anymore. When using acknowledged reading, it is necessary to confirm all received messages without skipping any. Message
commits on the server occur after confirming a consecutive interval of messages "without gaps," and the confirmations themselves can be sent in
any order.

For example, if messages 1, 2, 3 are received from the server, the program processes them in parallel and sends confirmations in the following
order: 1, 3, 2. In this case, message 1 will be committed first, and messages 2 and 3 will be committed only after the server receives confirmation of
the processing of message 2.

If a commit fails with an error, the application should log it and continue; it makes no sense to retry the commit. At this point, it is not known if the
message was actually confirmed.

Reading messages one by one with commits

try
{
    while (!readerCts.IsCancellationRequested)
    {
        var batchMessages = await reader.ReadBatchAsync(readerCts.Token);

        foreach (var message in batchMessages.Batch)
        {
            logger.LogInformation("Received message: [{MessageData}]", message.Data);
        }
    }
}
catch (OperationCanceledException)
{
}

C++

Reading messages one-by-one is not supported in the C++ SDK. Class TDataReceivedEvent  represents a batch of read messages.

Go

The Commit  call is fast by default, saving data into an internal buffer and returning control to the caller. The real message to the server is sent in
the background. To prevent losing the last commits, call the Reader.Close()  method before exiting the program.

func SimpleReadMessages(ctx context.Context, r *topicreader.Reader) error {
    for {
      mess, err := r.ReadMessage(ctx)
      if err != nil {
          return err
      }
      processMessage(mess)
      r.Commit(mess.Context(), mess)
    }
}

Python

The commit  call is fast, saving data into an internal buffer and returning control back to the caller. The real message to the server is sent in the
background. To prevent losing the last commits, you should call the Reader.Close()  method before exiting the program.

while True:
    message = reader.receive_message()
    process(message)
    reader.commit(message)

Java

To commit a message just call commit  method on it.
This method returns CompletableFuture<Void>  which successful completion means that the server confirmed commit.
In case of an error on commit do not retry it. Most likely, an error is caused be session shutdown.
The reader (maybe another one) will create a new session for this partition and the message will be read again.

message.commit()
       .whenComplete((result, ex) -> {
           if (ex != null) {
               // Read session was probably closed, there is nothing we can do here.
               // Do not retry this commit on the same message.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_commit
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_reading-messages-one-by-one-with-commits


Reading message batches with commits

               logger.error("exception while committing message: ", ex);
           } else {
               logger.info("message committed successfully");
           }
       });

C#

try
{
    while (!readerCts.IsCancellationRequested)
    {
        var message = await reader.ReadAsync(readerCts.Token);

        logger.LogInformation("Received message: [{MessageData}]", message.Data);

        try
        {
            await message.CommitAsync();
        }
        catch (ReaderException e)
        {
            logger.LogError(e, "Failed to commit a message");
        }
    }
}
catch (OperationCanceledException)
{
}

C++

Same as above example, when using SimpleDataHandlers  handlers you only set handler for a TDataReceivedEvent . SDK will call it for each
batch of messages that came from server. By setting commitDataAfterProcessing = true , you tell SDK to send back commits after executing a
handler for corresponding event.

auto settings = TReadSessionSettings()
    .EventHandlers_.SimpleDataHandlers(
        [](TReadSessionEvent::TDataReceivedEvent& event) {
            std::cout << "Get data event " << DebugString(event);
        }
        , /* commitDataAfterProcessing = */true
    );

auto session = topicClient.CreateReadSession(settings);

// Wait SessionClosed event.
ReadSession->GetEvent(/* block = */true);

Go

The Commit  call is fast by default, saving data into an internal buffer and returning control back to the caller. The real message to the server is sent
in the background. To prevent losing the last commits, you should call the Reader.Close()  method before exiting the program.

func SimpleReadMessageBatch(ctx context.Context, r *topicreader.Reader) error {
    for {
      batch, err := r.ReadMessageBatch(ctx)
      if err != nil {
          return err
      }
      processBatch(batch)
      r.Commit(batch.Context(), batch)
    }
}

Python

while True:
  batch = reader.receive_batch()
  process(batch)
  reader.commit(batch)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_reading-message-batches-with-commits
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_no-commit


Reading with consumer offset storage on the client side

Instead of committing messages, the client application may track reading progress on its own. In this case, it can provide a handler, which will be
called back on each partition read start. This handler may set a starting reading position for this partition.

The commit  call is fast, saving data into an internal buffer and returning control back to the caller. The real message to the server is sent in the
background. To prevent losing the last commits, you should call the Reader.Close()  method before exiting the program.

Java (sync)

Not relevant due to sync reader only reading messages one by one.

Java (async)

In onMessage  handler whole message batch in DataReceivedEvent  can be committed:

@Override
public void onMessages(DataReceivedEvent event) {
    for (Message message : event.getMessages()) {
        process(message);
    }
    event.commit()
           .whenComplete((result, ex) -> {
               if (ex != null) {
                   // Read session was probably closed, there is nothing we can do here.
                   // Do not retry this commit on the same event.
                   logger.error("exception while committing message batch: ", ex);
               } else {
                   logger.info("message batch committed successfully");
               }
           });
}

С#

try
{
    while (!readerCts.IsCancellationRequested)
    {
        var batchMessages = await reader.ReadBatchAsync(readerCts.Token);

        foreach (var message in batchMessages.Batch)
        {
            logger.LogInformation("Received message: [{MessageData}]", message.Data);
        }

        try
        {
            await batchMessages.CommitBatchAsync();
        }
        catch (ReaderException e)
        {
            logger.LogError(e, "Failed to commit a message");
        }
    }
}
catch (OperationCanceledException)
{
}

C++

The starting position of a specific partition read can be set during TStartPartitionSessionEvent  handling.
For this purpose, TStartPartitionSessionEvent::Confirm  has a readOffset  parameter.
Additionally, there is a commitOffset  parameter that tells the server to consider all messages with lesser offsets committed.

Setting handler example:

settings.EventHandlers_.StartPartitionSessionHandler(
    [](TReadSessionEvent::TStartPartitionSessionEvent& event) {
        auto readFromOffset = GetOffsetToReadFrom(event.GetPartitionId());
        event.Confirm(readFromOffset);
    }
);

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_client-commit
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_commit


Reading without a Consumer

Reading progress is usually saved on a server for each Consumer. However, such progress can't be saved if a reader is created without a specified
Consumer .

In the code above, GetOffsetToReadFrom  is part of the example, not SDK. Use your own method to provide the correct starting offset for a
partition with a given partition id.

Also, TReadSessionSettings  has a ReadFromTimestamp  setting for reading only messages newer than the given timestamp. This setting is
intended to skip some messages, not for precise reading start positioning. Several first-received messages may still have timestamps less than the
specified one.

Go

func ReadWithExplicitPartitionStartStopHandlerAndOwnReadProgressStorage(ctx context.Context, db ydb.Connection) error {
    readContext, stopReader := context.WithCancel(context.Background())
    defer stopReader()

    readStartPosition := func(
        ctx context.Context,
        req topicoptions.GetPartitionStartOffsetRequest,
    ) (res topicoptions.GetPartitionStartOffsetResponse, err error) {
        offset, err := readLastOffsetFromDB(ctx, req.Topic, req.PartitionID)
        res.StartFrom(offset)

        // Reader will stop if return err != nil
        return res, err
    }

    r, err := db.Topic().StartReader("my-consumer", topicoptions.ReadTopic("my-topic"),
        topicoptions.WithGetPartitionStartOffset(readStartPosition),
    )
    if err != nil {
        return err
    }

    go func() {
        <-readContext.Done()
        _ = r.Close(ctx)
    }()

    for {
        batch, err := r.ReadMessageBatch(readContext)
        if err != nil {
            return err
        }

        processBatch(batch)
        _ = externalSystemCommit(batch.Context(), batch.Topic(), batch.PartitionID(), batch.EndOffset())
    }
}

Python

This feature is under development.

Java

The starting offset for reading in Java can only be set for AsyncReader.
In StartPartitionSessionEvent , a StartPartitionSessionSettings  object with the desired ReadOffset can be passed to the confirm
method.
The offset that should be considered as committed can be set with the setCommittedOffset  method.

The setReadFrom  setting is used for reading only messages with write timestamps no less than the given one.

@Override
public void onStartPartitionSession(StartPartitionSessionEvent event) {
    event.confirm(StartPartitionSessionSettings.newBuilder()
            .setReadOffset(lastReadOffset) // Long
            .setCommitOffset(lastCommitOffset) // Long
            .build());
}

Java

To read without a Consumer, the withoutConsumer()  method should be called explicitly on the ReaderSettings  builder:

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_no-consumer


Reading in a transaction

In this case, reading progress on the server will be lost on partition session restart.
To avoid reading from the beginning each time, starting offsets should be set on each partition session start:

ReaderSettings settings = ReaderSettings.newBuilder()
        .withoutConsumer()
        .addTopic(TopicReadSettings.newBuilder()
                .setPath(TOPIC_NAME)
                .build())
        .build();

@Override
public void onStartPartitionSession(StartPartitionSessionEvent event) {
    event.confirm(StartPartitionSessionSettings.newBuilder()
            .setReadOffset(lastReadOffset) // the last offset read by this client, Long
            .build());
}

Python

To read without a Consumer , create a reader using the reader  method with specifying these arguments:

topic  - ydb.TopicReaderSelector  object with defined path  and partitions  list;

consumer  - should be None ;

event_handler  - inheritor of ydb.TopicReaderEvents.EventHandler  that implements the on_partition_get_start_offset  function.
This function is responsible for returning the initial offset for reading messages when the reader starts and during reconnections. The client
application must specify this offset in the parameter ydb.TopicReaderEvents.OnPartitionGetStartOffsetResponse.start_offset . The
function can also be implemented as asynchronous.

Example:

class CustomEventHandler(ydb.TopicReaderEvents.EventHandler):
    def on_partition_get_start_offset(self, event: ydb.TopicReaderEvents.OnPartitionGetStartOffsetRequest):
        return ydb.TopicReaderEvents.OnPartitionGetStartOffsetResponse(
            start_offset=0,
        )

reader = driver.topic_client.reader(
    topic=ydb.TopicReaderSelector(
        path="topic-path",
        partitions=[0, 1, 2],
    ),
    consumer=None,
    event_handler=CustomEventHandler(),
)

C++

Before reading messages, the client code must pass a transaction object reference to the reading session settings.

ReadSession->WaitEvent().Wait(TDuration::Seconds(1));

auto tableSettings = NYdb::NTable::TTxSettings::SerializableRW();
auto transactionResult = TableSession->BeginTransaction(tableSettings).GetValueSync();
auto Transaction = transactionResult.GetTransaction();

NYdb::NTopic::TReadSessionGetEventSettings topicSettings;
topicSettings.Block(false);
topicSettings.Tx(Transaction);

auto events = ReadSession->GetEvents(topicSettings);

for (auto& event : events) {
    // process the event and write results to a table
}

NYdb::NTable::TCommitTxSettings commitSettings;
auto commitResult = Transaction.Commit(commitSettings).GetValueSync();

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_read-tx


Warning

When processing events , you do not need to confirm processing for TDataReceivedEvent  events explicitly.

Confirmation of the TStopPartitionSessionEvent  event processing must be done after calling Commit .

std::optional<TStopPartitionSessionEvent> stopPartitionSession;

auto events = ReadSession->GetEvents(topicSettings);

for (auto& event : events) {
    if (auto* e = std::get_if<TStopPartitionSessionEvent>(&event) {
        stopPartitionSessionEvent = std::move(*e);
    } else {
        // process the event and write results to a table
    }
}

NYdb::NTable::TCommitTxSettings commitSettings;
auto commitResult = Transaction.Commit(commitSettings).GetValueSync();

if (stopPartitionSessionEvent) {
    stopPartitionSessionEvent->Commit();
}

Go

To read messages from a topic within a transaction, use the Reader.PopMessagesBatchTx method. It reads a batch of messages and adds their
commit to the transaction, so there's no need to commit them separately. The reader can be reused across different transactions. However, it's
important to commit transactions in the same order as the messages are read from the reader, as message commits in the topic must be performed
strictly in order. The simplest way to ensure this is by using the reader within a loop.

Example on GitHub

for {
  err := db.Query().DoTx(ctx, func(ctx context.Context, tx query.TxActor) error {
    batch, err := reader.PopMessagesBatchTx(ctx, tx) // the batch will be committed along with the transaction
    if err != nil {
      return err
    }

    return processBatch(ctx, batch)
  })
  if err != nil {
    handleError(err)
  }
}

Python

To read messages from a topic within a transaction, use the reader.receive_batch_with_tx  method. It reads a batch of messages and adds
their commit to the transaction, so there's no need to commit them separately. The reader can be reused across different transactions. However, it's
essential to commit transactions in the same order as the messages are read from the reader, as message commits in the topic must be performed
strictly in order - otherwise transaction will get an error during commit. The simplest way to ensure this is by using the reader within a loop.

Example on GitHub

with driver.topic_client.reader(topic, consumer) as reader:
    with ydb.QuerySessionPool(driver) as session_pool:
        for _ in range(message_count):

            def callee(tx: ydb.QueryTxContext):
                batch = reader.receive_batch_with_tx(tx, max_messages=1)
                print(f"Message {batch.messages[0].data.decode()} was read with tx.")

            session_pool.retry_tx_sync(callee)

Python (asyncio)

To read messages from a topic within a transaction, use the reader.receive_batch_with_tx  method. It reads a batch of messages and adds
their commit to the transaction, so there's no need to commit them separately. The reader can be reused across different transactions. However, it's
essential to commit transactions in the same order as the messages are read from the reader, as message commits in the topic must be performed
strictly in order - otherwise transaction will get an error during commit. The simplest way to ensure this is by using the reader within a loop.

https://pkg.go.dev/github.com/ydb-platform/ydb-go-sdk/v3/topic/topicreader#Reader.PopMessagesBatchTx
https://github.com/ydb-platform/ydb-go-sdk/blob/master/examples/topic/topicreader/topic_reader_transaction.go
https://github.com/ydb-platform/ydb-python-sdk/blob/main/examples/topic/topic_transactions_example.py


Example on GitHub

async with driver.topic_client.reader(topic, consumer) as reader:
    async with ydb.aio.QuerySessionPool(driver) as session_pool:
        for _ in range(message_count):

            async def callee(tx: ydb.aio.QueryTxContext):
                batch = await reader.receive_batch_with_tx(tx, max_messages=1)
                print(f"Message {batch.messages[0].data.decode()} was read with tx.")

            await session_pool.retry_tx_async(callee)

Java (sync)

Example on GitHub

A transaction can be set in ReceiveSettings  for the receive  method:

A message received this way will be automatically committed with the provided transaction and shouldn't be committed directly.
The receive  method sends the sendUpdateOffsetsInTransaction  request on the server to link the message offset with this transaction and
blocks until a response is received.

Note

Transaction requirements:

It should be an active transaction (that has an id) from one of YDB services. I.e., Table or Query.

Only the SERIALIZABLE_RW  transaction isolation level is supported in the Topic Service.

Message message = reader.receive(ReceiveSettings.newBuilder()
        .setTransaction(transaction)
        .build());

Java (async)

Example on GitHub

In the onMessages  callback, one or more messages can be linked with a transaction.
To do that request reader.updateOffsetsInTransaction  should be called. And transaction should not be committed until a response is received.
This method needs a partition offsets list as a parameter.
Such a list can be constructed manually or using the helper method getPartitionOffsets()  that Message  and DataReceivedEvent  both
provide.

@Override
public void onMessages(DataReceivedEvent event) {
    for (Message message : event.getMessages()) {
        // creating a session in the table service
        Result<Session> sessionResult = tableClient.createSession(Duration.ofSeconds(10)).join();
        if (!sessionResult.isSuccess()) {
            logger.error("Couldn't get a session from the pool: {}", sessionResult);
            return; // retry or shutdown
        }
        Session session = sessionResult.getValue();
        // creating a transaction in the table service
        // this transaction is not yet active and has no id
        TableTransaction transaction = session.createNewTransaction(TxMode.SERIALIZABLE_RW);

        // do something else in the transaction
        transaction.executeDataQuery("SELECT 1").join();
        // now the transaction is active and has an id
        // analyzeQueryResultIfNeeded();

        Status updateStatus = reader.updateOffsetsInTransaction(transaction,
                        message.getPartitionOffsets(), new UpdateOffsetsInTransactionSettings.Builder().build())
                // Do not commit a transaction without waiting for updateOffsetsInTransaction result to avoid a race 
condition
                .join();
        if (!updateStatus.isSuccess()) {
            logger.error("Couldn't update offsets in a transaction: {}", updateStatus);
            return; // retry or shutdown
        }

        Status commitStatus = transaction.commit().join();

https://github.com/ydb-platform/ydb-python-sdk/blob/main/examples/topic/topic_transactions_async_example.py
https://github.com/ydb-platform/ydb-java-examples/blob/develop/ydb-cookbook/src/main/java/tech/ydb/examples/topic/transactions/TransactionReadSync.java
https://github.com/ydb-platform/ydb-java-sdk/blob/master/table/src/main/java/tech/ydb/table/transaction/TableTransaction.java
https://github.com/ydb-platform/ydb-java-sdk/blob/master/query/src/main/java/tech/ydb/query/QueryTransaction.java
https://github.com/ydb-platform/ydb-java-examples/blob/develop/ydb-cookbook/src/main/java/tech/ydb/examples/topic/transactions/TransactionReadAsync.java


Processing a server read interrupt

YDB uses server-based partition balancing between clients. This means that the server can interrupt the reading of messages from random
partitions.

In case of a soft interruption, the client receives a notification that the server has finished sending messages from the partition and messages will no
longer be read. The client can finish processing messages and send a commit to the server.

In case of a hard interruption, the client receives a notification that it is no longer possible to work with partitions. The client must stop processing
the read messages. Uncommited messages will be transferred to another consumer.

Soft reading interruption

Note

Transaction requirements:

It should be an active transaction (that has an id) from one of YDB services. I.e., Table or Query.

Only the SERIALIZABLE_RW  transaction isolation level is supported in the Topic Service.

        analyzeCommitStatus(commitStatus);
    }
}

C++

The TStopPartitionSessionEvent  class is used for soft reading interruption. It helps user to stop message processing gracefully.

Example of event loop fragment:

auto event = ReadSession->GetEvent(/*block=*/true);
if (auto* stopPartitionSessionEvent = std::get_if<TReadSessionEvent::TStopPartitionSessionEvent>(&*event)) {
    stopPartitionSessionEvent->Confirm();
} else {
  // other event types
}

Go

The client code immediately receives all messages from the buffer (on the SDK side) even if they are not enough to form a batch during batch
processing.

r, _ := db.Topic().StartReader("my-consumer", nil,
    topicoptions.WithBatchReadMinCount(1000),
)

for {
    batch, _ := r.ReadMessageBatch(ctx) // <- if partition soft stop batch can be less, then 1000
    processBatch(batch)
    _ = r.Commit(batch.Context(), batch)
}

Python

No special processing is required.

while True:
  batch = reader.receive_batch()
  process(batch)
  reader.commit(batch)

Java (sync)

Not relevant due to not being possible to change the way of handling such events.
Client will automatically respond to server that it is ready to stop.

Java (async)
onStopPartitionSession(StopPartitionSessionEvent event)  handler should be overridden to handle this event:

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_stop
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_soft-stop
https://github.com/ydb-platform/ydb-java-sdk/blob/master/table/src/main/java/tech/ydb/table/transaction/TableTransaction.java
https://github.com/ydb-platform/ydb-java-sdk/blob/master/query/src/main/java/tech/ydb/query/QueryTransaction.java


Hard reading interruption

@Override
public void onStopPartitionSession(StopPartitionSessionEvent event) {
    logger.info("Partition session {} stopped. Committed offset: {}", event.getPartitionSessionId(),
            event.getCommittedOffset());
    // This event means that no more messages will be received by server
    // Received messages still can be read from ReaderBuffer
    // Messages still can be committed, until confirm() method is called

    // Confirm that session can be closed
    event.confirm();
}

C++

The hard interruption of reading messages is implemented using an TPartitionSessionClosedEvent  event. It can be received either as soft
interrupt confirmation response, or in the case of lost connection. The user can find out the reason for session closing using the GetReason
method.

Example of event loop fragment:

auto event = ReadSession->GetEvent(/*block=*/true);
if (auto* partitionSessionClosedEvent = std::get_if<TReadSessionEvent::TPartitionSessionClosedEvent>(&*event)) {
    if (partitionSessionClosedEvent->GetReason() == TPartitionSessionClosedEvent::EReason::ConnectionLost) {
        std::cout << "Connection with partition was lost" << std::endl;
    }
} else {
  // other event types
}

Go

When reading is interrupted, the message or message batch context is canceled.

ctx := batch.Context() // batch.Context() will cancel if partition revoke by server or connection broke
if len(batch.Messages) == 0 {
    return
}

buf := &bytes.Buffer{}
for _, mess := range batch.Messages {
    buf.Reset()
    _, _ = buf.ReadFrom(mess)
    _, _ = io.Copy(buf, mess)
    writeMessagesToDB(ctx, buf.Bytes())
}

Python

In this example, processing of messages within the batch will stop if the partition is reassigned during operation. This kind of optimization requires
that you run extra code on the client side. In simple cases when processing of reassigned partitions is not a problem, you may skip this
optimization.

def process_batch(batch):
    for message in batch.messages:
        if not batch.alive:
            return False
        process(message)
    return True

batch = reader.receive_batch()
if process_batch(batch):
    reader.commit(batch)

Java (sync)

Not relevant due to not being possible to change the way of handling such events.

Java (async)

@Override
public void onPartitionSessionClosed(PartitionSessionClosedEvent event) {

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_hard-stop


Topic autoscaling

Commit outside the reader

Most often, committing is conveniently done within the reader that has read the messages. However, there are scenarios where committing needs
to be performed by a separate process. In such cases, a method of committing outside the reader is necessary.

    logger.info("Partition session {} is closed.", event.getPartitionSession().getPartitionId());
}

Python

Autoscaling of a topic can be enabled during its creation using the auto_partitioning_settings  argument of create_topic :

Changes to an existing topic can be made using the alter_auto_partitioning_settings  argument of alter_topic :

The SDK supports two topic reading modes with autoscaling enabled: full support mode and compatibility mode. The reading mode can be set in
the auto_partitioning_support  argument when creating the reader. Full support mode is used by default.

From a practical perspective, these modes do not differ for the end user. However, the full support mode differs from the compatibility mode in terms
of who guarantees the order of reading—the client or the server. Compatibility mode is achieved through server-side processing and generally
operates slower.

    driver.topic_client.create_topic(
        topic,
        consumers=[consumer],
        min_active_partitions=10,
        max_active_partitions=100,
        auto_partitioning_settings=ydb.TopicAutoPartitioningSettings(
            strategy=ydb.TopicAutoPartitioningStrategy.SCALE_UP,
            up_utilization_percent=80,
            down_utilization_percent=20,
            stabilization_window=datetime.timedelta(seconds=300),
        ),
    )

    driver.topic_client.alter_topic(
        topic_path,
        alter_auto_partitioning_settings=ydb.TopicAlterAutoPartitioningSettings(
            set_strategy=ydb.TopicAutoPartitioningStrategy.SCALE_UP,
            set_up_utilization_percent=80,
            set_down_utilization_percent=20,
            set_stabilization_window=datetime.timedelta(seconds=300),
        ),
    )

reader = driver.topic_client.reader(
    topic,
    consumer,
    auto_partitioning_support=True, # Full support is enabled
)

# or

reader = driver.topic_client.reader(
    topic,
    consumer,
    auto_partitioning_support=False, # Compatibility mode is enabled
)

Python

Commit outside the reader is done using the topic_client.commit_offset  method:

driver.topic_client.commit_offset(
    topic_path,
    consumer_name,
    partition_id,
    offset,
)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_autoscaling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_commit-outside-the-reader


Working with coordination nodes
This article describes how to use the YDB SDK to coordinate the work of multiple client application instances using coordination nodes and their
semaphores.

Creating a coordination node

Coordination nodes are created in YDB databases in the same namespace as other schema objects, such as tables and topics.

Working with sessions

Creating a session

To start working with coordination nodes, a client must establish a session within which it will perform all operations with the coordination node.

Go

err := db.Coordination().CreateNode(ctx,
    "/path/to/mynode",
)

C++

When creating a node, you can optionally specify TNodeSettings  with the following settings:

ReadConsistencyMode  - defaults to RELAXED , allowing the reading of potentially outdated values during leader transitions. You can optionally
enable the STRICT  mode, where all reads are processed through the consensus algorithm, ensuring the most recent value is returned, albeit
at a higher cost.

AttachConsistencyMode  - defaults to STRICT , requiring the consensus algorithm for session recovery. Optionally, the RELAXED  mode can
be enabled for session recovery during failures, bypassing this requirement. This mode may be necessary for a large number of clients,
facilitating session recovery without consensus, which maintains overall correctness but may lead to outdated reads during leader transitions
and session expiration in problematic scenarios.

SelfCheckPeriod  (default 1 second) - the interval at which the service performs self-liveness checks. It is not recommended to change this
setting except under special circumstances.

A larger value reduces server load but increases the delay in detecting leader changes and informing the service.

A smaller value increases server load and improves problem detection speed, but may result in false positives when the service
incorrectly identifies issues.

SessionGracePeriod  (default 10 seconds) - the duration during which a new leader refrains from closing existing open sessions, prolonging
their validity.

A smaller value reduces the window during which sessions from non-existent clients, which failed to report their absence during leader
changes, hold semaphores and block other clients.
A smaller value also increases the likelihood of false positives, where a living leader might terminate itself as a precaution, uncertain if this
period has concluded on a potential new leader.

This value must be strictly greater than SelfCheckPeriod .

TClient client(driver);
auto status = client
    .CreateNode("/path/to/mynode")
    .ExtractValueSync();
Y_ABORT_UNLESS(status.IsSuccess());

Go

session, err := db.Coordination().CreateSession(ctx,
    "/path/to/mynode", // Coordination Node name in the database
)

C++

When establishing a session, you can optionally pass a TSessionSettings  structure with the following settings:

Description  - a text description of the session, displayed in internal interfaces and can be useful for problem diagnosis.

OnStateChanged  - called on significant changes during the session's life, passing the corresponding state:

TClient client(driver);
const TSession& session = client
   .StartSession("/path/to/mynode")
   .ExtractValueSync()
   .ExtractResult();

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_coordination
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_coordination_creating-a-coordination-node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_coordination_session
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_coordination_create-session
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_coordination-node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic


Session control

It's important for the client application to monitor the session state, as it can only rely on the state of captured semaphores while the session is
alive. When the session ends by client or server initiative, the client can no longer assume that other clients in the cluster haven't captured its
semaphores and changed their state.

Working with semaphores

Creating a semaphore

When creating a semaphore, you can specify its limit. The limit determines the maximum value to which it can be increased. Calls attempting to
increase the semaphore value above this limit will wait until their increase requests can be fulfilled without exceeding the semaphore's limit.

Acquiring a semaphore

To acquire a semaphore, the client must call the AcquireSemaphore  method and wait for a special Lease  object. This object represents
confirmation that the semaphore value was successfully increased and can be considered as such until explicit release of such semaphore or
termination of the session in which such confirmation was received.

ATTACHED  - the session is connected and operating in normal mode.

DETACHED  - the session temporarily lost connection with the service but can still be restored.

EXPIRED  - the session lost connection with the service and cannot be restored.

OnStopped  - called when the session stops attempting to restore the connection with the service, which can be useful for establishing a new
connection.

Timeout  - the maximum timeout during which the session can be restored after losing connection with the service.

Go

In Go SDK, the session context session.Context()  is used to track such situations, which terminates along with the session. The SDK can
handle transport-level errors on its own and re-establish connection with the service, trying to restore the session if still possible. Thus, the client
only needs to monitor the session context to react timely to its loss.

C++

In the C++ SDK, an active session continuously maintains and automatically re-establishes the connection with the YDB cluster in the background.

Go

err := session.CreateSemaphore(ctx,
    "my-semaphore", // semaphore name
    10              // semaphore limit
)

С++

You can also pass a string that will be stored with the semaphore and returned when it's captured:

session
    .CreateSemaphore(
        "my-semaphore",  // semaphore name
        10               // semaphore limit
    )
    .ExtractValueSync()
    .ExtractResult();

session
    .CreateSemaphore(
        "my-semaphore",  // semaphore name
        10,              // semaphore limit
        "my-data"        // semaphore data
    )
    .ExtractValueSync()
    .ExtractResult();

Go

lease, err := session.AcquireSemaphore(ctx,
    "my-semaphore",  // semaphore name
    5,              // value to increase semaphore by
)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_coordination_session-control
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_coordination_semaphore
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_coordination_create-semaphore
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_coordination_acquire-semaphore


The taken value of an acquired semaphore can be decreased (but not increased) by calling the AcquireSemaphore  method again with a smaller
value.

Updating semaphore data

Using the UpdateSemaphore  method, you can update (replace) the semaphore data that was attached during its creation.

This call doesn't require acquiring the semaphore and doesn't lead to it. If you need only one specific client to update the data, this must be
explicitly ensured, for example, by acquiring the semaphore, updating the data, and releasing the semaphore back.

Getting semaphore data

Similar to the session, the Lease  object also has a context that terminates at one of these moments.

To cancel waiting for semaphore acquisition, it's sufficient to cancel the passed context ctx .

C++

When acquiring, you can optionally pass a TAcquireSemaphoreSettings  structure with the following settings:

Count  - value by which the semaphore is increased upon acquisition.

Data  - additional data that can be put into the semaphore.

OnAccepted  - called when the operation is queued. For example, if the semaphore couldn't be acquired immediately.

Won't be called if the semaphore is acquired immediately.

It's important to consider that the call can happen in parallel with the TFuture  result.

Timeout  - maximum time during which the operation can stay in the queue on the server.

Operation will return false  if the semaphore couldn't be acquired within Timeout  after being added to the queue.

With Timeout  set to 0, the operation works like TryAcquire , i.e., the semaphore will either be acquired atomically and the operation
will return true , or the operation will return false  without using queues.

Ephemeral  - if true , then the name is an ephemeral semaphore. Such semaphores are automatically created at first Acquire  and
automatically deleted with the last Release .

Shared()  - alias for setting Count = 1 , acquiring semaphore in shared mode.

Exclusive()  - alias for setting Count = max , acquiring semaphore in exclusive mode. (For semaphores created with limit Max<ui64>() .)

session
    .AcquireSemaphore(
        "my-semaphore",                       // semaphore name
        TAcquireSemaphoreSettings().Count(5)  // value to increase semaphore by
    )
    .ExtractValueSync()
    .ExtractResult();

Go

err := session.UpdateSemaphore(
    "my-semaphore",                                   // semaphore name
    options.WithUpdateData([]byte("updated-data")),   // new semaphore data
)

C++

session
    .UpdateSemaphore(
        "my-semaphore",  // semaphore name
        "updated-data"   // new semaphore data
    )
    .ExtractValueSync()
    .ExtractResult();

Go

description, err := session.DescribeSemaphore(
    "my-semaphore"                                // semaphore name
    options.WithDescribeOwners(true), // to get list of owners
    options.WithDescribeWaiters(true), // to get list of waiters
)

C++

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_coordination_update-semaphore
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_coordination_describe-semaphore


Releasing a semaphore

Important implementation details

The AcquireSemaphore  and ReleaseSemaphore  operations are idempotent. When AcquireSemaphore  is invoked on a semaphore, subsequent
calls to AcquireSemaphore  only adjust the acquisition parameters. For instance, if AcquireSemaphore  is called with count=10 , the operation
might be queued. You can call AcquireSemaphore  again with count=9  before or after successful acquisition, reducing the number of acquired
units. The new operation replaces the old one, which will complete with an ABORTED  code if it hasn't completed successfully yet. The queue
position remains unchanged despite replacing one AcquireSemaphore  operation with another.

Both AcquireSemaphore  and ReleaseSemaphore  operations return a bool  indicating whether the semaphore state was altered. For example,
AcquireSemaphore  might return false  if the semaphore couldn't be acquired within the Timeout  period because it was acquired by another

entity. Similarly, ReleaseSemaphore  might return false  if the semaphore isn't acquired within the current session.

A queued AcquireSemaphore  operation can be prematurely terminated by calling ReleaseSemaphore . Regardless of how many
AcquireSemaphore  calls are made for a specific semaphore within one session, a single ReleaseSemaphore  call releases it. Thus,
AcquireSemaphore  and ReleaseSemaphore  operations cannot function as Acquire / Release  on a recursive mutex.

When getting information about a semaphore, you can optionally pass a TDescribeSemaphoreSettings  structure with the following settings:

OnChanged  - called once after data changes on the server (with a bool  parameter, if true  - the call occurred due to some changes, if
false  - it's a false call and you need to repeat DescribeSemaphore  to restore the subscription).

WatchData  - call OnChanged  when semaphore data changes.

WatchOwners  - call OnChanged  when semaphore owners change.

IncludeOwners  - return the list of owners in the results.

IncludeWaiters  - return the list of waiters in the results.

The call result is a structure with the following fields:

Name  - semaphore name.

Data  - semaphore data.

Count  - the current value of the semaphore.

Limit  - the limit specified when creating the semaphore.

Owners  - list of semaphore owners.

Waiters  - list of clients waiting in the semaphore queue.

Ephemeral  - whether the semaphore is ephemeral.

The Owners  and Waiters  fields in the result contain a list of structures with the following fields:

OrderId  - sequence number of the acquire operation on the semaphore (can be used for identification, for example if OrderId  changed, it
means the session called ReleaseSemaphore  and a new AcquireSemaphore ).

SessionId  - identifier of the session that made this AcquireSemaphore  call.

Timeout  - timeout value used in the AcquireSemaphore  call for queued operations.

Count  - value requested in AcquireSemaphore .

Data  - data specified in AcquireSemaphore .

session
    .DescribeSemaphore(
        "my-semaphore"  // semaphore name
    )
    .ExtractValueSync()
    .ExtractResult();

Go

To release a semaphore acquired in a session, call the Release  method on the Lease  object.

err := lease.Release()

C++

session
    .ReleaseSemaphore(
        "my-semaphore"  // semaphore name
    )
    .ExtractValueSync()
    .ExtractResult();

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_coordination_release-semaphore
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_coordination_important-implementation-details


The DescribeSemaphore  operation with WatchData  or WatchOwners  flags set establishes a subscription for semaphore changes. Any previous
subscription to the same semaphore within the session is canceled, triggering OnChanged(false) . It is advisable to disregard OnChanged  from
earlier DescribeSemaphore  calls if a new replacing call is made, for instance, by tracking a current call ID.

The OnChanged(false)  call might occur not only due to cancellation by a new DescribeSemaphore  but also for various reasons, such as
temporary connection loss between the gRPC client and server, temporary connection loss between the gRPC server and the current service
leader, or service leader changes. This happens at the slightest suspicion that a notification might have been lost. To restore the subscription, client
code must issue a new DescribeSemaphore  call, properly managing the situation where the result of the new call might differ (for example, if the
notification was indeed lost).

Examples

Distributed lock

Leader election

Service discovery

Configuration publication

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_coordination_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_distributed-lock
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_leader-election
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_service-discovery
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_config-publication


Handling errors
You need to handle errors properly when using the YDB SDK.

Errors can be divided into three categories:

Temporary failures (retryable). Such errors include a short-term loss of network connectivity, temporary unavailability, overload of a YDB
subsystem, or a failure of YDB to respond to a query within the set timeout. If one of these errors occurs, retrying the failed query is likely to be
successful after some time.

Errors that cannot be fixed with a retry (non-retryable). Such errors are caused by incorrectly written queries, YDB internal errors, or queries
that mismatch the data schema. Retrying such queries will not resolve the issue. This situation requires developer attention.

Errors that can presumably be fixed with a retry after the client application response (conditionally retryable). Such errors include no
response within the set timeout or an authentication request. Only idempotent operations can be fixed with a retry.

Handling retryable errors

The YDB SDK provides a built-in mechanism for handling temporary failures. By default, the SDK uses the recommended retry policy, which can be
changed to meet the requirements of the client application. YDB returns status codes that let you determine whether a retry is appropriate and
which interval to select.

You should retry an operation only if an error refers to a temporary failure. Do not retry invalid operations, such as inserting a row with an existing
primary key value into a table or inserting data that mismatches the table schema.

It is extremely important to optimize the number of retries and the interval between them. An excessive number of retries and too short an interval
between them result in excessive load. An insufficient number of retries prevents the operation from completing.

The built-in retry mechanisms in YDB SDKs use the following backoff strategies depending on the returned status code:

Instant retry – Retries are made immediately.

Fast exponential backoff – The initial interval is several milliseconds. For each subsequent attempt, the interval increases exponentially.

Slow exponential backoff – The initial interval is several seconds. For each subsequent attempt, the interval increases exponentially.

When selecting an interval manually, the following strategies are usually used:

Exponential backoff – For each subsequent attempt, the interval increases exponentially.

Intervals in increments – For each subsequent attempt, the interval increases in certain increments.

Constant intervals – Retries are made at the same intervals.
Instant retry – Retries are made immediately.

Random selection – Retries are made after a randomly selected time interval.

When selecting an interval and the number of retries, consider the YDB status codes.

Do not use endless retries, as this may result in excessive load.

Do not repeat instant retries more than once.

For code samples, see Retrying.

Status codes

When an error occurs, the YDB SDK returns an error object that includes status codes. The returned status code may come from the YDB server,
gRPC transport, or the SDK itself.

Status codes within the range of 400000-400999 are YDB server codes that are identical for all YDB SDKs. Refer to Status codes from the YDB
server.

Status codes within the range of 401000-401999 are SDK-specific. For more information about SDK-specific codes, refer to the corresponding SDK
documentation.

For more information about gRPC status codes, see the gRPC documentation.

Logging errors

When using the SDK, we recommend logging all errors and exceptions:

Log the number of retries made. An increase in the number of regular retries often indicates issues.

Log all errors, including their types, termination codes, and causes.

Log the total operation execution time, including operations that terminate after retries.

See also

gRPC status codes

YDB server status codes

Questions and answers: Errors

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_error_handling_handling-retryable-errors
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_error_handling_status-codes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_error_handling_log-errors
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_error_handling_see-also
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_retry
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_error_handling_status-codes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_retry
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes
https://grpc.io/docs/guides/status-codes/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_errors


Comparison of SDK features
This section allows you to compare the capabilities of the YDB SDK, which are implemented for different programming languages.

Common features

Client-side balancing

Credentials providers

Support for YDB data types

YDB gRPC services clients

Discovery

Query

Scheme

Table

Operation

ScriptingYQL

Coordination

Topic

Ratelimiter

Observability

Feature C++ Python Go Java NodeJS C# Rust PHP

support connection string 
'grpc[s]://endpoint:port/database'

SSL/TLS support (system 
certificates)

SSL/TLS support (custom 
certificates)

Configure/enable GRPC 
KeepAlive (keeping the 
connection alive in the 
background)

Regular SLO testing on the 
latest code version

Issue templates on GitHub

Feature C++ Python Go Java NodeJS C# Rust PHP

Load balancer 
initialization through 
Discovery/ListEndpoints

Disable client-side load 
balancing (all requests 
to the initial Endpoint)

Background 
Discovery/ListEndpoints 
(by default, once a 
minute)

Support for multiple IP 
addresses in the initial 
Endpoint DNS record, 
Endpoint DNS record, 
some of which may not 
be available (DNS load 
balancing)

Connection 
pessimization on 
transport errors

Forced 
Discovery/ListEndpoints 
if more than half of the 
nodes are pessimized

Automatic detection of 
the nearest 
DC/availability zone by 
TCP pings

Automatic detection of 
the nearest 
DC/availability zone by 
Discovery/ListEndpoints 
response

Uniform random 
selection of nodes 
(default)

Load balancing across 
all nodes of all DCs 
(default)

Load balancing across 
all nodes of a particular 
DC/availability zone (for 
example, “a”, “vla”)

Load balancing across 
all nodes of all local 
DCs

Feature C++ Python Go Java NodeJS C# Rust PHP

Anonymous 
(default)

Static (user - 
password)

Token: IAM, 
Access token

Service 
account 
(Yandex.Cloud 
specific)

Metadata 
(Yandex.Cloud 
specific)

Feature C++ Python Go Java NodeJS C# Rust PHP

Int/Uint(8,16,32,64)

Int128, UInt128

Float, Double

Bool

String, Bytes

Utf8, Text

NULL, Optional, Void

Struct

List

Set

Tuple

Variant<Struct>,Variant<Tuple>

Date, DateTime, Timestamp, 
Interval

TzDate, TzDateTime, 
TzTimestamp

DyNumber

Decimal (120 bits)

Json, JsonDocument, Yson

Wide date types (Date32, 
Datetime64, Timestamp64, 
Interval64)

Feature C++ Python Go Java NodeJS C# Rust PHP

ListEndpoints

WhoAmI
Feature C++ Python Go Java NodeJS C# Rust PHP

Session pool

Limit the number of 
concurrent sessions 
on the client

Minimum number of 
sessions in the pool

Warm up the pool to 
the specified 
number of sessions 
when the pool is 
created

Background session 
attach stream used 
for clear pool from 
bad sessions

Retryer on the 
session pool (a 
repeat object is a 
session)

Retryer on the 
session pool (a 
repeat object is a 
transaction)

Feature C++ Python Go Java NodeJS C# Rust PHP

MakeDirectory

RemoveDirectory

ListDirectory

ModifyPermissions

DescribePath

Feature C++ Python Go Java NodeJS C# Rust PHP

Session pool

Limit the number of concurrent 
sessions on the client

Minimum number of sessions in 
the pool

Warm up the pool to the specified 
number of sessions when the 
pool is created

Background KeepAlive for idle 
sessions in the pool

Background closing of idle 
sessions in the pool (redundant 
sessions)

Automatic dumping of a session 
from the pool in case of 
BAD_SESSION/SESSION_BUS
Y errors

Storage of sessions for possible 
future reuse

Retryer on the session pool (a 
repeat object is a session)

Feature C++ Python Go Java NodeJS C# Rust PHP

Consumed 
Units from 
metadata 
of a 
response to 
a grpc-
request 
request (for 
the user to 
obtain this)

Obtaining 
OperationId 
of the 
operation 
for a long-
polling 
status of 
operation 
execution

Feature C++ Python Go Java NodeJS C# Rust PHP

ExecuteYql

ExplainYql

StreamExecuteYql

Feature C++ Python Go Java NodeJS C# Rust PHP

CreateNode

AlterNode

DropNode

DescribeNode

Session 
(leader 
election, 
distributed 
lock)

Feature C++ Python Go Java NodeJS C# Rust PHP

CreateTopic

DescribeTopic

AlterTopic

DropTopic

Feature C++ Python Go Java NodeJS C# Rust PHP

CreateResource

AlterResource
Feature C++ Python Go Java NodeJS C# Rust PHP

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_feature-parity
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_feature-parity_common-features
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_feature-parity_client-side-balancing
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_feature-parity_credentials-providers
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_feature-parity_support-for-ydb-data-types
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_feature-parity_ydb-grpc-services-clients
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_feature-parity_discovery
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_feature-parity_query
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_feature-parity_scheme
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_feature-parity_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_feature-parity_operation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_feature-parity_scriptingyql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_feature-parity_coordination
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_feature-parity_topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_feature-parity_ratelimiter
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_feature-parity_observability
https://github.com/ydb-platform/ydb-cpp-sdk/issues/491
https://github.com/ydb-platform/ydb-python-sdk/issues/651
https://github.com/ydb-platform/ydb-go-sdk/issues/1771
https://github.com/ydb-platform/ydb-java-sdk/issues/460
https://github.com/ydb-platform/ydb-js-sdk/issues/513
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/401
https://github.com/ydb-platform/ydb-rs-sdk/issues/331
https://github.com/ydb-platform/ydb-php-sdk/issues/238
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/312
https://github.com/ydb-platform/ydb-rs-sdk/issues/270
https://github.com/ydb-platform/ydb-java-sdk/issues/439
https://github.com/ydb-platform/ydb-js-sdk/issues/499
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/313
https://github.com/ydb-platform/ydb-rs-sdk/issues/271
https://github.com/ydb-platform/ydb-python-sdk/issues/600
https://github.com/ydb-platform/ydb-js-sdk/issues/446
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/314
https://github.com/ydb-platform/ydb-rs-sdk/issues/235
https://github.com/ydb-platform/ydb-php-sdk/issues/155
https://github.com/ydb-platform/ydb-cpp-sdk/issues/452
https://github.com/ydb-platform/ydb-python-sdk/issues/601
https://github.com/ydb-platform/ydb-java-sdk/issues/394
https://github.com/ydb-platform/ydb-rs-sdk/issues/272
https://github.com/ydb-platform/ydb-cpp-sdk/issues/467
https://github.com/ydb-platform/ydb-python-sdk/issues/591
https://github.com/ydb-platform/ydb-java-sdk/issues/395
https://github.com/ydb-platform/ydb-js-sdk/issues/447
https://github.com/ydb-platform/ydb-rs-sdk/issues/273
https://github.com/ydb-platform/ydb-php-sdk/issues/156
https://github.com/ydb-platform/ydb-cpp-sdk/issues/469
https://github.com/ydb-platform/ydb-java-sdk/issues/440
https://github.com/ydb-platform/ydb-js-sdk/issues/448
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/311
https://github.com/ydb-platform/ydb-rs-sdk/issues/233
https://github.com/ydb-platform/ydb-php-sdk/issues/196
https://github.com/ydb-platform/ydb-php-sdk/issues/201
https://github.com/ydb-platform/ydb-js-sdk/issues/449
https://github.com/ydb-platform/ydb-php-sdk/issues/202
https://github.com/ydb-platform/ydb-cpp-sdk/issues/453
https://github.com/ydb-platform/ydb-python-sdk/issues/592
https://github.com/ydb-platform/ydb-java-sdk/issues/396
https://github.com/ydb-platform/ydb-js-sdk/issues/450
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/315
https://github.com/ydb-platform/ydb-rs-sdk/issues/236
https://github.com/ydb-platform/ydb-php-sdk/issues/203
https://github.com/ydb-platform/ydb-go-sdk/issues/1746
https://github.com/ydb-platform/ydb-java-sdk/issues/397
https://github.com/ydb-platform/ydb-js-sdk/issues/451
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/316
https://github.com/ydb-platform/ydb-rs-sdk/issues/237
https://github.com/ydb-platform/ydb-php-sdk/issues/204
https://github.com/ydb-platform/ydb-php-sdk/issues/205
https://github.com/ydb-platform/ydb-php-sdk/issues/206
https://github.com/ydb-platform/ydb-java-sdk/issues/441
https://github.com/ydb-platform/ydb-js-sdk/issues/452
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/317
https://github.com/ydb-platform/ydb-rs-sdk/issues/238
https://github.com/ydb-platform/ydb-php-sdk/issues/207
https://github.com/ydb-platform/ydb-java-sdk/issues/442
https://github.com/ydb-platform/ydb-js-sdk/issues/453
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/318
https://github.com/ydb-platform/ydb-rs-sdk/issues/239
https://github.com/ydb-platform/ydb-php-sdk/issues/208
https://github.com/ydb-platform/ydb-js-sdk/issues/454
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/319
https://github.com/ydb-platform/ydb-php-sdk/issues/157
https://github.com/ydb-platform/ydb-rs-sdk/issues/240
https://github.com/ydb-platform/ydb-cpp-sdk/issues/456
https://github.com/ydb-platform/ydb-python-sdk/issues/596
https://github.com/ydb-platform/ydb-go-sdk/issues/1750
https://github.com/ydb-platform/ydb-java-sdk/issues/402
https://github.com/ydb-platform/ydb-js-sdk/issues/461
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/327
https://github.com/ydb-platform/ydb-rs-sdk/issues/245
https://github.com/ydb-platform/ydb-php-sdk/issues/158
https://github.com/ydb-platform/ydb-php-sdk/issues/198
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/309
https://github.com/ydb-platform/ydb-php-sdk/issues/199
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/310
https://github.com/ydb-platform/ydb-cpp-sdk/issues/470
https://github.com/ydb-platform/ydb-python-sdk/issues/602
https://github.com/ydb-platform/ydb-go-sdk/issues/1751
https://github.com/ydb-platform/ydb-java-sdk/issues/443
https://github.com/ydb-platform/ydb-js-sdk/issues/445
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/328
https://github.com/ydb-platform/ydb-rs-sdk/issues/234
https://github.com/ydb-platform/ydb-php-sdk/issues/197
https://github.com/ydb-platform/ydb-php-sdk/issues/220
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/329
https://github.com/ydb-platform/ydb-rs-sdk/issues/246
https://github.com/ydb-platform/ydb-php-sdk/issues/159
https://github.com/ydb-platform/ydb-php-sdk/issues/160
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/330
https://github.com/ydb-platform/ydb-rs-sdk/issues/247
https://github.com/ydb-platform/ydb-php-sdk/issues/161
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/331
https://github.com/ydb-platform/ydb-rs-sdk/issues/248
https://github.com/ydb-platform/ydb-php-sdk/issues/162
https://github.com/ydb-platform/ydb-rs-sdk/issues/249
https://github.com/ydb-platform/ydb-php-sdk/issues/200
https://github.com/ydb-platform/ydb-cpp-sdk/issues/236
https://github.com/ydb-platform/ydb-python-sdk/issues/649
https://github.com/ydb-platform/ydb-go-sdk/issues/1769
https://github.com/ydb-platform/ydb-java-sdk/issues/458
https://github.com/ydb-platform/ydb-js-sdk/issues/511
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/399
https://github.com/ydb-platform/ydb-rs-sdk/issues/329
https://github.com/ydb-platform/ydb-php-sdk/issues/236
https://github.com/ydb-platform/ydb-cpp-sdk/issues/502
https://github.com/ydb-platform/ydb-python-sdk/issues/662
https://github.com/ydb-platform/ydb-go-sdk/issues/1782
https://github.com/ydb-platform/ydb-java-sdk/issues/471
https://github.com/ydb-platform/ydb-js-sdk/issues/524
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/412
https://github.com/ydb-platform/ydb-rs-sdk/issues/342
https://github.com/ydb-platform/ydb-php-sdk/issues/249
https://github.com/ydb-platform/ydb-cpp-sdk/issues/503
https://github.com/ydb-platform/ydb-python-sdk/issues/663
https://github.com/ydb-platform/ydb-go-sdk/issues/1783
https://github.com/ydb-platform/ydb-java-sdk/issues/472
https://github.com/ydb-platform/ydb-js-sdk/issues/525
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/413
https://github.com/ydb-platform/ydb-rs-sdk/issues/343
https://github.com/ydb-platform/ydb-php-sdk/issues/250
https://github.com/ydb-platform/ydb-cpp-sdk/issues/492
https://github.com/ydb-platform/ydb-python-sdk/issues/652
https://github.com/ydb-platform/ydb-go-sdk/issues/1772
https://github.com/ydb-platform/ydb-java-sdk/issues/461
https://github.com/ydb-platform/ydb-js-sdk/issues/514
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/402
https://github.com/ydb-platform/ydb-rs-sdk/issues/332
https://github.com/ydb-platform/ydb-php-sdk/issues/239
https://github.com/ydb-platform/ydb-cpp-sdk/issues/493
https://github.com/ydb-platform/ydb-python-sdk/issues/653
https://github.com/ydb-platform/ydb-go-sdk/issues/1773
https://github.com/ydb-platform/ydb-java-sdk/issues/462
https://github.com/ydb-platform/ydb-js-sdk/issues/515
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/403
https://github.com/ydb-platform/ydb-rs-sdk/issues/333
https://github.com/ydb-platform/ydb-php-sdk/issues/240
https://github.com/ydb-platform/ydb-cpp-sdk/issues/494
https://github.com/ydb-platform/ydb-python-sdk/issues/654
https://github.com/ydb-platform/ydb-go-sdk/issues/1774
https://github.com/ydb-platform/ydb-java-sdk/issues/463
https://github.com/ydb-platform/ydb-js-sdk/issues/516
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/404
https://github.com/ydb-platform/ydb-rs-sdk/issues/334
https://github.com/ydb-platform/ydb-php-sdk/issues/241
https://github.com/ydb-platform/ydb-cpp-sdk/issues/495
https://github.com/ydb-platform/ydb-python-sdk/issues/655
https://github.com/ydb-platform/ydb-go-sdk/issues/1775
https://github.com/ydb-platform/ydb-java-sdk/issues/464
https://github.com/ydb-platform/ydb-js-sdk/issues/517
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/405
https://github.com/ydb-platform/ydb-rs-sdk/issues/335
https://github.com/ydb-platform/ydb-php-sdk/issues/242
https://github.com/ydb-platform/ydb-cpp-sdk/issues/496
https://github.com/ydb-platform/ydb-python-sdk/issues/656
https://github.com/ydb-platform/ydb-go-sdk/issues/1776
https://github.com/ydb-platform/ydb-java-sdk/issues/465
https://github.com/ydb-platform/ydb-js-sdk/issues/518
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/406
https://github.com/ydb-platform/ydb-rs-sdk/issues/336
https://github.com/ydb-platform/ydb-php-sdk/issues/243
https://github.com/ydb-platform/ydb-cpp-sdk/issues/497
https://github.com/ydb-platform/ydb-python-sdk/issues/657
https://github.com/ydb-platform/ydb-go-sdk/issues/1777
https://github.com/ydb-platform/ydb-java-sdk/issues/466
https://github.com/ydb-platform/ydb-js-sdk/issues/519
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/407
https://github.com/ydb-platform/ydb-rs-sdk/issues/337
https://github.com/ydb-platform/ydb-php-sdk/issues/244
https://github.com/ydb-platform/ydb-cpp-sdk/issues/499
https://github.com/ydb-platform/ydb-python-sdk/issues/659
https://github.com/ydb-platform/ydb-go-sdk/issues/1779
https://github.com/ydb-platform/ydb-java-sdk/issues/468
https://github.com/ydb-platform/ydb-js-sdk/issues/521
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/409
https://github.com/ydb-platform/ydb-rs-sdk/issues/339
https://github.com/ydb-platform/ydb-php-sdk/issues/246
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/332
https://github.com/ydb-platform/ydb-rs-sdk/issues/276
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/333
https://github.com/ydb-platform/ydb-rs-sdk/issues/277
https://github.com/ydb-platform/ydb-java-sdk/issues/403
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/334
https://github.com/ydb-platform/ydb-rs-sdk/issues/278
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/335
https://github.com/ydb-platform/ydb-rs-sdk/issues/279
https://github.com/ydb-platform/ydb-php-sdk/issues/209
https://github.com/ydb-platform/ydb-js-sdk/issues/455
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/320
https://github.com/ydb-platform/ydb-rs-sdk/issues/241
https://github.com/ydb-platform/ydb-php-sdk/issues/210
https://github.com/ydb-platform/ydb-cpp-sdk/issues/454
https://github.com/ydb-platform/ydb-go-sdk/issues/1747
https://github.com/ydb-platform/ydb-java-sdk/issues/398
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/321
https://github.com/ydb-platform/ydb-rs-sdk/issues/242
https://github.com/ydb-platform/ydb-php-sdk/issues/211
https://github.com/ydb-platform/ydb-python-sdk/issues/593
https://github.com/ydb-platform/ydb-go-sdk/issues/1748
https://github.com/ydb-platform/ydb-php-sdk/issues/212
https://github.com/ydb-platform/ydb-js-sdk/issues/456
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/322
https://github.com/ydb-platform/ydb-rs-sdk/issues/243
https://github.com/ydb-platform/ydb-php-sdk/issues/213
https://github.com/ydb-platform/ydb-php-sdk/issues/214
https://github.com/ydb-platform/ydb-python-sdk/issues/594
https://github.com/ydb-platform/ydb-go-sdk/issues/1749
https://github.com/ydb-platform/ydb-java-sdk/issues/399
https://github.com/ydb-platform/ydb-js-sdk/issues/457
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/323
https://github.com/ydb-platform/ydb-rs-sdk/issues/244
https://github.com/ydb-platform/ydb-php-sdk/issues/215
https://github.com/ydb-platform/ydb-php-sdk/issues/216
https://github.com/ydb-platform/ydb-go-sdk/issues/1752
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/351
https://github.com/ydb-platform/ydb-rs-sdk/issues/252
https://github.com/ydb-platform/ydb-php-sdk/issues/166
https://github.com/ydb-platform/ydb-java-sdk/issues/406
https://github.com/ydb-platform/ydb-js-sdk/issues/467
https://github.com/ydb-platform/ydb-rs-sdk/issues/253
https://github.com/ydb-platform/ydb-php-sdk/issues/167
https://github.com/ydb-platform/ydb-python-sdk/issues/603
https://github.com/ydb-platform/ydb-java-sdk/issues/407
https://github.com/ydb-platform/ydb-js-sdk/issues/468
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/352
https://github.com/ydb-platform/ydb-rs-sdk/issues/296
https://github.com/ydb-platform/ydb-python-sdk/issues/604
https://github.com/ydb-platform/ydb-java-sdk/issues/408
https://github.com/ydb-platform/ydb-js-sdk/issues/469
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/353
https://github.com/ydb-platform/ydb-rs-sdk/issues/297
https://github.com/ydb-platform/ydb-python-sdk/issues/605
https://github.com/ydb-platform/ydb-java-sdk/issues/409
https://github.com/ydb-platform/ydb-js-sdk/issues/470
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/354
https://github.com/ydb-platform/ydb-rs-sdk/issues/298
https://github.com/ydb-platform/ydb-php-sdk/issues/168
https://github.com/ydb-platform/ydb-python-sdk/issues/606
https://github.com/ydb-platform/ydb-java-sdk/issues/410
https://github.com/ydb-platform/ydb-js-sdk/issues/471
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/355
https://github.com/ydb-platform/ydb-rs-sdk/issues/299
https://github.com/ydb-platform/ydb-php-sdk/issues/169
https://github.com/ydb-platform/ydb-python-sdk/issues/607
https://github.com/ydb-platform/ydb-java-sdk/issues/411
https://github.com/ydb-platform/ydb-js-sdk/issues/472
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/356
https://github.com/ydb-platform/ydb-rs-sdk/issues/300
https://github.com/ydb-platform/ydb-php-sdk/issues/170
https://github.com/ydb-platform/ydb-python-sdk/issues/608
https://github.com/ydb-platform/ydb-java-sdk/issues/412
https://github.com/ydb-platform/ydb-js-sdk/issues/473
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/357
https://github.com/ydb-platform/ydb-rs-sdk/issues/301
https://github.com/ydb-platform/ydb-php-sdk/issues/171
https://github.com/ydb-platform/ydb-python-sdk/issues/609
https://github.com/ydb-platform/ydb-java-sdk/issues/413
https://github.com/ydb-platform/ydb-js-sdk/issues/474
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/358
https://github.com/ydb-platform/ydb-rs-sdk/issues/302
https://github.com/ydb-platform/ydb-php-sdk/issues/172
https://github.com/ydb-platform/ydb-python-sdk/issues/610
https://github.com/ydb-platform/ydb-go-sdk/issues/1753
https://github.com/ydb-platform/ydb-java-sdk/issues/414
https://github.com/ydb-platform/ydb-js-sdk/issues/475
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/359
https://github.com/ydb-platform/ydb-rs-sdk/issues/303
https://github.com/ydb-platform/ydb-php-sdk/issues/173
https://github.com/ydb-platform/ydb-java-sdk/issues/415
https://github.com/ydb-platform/ydb-js-sdk/issues/476
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/360
https://github.com/ydb-platform/ydb-rs-sdk/issues/254
https://github.com/ydb-platform/ydb-php-sdk/issues/174
https://github.com/ydb-platform/ydb-java-sdk/issues/416
https://github.com/ydb-platform/ydb-js-sdk/issues/477
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/361
https://github.com/ydb-platform/ydb-rs-sdk/issues/255
https://github.com/ydb-platform/ydb-php-sdk/issues/175
https://github.com/ydb-platform/ydb-python-sdk/issues/599
https://github.com/ydb-platform/ydb-java-sdk/issues/417
https://github.com/ydb-platform/ydb-js-sdk/issues/478
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/362
https://github.com/ydb-platform/ydb-rs-sdk/issues/256
https://github.com/ydb-platform/ydb-php-sdk/issues/176
https://github.com/ydb-platform/ydb-java-sdk/issues/418
https://github.com/ydb-platform/ydb-js-sdk/issues/479
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/363
https://github.com/ydb-platform/ydb-rs-sdk/issues/257
https://github.com/ydb-platform/ydb-php-sdk/issues/177
https://github.com/ydb-platform/ydb-python-sdk/issues/611
https://github.com/ydb-platform/ydb-java-sdk/issues/421
https://github.com/ydb-platform/ydb-js-sdk/issues/482
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/366
https://github.com/ydb-platform/ydb-rs-sdk/issues/260
https://github.com/ydb-platform/ydb-php-sdk/issues/221
https://github.com/ydb-platform/ydb-python-sdk/issues/612
https://github.com/ydb-platform/ydb-java-sdk/issues/422
https://github.com/ydb-platform/ydb-js-sdk/issues/483
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/367
https://github.com/ydb-platform/ydb-rs-sdk/issues/261
https://github.com/ydb-platform/ydb-php-sdk/issues/222


Examples
Route all requests into 
the initial endpoint 
instead of client-side 
load balancing (for 
serverless usage)

Support for server-
side load balancing 
of sessions (a 
CreateSession 
request must 
contain the 
'session-balancer' 
value in the 'x-ydb-
client-capabilities' 
metadata header)

Transactions with 
tables and topics

* CreateSession

* DeleteSession

* AttachSession

* 
CommitTransaction

* BeginTransaction

* 
RollbackTransaction

* ExecuteQuery

* ExecuteScript

* 
FetchScriptResults

Retryer on the session pool (a 
repeat object is a transaction 
within a session)

Graceful session shutdown 
support ("session-close" in "x-
ydb-server-hints" metadata 
means to "forget" a session and 
not use it again)

Support for server-side load 
balancing of sessions (a 
CreateSession request must 
contain the "session-balancer" 
value in the "x-ydb-client-
capabilities" metadata header)

Transactions with tables and 
topics

CreateSession

DeleteSession

KeepAlive

CreateTable

DropTable

AlterTable

CopyTable

CopyTables

DescribeTable

ExplainDataQuery

PrepareDataQuery

ExecuteDataQuery

* By default, server cache for all 
parameter requests 
(KeepInCache)

* A separate option to 
enable/disable server cache for a 
specific request

* Truncated result as an error (by 
default)

* Truncated result as an error (as 
an opt-in opt-out option)

ExecuteSchemeQuery

BeginTransaction

CommitTransaction

RollbackTransaction

DescribeTableOptions

StreamExecuteScanQuery

StreamReadTable

StreamWrite

StreamRead

CommitOffset

DropResource

ListResources

DescribeResource

AcquireResource

SDK event 
logging

SDK metrics to 
Solomon / 
Monitoring

SDK metrics to 
Prometheus

SDK event 
tracing to 
OpenTelemetry

SDK event 
tracing to 
OpenTracing

Feature C++ Python Go Java NodeJS C# Rust PHP

Auth with 
token

Auth with 
anonymous 
credentials

Auth with 
environ

Auth with 
metadata 
service

Auth with 
service 
account 
keyfile 
credentials

Auth with 
static 
credentials 
(username 
+ 
password)

Basic 
(series)

Bulk Upsert

Containers 
(Struct, 
Variant, 
List, Tuple)

Pagination

Partition 
policies

Read table

Secondary 
index 
Workaround

Secondary 
index builtin

TTL

TTL 
Readtable

URL 
Shortener 
(serverless 
yandex 
function)

Topic 
reader

Topic writer

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_feature-parity_examples
https://github.com/ydb-platform/ydb-cpp-sdk/issues/513
https://github.com/ydb-platform/ydb-python-sdk/issues/668
https://github.com/ydb-platform/ydb-go-sdk/issues/1796
https://github.com/ydb-platform/ydb-java-sdk/issues/488
https://github.com/ydb-platform/ydb-js-sdk/issues/528
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/420
https://github.com/ydb-platform/ydb-rs-sdk/issues/345
https://github.com/ydb-platform/ydb-php-sdk/issues/251
https://github.com/ydb-platform/ydb-cpp-sdk/issues/498
https://github.com/ydb-platform/ydb-python-sdk/issues/658
https://github.com/ydb-platform/ydb-go-sdk/issues/1778
https://github.com/ydb-platform/ydb-java-sdk/issues/467
https://github.com/ydb-platform/ydb-js-sdk/issues/520
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/408
https://github.com/ydb-platform/ydb-rs-sdk/issues/338
https://github.com/ydb-platform/ydb-php-sdk/issues/245
https://github.com/ydb-platform/ydb-cpp-sdk/issues/500
https://github.com/ydb-platform/ydb-python-sdk/issues/660
https://github.com/ydb-platform/ydb-go-sdk/issues/1780
https://github.com/ydb-platform/ydb-java-sdk/issues/469
https://github.com/ydb-platform/ydb-js-sdk/issues/522
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/410
https://github.com/ydb-platform/ydb-rs-sdk/issues/340
https://github.com/ydb-platform/ydb-php-sdk/issues/247
https://github.com/ydb-platform/ydb-cpp-sdk/issues/479
https://github.com/ydb-platform/ydb-python-sdk/issues/639
https://github.com/ydb-platform/ydb-go-sdk/issues/1760
https://github.com/ydb-platform/ydb-java-sdk/issues/448
https://github.com/ydb-platform/ydb-js-sdk/issues/502
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/390
https://github.com/ydb-platform/ydb-rs-sdk/issues/320
https://github.com/ydb-platform/ydb-php-sdk/issues/227
https://github.com/ydb-platform/ydb-cpp-sdk/issues/480
https://github.com/ydb-platform/ydb-python-sdk/issues/640
https://github.com/ydb-platform/ydb-go-sdk/issues/1761
https://github.com/ydb-platform/ydb-java-sdk/issues/449
https://github.com/ydb-platform/ydb-js-sdk/issues/503
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/391
https://github.com/ydb-platform/ydb-rs-sdk/issues/321
https://github.com/ydb-platform/ydb-php-sdk/issues/228
https://github.com/ydb-platform/ydb-cpp-sdk/issues/481
https://github.com/ydb-platform/ydb-python-sdk/issues/641
https://github.com/ydb-platform/ydb-go-sdk/issues/1762
https://github.com/ydb-platform/ydb-java-sdk/issues/450
https://github.com/ydb-platform/ydb-js-sdk/issues/504
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/392
https://github.com/ydb-platform/ydb-rs-sdk/issues/322
https://github.com/ydb-platform/ydb-php-sdk/issues/229
https://github.com/ydb-platform/ydb-cpp-sdk/issues/482
https://github.com/ydb-platform/ydb-python-sdk/issues/642
https://github.com/ydb-platform/ydb-go-sdk/issues/1763
https://github.com/ydb-platform/ydb-java-sdk/issues/451
https://github.com/ydb-platform/ydb-js-sdk/issues/505
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/393
https://github.com/ydb-platform/ydb-rs-sdk/issues/323
https://github.com/ydb-platform/ydb-php-sdk/issues/230
https://github.com/ydb-platform/ydb-cpp-sdk/issues/483
https://github.com/ydb-platform/ydb-python-sdk/issues/643
https://github.com/ydb-platform/ydb-go-sdk/issues/1764
https://github.com/ydb-platform/ydb-java-sdk/issues/452
https://github.com/ydb-platform/ydb-js-sdk/issues/506
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/394
https://github.com/ydb-platform/ydb-rs-sdk/issues/324
https://github.com/ydb-platform/ydb-php-sdk/issues/231
https://github.com/ydb-platform/ydb-cpp-sdk/issues/484
https://github.com/ydb-platform/ydb-python-sdk/issues/644
https://github.com/ydb-platform/ydb-go-sdk/issues/1765
https://github.com/ydb-platform/ydb-java-sdk/issues/453
https://github.com/ydb-platform/ydb-js-sdk/issues/507
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/395
https://github.com/ydb-platform/ydb-rs-sdk/issues/325
https://github.com/ydb-platform/ydb-php-sdk/issues/232
https://github.com/ydb-platform/ydb-cpp-sdk/issues/485
https://github.com/ydb-platform/ydb-python-sdk/issues/645
https://github.com/ydb-platform/ydb-go-sdk/issues/1766
https://github.com/ydb-platform/ydb-java-sdk/issues/454
https://github.com/ydb-platform/ydb-js-sdk/issues/508
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/396
https://github.com/ydb-platform/ydb-rs-sdk/issues/326
https://github.com/ydb-platform/ydb-php-sdk/issues/233
https://github.com/ydb-platform/ydb-cpp-sdk/issues/486
https://github.com/ydb-platform/ydb-python-sdk/issues/646
https://github.com/ydb-platform/ydb-go-sdk/issues/1767
https://github.com/ydb-platform/ydb-java-sdk/issues/455
https://github.com/ydb-platform/ydb-js-sdk/issues/509
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/397
https://github.com/ydb-platform/ydb-rs-sdk/issues/327
https://github.com/ydb-platform/ydb-php-sdk/issues/234
https://github.com/ydb-platform/ydb-cpp-sdk/issues/487
https://github.com/ydb-platform/ydb-python-sdk/issues/647
https://github.com/ydb-platform/ydb-go-sdk/issues/1768
https://github.com/ydb-platform/ydb-java-sdk/issues/456
https://github.com/ydb-platform/ydb-js-sdk/issues/510
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/398
https://github.com/ydb-platform/ydb-rs-sdk/issues/328
https://github.com/ydb-platform/ydb-php-sdk/issues/235
https://github.com/ydb-platform/ydb-cpp-sdk/issues/455
https://github.com/ydb-platform/ydb-python-sdk/issues/595
https://github.com/ydb-platform/ydb-java-sdk/issues/400
https://github.com/ydb-platform/ydb-js-sdk/issues/458
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/324
https://github.com/ydb-platform/ydb-php-sdk/issues/217
https://github.com/ydb-platform/ydb-js-sdk/issues/459
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/325
https://github.com/ydb-platform/ydb-rs-sdk/issues/274
https://github.com/ydb-platform/ydb-php-sdk/issues/218
https://github.com/ydb-platform/ydb-java-sdk/issues/401
https://github.com/ydb-platform/ydb-js-sdk/issues/460
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/326
https://github.com/ydb-platform/ydb-rs-sdk/issues/275
https://github.com/ydb-platform/ydb-php-sdk/issues/219
https://github.com/ydb-platform/ydb-cpp-sdk/issues/501
https://github.com/ydb-platform/ydb-python-sdk/issues/661
https://github.com/ydb-platform/ydb-go-sdk/issues/1781
https://github.com/ydb-platform/ydb-java-sdk/issues/470
https://github.com/ydb-platform/ydb-js-sdk/issues/523
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/411
https://github.com/ydb-platform/ydb-rs-sdk/issues/341
https://github.com/ydb-platform/ydb-php-sdk/issues/248
https://github.com/ydb-platform/ydb-php-sdk/issues/163
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/336
https://github.com/ydb-platform/ydb-rs-sdk/issues/280
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/337
https://github.com/ydb-platform/ydb-rs-sdk/issues/281
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/338
https://github.com/ydb-platform/ydb-rs-sdk/issues/282
https://github.com/ydb-platform/ydb-js-sdk/issues/462
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/339
https://github.com/ydb-platform/ydb-rs-sdk/issues/283
https://github.com/ydb-platform/ydb-java-sdk/issues/404
https://github.com/ydb-platform/ydb-js-sdk/issues/463
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/340
https://github.com/ydb-platform/ydb-rs-sdk/issues/284
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/341
https://github.com/ydb-platform/ydb-rs-sdk/issues/285
https://github.com/ydb-platform/ydb-js-sdk/issues/464
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/342
https://github.com/ydb-platform/ydb-rs-sdk/issues/286
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/343
https://github.com/ydb-platform/ydb-rs-sdk/issues/287
https://github.com/ydb-platform/ydb-cpp-sdk/issues/457
https://github.com/ydb-platform/ydb-rs-sdk/issues/288
https://github.com/ydb-platform/ydb-rs-sdk/issues/289
https://github.com/ydb-platform/ydb-cpp-sdk/issues/458
https://github.com/ydb-platform/ydb-python-sdk/issues/597
https://github.com/ydb-platform/ydb-java-sdk/issues/444
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/344
https://github.com/ydb-platform/ydb-rs-sdk/issues/290
https://github.com/ydb-platform/ydb-cpp-sdk/issues/459
https://github.com/ydb-platform/ydb-python-sdk/issues/598
https://github.com/ydb-platform/ydb-java-sdk/issues/445
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/345
https://github.com/ydb-platform/ydb-rs-sdk/issues/291
https://github.com/ydb-platform/ydb-php-sdk/issues/164
https://github.com/ydb-platform/ydb-js-sdk/issues/465
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/346
https://github.com/ydb-platform/ydb-rs-sdk/issues/292
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/347
https://github.com/ydb-platform/ydb-rs-sdk/issues/293
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/348
https://github.com/ydb-platform/ydb-rs-sdk/issues/294
https://github.com/ydb-platform/ydb-java-sdk/issues/405
https://github.com/ydb-platform/ydb-js-sdk/issues/466
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/349
https://github.com/ydb-platform/ydb-rs-sdk/issues/295
https://github.com/ydb-platform/ydb-php-sdk/issues/165
https://github.com/ydb-platform/ydb-rs-sdk/issues/250
https://github.com/ydb-platform/ydb-java-sdk/issues/419
https://github.com/ydb-platform/ydb-js-sdk/issues/480
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/364
https://github.com/ydb-platform/ydb-rs-sdk/issues/258
https://github.com/ydb-platform/ydb-php-sdk/issues/178
https://github.com/ydb-platform/ydb-java-sdk/issues/420
https://github.com/ydb-platform/ydb-js-sdk/issues/481
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/365
https://github.com/ydb-platform/ydb-rs-sdk/issues/259
https://github.com/ydb-platform/ydb-php-sdk/issues/179
https://github.com/ydb-platform/ydb-cpp-sdk/issues/490
https://github.com/ydb-platform/ydb-python-sdk/issues/650
https://github.com/ydb-platform/ydb-go-sdk/issues/1770
https://github.com/ydb-platform/ydb-java-sdk/issues/459
https://github.com/ydb-platform/ydb-js-sdk/issues/512
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/400
https://github.com/ydb-platform/ydb-rs-sdk/issues/330
https://github.com/ydb-platform/ydb-php-sdk/issues/237
https://github.com/ydb-platform/ydb-python-sdk/issues/613
https://github.com/ydb-platform/ydb-java-sdk/issues/423
https://github.com/ydb-platform/ydb-js-sdk/issues/484
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/368
https://github.com/ydb-platform/ydb-rs-sdk/issues/262
https://github.com/ydb-platform/ydb-php-sdk/issues/223
https://github.com/ydb-platform/ydb-python-sdk/issues/614
https://github.com/ydb-platform/ydb-java-sdk/issues/424
https://github.com/ydb-platform/ydb-js-sdk/issues/485
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/369
https://github.com/ydb-platform/ydb-rs-sdk/issues/263
https://github.com/ydb-platform/ydb-php-sdk/issues/224
https://github.com/ydb-platform/ydb-python-sdk/issues/615
https://github.com/ydb-platform/ydb-java-sdk/issues/425
https://github.com/ydb-platform/ydb-js-sdk/issues/486
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/370
https://github.com/ydb-platform/ydb-rs-sdk/issues/264
https://github.com/ydb-platform/ydb-php-sdk/issues/225
https://github.com/ydb-platform/ydb-python-sdk/issues/616
https://github.com/ydb-platform/ydb-java-sdk/issues/426
https://github.com/ydb-platform/ydb-js-sdk/issues/487
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/371
https://github.com/ydb-platform/ydb-rs-sdk/issues/265
https://github.com/ydb-platform/ydb-php-sdk/issues/226
https://github.com/ydb-platform/ydb-cpp-sdk/issues/461
https://github.com/ydb-platform/ydb-python-sdk/issues/619
https://github.com/ydb-platform/ydb-python-sdk/issues/617
https://github.com/ydb-platform/ydb-java-sdk/issues/427
https://github.com/ydb-platform/ydb-js-sdk/issues/488
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/372
https://github.com/ydb-platform/ydb-rs-sdk/issues/266
https://github.com/ydb-platform/ydb-php-sdk/issues/180
https://github.com/ydb-platform/ydb-cpp-sdk/issues/460
https://github.com/ydb-platform/ydb-python-sdk/issues/618
https://github.com/ydb-platform/ydb-java-sdk/issues/428
https://github.com/ydb-platform/ydb-js-sdk/issues/489
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/373
https://github.com/ydb-platform/ydb-rs-sdk/issues/267
https://github.com/ydb-platform/ydb-php-sdk/issues/181
https://github.com/ydb-platform/ydb-cpp-sdk/issues/462
https://github.com/ydb-platform/ydb-python-sdk/issues/620
https://github.com/ydb-platform/ydb-go-sdk/issues/1754
https://github.com/ydb-platform/ydb-java-sdk/issues/429
https://github.com/ydb-platform/ydb-js-sdk/issues/490
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/374
https://github.com/ydb-platform/ydb-rs-sdk/issues/268
https://github.com/ydb-platform/ydb-php-sdk/issues/182
https://github.com/ydb-platform/ydb-cpp-sdk/issues/463
https://github.com/ydb-platform/ydb-python-sdk/issues/621
https://github.com/ydb-platform/ydb-java-sdk/issues/430
https://github.com/ydb-platform/ydb-js-sdk/issues/491
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/375
https://github.com/ydb-platform/ydb-rs-sdk/issues/269
https://github.com/ydb-platform/ydb-php-sdk/issues/183
https://github.com/ydb-platform/ydb-cpp-sdk/issues/471
https://github.com/ydb-platform/ydb-python-sdk/issues/622
https://github.com/ydb-platform/ydb-cpp-sdk/issues/472
https://github.com/ydb-platform/ydb-python-sdk/issues/623
https://github.com/ydb-platform/ydb-rs-sdk/issues/304
https://github.com/ydb-platform/ydb-cpp-sdk/issues/473
https://github.com/ydb-platform/ydb-python-sdk/issues/624
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/376
https://github.com/ydb-platform/ydb-rs-sdk/issues/305
https://github.com/ydb-platform/ydb-cpp-sdk/issues/474
https://github.com/ydb-platform/ydb-python-sdk/issues/625
https://github.com/ydb-platform/ydb-rs-sdk/issues/306
https://github.com/ydb-platform/ydb-cpp-sdk/issues/475
https://github.com/ydb-platform/ydb-python-sdk/issues/626
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/377
https://github.com/ydb-platform/ydb-rs-sdk/issues/307
https://github.com/ydb-platform/ydb-cpp-sdk/issues/476
https://github.com/ydb-platform/ydb-python-sdk/issues/627
https://github.com/ydb-platform/ydb-php-sdk/issues/184
https://github.com/ydb-platform/ydb-python-sdk/issues/628
https://github.com/ydb-platform/ydb-cpp-sdk/issues/468
https://github.com/ydb-platform/ydb-python-sdk/issues/629
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/378
https://github.com/ydb-platform/ydb-rs-sdk/issues/308
https://github.com/ydb-platform/ydb-php-sdk/issues/185
https://github.com/ydb-platform/ydb-cpp-sdk/issues/464
https://github.com/ydb-platform/ydb-python-sdk/issues/630
https://github.com/ydb-platform/ydb-java-sdk/issues/431
https://github.com/ydb-platform/ydb-js-sdk/issues/492
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/379
https://github.com/ydb-platform/ydb-rs-sdk/issues/309
https://github.com/ydb-platform/ydb-php-sdk/issues/186
https://github.com/ydb-platform/ydb-python-sdk/issues/631
https://github.com/ydb-platform/ydb-js-sdk/issues/493
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/380
https://github.com/ydb-platform/ydb-rs-sdk/issues/310
https://github.com/ydb-platform/ydb-php-sdk/issues/187
https://github.com/ydb-platform/ydb-cpp-sdk/issues/465
https://github.com/ydb-platform/ydb-python-sdk/issues/632
https://github.com/ydb-platform/ydb-java-sdk/issues/432
https://github.com/ydb-platform/ydb-js-sdk/issues/494
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/381
https://github.com/ydb-platform/ydb-rs-sdk/issues/311
https://github.com/ydb-platform/ydb-php-sdk/issues/188
https://github.com/ydb-platform/ydb-cpp-sdk/issues/477
https://github.com/ydb-platform/ydb-python-sdk/issues/633
https://github.com/ydb-platform/ydb-java-sdk/issues/433
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/382
https://github.com/ydb-platform/ydb-rs-sdk/issues/312
https://github.com/ydb-platform/ydb-python-sdk/issues/634
https://github.com/ydb-platform/ydb-go-sdk/issues/1755
https://github.com/ydb-platform/ydb-js-sdk/issues/495
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/383
https://github.com/ydb-platform/ydb-rs-sdk/issues/313
https://github.com/ydb-platform/ydb-php-sdk/issues/189
https://github.com/ydb-platform/ydb-python-sdk/issues/635
https://github.com/ydb-platform/ydb-go-sdk/issues/1756
https://github.com/ydb-platform/ydb-java-sdk/issues/434
https://github.com/ydb-platform/ydb-js-sdk/issues/496
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/384
https://github.com/ydb-platform/ydb-rs-sdk/issues/314
https://github.com/ydb-platform/ydb-php-sdk/issues/190
https://github.com/ydb-platform/ydb-python-sdk/issues/636
https://github.com/ydb-platform/ydb-java-sdk/issues/435
https://github.com/ydb-platform/ydb-js-sdk/issues/497
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/385
https://github.com/ydb-platform/ydb-rs-sdk/issues/315
https://github.com/ydb-platform/ydb-php-sdk/issues/191
https://github.com/ydb-platform/ydb-python-sdk/issues/637
https://github.com/ydb-platform/ydb-java-sdk/issues/436
https://github.com/ydb-platform/ydb-js-sdk/issues/498
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/386
https://github.com/ydb-platform/ydb-rs-sdk/issues/316
https://github.com/ydb-platform/ydb-php-sdk/issues/192
https://github.com/ydb-platform/ydb-cpp-sdk/issues/478
https://github.com/ydb-platform/ydb-python-sdk/issues/638
https://github.com/ydb-platform/ydb-java-sdk/issues/446
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/387
https://github.com/ydb-platform/ydb-rs-sdk/issues/317
https://github.com/ydb-platform/ydb-php-sdk/issues/193
https://github.com/ydb-platform/ydb-go-sdk/issues/1757
https://github.com/ydb-platform/ydb-java-sdk/issues/437
https://github.com/ydb-platform/ydb-js-sdk/issues/500
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/388
https://github.com/ydb-platform/ydb-rs-sdk/issues/318
https://github.com/ydb-platform/ydb-php-sdk/issues/194
https://github.com/ydb-platform/ydb-cpp-sdk/issues/466
https://github.com/ydb-platform/ydb-go-sdk/issues/1758
https://github.com/ydb-platform/ydb-java-sdk/issues/438
https://github.com/ydb-platform/ydb-js-sdk/issues/501
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/389
https://github.com/ydb-platform/ydb-rs-sdk/issues/319
https://github.com/ydb-platform/ydb-php-sdk/issues/195


Status codes from the YDB server
BulkUpsert

Code Status Retryability Backoff strategy Recreate session

400000 SUCCESS – – –

400010 BAD_REQUEST non-retryable – no

400020 UNAUTHORIZED non-retryable – no

400030 INTERNAL_ERROR non-retryable – no

400040 ABORTED retryable fast no

400050 UNAVAILABLE retryable fast no

400060 OVERLOADED retryable slow no

400070 SCHEME_ERROR non-retryable – no

400080 GENERIC_ERROR non-retryable – no

400090 TIMEOUT non-retryable – no

400100 BAD_SESSION retryable instant yes

400120 PRECONDITION_FAILED non-retryable – no

400130 ALREADY_EXISTS non-retryable – no

400140 NOT_FOUND non-retryable – no

400150 SESSION_EXPIRED retryable instant yes

400160 CANCELLED non-retryable – no

400170 UNDETERMINED conditionally-retryable fast no

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes
https://github.com/ydb-platform/ydb-dotnet-sdk/issues/350
https://github.com/ydb-platform/ydb-rs-sdk/issues/251
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_success
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_success
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_bad-request
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_bad-request
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_unauthorized
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_unauthorized
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_internal-error
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_internal-error
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_aborted
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_aborted
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_unavailable
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_unavailable
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_overloaded
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_overloaded
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_scheme-error
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_scheme-error
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_generic-error
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_generic-error
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_timeout
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_timeout
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_bad-session
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_bad-session
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_precondition-failed
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_precondition-failed
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_already-exists
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_already-exists
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_not-found
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_not-found
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_session-expired
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_session-expired
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_cancelled
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_cancelled
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_undetermined
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_undetermined


400000: SUCCESS

The query was processed successfully.

No response is required. Continue application execution.

400010: BAD_REQUEST

Non-retryable

Invalid query syntax or missing required fields.

Correct the query.

400020: UNAUTHORIZED

Non-retryable

Access to the requested schema object (for example, a table or directory) is denied.

Request access from its owner.

400030: INTERNAL_ERROR

Non-retryable

An unknown internal error occurred.

File a GitHub issue or contact YDB technical support.

400040: ABORTED

Retryable | Fast Backoff

The operation was aborted. Possible reasons might include lock invalidation with TRANSACTION_LOCKS_INVALIDATED  in detailed error messages.

Retry the entire transaction.

400050: UNAVAILABLE

Retryable | Fast Backoff

A part of the system is not available.

Retry the last action (query).

400060: OVERLOADED

Retryable | Slow Backoff

A part of the system is overloaded.

Retry the last action (query) and reduce the query rate.

400070: SCHEME_ERROR

Non-retryable

The query does not match the schema.

Correct the query or schema.

400080: GENERIC_ERROR

Non-retryable

An unclassified error occurred, possibly related to the query.

400180 UNSUPPORTED non-retryable – no

400190 SESSION_BUSY retryable fast yes

400200 EXTERNAL_ERROR non-retryable – no

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_success
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_bad-request
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_unauthorized
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_internal-error
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_aborted
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_unavailable
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_overloaded
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_scheme-error
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_generic-error
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_error_handling
https://github.com/ydb-platform/ydb/issues/new
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_unsupported
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_unsupported
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_session-busy
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_session-busy
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_external-error
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_external-error


See the detailed error message. If necessary, file a GitHub issue or contact YDB technical support.

400090: TIMEOUT

Conditionally retryable | Instant

The query timeout expired.

If the query is idempotent, retry it.

400100: BAD_SESSION

Retryable | Instant

This session is no longer available.

Create a new session.

400120: PRECONDITION_FAILED

Non-retryable

The query cannot be executed in the current state. For example, inserting data into a table with an existing key.

Correct the state or query, then retry.

400130: ALREADY_EXISTS

Non-retryable

The database object being created already exists in the YDB cluster.

The response depends on the application logic.

400140: NOT_FOUND

Non-retryable

The database object was not found in the YDB database.

The response depends on the application logic.

400150: SESSION_EXPIRED

Conditionally retryable | Instant

The session has already expired.

Create a new session.

400160: CANCELLED

Non-retryable

The request was canceled on the server. For example, a user canceled a long-running query in the Embedded UI, or the query included the
cancel_after timeout option.

If the query took too long to complete, try optimizing it. If you used the cancel_after  timeout option, increase the timeout value.

400170: UNDETERMINED

Conditionally retryable | Fast Backoff

An unknown transaction status. The query ended with a failure, making it impossible to determine the transaction status. Queries that terminate with
this status are subject to transaction integrity and atomicity guarantees. That is, either all changes are registered, or the entire transaction is
canceled.

For idempotent transactions, retry the entire transaction after a short delay. Otherwise, the response depends on the application logic.

400180: UNSUPPORTED

Non-retryable

The query is not supported by YDB either because support for such queries is not yet implemented or is not enabled in the YDB configuration.

Correct the query or enable support for such queries in YDB.

400190: SESSION_BUSY

Retryable | Fast Backoff

The session is busy.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_timeout
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_bad-session
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_precondition-failed
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_already-exists
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_not-found
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_session-expired
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_cancelled
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_undetermined
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_unsupported
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_session-busy
https://github.com/ydb-platform/ydb/issues/new
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_timeouts_cancel
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_error_handling


Create a new session.

400200: EXTERNAL_ERROR

Non-retryable

An error occurred in an external system, for example, when processing a federated query or importing data from an external data source.

See the detailed error message. If necessary, file a GitHub issue or contact YDB technical support.

See also

Questions and answers: Errors

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_external-error
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_ydb-status-codes_see-also
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_error_handling
https://github.com/ydb-platform/ydb/issues/new
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_errors


gRPC status codes
YDB provides the gRPC API, which you can use to manage your database resources and data. The following table describes the gRPC status
codes:

Code Status Retryability Backoff strategy Recreate session

0 OK – – –

1 CANCELLED conditionally-retryable fast yes

2 UNKNOWN non-retryable – yes

3 INVALID_ARGUMENT non-retryable – yes

4 DEADLINE_EXCEEDED conditionally-retryable fast yes

5 NOT_FOUND non-retryable – yes

6 ALREADY_EXISTS non-retryable – yes

7 PERMISSION_DENIED non-retryable – yes

8 RESOURCE_EXHAUSTED retryable slow no

9 FAILED_PRECONDITION non-retryable – yes

10 ABORTED retryable instant yes

11 OUT_OF_RANGE non-retryable – no

12 UNIMPLEMENTED non-retryable – yes

13 INTERNAL conditionally-retryable fast yes

14 UNAVAILABLE conditionally-retryable fast yes

15 DATA_LOSS non-retryable – yes

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_ok
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_ok
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_cancelled
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_cancelled
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_unknown
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_unknown
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_invalid-argument
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_invalid-argument
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_deadline-exceeded
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_deadline-exceeded
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_not-found
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_not-found
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_already-exists
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_already-exists
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_permission-denied
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_permission-denied
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_resource-exhausted
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_resource-exhausted
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_failed-precondition
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_failed-precondition
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_aborted
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_aborted
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_out-of-range
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_out-of-range
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_unimplemented
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_unimplemented
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_internal
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_internal
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_unavailable
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_unavailable
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_data-loss
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_data-loss


0: OK

Not an error; returned on success.

1: CANCELLED

Conditionally retryable | Fast Backoff

The operation was cancelled, typically by the caller.

2: UNKNOWN

Non-retryable

Unknown error. For example, this error may be returned when a Status  value received from another address space belongs to an error space that
is not known in this address space. Errors raised by APIs that do not return enough error information may also be converted to this error.

3: INVALID_ARGUMENT

Non-retryable

The client specified an invalid argument. Unlike FAILED_PRECONDITION , INVALID_ARGUMENT  indicates arguments that are problematic regardless
of the system state (e.g., a malformed file name).

4: DEADLINE_EXCEEDED

Conditionally retryable | Fast Backoff

The query was not processed within the specified client timeout, or a network issue occurred.

Check the specified timeout, network access, endpoint, and other network settings. Reduce the query rate and optimize queries.

5: NOT_FOUND

Non-retryable

A requested scheme object (for example, a table or directory) was not found.

6: ALREADY_EXISTS

Non-retryable

The scheme object that a client attempted to create (e.g., file or directory) already exists.

7: PERMISSION_DENIED

Non-retryable

The caller does not have permission to execute the specified operation.

8: RESOURCE_EXHAUSTED

Retryable | Slow Backoff

There are not enough resources available to fulfill the query.

Reduce the query rate and check client balancing.

9: FAILED_PRECONDITION

Non-retryable

The query cannot be executed in the current state (for example, inserting data into a table with an existing key).

Fix the state or query, then retry.

10: ABORTED

Retryable | Instant

The operation was aborted, typically due to a concurrency issue, such as a transaction abort.

11: OUT_OF_RANGE

16 UNAUTHENTICATED non-retryable – yes

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_ok
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_cancelled
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_unknown
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_invalid-argument
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_deadline-exceeded
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_not-found
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_already-exists
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_permission-denied
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_resource-exhausted
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_failed-precondition
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_aborted
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_out-of-range
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_unauthenticated
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_unauthenticated


Non-retryable
The operation was attempted past the valid range. Unlike INVALID_ARGUMENT , this error indicates a problem that may be fixed if the system state
changes.

12: UNIMPLEMENTED

Non-retryable

The operation is not implemented, supported, or enabled in this service.

13: INTERNAL

Conditionally retryable | Fast Backoff

Internal errors. This means that some invariants expected by the underlying system have been broken. This error code is reserved for significant
problems.

14: UNAVAILABLE

Conditionally retryable | Fast Backoff

The service is currently unavailable. This is most likely a transient condition that can be corrected by retrying with a backoff. Note that it is not
always safe to retry non-idempotent operations.

15: DATA_LOSS

Non-retryable

Unrecoverable data loss or corruption.

16: UNAUTHENTICATED

Non-retryable

The request did not have valid authentication credentials.

Retry the request with valid authentication credentials.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_unimplemented
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_internal
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_unavailable
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_data-loss
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-status-codes_unauthenticated
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_error_handling


gRPC API overview
YDB provides the gRPC API, which you can use to manage your DB resources and data. API methods and data structures are described using
Protocol Buffers (proto 3). For more information, see .proto specifications with comments. Also YDB uses special gRPC metadata headers.

The following services are available:

Health Check API.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_overview-grpc-api
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_index
https://developers.google.com/protocol-buffers/docs/proto3
https://github.com/ydb-platform/ydb-api-protos
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-headers
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api


gRPC metadata headers
YDB uses the following gRPC metadata headers:

gRPC headers which a client sends to YDB:

x-ydb-database  - database

x-ydb-auth-ticket  - auth token from a credentials provider

x-ydb-sdk-build-info  - YDB SDK build info

x-ydb-trace-id  - user-defined request ID. If not defined by client YDB SDK generates automatically using UUID format

x-ydb-application-name  - optional user-defined application name

x-ydb-client-capabilities  - supported client SDK capabilities ( session-balancer  and other)

x-ydb-client-pid  - client application process ID

traceparent  - OpenTelemetry trace ID (specification)

gRPC headers which YDB sends to client with responses:

x-ydb-server-hints  - notifications from YDB (such as session-close  and other)

x-ydb-consumed-units  - consumed units on the current request

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-headers_grpc-metadata-headers
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_grpc-headers
https://en.wikipedia.org/wiki/UUID
https://w3c.github.io/trace-context/#header-name


Health Check API
YDB has a built-in self-diagnostic system, which can be used to get a brief report on the database status and information about existing issues.

To initiate the check, call the SelfCheck  method from NYdb::NMonitoring  namespace in the SDK. You must also pass the name of the checked
DB as usual.

Call parameters

SelfCheck  method provides information in the form of a set of issues which could look like this:

This is a short messages each about a single issue. All parameters will affect the amount of information the service returns for the specified
database.

The complete list of extra parameters is presented below:

C++

App code snippet for creating a client:

Calling SelfCheck  method:

auto client = NYdb::NMonitoring::TMonitoringClient(driver);

auto settings = TSelfCheckSettings();
settings.ReturnVerboseStatus(true);
auto result = client.SelfCheck(settings).GetValueSync();

{
  "id": "RED-27c3-70fb",
  "status": "RED",
  "message": "Database has multiple issues",
  "location": {
    "database": {
      "name": "/slice"
    }
  },
  "reason": [
    "RED-27c3-4e47",
    "RED-27c3-53b5",
    "YELLOW-27c3-5321"
  ],
  "type": "DATABASE",
  "level": 1
}

C++

struct TSelfCheckSettings : public TOperationRequestSettings<TSelfCheckSettings>{
    FLUENT_SETTING_OPTIONAL(bool, ReturnVerboseStatus);
    FLUENT_SETTING_OPTIONAL(EStatusFlag, MinimumStatus);
    FLUENT_SETTING_OPTIONAL(ui32, MaximumLevel);
};

Parameter Type Description

ReturnVerboseStatus bool If ReturnVerboseStatus  is specified, the response will also include a summary of 
the overall health of the database in the database_status  field (Example). Default 
is false.

MinimumStatus [EStatusFlag] 
(#issue-status)

Each issue has a status  field. If minimum_status  is specified, issues with a 
higher status  will be discarded. By default, all issues will be listed.

MaximumLevel int32 Each issue has a level  field. If maximum_level  is specified, issues with deeper 
levels will be discarded. By default, all issues will be listed.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_call-parameters
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_example-emergency
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_example-verbose


Response structure

For the full response structure, see the ydb_monitoring.proto file in the YDB Git repository.
Calling the SelfCheck  method will return the following message:

The shortest HealthCheck  response looks like this . It is returned if there is nothing wrong with the database.

If any issues are detected, the issue_log  field will contain descriptions of the issues with the following structure:

Description of fields in the response

Issues hierarchy

Issues can be arranged hierarchically using the id  and reason  fields, which help visualize how issues in different modules affect the overall
system state. All issues are arranged in a hierarchy where higher levels can depend on nested levels:

message SelfCheckResult {
    SelfCheck.Result self_check_result = 1;
    repeated IssueLog issue_log = 2;
    repeated DatabaseStatus database_status = 3;
    LocationNode location = 4;
}

message IssueLog {
    string id = 1;
    StatusFlag.Status status = 2;
    string message = 3;
    Location location = 4;
    repeated string reason = 5;
    string type = 6;
    uint32 level = 7;
}

Field Description

self_check_result enum field which contains the database check result

issue_log.id A unique issue ID within this response.

issue_log.status enum field which contains the issue status

issue_log.message Text that describes the issue.

issue_log.location Location of the issue. This can be a physical location or an execution context.

issue_log.reason This is a set of elements, each of which describes an issue in the system at a certain level.

issue_log.type Issue category (by subsystem). Each type is at a certain level and interconnected with others through a rigid 
hierarchy (as shown in the picture above).

issue_log.level Issue nesting depth.

database_status If the settings include ReturnVerboseStatus  parameter, the database_status  field will be populated. 
This field offers a comprehensive summary of the overall health of the database. 
It is designed to provide a quick overview of the database's condition, helping to assess its health and identify 
any major issuehs at a high level. Example. For the full response structure, see the ydb_monitoring.proto file in 
the YDB Git repository.

location Contains information about the host, where the HealthCheck  service was called

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_response-structure
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_fields-description
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_issues-hierarchy
https://github.com/ydb-platform/ydb/public/api/protos/ydb_monitoring.proto
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_selfcheck-result
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_issue-status
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_issues-hierarchy
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_issues-hierarchy
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_example-verbose
https://github.com/ydb-platform/ydb/public/api/protos/ydb_monitoring.proto


Each issue has a nesting level . The higher the level , the deeper the issue is within the hierarchy. Issues with the same type  always have the
same level , and they can be represented hierarchically.

Database check result

The most general status of the database. It can have the following values:

Issue status

The status (severity) of the current issue:

Value Description

GOOD No issues were detected.

DEGRADED Degradation of at least one of the database systems was detected, but the database is still functioning (for 
example, allowable disk loss).

MAINTENANCE_REQUIRED Significant degradation was detected, there is a risk of database unavailability, and human intervention is 
required.

EMERGENCY A serious problem was detected in the database, with complete or partial unavailability.

Value Description

GREY Unable to determine the status (an issue with the self-diagnostic subsystem).

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_selfcheck-result
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_issue-status


Possible issues

DATABASE

Database has multiple issues, Database has compute issues, Database has storage issues

Description: These issues depend solely on the underlying COMPUTE  and STORAGE  layers. This represents the most general status of a database.

STORAGE

There are no storage pools

Description: Information about storage pools is unavailable. Most likely, the storage pools are not configured.

Storage degraded, Storage has no redundancy, Storage failed

Description: These issues depend solely on the underlying STORAGE_POOLS  layer.

System tablet BSC didn't provide information

Description: Storage diagnostics will be generated using an alternative method.

Storage usage over 75%, Storage usage over 85%, Storage usage over 90%

Description: Some data needs to be removed, or the database needs to be reconfigured with additional disk space.

STORAGE_POOL

Pool degraded, Pool has no redundancy, Pool failed

Description: These issues depend solely on the underlying STORAGE_GROUP  layer.

STORAGE_GROUP

Group has no vslots

Description: This situation is not expected; it is an internal issue.

Group layout is incorrect

Description: The storage group was configured incorrectly.

Actions: In the Embedded UI, navigate to the database page, select the Storage  tab, and use the known group id  to check the configuration of
nodes and disks on the nodes.

Group degraded

Description: A number of disks allowed in the group are not available.

Logic of work: HealthCheck  checks various parameters (fault tolerance mode, number of failed disks, disk status, etc.) and sets the appropriate
status for the group accordingly.

Actions: In Embedded UI, navigate to the database page, select the Storage  tab, apply the Groups  and Degraded  filters, and use the known
group id  to check the availability of nodes and disks on the nodes.

Group has no redundancy

Description: A storage group has lost its redundancy. Another VDisk failure could result in the loss of the group.

Logic of work: HealthCheck  monitors various parameters (fault tolerance mode, number of failed disks, disk status, etc.) and sets the appropriate
status for the group based on these parameters.

GREEN No issues detected.

BLUE Temporary minor degradation that does not affect database availability; the system is expected to return to GREEN .

YELLOW A minor issue with no risks to availability. It is recommended to continue monitoring the issue.

ORANGE A serious issue, a step away from losing availability. Maintenance may be required.

RED A component is faulty or unavailable.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_issues
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_database-has-multiple-issues,-database-has-compute-issues,-database-has-storage-issues
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_storage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_there-are-no-storage-pools
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_storage-degraded,-storage-has-no-redundancy,-storage-failed
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_system-tablet-bsc-didnt-provide-information
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_storage-usage-over-75percent,-storage-usage-over-85percent,-storage-usage-over-90percent
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_storage_pool
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_pool-degraded,-pool-has-no-redundancy,-pool-failed
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_storage_group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_group-has-no-vslots
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_group-layout-is-incorrect
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_group-degraded
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_group-has-no-redundancy
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring


Actions: In Embedded UI, navigate to the database page, select the Storage  tab, apply the Groups  and Degraded  filters, and use the known
group id  to check the availability of nodes and disks on those nodes.

Group failed

Description: A storage group has lost its integrity, and data is no longer available. HealthCheck  evaluates various parameters (fault tolerance
mode, number of failed disks, disk status, etc.) and determines the appropriate status, displaying a message accordingly.

Logic of work: HealthCheck  monitors various parameters (fault tolerance mode, number of failed disks, disk status, etc.) and sets the appropriate
status for the group accordingly.

Actions: In Embedded UI, navigate to the database page, select the Storage  tab, apply the Groups  and Degraded  filters, and use the known
group id  to check the availability of nodes and disks on those nodes.

VDISK

System tablet BSC did not provide known status

Description: This situation is not expected; it is an internal issue.

VDisk is not available

Description: The disk is not operational.

Actions: In YDB Embedded UI, navigate to the database page, select the Storage  tab, and apply the Groups  and Degraded  filters. The group
id  can be found through the related STORAGE_GROUP  issue. Hover over the relevant VDisk to identify the node with the problem and check the

availability of nodes and disks on those nodes.

VDisk is being initialized

Description: The disk is in the process of initialization.

Actions: In Embedded UI, navigate to the database page, select the Storage  tab, and apply the Groups  and Degraded  filters. The group id
can be found through the related STORAGE_GROUP  issue. Hover over the relevant VDisk to identify the node with the problem and check the
availability of nodes and disks on those nodes.

Replication in progress

Description: The disk is accepting queries, but not all data has been replicated.

Actions: In Embedded UI, navigate to the database page, select the Storage  tab, and apply the Groups  and Degraded  filters. The group id
can be found through the related STORAGE_GROUP  issue. Hover over the relevant VDisk to identify the node with the problem and check the
availability of nodes and disks on those nodes.

VDisk have space issue

Description: These issues depend solely on the underlying PDISK  layer.

PDISK

Unknown PDisk state

Description: HealthCheck  the system can't parse pdisk state.

PDisk state is

Description: Indicates state of physical disk.

Actions: In Embedded UI, navigate to the database page, select the Storage  tab, set the Nodes  and Degraded  filters, and use the known node
id and PDisk to check the availability of nodes and disks on the nodes.

Available size is less than 12%, Available size is less than 9%, Available size is less than 6%

Description: Free space on the physical disk is running out.
Actions: In Embedded UI, navigate to the database page, select the Storage  tab, set the Nodes  and Out of Space  filters, and use the known
node and PDisk identifiers to check the available space.

PDisk is not available

Description: A physical disk is not available.

Actions: In Embedded UI, navigate to the database page, select the Storage  tab, set the Nodes  and Degraded  filters, and use the known node
and PDisk identifiers to check the availability of nodes and disks on the nodes.

STORAGE_NODE

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_group-failed
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_vdisk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_system-tablet-bsc-did-not-provide-known-status
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_vdisk-is-not-available
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_vdisk-is-being-initialized
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_replication-in-progress
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_vdisk-have-space-issue
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_pdisk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_unknown-pdisk-state
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_pdisk-state-is
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_available-size-is-less-than-12percent,-available-size-is-less-than-9percent,-available-size-is-less-than-6percent
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_pdisk-is-not-available
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_storage_node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring


Storage node is not available

Description: A storage node is not available.

COMPUTE

There are no compute nodes

Description: The database has no nodes available to start the tablets. Unable to determine COMPUTE_NODE  issues below.

Compute has issues with system tablets

Description: These issues depend solely on the underlying SYSTEM_TABLET  layer.

Some nodes are restarting too often

Description: These issues depend solely on the underlying NODE_UPTIME  layer.

Compute is overloaded

Description: These issues depend solely on the underlying COMPUTE_POOL  layer.

Compute quota usage

Description: These issues depend solely on the underlying COMPUTE_QUOTA  layer.

Compute has issues with tablets

Description: These issues depend solely on the underlying TABLET  layer.

COMPUTE_QUOTA

Paths quota usage is over than 90%, Paths quota usage is over than 99%, Paths quota exhausted, Shards quota usage is over than 90%, Shards
quota usage is over than 99%, Shards quota exhausted

Description: Quotas are exhausted.

Actions: Check the number of objects (tables, topics) in the database and delete any unnecessary ones.

SYSTEM_TABLET

System tablet is unresponsive, System tablet response time over 1000ms, System tablet response time over 5000ms

Description: The system tablet is either not responding or takes too long to respond.

Actions: In Embedded UI, navigate to the Storage  tab and apply the Nodes  filter. Check the Uptime  and the nodes' statuses. If the Uptime  is
short, review the logs to determine the reasons for the node restarts.

TABLET

Tablets are restarting too often

Description: Tablets are restarting too frequently.

Actions: In Embedded UI, navigate to the Nodes  tab. Check the Uptime  and the nodes' statuses. If the Uptime  is short, review the logs to
determine the reasons for the node restarts.

Tablets/Followers are dead

Description: Tablets are not running (likely cannot be started).

Actions: In Embedded UI, navigate to the Nodes  tab. Check the Uptime  and the nodes' statuses. If the Uptime  is short, review the logs to
determine the reasons for the node restarts.

LOAD_AVERAGE

LoadAverage above 100%

Description: A physical host is overloaded, meaning the system is operating at or beyond its capacity, potentially due to a high number of
processes waiting for I/O operations. For more information on load, see Load (computing).

Logic of work:

Load Information:

Source: /proc/loadavg

The first number of the three represents the average load over the last 1 minute.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_storage-node-is-not-available
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_compute
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_there-are-no-compute-nodes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_compute-has-issues-with-system-tablets
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_some-nodes-are-restarting-too-often
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_compute-is-overloaded
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_compute-quota-usage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_compute-has-issues-with-tablets
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_compute_quota
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_paths-quota-usage-is-over-than-90percent,-paths-quota-usage-is-over-than-99percent,-paths-quota-exhausted,-shards-quota-usage-is-over-than-90percent,-shards-quota-usage-is-over-than-99percent,-shards-quota-exhausted
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_system_tablet
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_system-tablet-is-unresponsive,-system-tablet-response-time-over-1000ms,-system-tablet-response-time-over-5000ms
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_tablet
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_tablets-are-restarting-too-often
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_tablets/followers-are-dead
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_load_average
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_loadaverage-above-100percent
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring
https://en.wikipedia.org/wiki/Load_(computing)


Logical Cores Information:

Primary Source: /sys/fs/cgroup/cpu.max

Fallback Sources: /sys/fs/cgroup/cpu/cpu.cfs_quota_us , /sys/fs/cgroup/cpu/cpu.cfs_period_us

The number of cores is calculated by dividing the quota by the period .

Actions: Check the CPU load on the nodes.

COMPUTE_POOL

Pool usage is over than 90%, Pool usage is over than 95%, Pool usage is over than 99%

Description: One of the pools' CPUs is overloaded.

Actions: Add cores to the configuration of the actor system for the corresponding CPU pool.

NODE_UPTIME

The number of node restarts has increased

Description: The number of node restarts has exceeded the threshold. By default, this is set to 10 restarts per hour.

Actions: Check the logs to determine the reasons for the process restarts.

Node is restarting too often

Description: The number of node restarts has exceeded the threshold. By default, this is set to 30 restarts per hour.

Actions: Check the logs to determine the reasons for the process restarts.

NODES_TIME_DIFFERENCE

Node is ... ms behind peer [id], Node is ... ms ahead of peer [id]

Description: Time drift on nodes might lead to potential issues with coordinating distributed transactions. This issue starts to appear when the time
difference is 5 ms or more.

Actions: Check for discrepancies in system time between the nodes listed in the alert, and verify the operation of the time synchronization process.

Examples

The shortest HealthCheck  response looks like this. It is returned if there is nothing wrong with the database:

Verbose example

GOOD  response with verbose  parameter:

{
  "self_check_result": "GOOD"
}

{
    "self_check_result": "GOOD",
    "database_status": [
        {
            "name": "/amy/db",
            "overall": "GREEN",
            "storage": {
                "overall": "GREEN",
                "pools": [
                    {
                        "id": "/amy/db:ssdencrypted",
                        "overall": "GREEN",
                        "groups": [
                            {
                                "id": "2181038132",
                                "overall": "GREEN",
                                "vdisks": [
                                    {
                                        "id": "9-1-1010",
                                        "overall": "GREEN",
                                        "pdisk": {
                                            "id": "9-1",
                                            "overall": "GREEN"
                                        }

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_compute_pool
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_pool-usage-is-over-than-90percent,-pool-usage-is-over-than-95percent,-pool-usage-is-over-than-99percent
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_node_uptime
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_the-number-of-node-restarts-has-increased
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_node-is-restarting-too-often
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_nodes_time_difference
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_node-is-ms-behind-peer-id,-node-is-ms-ahead-of-peer-id
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_example-verbose


                                    },
                                    {
                                        "id": "11-1004-1009",
                                        "overall": "GREEN",
                                        "pdisk": {
                                            "id": "11-1004",
                                            "overall": "GREEN"
                                        }
                                    },
                                    {
                                        "id": "10-1003-1011",
                                        "overall": "GREEN",
                                        "pdisk": {
                                            "id": "10-1003",
                                            "overall": "GREEN"
                                        }
                                    },
                                    {
                                        "id": "8-1005-1010",
                                        "overall": "GREEN",
                                        "pdisk": {
                                            "id": "8-1005",
                                            "overall": "GREEN"
                                        }
                                    },
                                    {
                                        "id": "7-1-1008",
                                        "overall": "GREEN",
                                        "pdisk": {
                                            "id": "7-1",
                                            "overall": "GREEN"
                                        }
                                    },
                                    {
                                        "id": "6-1-1007",
                                        "overall": "GREEN",
                                        "pdisk": {
                                            "id": "6-1",
                                            "overall": "GREEN"
                                        }
                                    },
                                    {
                                        "id": "4-1005-1010",
                                        "overall": "GREEN",
                                        "pdisk": {
                                            "id": "4-1005",
                                            "overall": "GREEN"
                                        }
                                    },
                                    {
                                        "id": "2-1003-1013",
                                        "overall": "GREEN",
                                        "pdisk": {
                                            "id": "2-1003",
                                            "overall": "GREEN"
                                        }
                                    },
                                    {
                                        "id": "1-1-1008",
                                        "overall": "GREEN",
                                        "pdisk": {
                                            "id": "1-1",
                                            "overall": "GREEN"
                                        }
                                    }
                                ]
                            }
                        ]
                    }
                ]
            },
            "compute": {
                "overall": "GREEN",
                "nodes": [
                    {
                        "id": "50073",
                        "overall": "GREEN",
                        "pools": [



                            {
                                "overall": "GREEN",
                                "name": "System",
                                "usage": 0.000405479
                            },
                            {
                                "overall": "GREEN",
                                "name": "User",
                                "usage": 0.00265229
                            },
                            {
                                "overall": "GREEN",
                                "name": "Batch",
                                "usage": 0.000347933
                            },
                            {
                                "overall": "GREEN",
                                "name": "IO",
                                "usage": 0.000312022
                            },
                            {
                                "overall": "GREEN",
                                "name": "IC",
                                "usage": 0.000945925
                            }
                        ],
                        "load": {
                            "overall": "GREEN",
                            "load": 0.2,
                            "cores": 4
                        }
                    },
                    {
                        "id": "50074",
                        "overall": "GREEN",
                        "pools": [
                            {
                                "overall": "GREEN",
                                "name": "System",
                                "usage": 0.000619053
                            },
                            {
                                "overall": "GREEN",
                                "name": "User",
                                "usage": 0.00463859
                            },
                            {
                                "overall": "GREEN",
                                "name": "Batch",
                                "usage": 0.000596071
                            },
                            {
                                "overall": "GREEN",
                                "name": "IO",
                                "usage": 0.0006241
                            },
                            {
                                "overall": "GREEN",
                                "name": "IC",
                                "usage": 0.00218465
                            }
                        ],
                        "load": {
                            "overall": "GREEN",
                            "load": 0.08,
                            "cores": 4
                        }
                    },
                    {
                        "id": "50075",
                        "overall": "GREEN",
                        "pools": [
                            {
                                "overall": "GREEN",
                                "name": "System",
                                "usage": 0.000579126
                            },
                            {



Emergency example

Response with EMERGENCY  status:

                                "overall": "GREEN",
                                "name": "User",
                                "usage": 0.00344293
                            },
                            {
                                "overall": "GREEN",
                                "name": "Batch",
                                "usage": 0.000592347
                            },
                            {
                                "overall": "GREEN",
                                "name": "IO",
                                "usage": 0.000525747
                            },
                            {
                                "overall": "GREEN",
                                "name": "IC",
                                "usage": 0.00174265
                            }
                        ],
                        "load": {
                            "overall": "GREEN",
                            "load": 0.26,
                            "cores": 4
                        }
                    }
                ],
                "tablets": [
                    {
                        "overall": "GREEN",
                        "type": "SchemeShard",
                        "state": "GOOD",
                        "count": 1
                    },
                    {
                        "overall": "GREEN",
                        "type": "SysViewProcessor",
                        "state": "GOOD",
                        "count": 1
                    },
                    {
                        "overall": "GREEN",
                        "type": "Coordinator",
                        "state": "GOOD",
                        "count": 3
                    },
                    {
                        "overall": "GREEN",
                        "type": "Mediator",
                        "state": "GOOD",
                        "count": 3
                    },
                    {
                        "overall": "GREEN",
                        "type": "Hive",
                        "state": "GOOD",
                        "count": 1
                    }
                ]
            }
        }
    ]
}

{
  "self_check_result": "EMERGENCY",
  "issue_log": [
    {
      "id": "RED-27c3-70fb",
      "status": "RED",
      "message": "Database has multiple issues",
      "location": {

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api_example-emergency


        "database": {
          "name": "/slice"
        }
      },
      "reason": [
        "RED-27c3-4e47",
        "RED-27c3-53b5",
        "YELLOW-27c3-5321"
      ],
      "type": "DATABASE",
      "level": 1
    },
    {
      "id": "RED-27c3-4e47",
      "status": "RED",
      "message": "Compute has issues with system tablets",
      "location": {
        "database": {
          "name": "/slice"
        }
      },
      "reason": [
        "RED-27c3-c138-BSController"
      ],
      "type": "COMPUTE",
      "level": 2
    },
    {
      "id": "RED-27c3-c138-BSController",
      "status": "RED",
      "message": "System tablet is unresponsive",
      "location": {
        "compute": {
          "tablet": {
            "type": "BSController",
            "id": [
              "72057594037989391"
            ]
          }
        },
        "database": {
          "name": "/slice"
        }
      },
      "type": "SYSTEM_TABLET",
      "level": 3
    },
    {
      "id": "RED-27c3-53b5",
      "status": "RED",
      "message": "System tablet BSC didn't provide information",
      "location": {
        "database": {
          "name": "/slice"
        }
      },
      "type": "STORAGE",
      "level": 2
    },
    {
      "id": "YELLOW-27c3-5321",
      "status": "YELLOW",
      "message": "Storage degraded",
      "location": {
        "database": {
          "name": "/slice"
        }
      },
      "reason": [
        "YELLOW-27c3-595f-8d1d"
      ],
      "type": "STORAGE",
      "level": 2
    },
    {
      "id": "YELLOW-27c3-595f-8d1d",
      "status": "YELLOW",
      "message": "Pool degraded",



      "location": {
        "storage": {
          "pool": {
            "name": "static"
          }
        },
        "database": {
          "name": "/slice"
        }
      },
      "reason": [
        "YELLOW-27c3-ef3e-0"
      ],
      "type": "STORAGE_POOL",
      "level": 3
    },
    {
      "id": "RED-84d8-3-3-1",
      "status": "RED",
      "message": "PDisk is not available",
      "location": {
        "storage": {
          "node": {
            "id": 3,
            "host": "man0-0026.ydb-dev.nemax.nebiuscloud.net",
            "port": 19001
          },
          "pool": {
            "group": {
              "vdisk": {
                "pdisk": [
                  {
                    "id": "3-1",
                    "path": "/dev/disk/by-partlabel/NVMEKIKIMR01"
                  }
                ]
              }
            }
          }
        }
      },
      "type": "PDISK",
      "level": 6
    },
    {
      "id": "RED-27c3-4847-3-0-1-0-2-0",
      "status": "RED",
      "message": "VDisk is not available",
      "location": {
        "storage": {
          "node": {
            "id": 3,
            "host": "man0-0026.ydb-dev.nemax.nebiuscloud.net",
            "port": 19001
          },
          "pool": {
            "name": "static",
            "group": {
              "vdisk": {
                "id": [
                  "0-1-0-2-0"
                ]
              }
            }
          }
        },
        "database": {
          "name": "/slice"
        }
      },
      "reason": [
        "RED-84d8-3-3-1"
      ],
      "type": "VDISK",
      "level": 5
    },
    {
      "id": "YELLOW-27c3-ef3e-0",



      "status": "YELLOW",
      "message": "Group degraded",
      "location": {
        "storage": {
          "pool": {
            "name": "static",
            "group": {
              "id": [
                "0"
              ]
            }
          }
        },
        "database": {
          "name": "/slice"
        }
      },
      "reason": [
        "RED-27c3-4847-3-0-1-0-2-0"
      ],
      "type": "STORAGE_GROUP",
      "level": 4
    }
  ],
  "location": {
    "id": 5,
    "host": "man0-0028.ydb-dev.nemax.nebiuscloud.net",
    "port": 19001
  }
}



ADO.NET - .NET Access to YDB
Ydb.Sdk  is an ADO.NET Data Provider for YDB. It allows programs written in C#, Visual Basic, and F# to access the YDB database server. It is

implemented in 100% C# code, is free, and is open source.

Documentation

Getting Started with ADO.NET

Installation ADO.NET

Basic Usage with ADO.NET

ADO.NET Connection Parameters

ADO.NET Supported Types and Their Mappings

Connection ADO.NET to Yandex Cloud

Using Dapper

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_index_documentation
https://learn.microsoft.com/en-us/dotnet/framework/data/adonet/
https://github.com/ydb-platform/ydb-dotnet-sdk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_getting-started
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_installation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_basic-usage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_connection-parameters
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_type-mapping
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_yandex-cloud
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_integrations_orm_dapper


JDBC driver for YDB
The JDBC driver for YDB provides database connectivity for applications written in Java or other programming languages running on JVM, like
Kotlin, Scala, etc.

Download

Download the JDBC driver for YDB from the latest releases page on GitHub.

Documentation

Quick start with JDBC driver

Using the JDBC driver with Maven

Authentication modes

JDBC driver properties

Building the JDBC driver for YDB

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_jdbc-driver_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_jdbc-driver_index_download
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_jdbc-driver_index_documentation
https://github.com/ydb-platform/ydb-jdbc-driver/releases
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_jdbc-driver_quickstart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_jdbc-driver_maven
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_jdbc-driver_authentication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_jdbc-driver_properties
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_jdbc-driver_building


YDB Model Context Protocol Server
YDB Model Context Protocol (MCP) server allows you to work with YDB databases from any Large Language Model (LLM) that supports MCP
using any of the MCP clients. This integration enables AI-powered database operations and natural language interactions with your YDB instances.

Getting Started

Prerequisites

1. Install an MCP client that supports MCP tools (most do). The configuration examples below use a common format supported by several
popular MCP clients (Claude Desktop, Cursor, etc.), but you may need to adjust the format to meet your client's requirements.

2. The YDB MCP server is a Python application that is typically co-hosted with the MCP client. There are several options for installing and
running the YDB MCP server explained below, but all of them require a pre-installed Python 3.10+ environment.

Anonymous Authentication

uvx

uvx allows you to run Python applications without explicitly installing them.

Configure YDB MCP in your MCP client settings:

{
  "mcpServers": {
    "ydb": {
      "command": "uvx",
      "args": [
        "ydb-mcp",
        "--ydb-endpoint", "grpc://localhost:2136/local"
      ]
    }
  }
}

pipx

pipx allows you to run applications from PyPI without explicit installation (pipx itself must be installed first).

Configure YDB MCP in your MCP client settings:

{
  "mcpServers": {
    "ydb": {
      "command": "pipx",
      "args": [
        "run", "ydb-mcp",
        "--ydb-endpoint", "grpc://localhost:2136/local"
      ]
    }
  }
}

pip

Optionally, create and activate a Python virtual environment. Install YDB MCP using pip:

Configure YDB MCP in your MCP client settings:

pip install ydb-mcp

{
  "mcpServers": {
    "ydb": {
      "command": "python3",
      "args": [
        "-m", "ydb_mcp",
        "--ydb-endpoint", "grpc://localhost:2136/local"
      ]
    }
  }
}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_mcp_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_mcp_index_getting-started
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_mcp_index_prerequisites
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_mcp_index_anonymous-authentication
https://github.com/ydb-platform/ydb-mcp
https://en.wikipedia.org/wiki/Large_language_model
https://modelcontextprotocol.io/introduction
https://modelcontextprotocol.io/clients
https://modelcontextprotocol.io/clients
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_mcp_index_server-arguments
https://docs.astral.sh/uv/guides/tools/
https://pipx.pypa.io/stable/installation/
https://docs.python.org/3/library/venv.html
https://pypi.org/project/pip/


Login-Password Authentication

Run Queries

Ask your LLM questions regarding the data stored in YDB using the MCP client configured above. The language model will see the tools available
to it via MCP and will use them to execute YQL queries and other YDB API calls. An example of how it might look:

uvx

Configure login/password authentication with uvx :

{
  "mcpServers": {
    "ydb": {
      "command": "uvx",
      "args": [
        "ydb-mcp",
        "--ydb-endpoint", "grpc://localhost:2136/local",
        "--ydb-auth-mode", "login-password",
        "--ydb-login", "<your-username>",
        "--ydb-password", "<your-password>"
      ]
    }
  }
}

pipx

Configure login/password authentication with pipx :

{
  "mcpServers": {
    "ydb": {
      "command": "pipx",
      "args": [
        "run", "ydb-mcp",
        "--ydb-endpoint", "grpc://localhost:2136/local",
        "--ydb-auth-mode", "login-password",
        "--ydb-login", "<your-username>",
        "--ydb-password", "<your-password>"
      ]
    }
  }
}

pip

Configure login/password authentication with pip -installed YDB MCP:

{
  "mcpServers": {
    "ydb": {
      "command": "python3",
      "args": [
        "-m", "ydb_mcp",
        "--ydb-endpoint", "grpc://localhost:2136/local",
        "--ydb-auth-mode", "login-password",
        "--ydb-login", "<your-username>",
        "--ydb-password", "<your-password>"
      ]
    }
  }
}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_mcp_index_login-password-authentication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_mcp_index_run-queries
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_index


Available Tools

YDB MCP provides the following tools for interacting with YDB databases:

ydb_query : Run a SQL query against a YDB database

Parameters:

sql : SQL query string to execute

ydb_query_with_params : Run a parameterized SQL query with JSON parameters

Parameters:

sql : SQL query string with parameters

params : JSON string containing parameter values

ydb_list_directory : List directory contents in YDB

Parameters:

path : YDB directory path to list

ydb_describe_path : Get detailed information about a scheme object (table, directory, etc) located at the specified YDB path

Parameters:

path : YDB path to describe

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_mcp_index_available-tools
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_scheme-object


ydb_status : Get the current status of the YDB connection

Command-line arguments and environment variables

The following table describes the command-line arguments and environment variables for the YDB MCP server:

Note

Command-line arguments override the corresponding environment variables.

Learn More

For more information visit the YDB MCP GitHub repository.

Arguments
Environment 
variable

Default Description

--ydb-endpoint YDB_ENDPOINT — YDB endpoint consisting of protocol, hostname, port, and database 
name

--ydb-login YDB_LOGIN — YDB login

--ydb-password YDB_PASSWORD — YDB password

--ydb-auth-mode YDB_AUTH_MODE anonymous YDB authentication mode. Valid values: anonymous , 
login-password

--log-level — INFO Logging level. Valid values: DEBUG , INFO , WARNING , ERROR , 
CRITICAL

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_mcp_index_server-arguments
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_mcp_index_learn-more
https://github.com/ydb-platform/ydb-mcp


Getting Started with ADO.NET
The best way to use Ydb.Sdk  is to install its NuGet package.

Ydb.Sdk.Ado  aims to be fully ADO.NET-compatible; its API should feel almost identical to other .NET database drivers.

Here's a basic code snippet to get you started:

You can find more info about the ADO.NET API in the MSDN docs or in many tutorials on the Internet.

await using var connection = new YdbConnection("Host=localhost;Port=2136;Database=/local;MaxSessionPool=50");
await connection.OpenAsync();

var ydbCommand = connection.CreateCommand();
ydbCommand.CommandText = """
                         SELECT series_id, season_id, episode_id, air_date, title
                         FROM episodes
                         WHERE series_id = @series_id AND season_id > @season_id
                         ORDER BY series_id, season_id, episode_id
                         LIMIT @limit_size;
                         """;
ydbCommand.Parameters.Add(new YdbParameter("series_id", DbType.UInt64, 1U));
ydbCommand.Parameters.Add(new YdbParameter("season_id", DbType.UInt64, 1U));
ydbCommand.Parameters.Add(new YdbParameter("limit_size", DbType.UInt64, 3U));

var ydbDataReader = await ydbCommand.ExecuteReaderAsync();

_logger.LogInformation("Selected rows:");
while (await ydbDataReader.ReadAsync())
{
    _logger.LogInformation(
        "series_id: {series_id}, season_id: {season_id}, episode_id: {episode_id}, air_date: {air_date}, title: 
{title}",
        ydbDataReader.GetUint64(0), ydbDataReader.GetUint64(1), ydbDataReader.GetUint64(2),
        ydbDataReader.GetDateTime(3), ydbDataReader.GetString(4));
}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_getting-started
https://www.nuget.org/packages/Ydb.Sdk
https://learn.microsoft.com/en-us/dotnet/framework/data/adonet/ado-net-overview?redirectedfrom=MSDN


Installation ADO.NET
Official releases of Ydb.Sdk  are always available on nuget.org. This is the recommended way to use Ydb.Sdk .

dotnet add package Ydb.Sdk

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_installation
https://www.nuget.org/packages/Ydb.Sdk/


Basic Usage with ADO.NET
This article covers core ADO.NET usage scenarios for YDB, including database connections, query execution, and result processing. See the main
documentation for additional details.

Connections

A connection to YDB is established using YdbConnection .

1. Using an empty connection:

The following code creates a connection with the default settings:

This option creates a connection to the database at the URL grpc://localhost:2136/local  with anonymous authentication.

2. Using the constructor with a connection string:

In the following example, a connection is created using a connection string in ADO.NET:

In this case, the connection is established at the URL grpc://database-sample-grpc:2135/root/database-sample . The supported set of
settings is explained on the connection parameters page.

3. Using the constructor with a YdbConnectionStringBuilder  argument:

The example using YdbConnectionStringBuilder  is demonstrated in the code below:

YdbConnectionStringBuilder  supports additional configuration beyond the connection string, such as logging, advanced authentication
options.

Pooling

Opening and closing a logical connection to YDB is an expensive and time-consuming process. Therefore, connections to YDB are pooled. Closing
or disposing of a connection does not close the underlying logical connection; rather, it returns it to a pool managed by Ydb.Sdk.Ado . When a
connection is needed again, a pooled connection is returned. This makes opening and closing operations extremely fast. Do not hesitate to open
and close connections often if necessary, rather than keeping a connection open unnecessarily for a long period of time.

ClearPool

Closes idle connections immediately. Active connections close when returned.

ClearAllPools

Closes all idle connections across all pools. Active connections close on return.

Data Source

Starting with .NET 7.0, the starting point for any database operation is DbDataSource.

The simplest way to create a data source is the following:

await using var ydbConnection = new YdbConnection("");
await ydbConnection.OpenAsync();

await using var ydbConnection = new YdbConnection(
    "Host=database-sample-grpc;Port=2135;Database=/root/database-sample");
await ydbConnection.OpenAsync();

var ydbConnectionBuilder = new YdbConnectionStringBuilder
{
    Host = "server",
    Port = 2135,
    Database = "/ru-prestable/my-table",
    UseTls = true
};
await using var ydbConnection = new YdbConnection(ydbConnectionBuilder);
await ydbConnection.OpenAsync();

YdbConnection.ClearPool(ydbConnection)

YdbConnection.ClearAllPools()

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_basic-usage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_basic-usage_connections
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_basic-usage_pooling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_basic-usage_clearpool
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_basic-usage_clearallpools
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_basic-usage_data-source
https://learn.microsoft.com/en-us/dotnet/framework/data/adonet/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_index
https://learn.microsoft.com/en-us/dotnet/framework/data/adonet/connection-strings
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_connection-parameters
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_connection-parameters_connection-builder-parameters
https://learn.microsoft.com/en-us/dotnet/api/system.data.common.dbdatasource


Or

Basic SQL Execution

Once you have a YdbConnection , an YdbCommand  can be used to execute SQL against it:

Other Execution Methods

Above, SQL is executed via ExecuteReaderAsync. There are various ways to execute a command, depending on the results you expect from it:

1. ExecuteNonQueryAsync: executes SQL that doesn't return any results, typically INSERT , UPDATE , or DELETE  statements.

Warning

YDB does not return the number of rows affected.

2. ExecuteScalarAsync: executes SQL that returns a single scalar value.

3. ExecuteReaderAsync: executes SQL that returns a full result set. Returns a YdbDataReader , which can be used to access the result set (as
in the example above).

For example, to execute a simple SQL INSERT  that does not return anything, you can use ExecuteNonQueryAsync  as follows:

Parameters

When sending data values to the database, always consider using parameters rather than including the values in the SQL, as shown in the
following example:

await using var dataSource = new YdbDataSource("Host=localhost;Port=2136;Database=/local");

var ydbConnectionBuilder = new YdbConnectionStringBuilder
{
    Host = "localhost",
    Port = 2136,
    Database = "/local",
    UseTls = false
};

await using var dataSource = new YdbDataSource(ydbConnectionBuilder);

await using var command = dataSource.CreateCommand("SELECT some_field FROM some_table")
await using var reader = await command.ExecuteReaderAsync();

while (await reader.ReadAsync())
{
    Console.WriteLine(reader.GetString(0));
}

await using var command = dataSource.CreateCommand("INSERT INTO some_table (some_field) VALUES ('Hello YDB!'u)");
await command.ExecuteNonQueryAsync();

await using var connection = new YdbConnection(_cmdOptions.SimpleConnectionString);
await connection.OpenAsync();

var ydbCommand = connection.CreateCommand();
ydbCommand.CommandText = """
                         DECLARE $series_id AS Uint64;
                         DECLARE $season_id AS Uint64;
                         DECLARE $limit_size AS Uint64;

                         SELECT series_id, season_id, episode_id, air_date, title
                         FROM episodes WHERE series_id = $series_id AND season_id > $season_id
                         ORDER BY series_id, season_id, episode_id
                         LIMIT $limit_size;
                         """;
ydbCommand.Parameters.Add(new YdbParameter("$series_id", DbType.UInt64, 1U));
ydbCommand.Parameters.Add(new YdbParameter("$season_id", DbType.UInt64, 1U));
ydbCommand.Parameters.Add(new YdbParameter("$limit_size", DbType.UInt64, 3U));

var ydbDataReader = await ydbCommand.ExecuteReaderAsync();

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_basic-usage_basic-sql-execution
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_basic-usage_other-execution-methods
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_basic-usage_parameters
https://learn.microsoft.com/en-us/dotnet/api/system.data.common.dbcommand.executereaderasync
https://learn.microsoft.com/en-us/dotnet/api/system.data.common.dbcommand.executenonqueryasync
https://learn.microsoft.com/en-us/dotnet/api/system.data.common.dbcommand.executescalarasync
https://learn.microsoft.com/en-us/dotnet/api/system.data.common.dbcommand.executereaderasync


SQL query parameters can be set using the YdbParameter  class.

In this example, the parameters $series_id , $season_id , and $limit_size  are declared within the SQL query and then added to the
command using YdbParameter  objects.

Alternative Parameter Style with @  Prefix

Parameters can also be specified using the @  prefix. In this case, there is no need to declare variables within the query itself. The query will look
like this:

With ADO.NET, the query will be prepared for you so that the variables match YQL. The type will be determined according to the DbType or the
.NET type of the value itself.

Parameter Types

YDB has a strongly-typed type system: columns and parameters have a type, and types are usually not implicitly converted to other types. This
means you have to think about which type you will be sending: trying to insert a string into an integer column (or vice versa) will fail.

For more information on supported types and their mappings, see this page.

Transactions

To create a client transaction, use the standard ADO.NET ydbConnection.BeginTransaction()  method.

There are two signatures of this method with a single isolation level parameter:

BeginTransaction(TxMode txMode)

The Ydb.Sdk.Services.Query.TxMode  is a YDB specific isolation level, you can read more about it here.

BeginTransaction(IsolationLevel isolationLevel)

The System.Data.IsolationLevel  parameter from the standard ADO.NET. The following isolation levels are supported: Serializable  and
Unspecified . Both are equivalent to the TxMode.SerializableRW .

Calling BeginTransaction()  without parameters opens a transaction with level the TxMode.SerializableRW .

Consider the following example of using a transaction:

YDB does not support nested or concurrent transactions. At any given moment, only one transaction per connection can be in progress, and
starting a new transaction while another is already running throws an exception. Therefore, there is no need to pass the YdbTransaction  object
returned by BeginTransaction()  to commands you execute. When a transaction is started, all subsequent commands are automatically included
until a commit or rollback is made. To ensure maximum portability, however, it is best to set the transaction scope for your commands explicitly.

Error Handling

All exceptions related to database operations are subclasses of YdbException .

To safely handle errors that might occur during command execution, you can use a try-catch  block. Here is an example:

ydbCommand.CommandText = """
                         SELECT series_id, season_id, episode_id, air_date, title
                         FROM episodes
                         WHERE series_id = @series_id AND season_id > @season_id
                         ORDER BY series_id, season_id, episode_id
                         LIMIT @limit_size;
                         """;
ydbCommand.Parameters.Add(new YdbParameter("series_id", DbType.UInt64, 1U));
ydbCommand.Parameters.Add(new YdbParameter("season_id", DbType.UInt64, 1U));
ydbCommand.Parameters.Add(new YdbParameter("limit_size", DbType.UInt64, 3U));

await using var connection = await dataSource.OpenConnectionAsync();
await using var transaction = await connection.BeginTransactionAsync();

await using var command1 = new YdbCommand(connection) { CommandText = "...", Transaction = transaction };
await command1.ExecuteNonQueryAsync();

await using var command2 = new YdbCommand(connection) { CommandText = "...", Transaction = transaction };
await command2.ExecuteNonQueryAsync();

await transaction.CommitAsync();

try
{
    await command.ExecuteNonQueryAsync();
}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_basic-usage_alternative-parameter-style-with-prefix
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_basic-usage_parameter-types
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_basic-usage_transactions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_basic-usage_error-handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_index
https://learn.microsoft.com/en-us/dotnet/api/system.data.dbtype
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_type-mapping
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_transactions


Properties of YdbException

The YdbException  exception has the following properties, which can help you handle errors properly:

IsTransient  returns true  if the error is temporary and can be resolved by retrying. For example, this might occur in cases of a transaction
lock violation when the transaction fails to complete its commit.

IsTransientWhenIdempotent  returns true  if the error is temporary and can be resolved by retrying the operation, provided that the
database operation is idempotent.

StatusCode  contains the database error code, which is helpful for logging and detailed analysis of the issue.

Warning

Please note that ADO.NET does not automatically retry failed operations, and you must implement retry logic in your code.

Examples

Examples are provided on GitHub at link.

catch (YdbException e)
{
    Console.WriteLine($"Error executing command: {e}");
}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_basic-usage_properties-of
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_basic-usage_examples
https://github.com/ydb-platform/ydb-dotnet-sdk/tree/main/examples/src/AdoNet


ADO.NET Connection Parameters
To connect to a database, the application provides a connection string that specifies parameters such as the host, user, password, and so on.
Connection strings have the form keyword1=value; keyword2=value; . For more information, see the official doc page on connection strings.

All available connection parameters are defined as properties in the YdbConnectionStringBuilder .

Below are the connection string parameters that Ydb.Sdk.Ado  supports.

Basic Connection

Security and Encryption

Pooling

Keepalive

Connection Builder Parameters

There are also additional parameters that do not participate in forming the connection string. These can only be specified using
YdbConnectionStringBuilder :

Parameter Description Default value

Host Specifies the YDB server host localhost

Port Specifies the YDB server port 2136

Database Specifies the database name /local

User Specifies the username Not defined

Password Specifies the user password Not defined

Parameter Description
Default 
value

UseTls Indicates whether to use the TLS protocol ( grpcs  or grpc ) false

RootCertificate Specifies the path to the trusted server TLS certificate. If this parameter is set, the UseTls  
parameter will be forced to be true

Not defined

Parameter Description Default value

MaxSessionPool Specifies the maximum session pool size 100

Parameter Description
Default 
value

KeepAlivePingDelay The client sends a keep-alive ping to the server if it doesn't receive any frames on a 
connection for this period of time. This property is used together with 
KeepAlivePingTimeout  to check whether the connection is broken. The delay value must be 

greater than or equal to 1  second. Set to 0  to disable the keep-alive ping

10  
seconds

KeepAlivePingTimeout Keep-alive pings are sent when a period of inactivity exceeds the configured 
KeepAlivePingDelay  value. The client closes the connection if it doesn't receive any frames 

within the timeout. The timeout must be greater than or equal to 1  second. Set to 0  to 
disable the keep-alive ping timeout

10  
seconds

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_connection-parameters
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_connection-parameters_basic-connection
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_connection-parameters_security-and-encryption
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_connection-parameters_pooling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_connection-parameters_keepalive
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_connection-parameters_connection-builder-parameters
https://learn.microsoft.com/en-us/dotnet/framework/data/adonet/connection-strings


Parameter Description Default value

LoggerFactory This parameter accepts an instance that implements the ILoggerFactory 
interface. The ILoggerFactory  is a standard interface for logging 
factories in .NET. It is possible to use popular logging frameworks such 
as NLog, serilog, log4net

NullLoggerFactory.Instance

CredentialsProvider An authentication provider that implements the 
Ydb.Sdk.Auth.ICredentialsProvider . Standard ways for 

authentication: 
 1) Ydb.Sdk.Auth.TokenProvider . Token authentication for OAuth-like 
tokens. 
 2) For Yandex Cloud specific authentication methods, consider using 
ydb-dotnet-yc

Anonymous

ServerCertificates Specifies custom server certificates used for TLS/SSL validation. This is 
useful when working with cloud providers (e.g., Yandex Cloud) that use 
custom root or intermediate certificates not trusted by default

Not defined

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.iloggerfactory
https://github.com/NLog/NLog
https://github.com/serilog/serilog
https://github.com/apache/logging-log4net
https://github.com/ydb-platform/ydb-dotnet-yc


ADO.NET Supported Types and Their Mappings
The following lists the built-in mappings for reading and writing CLR types to YDB types.

Type Mapping Table for Reading

The following shows the mappings used when reading values.

These are the return types when using YdbCommand.ExecuteScalarAsync() , YdbDataReader.GetValue() , and similar methods.

Type Mapping Table for Writing

YDB type .NET type

Bool bool

Text  (synonym of Utf8 ) string

Bytes  (synonym of String ) byte[]

Uint8 byte

Uint16 ushort

Uint32 uint

Uint64 ulong

Int8 sbyte

Int16 short

Int32 int

Int64 long

Float float

Double double

Date DateTime

Datetime DateTime

Timestamp DateTime

Decimal(22,9) Decimal

Json string

JsonDocument string

Yson byte[]

YDB type DbType .NET type

Bool Boolean bool

Text  (synonym of 
Utf8 )

String , AnsiString , AnsiStringFixedLength , StringFixedLength string

Bytes  (synonym of 
String )

Binary byte[]

Uint8 Byte byte

Uint16 UInt16 ushort

Uint32 UInt32 uint

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_type-mapping
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_type-mapping_type-mapping-table-for-reading
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_type-mapping_type-mapping-table-for-writing


Note

It's important to understand that if the DbType  is not specified, the parameter will be inferred from the System.Type .

You can also specify any YDB type using the constructors from Ydb.Sdk.Value.YdbValue . For example:

var parameter = new YdbParameter("$parameter", YdbValue.MakeJsonDocument("{\"type\": \"jsondoc\"}")); 

Uint64 UInt64 ulong

Int8 SByte sbyte

Int16 Int16 short

Int32 Int32 int

Int64 Int64 long

Float Single float

Double Double double

Date Date DateTime

Datetime DateTime DateTime

Timestamp DateTime2  (for .NET type DateTime ), DateTimeOffset  (for .NET type 
DateTimeOffset )

DateTime , 
DateTimeOffset

Decimal(22,9) Decimal , Currency decimal



Connection ADO.NET to Yandex Cloud

Installation

To use Yandex Cloud authentication in your .NET application, install the Ydb.Sdk.Yc.Auth  NuGet package:

This package provides the necessary tools for authenticating with Yandex Cloud services.

Authentication

Supported Yandex.Cloud authentication methods:

Ydb.Sdk.Yc.ServiceAccountProvider . Service account authentication, sample usage:

Ydb.Sdk.Yc.MetadataProvider . Metadata service authentication, works inside Yandex Cloud VMs and Cloud Functions. Sample usage:

Certificates

The library includes default Yandex Cloud server certificates, which are required for connectivity with dedicated YDB databases:

How to Connect with ADO.NET

To establish a secure connection to YDB using ADO.NET, configure YdbConnectionStringBuilder  with the required authentication and TLS
settings. Below is a detailed example:

Example

ADO.NET connect to Yandex Cloud

dotnet add package Ydb.Sdk.Yc.Auth

var saProvider = new ServiceAccountProvider(
    saFilePath: file, // Path to file with service account JSON info
    loggerFactory: loggerFactory
);

var metadataProvider = new MetadataProvider(loggerFactory: loggerFactory);

var certs = Ydb.Sdk.Yc.YcCerts.GetYcServerCertificates();

var builder = new YdbConnectionStringBuilder
{
    // More settings ...
    UseTls = true,
    Port = 2135,
    CredentialsProvider = saProvider, // For service account
    ServerCertificates = YcCerts.GetYcServerCertificates() // custom certificates Yandex Cloud
};

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_yandex-cloud
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_yandex-cloud_installation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_yandex-cloud_authentication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_yandex-cloud_certificates
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_yandex-cloud_how-to-connect-with-adonet
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_ado-net_yandex-cloud_example
https://yandex.cloud/en
https://www.nuget.org/packages/Ydb.Sdk.Yc.Auth/
https://yandex.cloud/en/docs/iam/concepts/users/service-account
https://yandex.cloud/en/docs/compute/operations/vm-connect/auth-inside-vm
https://github.com/ydb-platform/ydb-dotnet-sdk/tree/main/examples/src/YC


Quick start with JDBC driver
1. Download the JDBC driver for YDB.

2. Copy the .jar  file to the directory specified in the CLASSPATH  environment variable or load the .jar  file in your IDE.

3. Connect to YDB. JDBC URL examples:

Local Docker container with anonymous authentication and without TLS:
jdbc:ydb:grpc://localhost:2136/local

Remote self-hosted cluster:
jdbc:ydb:grpcs://<host>:2135/Root/<testdb>?secureConnectionCertificate=file:~/<myca>.cer

A cloud database instance with a token:
jdbc:ydb:grpcs://<host>:2135/<path/to/database>?token=file:~/my_token

A cloud database instance with a service account:
jdbc:ydb:grpcs://<host>:2135/<path/to/database>?saFile=file:~/sa_key.json

4. Execute queries, for example, YdbDriverExampleTest.java.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_jdbc-driver_quickstart
https://github.com/ydb-platform/ydb-jdbc-driver/releases
https://github.com/ydb-platform/ydb-jdbc-driver/blob/master/jdbc/src/test/java/tech/ydb/jdbc/YdbDriverExampleTest.java


Using the JDBC driver with Maven
The recommended way to use the YDB JDBC driver in a project is to include it as a Maven dependency. Specify the YDB JDBC driver in the
dependencies  section of pom.xml :

<dependencies>
    <dependency>
        <groupId>tech.ydb.jdbc</groupId>
        <artifactId>ydb-jdbc-driver</artifactId>
        <version><!-- actual version --></version>
    </dependency>
</dependencies>

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_jdbc-driver_maven


Authentication modes
The JDBC Driver for YDB supports the following authentication modes:

Anonymous is used when a username and password are not specified and no other authentication properties are configured. No
authentication credentials are provided.

Static credentials are used when a username and password are specified.

Access token is used when the token  property is configured. This authentication method requires a YDB authentication token, which can be
obtained by executing the following YDB CLI command: ydb auth get-token .

Metadata is used when the useMetadata  property is set to true . This method extracts the authentication data from the metadata of a virtual
machine, serverless container, or serverless function running in a cloud environment.

Service Account Key is used when the saFile  property is configured. This method extracts the service account key from a file and uses it
for authentication.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_jdbc-driver_authentication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_auth
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_jdbc-driver_properties_token
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_jdbc-driver_properties_useMetadata
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_jdbc-driver_properties_saFile


JDBC driver properties
The JDBC driver for YDB supports the following configuration properties, which can be specified in the JDBC URL or passed via additional
properties:

saFile  — service account key for authentication. The valid value is either the content of the JSON file or a file reference.

iamEndpoint  — custom IAM endpoint for authentication using a service account key.

token  — token value for authentication. The valid value is either the token content or a token file reference.

useMetadata  — indicates whether to use metadata authentication. Valid values are:

true  — use metadata authentication.

false  — do not use metadata authentication.

Default value: false .

metadataURL  — custom metadata endpoint.

localDatacenter  — the name of the data center local to the application being connected.

secureConnection  — indicates whether to use TLS. Valid values are:

true  — enforce TLS.

false  — do not enforce TLS.

The primary way to indicate whether a connection is secure or not is by using the grpcs://  scheme for secure connections and grpc://  for
insecure connections in the JDBC URL. This property allows overriding it.

secureConnectionCertificate  — custom CA certificate for TLS connections. The valid value is either the certificate content or a certificate
file reference.

Note

File references for saFile , token , or secureConnectionCertificate  must be prefixed with the file:  URL scheme, for example:

saFile=file:~/mysakey1.json

token=file:/opt/secret/token-file

secureConnectionCertificate=file:/etc/ssl/cacert.cer

Using the QueryService mode

By default, the JDBC driver currently uses a legacy API for running queries to be compatible with a broader range of YDB versions. However, that
API has some extra limitations. To turn off this behavior and use a modern API called "Query Service", add the useQueryService=true  property to
the JDBC URL.

JDBC URL examples

Local Docker container with anonymous authentication and without TLS:
jdbc:ydb:grpc://localhost:2136/local

Remote self-hosted cluster:
jdbc:ydb:grpcs://<host>:2135/Root/<testdb>?secureConnectionCertificate=file:~/<myca>.cer

A cloud database instance with a token:
jdbc:ydb:grpcs://<host>:2135/<path/to/database>?token=file:~/my_token

A cloud database instance with a service account:
jdbc:ydb:grpcs://<host>:2135/<path/to/database>?saFile=file:~/sa_key.json

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_jdbc-driver_properties
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_jdbc-driver_properties_using-the-queryservice-mode
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_jdbc-driver_properties_jdbc-url-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_jdbc-driver_properties_jdbc-url-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_limits-ydb_query


Building the JDBC driver for YDB
To execute all tests in the project, run the mvn test  command.

By default, all tests are run using a local YDB instance in Docker (if the host has Docker or Docker Machine installed).

To disable these tests, run: mvn test -DYDB_DISABLE_INTEGRATION_TESTS=true

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_languages-and-apis_jdbc-driver_building


Kafka API authentication

Enabling authentication

When you run a single-node local YDB cluster, anonymous authentication is used by default. It doesn't require a username and password.

To require authentication see Authentication.

Authentication is always enabled when using the Kafka API in Yandex Cloud.

How does authentication work in the Kafka API?

The Kafka API uses the SASL_PLAINTEXT/PLAIN  or SASL_SSL/PLAIN  authentication mechanism.

The following variables are required for authentication:

<user-name>  — the username. For information about user management, refer to the Authorization section.

<password>  — the user's password. For information about user management, refer to the Authorization section.

<database>  — the database path.

These parameters form the following variables, which you can use in the sasl.jaas.config  Kafka client property:

<sasl.username> = <user-name>@<database>

<sasl.password> = <password>

Note

The <sasl.username>  and <sasl.password>  parameters are formed differently. See examples for details.

For authentication examples, see Kafka API usage examples.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_kafka-api_auth
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_kafka-api_auth_enabling-authentication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_kafka-api_auth_how-does-authentication-work-in-the-kafka-api
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_quickstart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_anonymous
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_static-credentials
https://yandex.cloud/en/docs/data-streams/kafkaapi/auth
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authorization_user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authorization_user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_connect_database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_kafka-api_examples_authentication-in-cloud-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_kafka-api_examples


Kafka API usage examples
This example shows a code snippet for reading data from a topic via Kafka API without a consumer group (Manual Partition Assignment).
You don't need to create a consumer for this reading mode.

Before proceeding with the examples:

1. Create a topic.

2. Add a consumer.

3. If authentication is enabled, create a user.

How to try the Kafka API

In Docker

Run Docker following the quickstart guide, and the Kafka API will be available on port 9092.

Kafka API usage examples

Reading

Consider the following limitations of using the Kafka API for reading:

No support for the check.crcs option.

Only one partition assignment strategy - roundrobin .

No reading without a pre-created consumer group.

Therefore, in the consumer configuration, you must always specify the consumer group name and the parameters:

check.crcs=false

partition.assignment.strategy=org.apache.kafka.clients.consumer.RoundRobinAssignor

Below are examples of reading using the Kafka protocol for various applications, programming languages, and frameworks without authentication.
For examples of how to set up authentication, see Authentication examples.

Built-in Kafka CLI tools

Note

If you get the java.lang.UnsupportedOperationException: getSubject is supported only if a security manager is 
allowed  error when using Kafka CLI tools with Java 23, perform one of the following steps:

Run the command using a different version of Java (how to change the Java version on macOS).

Run the command with the Java flag -Djava.security.manager=allow . For example: KAFKA_OPTS=-
Djava.security.manager=allow kafka-topics --bootstrap-servers localhost:9092 --list .

kafka-console-consumer --bootstrap-server localhost:9092 \
    --topic my-topic  \
    --group my-group \
    --from-beginning \
    --consumer-property check.crcs=false \
    --consumer-property partition.assignment.strategy=org.apache.kafka.clients.consumer.RoundRobinAssignor

kcat

kcat -C \
  -b <ydb-endpoint> \
  -X check.crcs=false \
  -X partition.assignment.strategy=org.apache.kafka.clients.consumer.RoundRobinAssignor \
  -G <consumer-name> <topic-name>

Java

String HOST = "<ydb-endpoint>";
String TOPIC = "<topic-name>";
String CONSUMER = "<consumer-name>";

Properties props = new Properties();

props.put("bootstrap.servers", HOST);

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_kafka-api_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_kafka-api_examples_how-to-try-kafka-api
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_kafka-api_examples_how-to-try-kafka-api-in-docker
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_kafka-api_examples_kafka-api-usage-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_kafka-api_examples_reading
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-create
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-consumer-add
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authorization_user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_quickstart_install
https://kafka.apache.org/documentation/#consumerconfigs_check.crcs
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_kafka-api_examples_authentication-examples
https://stackoverflow.com/questions/21964709/how-to-set-or-change-the-default-java-jdk-version-on-macos


props.put("key.deserializer", StringDeserializer.class.getName());
props.put("value.deserializer", StringDeserializer.class.getName());

props.put("check.crcs", false);
props.put("partition.assignment.strategy", RoundRobinAssignor.class.getName());

props.put("group.id", CONSUMER);
Consumer<String, String> consumer = new KafkaConsumer<>(props);
consumer.subscribe(Arrays.asList(new String[] {TOPIC}));

while (true) {
  ConsumerRecords<String, String> records = consumer.poll(10000); // timeout 10 sec
  for (ConsumerRecord<String, String> record : records) {
      System.out.println(record.key() + ":" + record.value());
  }
}

Spark

When working with Kafka, Apache Spark does not use any of the Kafka API features that are currently not supported in YDB Topics. Therefore, all
features of Spark-Kafka integrations should work through the YDB Topics Kafka API.

In the example above, Apache Spark 2.12:3.5.3, with a dependency on org.apache.spark:spark-streaming-kafka-0-10_2.12:3.5.3 , was
used.

public class ExampleReadApp {
  public static void main(String[] args) {
    var conf = new SparkConf().setAppName("my-app").setMaster("local");
    var context = new SparkContext(conf);

    context.setCheckpointDir("checkpoints");
    SparkSession spark = SparkSession.builder()
            .sparkContext(context)
            .config(conf)
            .appName("Simple Application")
            .getOrCreate();

    Dataset<Row> df = spark
            .read()
            .format("kafka")
            .option("kafka.bootstrap.servers", "localhost:9092")
            .option("subscribe", "flink-demo-input-topic")
            .option("kafka.group.id", "spark-example-app")
            .option("startingOffsets", "earliest")
            .option("kafka." + ConsumerConfig.CHECK_CRCS_CONFIG, "false")
            .load();

    df.foreach((ForeachFunction<Row>) row -> {
        System.out.println(row);
    });
  }
}

Flink

Note

Currently, not all functionality of Flink is supported for reading and writing. The following limitations exist:

Exactly-once functionality via the Kafka API is not supported at the moment because transaction support in the Kafka API is still
under development.

Subscription to topics using a pattern is currently unavailable.

Using message CreateTime  as a watermark is not available at the moment because the current read time is used instead of
CreateTime  (this will be fixed in future versions).

public class YdbKafkaApiReadExample {

    public static void main(String[] args) throws Exception {
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment()
                .enableCheckpointing(5000, CheckpointingMode.AT_LEAST_ONCE);

        Configuration config = new Configuration();

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_constraints


Frequent problems and solutions

Unexpected error in join group response

Full text of an exception:

Most likely it means that a consumer group is not specified or, if specified, it does not exist in the YDB cluster.

Solution: create a consumer group in YDB using CLI or SDK.

Writing

Note

Using Kafka transactions when writing via Kafka API is currently not supported. Transactions are only available when using the YDB
Topic API.

Otherwise, writing to Apache Kafka and YDB Topics through Kafka API is no different.

In the example above, Apache Flink 1.20 is used with the Flink DataStream connector for Kafka.

        config.set(CheckpointingOptions.CHECKPOINT_STORAGE, "filesystem");
        config.set(CheckpointingOptions.CHECKPOINTS_DIRECTORY, "file:///path/to/your/checkpoints");
        env.configure(config);

        KafkaSource<String> kafkaSource = KafkaSource.<String>builder()
                .setBootstrapServers("localhost:9092")
                .setProperty(ConsumerConfig.CHECK_CRCS_CONFIG, "false")
                .setGroupId("flink-demo-consumer")
                .setTopics("my-topic")
                .setStartingOffsets(OffsetsInitializer.earliest())
                .setBounded(OffsetsInitializer.latest())
                .setValueOnlyDeserializer(new SimpleStringSchema())
                        .build();

        env.fromSource(kafkaSource, WatermarkStrategy.noWatermarks(), "kafka-source").print();

        env.execute("YDB Kafka API example read app");
    }
}

Unexpected error in join group response: This most likely occurs because of a request being malformed by the client 
library or the message was sent to an incompatible broker. See the broker logs for more details.

Built-in Kafka CLI tools

Note

If you get the java.lang.UnsupportedOperationException: getSubject is supported only if a security manager is 
allowed  error when using Kafka CLI tools with Java 23, perform one of the following steps:

Run the command using a different version of Java (how to change the Java version on macOS).

Run the command with the Java flag -Djava.security.manager=allow . For example: KAFKA_OPTS=-
Djava.security.manager=allow kafka-topics --bootstrap-servers localhost:9092 --list .

kafka-console-producer --broker-list localhost:9092 --topic my-topic

kcat

echo "test message" | kcat -P \
    -b <ydb-endpoint> \
    -t <topic-name> \
    -k key

Java

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_kafka-api_examples_frequent-problems-and-solutions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_kafka-api_examples_unexpected-error-in-join-group-response
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_kafka-api_examples_writing
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-consumer-add
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_alter-topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_write-tx
https://nightlies.apache.org/flink/flink-docs-release-1.20/docs/connectors/datastream/kafka/
https://stackoverflow.com/questions/21964709/how-to-set-or-change-the-default-java-jdk-version-on-macos


String HOST = "<ydb-endpoint>";
String TOPIC = "<topic-name>";

Properties props = new Properties();
props.put("bootstrap.servers", HOST);
props.put("acks", "all");

props.put("key.serializer", StringSerializer.class.getName());
props.put("key.deserializer", StringDeserializer.class.getName());
props.put("value.serializer", StringSerializer.class.getName());
props.put("value.deserializer", StringDeserializer.class.getName());

props.put("compression.type", "none");

Producer<String, String> producer = new KafkaProducer<>(props);
producer.send(new ProducerRecord<String, String>(TOPIC, "msg-key", "msg-body"));
producer.flush();
producer.close();

Spark

When working with Kafka, Apache Spark does not use any of the Kafka API features that are currently not supported in YDB Topics. Therefore, all
features of Spark-Kafka integrations should work through the YDB Topics Kafka API.

In the example above, Apache Spark 2.12:3.5.3, with a dependency on org.apache.spark:spark-streaming-kafka-0-10_2.12:3.5.3 , was
used.

public class ExampleWriteApp {
public static void main(String[] args) {
    var conf = new SparkConf().setAppName("my-app").setMaster("local");
    var context = new SparkContext(conf);
    context.setCheckpointDir("path/to/dir/with/checkpoints");
    SparkSession spark = SparkSession.builder()
        .sparkContext(context)
          .config(conf)
          .appName("Simple Application")
          .getOrCreate();

    spark
          .createDataset(List.of("spark-1", "spark-2", "spark-3", "spark-4"), Encoders.STRING())
          .write()
          .format("kafka")
          .option("kafka.bootstrap.servers", "localhost:9092")
          .option("topic", "flink-demo-output-topic")
          .option("kafka.group.id", "spark-example-app")
          .option("startingOffsets", "earliest")
          .save();
  }
}

Flink

Note

Currently, not all functionality of Flink is supported for reading and writing. The following limitations exist:

Exactly-once functionality via the Kafka API is not supported at the moment because transaction support in the Kafka API is still
under development.

Subscription to topics using a pattern is currently unavailable.

Using message CreateTime  as a watermark is not available at the moment because the current read time is used instead of
CreateTime  (this will be fixed in future versions).

public class YdbKafkaApiProduceExample {
  private static final String TOPIC = "my-topic";

  public static void main(String[] args) throws Exception {
      final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

      Sink<String> kafkaSink = KafkaSink.<String>builder()
              .setBootstrapServers("localhost:9092") // assuming ydb is running locally with kafka proxy on 9092 port
              .setRecordSerializer(KafkaRecordSerializationSchema.builder()
                      .setTopic(TOPIC)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_constraints


Authentication examples

For more details on authentication, see the Authentication section. Below are examples of authentication in a cloud database and a local database.

Note

Currently, the only available authentication mechanism with Kafka API in YDB Topics is SASL_PLAIN .

Authentication examples in on-prem YDB

To use authentication in a multinode self-deployed database:

1. Create a user. How to do this in YQL. How to execute YQL from CLI.

2. Connect to the Kafka API as shown in the examples below. In all examples, it is assumed that:

YDB is running locally with the environment variable YDB_KAFKA_PROXY_PORT=9092 , meaning that the Kafka API is available at
localhost:9092 . For example, you can run YDB in Docker as described here.

is the username you specified when creating the user.

is the user's password you specified when creating the user.

Examples are shown for reading, but the same configuration parameters work for writing to a topic as well.

In the example above, Apache Flink 1.20 is used with the Flink DataStream connector for Kafka.

                      .setValueSerializationSchema(new SimpleStringSchema())
                      .setKeySerializationSchema(new SimpleStringSchema())
                      .build())
              .setRecordSerializer((el, ctx, ts) -> new ProducerRecord<>(TOPIC, el.getBytes()))
              .setDeliveryGuarantee(DeliveryGuarantee.AT_LEAST_ONCE)
                      .build();

      env.setParallelism(1)
              .fromSequence(0, 10)
              .map(i -> i + "")
              .sinkTo(kafkaSink);

      // Execute program, beginning computation.
      env.execute("ydb_kafka_api_write_example");
  }
}

Logstash

  output {
    kafka {
      codec => json
      topic_id => "<topic-name>"
      bootstrap_servers => "<ydb-endpoint>"
      compression_type => none
    }
  }

Fluent Bit

  [OUTPUT]
    name                          kafka
    match                         *
    Brokers                       <ydb-endpoint>
    Topics                        <topic-name>
    rdkafka.client.id             Fluent-bit
    rdkafka.request.required.acks 1
    rdkafka.log_level             7
    rdkafka.sasl.mechanism        PLAIN

Built-in Kafka CLI tools

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_kafka-api_examples_authentication-examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_kafka-api_examples_authentication-examples-in-on-prem-ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_kafka-api_auth
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_sql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_quickstart_install
https://nightlies.apache.org/flink/flink-docs-release-1.20/docs/connectors/datastream/kafka/


Note

If you get the java.lang.UnsupportedOperationException: getSubject is supported only if a security manager is 
allowed  error when using Kafka CLI tools with Java 23, perform one of the following steps:

Run the command using a different version of Java (how to change the Java version on macOS).

Run the command with the Java flag -Djava.security.manager=allow . For example: KAFKA_OPTS=-
Djava.security.manager=allow kafka-topics --bootstrap-servers localhost:9092 --list .

kafka-console-consumer --bootstrap-server localhost:9092 \
--topic <topic-name>  \
--group <consumer-name> \
--from-beginning \
--consumer-property check.crcs=false \
--consumer-property partition.assignment.strategy=org.apache.kafka.clients.consumer.RoundRobinAssignor \
--consumer-property security.protocol=SASL_PLAINTEXT \
--consumer-property sasl.mechanism=PLAIN \
--consumer-property "sasl.jaas.config=org.apache.kafka.common.security.plain.PlainLoginModule required username=\"
<username>\" password=\"<password>\";"

kcat

kcat -C \
  -b localhost:9092 \
  -X security.protocol=SASL_PLAINTEXT \
  -X sasl.mechanism=PLAIN \
  -X sasl.username="<username>" \
  -X sasl.password="<password>" \
  -X check.crcs=false \
  -X partition.assignment.strategy=roundrobin \
  -G <consumer-name> <topic-name>

Java

String TOPIC = "<topic-name>";
String CONSUMER = "<consumer-name>";

Properties props = new Properties();

props.put("bootstrap.servers", "localhost:9092");

props.put("key.deserializer", StringDeserializer.class.getName());
props.put("value.deserializer", StringDeserializer.class.getName());

props.put("check.crcs", false);
props.put("partition.assignment.strategy", RoundRobinAssignor.class.getName());

props.put("security.protocol", "SASL_PLAINTEXT");
props.put("sasl.mechanism", "PLAIN");
props.put("sasl.jaas.config", "sasl.jaas.config=org.apache.kafka.common.security.plain.PlainLoginModule required 
username=\"<username>\" password=\"<password>\";");

props.put("group.id", CONSUMER);
Consumer<String, String> consumer = new KafkaConsumer<>(props);
consumer.subscribe(Arrays.asList(new String[] {TOPIC}));

while (true) {
  ConsumerRecords<String, String> records = consumer.poll(10000); // timeout 10 sec
  for (ConsumerRecord<String, String> record : records) {
      System.out.println(record.key() + ":" + record.value());
  }
}

https://stackoverflow.com/questions/21964709/how-to-set-or-change-the-default-java-jdk-version-on-macos


Kafka API constraints
YDB supports Apache Kafka protocol version 3.4.0 with the following constraints:

1. Only SASL/PLAIN authentication is supported.

2. Compacted topics are not supported. Consequently, Kafka Connect, Schema Registry, and Kafka Streams do not work over the Kafka API in
YDB Topics.

3. Message compression is not supported.

4. Transactions are not supported.

5. DDL operations are not supported. For DDL operations, use YDB SDK or YDB CLI.

6. CRC checks are not supported.

7. Kafka Connect works only in a standalone mode (single-worker mode).

8. If auto-partitioning is enabled on a topic, you cannot write to or read from such a topic using the Kafka API.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_kafka-api_constraints
https://kafka.apache.org/protocol.html
https://docs.confluent.io/kafka/design/log_compaction.html
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_index


auth_config  configuration section

YDB supports various user authentication methods. The configuration for authentication providers is specified in the auth_config  section.

Configuring local YDB user authentication

For more information about the authentication of local YDB users, see Authenticating by username and password. To configure authentication by
username and password, define the following parameters in the auth_config  section:

Configuring user lockout

You can configure YDB to lock a user account out after a specified number of failed attempts to enter the correct password. To configure user
lockout, define the account_lockout  subsection inside the auth_config  section.

Example of the account_lockout  section:

auth_config:
  #...
  account_lockout:

Parameter Description

use_login_provider Indicates whether to allow the authentication of local users with an authentication token that is obtained 
after entering a username and password.

Default value: true

enable_login_authentication Indicates whether to allow adding local users to YDB databases and generating authentication tokens after 
an local user enters a username and password.

Default value: true

domain_login_only Determines the scope of local user access rights in a YDB cluster.

Valid values:

true  — local users exist in a YDB cluster and can be granted rights to access multiple databases.

false  — local users can exist either at the cluster or database level. The scope of access rights for 
local users created at the database level is limited to the database, in which they are created.

Default value: true

login_token_expire_time Specifies the expiration time of the authentication token created when an local user logs in to YDB.

Default value: 12h

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_auth_config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_auth_config_local-auth-config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_auth_config_configuring-user-lockout
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_static-credentials
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_auth-token
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_database


Configuring password complexity requirements

YDB allows local users to authenticate using a login and password. For more information, see authentication by login and password. To enhance
security in YDB, configure complexity requirements for the passwords of local users in the password_complexity  subsection inside the
auth_config  section.

Example of the password_complexity  section:

    attempt_threshold: 4
    attempt_reset_duration: "1h"
  #...

auth_config:
  #...
  password_complexity:
    min_length: 8
    min_lower_case_count: 1

Parameter Description

attempt_threshold Specifies the number of failed attempts to enter the correct password for a user account, after which the 
account is blocked for a period specified by the attempt_reset_duration  parameter.

If attempt_threshold = 0 , the number of attempts to enter the correct password is unlimited. After successful 
authentication (correct username and password), the counter for failed attempts is reset to 0.

Default value: 4

attempt_reset_duration Specifies the period that a locked-out account remains locked before automatically becoming unlocked. This 
period starts after the last failed attempt.

During this period, the user will not be able to authenticate in the system even if the correct username and 
password are entered.

If this parameter is set to zero ("0s" - a notation equivalent of 0 seconds), user accounts will be locked 
indefinitely. In this case you can unlock the account using the ALTER USER ...  LOGIN command.

The minimum lockout duration is 1 second.

Supported time units:

Seconds: 30s

Minutes: 20m

Hours: 5h

Days: 3d

It is not allowed to combine time units in one entry. For example, the entry 1d12h  is incorrect. It should be 
replaced with an equivalent, such as 36h .

Default value: 1h

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_auth_config_password-complexity
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_static-credentials
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-user


Note

Any changes to the password policy do not affect existing user passwords, so it is not necessary to change current passwords; they
will be accepted as they are.

Configuring LDAP authentication

    min_upper_case_count: 1
    min_numbers_count: 1
    min_special_chars_count: 1
    special_chars: "!@#$%^&*()_+{}|<>?="
    can_contain_username: false
  #...

Parameter Description

min_length Specifies the minimum password length.

Default value: 0  (no requirements)

min_lower_case_count Specifies the minimum number of lowercase letters that a password must contain.

Default value: 0  (no requirements)

min_upper_case_count Specifies the minimum number of uppercase letters that a password must contain.

Default value: 0  (no requirements)

min_numbers_count Specifies the minimum number of digits that a password must contain.

Default value: 0  (no requirements)

min_special_chars_count Specifies the minimum number of special characters from the special_chars  list that a password must 
contain.

Default value: 0  (no requirements)

special_chars Specifies a list of special characters that are allowed in a password.

Valid values: !@#$%^&*()_+{}\|<>?=

Default value: empty (any of the !@#$%^&*()_+{}\|<>?=  characters are allowed)

can_contain_username Indicates whether passwords can include a username.

Default value: false

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_auth_config_ldap-auth-config


One of the user authentication methods in YDB is using an LDAP directory. For more details, see Interacting with the LDAP directory. To configure
LDAP authentication, define the ldap_authentication  section inside the auth_config  section.

Example of the ldap_authentication  section:

auth_config:
  #...
  ldap_authentication:
    hosts:
      - "ldap-hostname-01.example.net"
      - "ldap-hostname-02.example.net"
      - "ldap-hostname-03.example.net"
    port: 389
    base_dn: "dc=mycompany,dc=net"
    bind_dn: "cn=serviceAccaunt,dc=mycompany,dc=net"
    bind_password: "serviceAccauntPassword"
    search_filter: "uid=$username"
    use_tls:
      enable: true
      ca_cert_file: "/path/to/ca.pem"
      cert_require: DEMAND
  ldap_authentication_domain: "ldap"
  scheme: "ldap"
  requested_group_attribute: "memberOf"
  extended_settings:
      enable_nested_groups_search: true

  refresh_time: "1h"
  #...

Parameter Description

hosts Specifies a list of hostnames where the LDAP server is running.

port Specifies the port used to connect to the LDAP server.

base_dn Specifies the root of the subtree in the LDAP directory from which the user entry 
search begins.

bind_dn Specifies the Distinguished Name (DN) of the service account used to search 
for the user entry.

bind_password Specifies the password for the service account used to search for the user entry.

search_filter Specifies a filter for searching the user entry in the LDAP directory. The filter 
string can include the sequence $username, which is replaced with the 
username requested for authentication in the database.

use_tls Configuration settings for the TLS connection between YDB and the LDAP 
server.

enable Indicates whether a TLS connection using the StartTls  request will be 
attempted. When set to true , the ldaps  connection scheme should be 
disabled by setting ldap_authentication.scheme  to ldap .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_ldap-auth-provider
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_starttls


ca_cert_file Specifies the path to the certification authority's certificate file.

cert_require Specifies the certificate requirement level for the LDAP server.

Possible values:

NEVER  - YDB does not request a certificate or accepts any presented 
certificate.

ALLOW  - YDB requests a certificate from the LDAP server but will establish 
the TLS session even if the certificate is not trusted.

TRY  - YDB requires a certificate from the LDAP server and terminates the 
connection if it is not trusted.

DEMAND / HARD  - These are equivalent to TRY  and are the default setting, 
with the value set to DEMAND .

ldap_authentication_domain Specifies an identifier appended to the username to distinguish LDAP directory 
users from those authenticated using other providers.

Default value: ldap

scheme Specifies the connection scheme to the LDAP server.

Possible values:

ldap  - Connects without encryption, sending passwords in plain text.

ldaps  - Connects using TLS encryption from the first request. To use 
ldaps , disable the StartTls  request by setting 
ldap_authentication.use_tls.enable  to false , and provide 

certificate details in ldap_authentication.use_tls.ca_cert_file  and 
set the certificate requirement level in 
ldap_authentication.use_tls.cert_require .

Any other value defaults to ldap .

Default value: ldap

requested_group_attribute Specifies the attribute used for reverse group membership. The default is 
memberOf .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_starttls


Configuring third-party IAM authentication

YDB supports Yandex Identity and Access Management (IAM) used in Yandex Cloud for user authentication. To configure IAM authentication,
define the following parameters:

extended_settings.enable_nested_groups_search Indicates whether to perform a request to retrieve the full hierarchy of groups to 
which the user's direct groups belong.

Possible values:

true  — YDB requests information about all groups to which the user's 
direct groups belong. It might take a long time to traverse the entire 
hierarchy of nested parent groups.

false  — YDB requests a flat list of groups, to which the user belongs. 
This request does not traverse possible nested parent groups.

Default value: false

host Specifies the hostname of the LDAP server. This parameter is deprecated and 
should be replaced with the hosts  parameter.

Parameter Description

use_access_service Indicates whether to allow authentication in Yandex Cloud using IAM AccessService.

Default value: false

access_service_endpoint Specifies an IAM AccessService address, to which YDB sends requests.

Default value: as.private-api.cloud.yandex.net:4286

use_access_service_tls Indicates whether to use TLS connections between YDB and AccessService.

Default value: true

access_service_domain Specifies an identifier appended to the username in SID to distinguish Yandex Cloud IAM 
users from those authenticated using other providers.

Default value: as  ("access service")

path_to_root_ca Specifies the path to the certification authority's certificate file that is used to interact with 
AccessService.

Default value: /etc/ssl/certs/YandexInternalRootCA.pem

access_service_grpc_keep_alive_time_ms Specifies the period of time, in milliseconds, after which a keepalive ping is sent on the 
transport to IAM AccessService.

Default value: 10000

access_service_grpc_keep_alive_timeout_ms Specifies the amount of time, in milliseconds, that YDB waits for the acknowledgement of 
the keepalive ping from IAM AccessService. If YDB does not receive an acknowledgment 
within this time, it will close the connection.

Default value: 1000

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_auth_config_iam-auth-config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-sid


Configuring caching for authentication results

During the authentication process, a user session receives an authentication token, which is transmitted along with each request to the cluster YDB.
Since YDB is a distributed system, user requests will eventually be processed on one or more YDB nodes. After receiving a request from the user, a
YDB node verifies the authentication token. If successful, the node generates a user token, which is valid only inside the current node and is used
to authorize the actions requested by the user. Subsequent requests with the same authentication token to the same node do not require
verification of the authentication token.

To configure the life cycle and other important aspects of managing user tokens, define the following parameters:

use_access_service_api_key Indicates whether to use IAM API keys. The API key is a secret key created in Yandex 
Cloud IAM for simplified authorization of service accounts with the Yandex Cloud API. 
Use API keys if requesting an IAM token automatically is not an option.

Default value: false

refresh_period Specifies how often a YDB node scans cached user tokens to find the ones that need to be refreshed because 
the refresh_time , life_time  or expire_time  interval elapses. The lower this parameter value, the higher 
the CPU load.

Default value: 1s

refresh_time Specifies the time interval since the last user token update after which a YDB node updates the user token 
again. The actual update will occur within the range from refresh_time/2  to refresh_time .

Default value: 1h

life_time Specifies the time interval for keeping a user token in YDB node cache since its last use. If a YDB node does 
not receive queries from a user within the specified time interval, the node deletes the user token from its 
cache.

Default value: 1h

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_auth_config_configuring-caching-for-authentication-results


expire_time Specifies the time period, after which a user token is deleted from YDB node cache. Deletion occurs regardless 
of the life_time  interval.

Warning

If a third-party system has successfully authenticated in the YDB node and regularly (more often 
than the life_time  interval) sends requests to the same node, YDB will detect the possible 
deletion or change in the user account privileges only after the expire_time  interval elapses.

The shorter this time period, the more often YDB nodes re-authenticate users and refresh their privileges. 
However, excessive user re-authentication slows down YDB, especially so for external users. Setting this 
parameter to seconds negates the effect of caching user tokens.

Default value: 24h

min_error_refresh_time Specifies minimum period of time that must elapse since a failed attempt (temporary failure) to refresh a user 
token before retrying the attempt.

Together with the max_error_refresh_time , determines the possible interval for a delay before retrying a 
failed attempt to refresh a user token. Each subsequent delay is increased till it reaches the 
max_error_refresh_time  value. Retries continue until a user token is refreshed or the expire_time  period 

elapses.

Warning

Setting this parameter to 0  is not recommended, because instant retries results in excessive 
load.

Default value: 1s

max_error_refresh_time Specifies the maximum time interval that can elapse since a failed attempt (temporary failure) to refresh a user 
token before retrying the attempt.

Together with the min_error_refresh_time , determines the possible interval for a delay before retrying a 
failed attempt to refresh a user token. Each subsequent delay is increased till it reaches the 
max_error_refresh_time  value. Retries continue until a user token is refreshed or the expire_time  period 

elapses.

Default value: 1m



client_certificate_authorization  configuration section

Database node authentication within the YDB cluster ensures that service connections between cluster nodes are assigned the correct security
identifiers, or SIDs. The process of database node authentication applies to connections that use the gRPC protocol and provide functions for
registering nodes in the cluster, as well as for accessing configuration information. SIDs assigned to connections are considered when checking the
authorization rules that apply to the corresponding gRPC service calls.

Node authentication settings are configured within the static configuration of the cluster.

The client_certificate_authorization  section specifies the authentication settings for database node connections by defining the
requirements for the content of the "Subject" and "Subject Alternative Name" fields in node certificates, as well as the list of SID values assigned to
the connections.

The "Subject" field of the node certificate may contain multiple components (such as O  – organization, OU  – organizational unit, C  – country, CN
– common name), and checks can be configured against one or more of these components.

The "Subject Alternative Name" field of the node certificate is a list of the node's network names or IP addresses. Checks can be configured to
match the names specified in the certificate against the expected values.

Syntax

client_certificate_authorization:
  request_client_certificate: Bool
  default_group: <default SID>
  client_certificate_definitions:
    - member_groups: <SID array>
      require_same_issuer: Bool
      subject_dns:
      - suffixes: <array of allowed suffixes>
        values: <array of allowed values>
      subject_terms:
      - short_name: <Subject Name component>
        suffixes: <array of allowed suffixes>
        values: <array of allowed values>
    - member_groups: <SID array>
    ...

Key Description

request_client_certificate Request a valid client certificate for node connections.
Allowed values:

false  — A certificate is not required (used by default if the parameter is omitted).

true  — A certificate is required for all node connections.

default_group SID assigned to all connections providing a trusted client certificate when no explicit settings are 
provided in the client_certificate_definitions  section.

client_certificate_definitions Section defining the requirements for database node certificates.

member_groups SIDs assigned to connections that conform to the requirements of the current configuration block.

require_same_issuer Require that the value of the "Issuer" field (typically containing the Certification Authority name) is 
the same for both client (database node) and server (storage node) certificates. 
Allowed values:

true  — The values must be the same (used by default if the parameter is omitted).

false  — The values can be different (allowing client and server certificates to be issued by 
different Certification Authorities).

subject_dns Allowed values for the "Subject Alternative Name" field, specified as either full values (using the 
values  sub-key) or suffixes (using the suffixes  sub-key). The check is successful if the actual 

value matches any full name or any suffix specified.

subject_terms Requirements for the "Subject" field value. Contains the component name (in the short_name  
sub-key) and a list of full values (using the values  sub-key) or suffixes (using the suffixes  
sub-key). The check is successful if the actual value of each component matches either an 
allowed full value or an allowed suffix.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_client_certificate_authorization
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_client_certificate_authorization_syntax
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-sid
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-sid


Examples

The following configuration fragment enables node authentication and requires the "Subject" field to include the component O=YDB . Upon
successful authentication, the connection is assigned the registerNode@cert  SID.

The next configuration fragment enables node authentication, and requires "Subject" field to include both OU=cluster1  and O=YDB  components.
In addition "Subject Alternative Name" field should contain the network name ending with the .cluster1.ydb.company.net  suffix. Upon
successful authentication, the connection will be assigned the registerNode@cert  SID.

client_certificate_authorization:
  request_client_certificate: true
  client_certificate_definitions:
    - member_groups: ["registerNode@cert"]
      subject_terms:
      - short_name: "O"
        values: ["YDB"]

client_certificate_authorization:
  request_client_certificate: true
  client_certificate_definitions:
    - member_groups: ["registerNode@cert"]
      subject_dns:
      - suffixes: [".cluster1.ydb.company.net"]
      subject_terms:
      - short_name: "OU"
        values: ["cluster1"]
      - short_name: "O"
        values: ["YDB"]

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_client_certificate_authorization_examples


log_config  configuration section

The log_config  section controls how YDB server processes and manages its logs. It allows you to customize logging levels for different
components, as well as global log formats and output methods.

Note

This document describes application and system logging configuration. For security and audit logging, see Audit log.

Overview

Logging is a critical part of the YDB observability system. The log_config  section lets you configure various aspects of logging, including:

Default logging level

Component-specific logging levels

Log output format

Integration with system logs or external logging services

Log Output Methods

To stderr: by default, YDB sends all logs to stderr.

To file: logs can be written to a file using the backend_file_name  parameter.

To syslog: when the sys_log: true  parameter is enabled, logs are redirected to the syslog and stop being output to stderr. Logs are sent
using /dev/log  socket.

To Unified Agent: when configuring the uaclient_config  section, logs are sent to Unified Agent and stop being output to stderr.

When both sys_log  and uaclient_config  are enabled simultaneously, logs will be sent to both syslog and Unified Agent. If you need to
continue outputting logs to stderr while using other methods, activate sys_log_to_stderr: true .

Configuration Options

Parameter Type Default Description

default_level uint32 5 
( NOTICE )

Default logging level for all components.

default_sampling_level uint32 7 
( DEBUG )

Default sampling level for all components.

default_sampling_rate uint32 0 Default sampling rate for all components. If set to N (where N > 0), 
approximately 1 out of every N log messages with priority between 
default_level  and default_sampling_level  will be logged. For 

example, to log every 10th message, set to 10. A value of 0 means that no 
messages in this range will be logged (they are all dropped).

sys_log bool false Enable system logging via syslog.

sys_log_to_stderr bool false Copy logs to stderr in addition to system log.

format string "full" Log output format. Possible values: "full", "short", "json".

cluster_name string — Cluster name to include in log records. The cluster_name  field is added 
to logs only when using the json  format or when sending to Unified 
Agent. In the full  or short  formats, this field is not displayed.

allow_drop_entries bool true Allow dropping log entries if the logging system is overloaded. When 
enabled, log entries are buffered in memory and written to the output when 
either 10 messages accumulate or the time specified by 
time_threshold_ms  elapses. If the buffer becomes full, lower-priority 

messages may be dropped to make room for higher-priority ones.

use_local_timestamps bool false Use local time zone for log timestamps (UTC is used by default).

backend_file_name string — File name for log output. If specified, logs are written to this file.

sys_log_service string — Service name for syslog. Corresponds to the tag field in the old syslog 
RFC 3164 or the app-name field in the modern RFC 5424 protocol.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_log_config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_log_config_overview
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_log_config_log-output-methods
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_log_config_configuration-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_audit-log
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_index
https://yandex.cloud/en/docs/monitoring/concepts/data-collection/unified-agent/
https://datatracker.ietf.org/doc/html/rfc3164
https://datatracker.ietf.org/doc/html/rfc5424


Entry Objects

The entry  field contains an array of objects with the following structure:

UAClientConfig Object

The uaclient_config  field configures integration with Unified Agent:

time_threshold_ms uint64 1000 If allow_drop_entries = true , specifies how often YDB writes buffered 
log messages to the output, in milliseconds.

ignore_unknown_components bool true Ignore logging requests from unknown components.

entry array [] Configuration of logging level and/or sampling for specific YDB 
components, see Entry Objects below.

uaclient_config object — Configuration for the Unified Agent client, see UAClientConfig Object 
below.

Parameter Type Description

component string Component name. See the full list of available components on GitHub.

level uint32 Log level for this component.

sampling_level uint32 Sampling level for this component. Works similarly to default_sampling_level .

sampling_rate uint32 Sampling rate for this component.  Works similarly to default_sampling_rate .

Parameter Type Default Description

uri string — grpc URI of the Unified Agent server.

shared_secret_key string — Path to the file with the secret key for client connection authentication.

max_inflight_bytes uint64 100000000 Maximum number of bytes in transit when sending data.

grpc_reconnect_delay_ms uint64 — Delay between reconnection attempts in milliseconds.

grpc_send_delay_ms uint64 — Delay between send attempts in milliseconds.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_log_config_entry-objects
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_log_config_uaclient-config
https://yandex.cloud/en/docs/monitoring/concepts/data-collection/unified-agent/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_log_config_entry-objects
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_log_config_uaclient-config
https://github.com/ydb-platform/ydb/blob/main/ydb/library/services/services.proto#L6
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_log_config_log-levels


Log Levels

YDB uses the following log levels, listed from the highest to the lowest severity:

Examples

Basic Configuration

This configuration outputs logs to stderr with logging level NOTICE  and above.

File Output Configuration

This configuration sends logs to a file while maintaining the default logging level of NOTICE .

Syslog Output Configuration

This configuration sends logs to syslog with the service name "ydb".

log_config:
  default_level: 5  # NOTICE
  format: "full"

log_config:
  default_level: 5  # NOTICE
  format: "full"
  backend_file_name: "/var/log/ydb/ydb.log"

log_config:
  default_level: 5  # NOTICE
  sys_log: true
  sys_log_service: "ydb"
  format: "full"

grpc_max_message_size uint64 — Maximum gRPC message size.

client_log_file string — Log file for the UA client itself.

client_log_priority uint32 — Logging level for the UA client itself.

log_name string — Log name that is passed in session metadata.

Level Numeric value Description

EMERG 0 System outage (for example, cluster failure) is possible.

ALERT 1 System degradation is possible, system components may fail.

CRIT 2 A critical state.

ERROR 3 A non-critical error.

WARN 4 A warning, it should be responded to and fixed unless it's temporary.

NOTICE 5 An event essential for the system or the user has occurred.

INFO 6 Debugging information for collecting statistics.

DEBUG 7 Debugging information for developers.

TRACE 8 Detailed debugging information.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_log_config_log-levels
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_log_config_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_log_config_basic-configuration
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_log_config_file-output-configuration
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_log_config_syslog-output-configuration


Setting Per-Component Log Levels

Sampling Configuration

This configuration sets up sampling for logs. With default settings, every 10th message with priority between NOTICE  and DEBUG  will be logged.
For the BLOBSTORAGE  component, every 100th message with priority between NOTICE  and TRACE  will be logged.

JSON Format Configuration

This configuration outputs logs in JSON format and sends them to Unified Agent.

Notes

Log levels are specified in the configuration as numeric values, not strings. Use the table above to map between numeric values and their
meanings.

If the backend_file_name  parameter is specified, logs are written to this file. If the sys_log  parameter is true, logs are sent to the system
logger.

The format  parameter determines how log entries are formatted. The "full" format includes all available information, "short" provides a more
compact format, and "json" outputs logs in JSON format, which is convenient for parsing by logging services.

The internal log buffer has the following size limits:

Default total size: 10MB (10 * 1024 * 1024 bytes)

Default grain size: 64KB (1024 * 64 bytes)

Maximum message size: 1KB (1024 bytes)

See Also

Reference on YDB observability

Metrics reference

Tracing in YDB

Audit log

log_config:
  default_level: 5  # NOTICE
  entry:
    - component: "SCHEMESHARD"
      level: 7  # DEBUG
    - component: "TABLET_MAIN"
      level: 6  # INFO
  backend_file_name: "/var/log/ydb/ydb.log"

log_config:
  default_level: 5  # NOTICE
  default_sampling_level: 7  # DEBUG
  default_sampling_rate: 10  # Log every 10th message between NOTICE and DEBUG
  entry:
    - component: "BLOBSTORAGE"
      sampling_level: 8  # TRACE
      sampling_rate: 100  # Log every 100th message between NOTICE and TRACE

log_config:
  default_level: 5  # NOTICE
  format: "json"
  cluster_name: "production-cluster"
  uaclient_config:
    uri: "[fd53::1]:16400"
    grpc_max_message_size: 4194304
    log_name: "ydb_logs"

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_log_config_setting-per-component-log-levels
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_log_config_sampling-configuration
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_log_config_json-format-configuration
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_log_config_notes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_log_config_see-also
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_log_config_log-levels
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_metrics_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_setup
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_audit-log


security_config  configuration section

The security_config  section defines authentication modes, the initial configuration of local users and groups, and their access rights.

Configuring authentication mode

security_config:
  # authentication mode configuration
  enforce_user_token_requirement: false
  enforce_user_token_check_requirement: false
  default_user_sids: <authentication token for anonymous requests>
  all_authenticated_users: <group name for all authenticated users>
  all_users_group: <group name for all users>

  # initial security configuration
  default_users: <default user list>
  default_groups: <default group list>
  default_access: <default access rights on the cluster scheme root>

  # access list configuration
  viewer_allowed_sids: <list of SIDs that are allowed to view the cluster state>
  monitoring_allowed_sids: <list of SIDs that are allowed to monitor and change the cluster state>
  administration_allowed_sids: <list of SIDs that are allowed cluster administration>
  register_dynamic_node_allowed_sids: <list of SIDs that are allowed to register database nodes in the cluster>

  # built-in security configuration
  disable_builtin_security: false
  disable_builtin_groups: false
  disable_builtin_access: false

Parameter Description

enforce_user_token_requirement Selects user authentication mode.

enforce_user_token_requirement: true  — User authentication is mandatory. 
Requests to YDB must include an auth token.

Requests to YDB undergo authentication and authorization.

enforce_user_token_requirement: false  — User authentication is optional. 
Requests to YDB are not required to include an auth token.

Requests without an auth token are processed in anonymous mode without 
authorization.

Requests with an auth token undergo authentication and authorization. However, 
requests are still processed in anonymous mode if an authentication error occurs.

When enforce_user_token_check_requirement: true , requests with 
authentication errors are blocked.

If the default_user_sids  parameter is defined and not empty (see the description 
below), its value is used instead of the missing auth token. In this case, authentication and 
authorization are performed for the access subject defined in default_user_sids .

Default value: false .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_security_config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_security_config_security-auth
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-right
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_auth-token
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_auth-token
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_anonymous
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-subject


The following diagram displays the relationship between authentication mode parameters described above:

Bootstrapping security

enforce_user_token_check_requirement Forbids ignoring authentication errors in the enforce_user_token_requirement: false  
mode.

Default value: false .

default_user_sids Specifies a list of SIDs for authenticating incoming requests without an auth token.

default_user_sids  acts as an auth token for anonymous requests. The first element in 
the list must be a user SID. The following elements must be the SIDs of groups to which 
the user belongs.

If the default_user_sids  list is not empty, mandatory authentication mode 
( enforce_user_token_requirement: true ) can be used for anonymous requests. This 
mode can be used in some YDB testing scenarios or for educational purposes in local YDB 
installations.

Default value: empty.

all_authenticated_users Specifies the name of the virtual group that includes all authenticated users.

This virtual group is created automatically by YDB. You cannot delete this virtual group, list 
its members, or modify them.

You can use this group to grant access rights on scheme objects.

Tip

You can get information about access rights on scheme objects in the system 
views. For more information see, {#T}.

Default value: all-users@well-known .

all_users_group Specifies the name of the group that includes all local users.

If all_users_group  is not empty, all local users will be added to the group with this name 
upon creation. The group specified in this parameter must exist when new users are 
added.

The all_users_group  parameter is used during the initialization of built-in security.

Default value: empty.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_security_config_security-bootstrap
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-sid
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_auth-token
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-right
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_scheme-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_system-views_informaciya-o-pravah-dostupa
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_builtin-security


The default_users , default_groups , and default_access  parameters affect the initial YDB cluster configuration that occurs when YDB
starts for the first time. During subsequent runs, the initial configuration is not repeated, and these parameters are ignored.

See Initial cluster security configuration and the related domains_config  parameters.

Parameter Description

default_users The list of users to be created when the YDB cluster starts for the first time.

The list consists of login-password pairs. The first user in the list is a superuser.

Warning

Passwords are specified in plain text, so it is unsafe to use them for an extended period. You must 
change these passwords in YDB after the first start. For example, use the ALTER USER  statement.

Example:

    

Errors in the default_users  list, such as duplicate logins, are logged but do not affect YDB cluster startup.

        

default_users:
- name: root
  password: <...>
- name: user1
  password: <...>

        
    

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_builtin-security
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_domains-config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_builtin-security_superuser
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-user


Errors in access right entries are logged but do not affect YDB cluster startup. Access rights with errors will not be granted.

Configuring administrative and other privileges

Access control in YDB is divided into two segments:

Access control lists for scheme objects

Access level lists to define additional privileges or restrictions

Both segments are used in combination: a subject is granted the privilege to perform an action only if both segments allow it. The action is not
allowed if either segment denies it.

Access levels are defined by the viewer_allowed_sids , monitoring_allowed_sids , and administration_allowed_sids  lists in the cluster
configuration. The access levels of subjects determine their privileges to manage scheme objects as well as privileges that are not related to
scheme objects.

default_groups The list of groups to be created when the YDB cluster starts for the first time.

The list includes groups and their members.

Warning

These groups are created for the entire YDB cluster.

Example:

    

The order of groups in this list matters: groups are created in the order in which they appear in the default_groups  
parameter. Group members must exist before the group is created. Nonexistent users will not be added to the group.

Failures to add users to groups are logged but do not affect the YDB cluster startup.

default_access The list of access rights to be granted on the cluster scheme root.

Access rights are specified using the short access control notation.

Example:

    

        

default_groups:
- name: ADMINS
  members: root
- name: USERS
  members:
  - ADMINS
  - root
  - user1

        
    

        

default_access:
- +(CDB|DDB|GAR):ADMINS
- +(ConnDB):USERS

        
    

Parameter Description

viewer_allowed_sids The list of SIDs with the viewer access level.

This level allows viewing the cluster state, which is not publicly accessible (including most 
pages in the Embedded UI). No changes are allowed.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_security_config_security-access-levels
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-control-list
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_scheme-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-level-list
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-subject
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_scheme-object
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-right
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_short-access-control-notation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-sid
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring


Warning

The access level lists are empty by default.

An empty list grants its access level to any user, including anonymous users.

If all three lists are empty, any user has the administrative access level.

For a secure YDB deployment, plan the access model beforehand and define the group lists before starting the cluster for the first time.

The access level lists can include the SIDs of users or user groups. A user belongs to an access level list if the list includes the SID of the user or
the SID of a group to which the user or its subgroup (recursively) belongs.

It is recommended to add user groups and separate service accounts to the *_allowed_sids  access level lists. This way, granting access levels
to individual users does not require changing the YDB cluster configuration.

Note

Access level lists are layers of additional privileges:

An access subject that is not included in any access level list can view only publicly available information about the cluster (for
example, a list of databases on the cluster or a list of cluster nodes).

Each of the viewer_allowed_sids , monitoring_allowed_sids , and administration_allowed_sids  lists adds privileges to
the access subject. For the maximum level of privileges, an access subject must be added to all three access level lists.

Adding an access subject to the monitoring_allowed_sids  or administration_allowed_sids  list without adding it to
viewer_allowed_sids  has no effect.

For example:

An operator (the SID of the user or the group to which the user belongs) must be added to viewer_allowed_sids  and
monitoring_allowed_sids .

An administrator must be added to viewer_allowed_sids , monitoring_allowed_sids , and administration_allowed_sids .

Built-in security configuration

The disable_builtin_security , disable_builtin_groups , and disable_builtin_access  flags affect the built-in security configuration that
occurs when YDB starts for the first time.

monitoring_allowed_sids The list of SIDs with the operator access level.

This level grants additional privileges to monitor and modify the cluster state. For example, it 
allows performing a backup, restoring a database, or executing YQL statements in the 
Embedded UI.

administration_allowed_sids The list of SIDs with the administrator access level.

This level grants privileges to administer the YDB cluster and its databases.

register_dynamic_node_allowed_sids The list of SIDs that are allowed to register database nodes.

For technical reasons, this list must include root@builtin .

Parameter Description

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_security_config_built-in-security-configuration
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-user
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring_tenant_list_page
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring_node_list_page
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-sid
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-sid
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_access-sid


disable_builtin_security Disable the built-in security configuration.

Built-in security configuration automatically creates a root  superuser, a set of built-in user groups, and 
grants access rights to these groups at the root of the cluster.

This flag is not saved in the cluster configuration.

Default value: false .

disable_builtin_groups Do not create built-in user groups even if the default user groups are not specified in the 
security_config.default_groups  parameter.

Default value: false

disable_builtin_access Do not add access rights at the root of the cluster scheme for the built-in user groups even if the default 
access rights are not specified in the security_config.default_access  parameter.

Default value: false

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_builtin-security
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_builtin-security
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_security_config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_builtin-security
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_security_config


TLS configuration
YDB supports data-in-transit encryption, and each network protocol can have different TLS settings. This documentation section provides a
reference for configuring TLS in YDB.

Interconnect

The YDB actor system interconnect is a specialized protocol for communication between YDB nodes.

Example of enabling TLS for the interconnect:

YDB as a server

gRPC

The main YDB API is based on gRPC. It is used for external communication with client applications that work natively with YDB via the SDK or CLI.

Example of enabling TLS for gRPC API:

PostgreSQL wire protocol

YDB exposes a separate network port for the PostgreSQL wire protocol. This protocol is used for external communication with client applications
initially designed to work with PostgreSQL.

Example of enabling TLS for the PostgreSQL wire protocol:

Kafka wire protocol

YDB exposes a separate network port for the Kafka wire protocol. This protocol is used for external communication with client applications initially
designed to work with Apache Kafka.

Example of enabling TLS for the Kafka wire protocol with a file containing both the certificate and the private key:

Example of enabling TLS for the Kafka wire protocol with the certificate and private key in separate files:

HTTP

YDB exposes a separate HTTP network port for running the Embedded UI, exposing metrics, and other miscellaneous endpoints.

Example of enabling TLS on the HTTP port, making it HTTPS:

YDB as a client

LDAP

interconnect_config:
   start_tcp: true
   encryption_mode: REQUIRED # or OPTIONAL
   path_to_certificate_file: "/opt/ydb/certs/node.crt"
   path_to_private_key_file: "/opt/ydb/certs/node.key"
   path_to_ca_file: "/opt/ydb/certs/ca.crt"

grpc_config:
   cert: "/opt/ydb/certs/node.crt"
   key: "/opt/ydb/certs/node.key"
   ca: "/opt/ydb/certs/ca.crt"

local_pg_wire_config:
    ssl_certificate: "/opt/ydb/certs/node.crt"

kafka_proxy_config:
    ssl_certificate: "/opt/ydb/certs/node.crt"

kafka_proxy_config:
    cert: "/opt/ydb/certs/node.crt"
    key: "/opt/ydb/certs/node.key"

monitoring_config:
    monitoring_certificate_file: "/opt/ydb/certs/node.crt"

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_tls
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_tls_interconnect
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_tls_ydb-as-a-server
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_tls_grpc
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_tls_postgresql-wire-protocol
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_tls_kafka-wire-protocol
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_tls_http
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_tls_ydb-as-a-client
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_tls_ldap
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_encryption_data-in-transit
https://en.wikipedia.org/wiki/Transport_Layer_Security
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_actor-system-interconnect
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_overview-grpc-api
https://grpc.io/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_intro
https://www.postgresql.org/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_kafka-api_index
https://kafka.apache.org/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_monitoring


YDB supports LDAP for user authentication. The LDAP protocol has two options for enabling TLS.

Example of enabling TLS for LDAP via the StartTls  protocol extension:

Example of enabling TLS for LDAP via ldaps :

Federated queries

Federated queries allow YDB to query various external data sources. Whether these queries occur over TLS-encrypted connections is controlled by
the USE_TLS  setting of CREATE EXTERNAL DATA SOURCE  queries. No changes to the server-side configuration are required.

Tracing

YDB can send tracing data to an external collector via gRPC.

Example of enabling TLS for tracing data by specifying grpcs://  protocol:

Asynchronous replication

Asynchronous replication synchronizes data between two YDB databases, where one serves as a client to the other. Whether this communication
uses TLS-encrypted connections is controlled by the CONNECTION_STRING  setting of CREATE ASYNC REPLICATION queries. Use the grpcs://
protocol for TLS connections. No changes to the server-side configuration are required.

auth_config:
  ldap_authentication:
    use_tls:
      enable: true
      ca_cert_file: "/path/to/ca.pem"
      cert_require: DEMAND
  scheme: "ldap"

auth_config:
  ldap_authentication:
    use_tls:
      enable: false
      ca_cert_file: "/path/to/ca.pem"
      cert_require: DEMAND
  scheme: "ldaps"

tracing_config:
  backend:
    opentelemetry:
      collector_url: grpcs://example.com:4317
      service_name: ydb

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_tls_federated-queries
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_tls_tracing
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_tls_asynchronous-replication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_ldap
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_setup
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_async-replication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-async-replication


Metrics reference

Resource usage metrics

API metrics

Metric name
Type, units of measurement

Description
Labels

resources.storage.used_bytes

IGAUGE , bytes
The size of user and service data stored in distributed network storage. 
resources.storage.used_bytes  = resources.storage.table.used_bytes  + 
resources.storage.topic.used_bytes .

resources.storage.table.used_bytes

IGAUGE , bytes
The size of user and service data stored by tables in distributed network storage. Service 
data includes the data of the primary, secondary indexes and vector indexes.

resources.storage.topic.used_bytes

IGAUGE , bytes
The size of storage used by topics. This metric sums the topic.storage_bytes  values of 
all topics.

resources.storage.limit_bytes

IGAUGE , bytes
A limit on the size of user and service data that a database can store in distributed network 
storage.

Metric name
Type, units of measurement

Description
Labels

api.grpc.request.bytes

RATE , bytes
The size of queries received by the database in a certain period of time.
Labels:
- api_service: The name of the gRPC API service, such as table .
- method: The name of a gRPC API service method, such as ExecuteDataQuery .

api.grpc.request.dropped_count

RATE , pieces
The number of requests dropped at the transport (gRPC) layer due to an error.
Labels:
- api_service: The name of the gRPC API service, such as table .
- method: The name of a gRPC API service method, such as ExecuteDataQuery .

api.grpc.request.inflight_count

IGAUGE , pieces
The number of requests that a database is simultaneously handling in a certain period of time.
Labels:
- api_service: The name of the gRPC API service, such as table .
- method: The name of a gRPC API service method, such as ExecuteDataQuery .

api.grpc.request.inflight_bytes

IGAUGE , bytes
The size of requests that a database is simultaneously handling in a certain period of time.
Labels:
- api_service: The name of the gRPC API service, such as table .
- method: The name of a gRPC API service method, such as ExecuteDataQuery .

api.grpc.response.bytes

RATE , bytes
The size of responses sent by the database in a certain period of time.
Labels:
- api_service: The name of the gRPC API service, such as table .
- method: The name of a gRPC API service method, such as ExecuteDataQuery .

api.grpc.response.count

RATE , pieces
The number of responses sent by the database in a certain period of time.
Labels:
- api_service: The name of the gRPC API service, such as table .
- method: The name of a gRPC API service method, such as ExecuteDataQuery .
- status is the request execution status. See a more detailed description of statuses under Error 
Handling.

api.grpc.response.dropped_count

RATE , pieces
The number of responses dropped at the transport (gRPC) layer due to an error.
Labels:
- api_service: The name of the gRPC API service, such as table .
- method: The name of a gRPC API service method, such as ExecuteDataQuery .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_metrics_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_metrics_index_resources
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_metrics_index_api
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_secondary-index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_vector-index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_error_handling


Session metrics

Transaction processing metrics

You can analyze a transaction's execution time using a histogram counter. The intervals are set in milliseconds. The chart shows the number of
transactions whose duration falls within a certain time interval.

api.grpc.response.issues

RATE , pieces
The number of errors of a certain type arising in the execution of a request over a certain period 
of time.
Tags:
- issue_type is the error type wth the only value being optimistic_locks_invalidation . For 
more on lock invalidation, review Transactions and requests to YDB.

Metric name
Type, units of measurement

Description
Labels

table.session.active_count

IGAUGE , pieces
The number of sessions started by clients and running at a given time.

table.session.closed_by_idle_count

RATE , pieces
The number of sessions closed by the DB server in a certain period of time due to exceeding 
the lifetime allowed for an idle session.

Metric name
Type, units of measurement

Description
Labels

table.transaction.total_duration_milliseconds

HIST_RATE , pieces
The number of transactions with a certain duration on the server and client. 
The duration of a transaction is counted from the point of its explicit or implicit 
start to committing changes or its rollback. Includes the transaction processing 
time on the server and the time on the client between sending different 
requests within the same transaction.
Labels:
- tx_kind: The transaction type, possible values are read_only , read_write , 
write_only , and pure .

table.transaction.server_duration_milliseconds

HIST_RATE , pieces
The number of transactions with a certain duration on the server. The duration 
is the time of executing requests within a transaction on the server. Does not 
include the waiting time on the client between sending separate requests 
within a single transaction.
Labels:
 -tx_kind: The transaction type, possible values are read_only , read_write , 
write_only , and pure .

table.transaction.client_duration_milliseconds

HIST_RATE , pieces
The number of transactions with a certain duration on the client. The duration 
is the waiting time on the client between sending individual requests within a 
single transaction. Does not include the time of executing requests on the 
server.
Labels:
- tx_kind: The transaction type, possible values are read_only , read_write , 
write_only , and pure .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_metrics_index_sessions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_metrics_index_transactions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_transactions


Query processing metrics

Table partition metrics

Metric name
Type, units of measurement

Description
Labels

table.query.request.bytes

RATE , bytes
The size of YQL query text and parameter values to queries received by the 
database in a certain period of time.

table.query.request.parameters_bytes

RATE , bytes
The parameter size to the queries received by the database in a certain period of 
time.

table.query.response.bytes

RATE , bytes
The size of responses sent by the database in a certain period of time.

table.query.compilation.latency_milliseconds

HIST_RATE , pieces
Histogram counter. The intervals are set in milliseconds. Shows the number of 
successfully executed compilation queries whose duration falls within a certain 
time interval.

table.query.compilation.active_count

IGAUGE , pieces
The number of active compilations at a given time.

table.query.compilation.count

RATE , pieces
The number of compilations that completed successfully in a certain time period.

table.query.compilation.errors

RATE , pieces
The number of compilations that failed in a certain period of time.

table.query.compilation.cache_hits

RATE , pieces
The number of queries in a certain period of time, which didn't require any 
compilation, because there was an existing plan in the cache of prepared 
queries.

table.query.compilation.cache_misses

RATE , pieces
The number of queries in a certain period of time that required query compilation.

table.query.execution.latency_milliseconds

HIST_RATE , pieces
Histogram counter. The intervals are set in milliseconds. Shows the number of 
queries whose execution time falls within a certain interval.

Metric name
Type, units of measurement

Description
Labels

table.datashard.row_count

GAUGE , pieces
The number of rows in DB tables.

table.datashard.size_bytes

GAUGE , bytes
The size of data in DB tables.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_metrics_index_queries
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_metrics_index_datashards


Resource usage metrics (for Dedicated mode only)

table.datashard.used_core_percents

HIST_GAUGE , %
Histogram counter. The intervals are set as a percentage. Shows the number of table 
partitions using computing resources in the ratio that falls within a certain interval.

table.datashard.read.rows

RATE , pieces
The number of rows that are read by all partitions of all DB tables in a certain period of time.

table.datashard.read.bytes

RATE , bytes
The size of data that is read by all partitions of all DB tables in a certain period of time.

table.datashard.write.rows

RATE , pieces
The number of rows that are written by all partitions of all DB tables in a certain period of 
time.

table.datashard.write.bytes

RATE , bytes
The size of data that is written by all partitions of all DB tables in a certain period of time.

table.datashard.scan.rows

RATE , pieces
The number of rows that are read through StreamExecuteScanQuery  or StreamReadTable  
gRPC API calls by all partitions of all DB tables in a certain period of time.

table.datashard.scan.bytes

RATE , bytes
The size of data that is read through StreamExecuteScanQuery  or StreamReadTable  
gRPC API calls by all partitions of all DB tables in a certain period of time.

table.datashard.bulk_upsert.rows

RATE , pieces
The number of rows that are added through a BulkUpsert  gRPC API call to all partitions of 
all DB tables in a certain period of time.

table.datashard.bulk_upsert.bytes

RATE , bytes
The size of data that is added through a BulkUpsert  gRPC API call to all partitions of all DB 
tables in a certain period of time.

table.datashard.erase.rows

RATE , pieces
The number of rows deleted from the database in a certain period of time.

table.datashard.erase.bytes

RATE , bytes
The size of data deleted from the database in a certain period of time.

table.datashard.cache_hit.bytes

RATE , bytes
The total amount of data successfully retrieved from memory (cache), indicating efficient 
cache utilization in serving frequently accessed data without accessing distributed storage.

table.datashard.cache_miss.bytes

RATE , bytes
The total amount of data that was requested but not found in memory (cache) and was read 
from distributed storage, highlighting potential areas for cache optimization.

Metric name
Type
units of measurement

Description
Labels

resources.cpu.used_core_percents

RATE , %
CPU usage. If the value is 100 , one of the cores is being used for 100%. The value may be 
greater than 100  for multi-core configurations.
Labels:
- pool: The computing pool, possible values are user , system , batch , io , and ic .

resources.cpu.limit_core_percents

IGAUGE , %
The percentage of CPU available to a database. For example, for a database that has three 
nodes with four cores in pool=user  per node, the value of this metric will be 1200 .
Labels:
- pool: The computing pool, possible values are user , system , batch , io , and ic .

resources.memory.used_bytes

IGAUGE , bytes
The amount of RAM used by the database nodes.

resources.memory.limit_bytes

IGAUGE , bytes
RAM available to the database nodes.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_metrics_index_ydb_dedicated_resources


Query processing metrics (for Dedicated mode only)

Topic metrics

Metric name
Type
units of measurement

Description
Labels

table.query.compilation.cache_evictions

RATE , pieces
The number of queries evicted from the cache of prepared queries in a certain 
period of time.

table.query.compilation.cache_size_bytes

IGAUGE , bytes
The size of the cache of prepared queries.

table.query.compilation.cached_query_count

IGAUGE , pieces
The size of the cache of prepared queries.

Metric name
Type
units of measurement

Description
Labels

topic.producers_count

GAUGE , pieces
The number of unique topic producers.
Labels:
- topic – the name of the topic.

topic.storage_bytes

GAUGE , bytes
The size of the topic in bytes. 
Labels:
- topic - the name of the topic.

topic.read.bytes

RATE , bytes
The number of bytes read by the consumer from the topic.
Labels:
- topic – the name of the topic.
- consumer – the name of the consumer.

topic.read.messages

RATE , pieces
The number of messages read by the consumer from the topic. 
Labels:
- topic – the name of the topic.
- consumer – the name of the consumer.

topic.read.lag_messages

RATE , pieces
The number of unread messages by the consumer in the topic.
Labels:
- topic – the name of the topic.
- consumer – the name of the consumer.

topic.read.lag_milliseconds

HIST_RATE , pieces
A histogram counter. The intervals are specified in milliseconds. It shows the number of 
messages where the difference between the reading time and the message creation time falls 
within the specified interval.
Labels:
- topic – the name of the topic.
- consumer – the name of the consumer.

topic.write.bytes

RATE , bytes
The size of the written data.
Labels:
- topic – the name of the topic.

topic.write.uncommited_bytes

RATE , bytes
The size of data written as part of ongoing transactions.
Labels:
- topic — the name of the topic.

topic.write.uncompressed_bytes

RATE , bytes
The size of uncompressed written data.
Метки:
- topic – the name of the topic.

topic.write.messages

RATE , pieces
The number of written messages.
Labels:
- topic – the name of the topic.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_metrics_index_ydb_dedicated_queries
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_metrics_index_topics
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_producer-id


topic.write.uncommitted_messages

RATE , pieces
The number of messages written as part of ongoing transactions.
Labels:
- topic — the name of the topic.

topic.write.message_size_bytes

HIST_RATE , pieces
A histogram counter. The intervals are specified in bytes. It shows the number of messages 
which size falls within the boundaries of the interval.
Labels:
- topic – the name of the topic.

topic.write.lag_milliseconds

HIST_RATE , pieces
A histogram counter. The intervals are specified in milliseconds. It shows the number of 
messages where the difference between the write time and the message creation time falls 
within the specified interval.
Labels:
- topic – the name of the topic.



Grafana dashboards for YDB
This page describes Grafana dashboards for YDB. For information about how to install dashboards, see Setting up monitoring with Prometheus and
Grafana.

DB status

General database dashboard.

Download the dbstatus.json file with the DB status dashboard.

DB overview

General database dashboard by categories:

Health

API

API details

CPU

CPU pools

Memory

Storage
DataShard

DataShard details

Latency

Download the dboverview.json file with the DB overview dashboard.

Actors

CPU utilization in an actor system.

Download the actors.json file with the Actors dashboard.

CPU

CPU utilization in execution pools.

Download the cpu.json file with the CPU dashboard.

gRPC

gRPC layer metrics.

Name Description

CPU by execution pool 
(us)

CPU utilization in different execution pools across all nodes, microseconds per second (one million indicates 
utilization of a single core)

Actor count Number of actors (by actor type)

CPU CPU utilization in different execution pools (by actor type)

Events Actor system event handling metrics

Name Description

CPU by execution 
pool

CPU utilization in different execution pools across all nodes, microseconds per second (one million indicates 
utilization of a single core)

Actor count Number of actors (by actor type)

CPU CPU utilization in each execution pool

Events Event handling metrics in each execution pool

Name Description

Requests Number of requests received by a database per second (by gRPC method type)

Request bytes Size of database requests, bytes per second (by gRPC method type)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_metrics_grafana-dashboards
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_metrics_grafana-dashboards_dbstatus
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_metrics_grafana-dashboards_dboverview
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_metrics_grafana-dashboards_actors
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_metrics_grafana-dashboards_cpu
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_metrics_grafana-dashboards_grpc
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_monitoring_prometheus-grafana
https://raw.githubusercontent.com/ydb-platform/ydb/refs/heads/main/ydb/deploy/helm/ydb-prometheus/dashboards/dbstatus.json
https://raw.githubusercontent.com/ydb-platform/ydb/refs/heads/main/ydb/deploy/helm/ydb-prometheus/dashboards/dboverview.json
https://raw.githubusercontent.com/ydb-platform/ydb/refs/heads/main/ydb/deploy/helm/ydb-prometheus/dashboards/actors.json
https://raw.githubusercontent.com/ydb-platform/ydb/refs/heads/main/ydb/deploy/helm/ydb-prometheus/dashboards/cpu.json


Download the grpc.json file with the gRPC API dashboard.

Query engine

Information about the query engine.

Download the queryengine.json file with the Query engine dashboard.

TxProxy

Information about transactions from the DataShard transaction proxy layer.

Download the txproxy.json file with the TxProxy dashboard.

DataShard

DataShard tablet metrics.

Download the datashard.json file with the DataShard dashboard.

Database Hive

Response bytes Size of database responses, bytes per second (by gRPC method type)

Dropped requests Number of requests per second with processing terminated at the transport layer due to an error (by gRPC 
method type)

Dropped responses Number of responses per second with sending terminated at the transport layer due to an error (by gRPC method 
type)

Requests in flight Number of requests that a database is simultaneously handling (by gRPC method type)

Request bytes in 
flight

Size of requests that a database is simultaneously handling (by gRPC method type)

Name Description

Requests Number of incoming requests per second (by request type)

Request bytes Size of incoming requests, bytes per second (query, parameters, total)

Responses Number of responses per second (by response type)

Response bytes Response size, bytes per second (total, query result)

Sessions Information about running sessions

Latencies Request execution time histograms for different types of requests

Name Description

Transactions Datashard transaction metrics

Latencies Execution time histograms for different stages of datashard transactions

Name Description

Operations Datashard operation statistics for different types of operations

Transactions Information about datashard tablet transactions (by transaction type)

Latencies Execution time histograms for different stages of custom transactions

Tablet latencies Tablet transaction execution time histograms

Compactions Information about LSM compaction operations performed

ReadSets Information about ReadSets that are sent when executing a customer transaction

Other Other metrics

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_metrics_grafana-dashboards_queryengine
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_metrics_grafana-dashboards_txproxy
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_metrics_grafana-dashboards_datashard
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_metrics_grafana-dashboards_database-hive-detailed
https://raw.githubusercontent.com/ydb-platform/ydb/refs/heads/main/ydb/deploy/helm/ydb-prometheus/dashboards/grpc.json
https://raw.githubusercontent.com/ydb-platform/ydb/refs/heads/main/ydb/deploy/helm/ydb-prometheus/dashboards/queryengine.json
https://raw.githubusercontent.com/ydb-platform/ydb/refs/heads/main/ydb/deploy/helm/ydb-prometheus/dashboards/txproxy.json
https://raw.githubusercontent.com/ydb-platform/ydb/refs/heads/main/ydb/deploy/helm/ydb-prometheus/dashboards/datashard.json


Hive metrics for the selected database.

The dashboard includes the following filters:

database – selects the database for which metrics are displayed;

ds – selects the Prometheus data source the dashboard will use;

Tx type – determines the transaction type for which " {Tx type}  average time" panel is displayed.

Download the database-hive-detailed.json file with the Database Hive dashboard.

Name Description

CPU usage by HIVE_ACTOR, 
HIVE_BALANCER_ACTOR

CPU time utilized by HIVE_ACTOR  and HIVE_BALANCER_ACTOR , two of the most 
important actors of the Hive tablet.

Self-ping time Time it takes Hive to respond to itself. High values indicate heavy load (and low 
responsiveness) of the Hive.

Local transaction times CPU time utilized by various local transaction types in Hive. Shows the structure of 
Hive load based on different activities.

Tablet count Total number of tablets in the database.

Event queue size Size of the incoming event queue in Hive. Consistently high values indicate Hive 
cannot process events fast enough.

{Tx type}  average time Average execution time of a single local transaction of the type specified in the 
Tx type  selector on the dashboard.

Versions Versions of YDB running on cluster nodes.

Hive node Node where the database Hive is running.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_hive
https://raw.githubusercontent.com/ydb-platform/ydb/refs/heads/main/ydb/deploy/helm/ydb-prometheus/dashboards/database-hive-detailed.json


Tracing in YDB

Note

The OpenTelemetry website describes the concept of tracing in detail in the Observability Primer article.

Tracing is a tool that allows you to view the detailed path of a request through a distributed system. A set of spans describes the path of a single
request (trace). A span is a time segment usually associated with the execution time of a specific operation (e.g., writing information to disk or
executing a transaction). Spans form a tree, often with the subtree of a span as its detail, but this is not always the case.

To aggregate disparate spans into traces, they are sent to a collector. This service aggregates and stores received spans for subsequent trace
analysis. YDB does not include this service; the administrator must set it up independently. Typically, Jaeger is used as a collector.

Minimal configuration

To enable tracing in YDB, add the following section to the configuration:

Here, the collector_url  field sets the URL of an OTLP-compatible span collector. More details on the backend section can be found in the
relevant section.

With this configuration, no requests are sampled, and no more than ten requests per minute with an external trace-id are traced by each cluster
node.

Section descriptions

Backend

Example section

tracing_config:
  backend:
    opentelemetry:
      collector_url: grpc://example.com:4317
      service_name: ydb
  external_throttling:
    - max_traces_per_minute: 10

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_setup
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_setup_minimal-configuration
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_setup_section-descriptions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_setup_backend
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_setup_example-section
https://opentelemetry.io/
https://opentelemetry.io/docs/concepts/observability-primer/
https://www.jaegertracing.io/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index
https://opentelemetry.io/docs/specs/otlp/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_setup_backend
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_external-traces


Description

This section describes the span collector. Currently, the only option is opentelemetry . Spans are pushed from the cluster node to the collector,
requiring the collector to be OTLP compatible.

In the opentelemetry  section:

collector_url  — the URL of the span collector. The scheme can be either grpc://  for an insecure connection or grpcs://  for a TLS
connection.

service_name  — the name under which all spans will be marked.

Both parameters are mandatory.

Uploader

Example section

Description

The uploader is a cluster node component responsible for sending spans to the collector. To avoid overloading the span collector, the uploader will
not send more than max_exported_spans_per_second  spans per second on average.

For optimization, the uploader sends spans in batches. Each batch contains no more than max_spans_in_batch  spans with a total serialized size
of no more than max_bytes_in_batch  bytes. Each batch accumulates for no more than max_batch_accumulation_milliseconds  milliseconds.
Batches can be sent in parallel, with the maximum number of simultaneously sent batches controlled by the max_export_requests_inflight
parameter. If more than span_export_timeout_seconds  seconds have passed since the uploader received the span, the uploader may delete it to
send fresher spans.

Default values:

max_exported_spans_per_second = inf  (no limits)

max_spans_in_batch = 150

max_bytes_in_batch = 20000000

max_batch_accumulation_milliseconds = 1000

span_export_timeout_seconds = inf  (no spans are deleted by the uploader)

max_export_requests_inflight = 1

The uploader  section may be completely absent, in which case each parameter will use its default value.

Note

The uploader is a node-local component. Therefore, the described limits apply to each node separately, not to the entire cluster.

External throttling

Example section

tracing_config:
  # ...
  backend:
    opentelemetry:
      collector_url: grpc://example.com:4317
      service_name: ydb

tracing_config:
  # ...
  uploader:
    max_exported_spans_per_second: 30
    max_spans_in_batch: 100
    max_bytes_in_batch: 10485760 # 10 MiB
    max_export_requests_inflight: 3
    max_batch_accumulation_milliseconds: 5000
    span_export_timeout_seconds: 120

tracing_config:
  # ...
  external_throttling:
    - scope:
        database: /Root/db1

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_setup_description
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_setup_uploader
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_setup_example-section1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_setup_description1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_setup_external-throttling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_setup_example-section2
https://opentelemetry.io/docs/specs/otlp/


Description

YDB supports the transmission of external trace-ids to build a coherent request trace. The method for transmitting an external trace-id is described
on the Passing external trace-id in YDB page. To avoid overloading the collector, YDB has a mechanism to limit the number of externally traced
requests. The limits are described in this section and are a sequence of rules. Each rule contains:

scope  – a set of selectors for filtering the request.

max_traces_per_minute  – the maximum average number of requests per minute traced by this rule. A positive integer is expected.

max_traces_burst  – the maximum burst of externally traced requests. A non-negative integer is expected.

The only mandatory parameter is max_traces_per_minute .

A detailed description of these options is provided in the Rule semantics section.

The external_throttling  section is not mandatory; if it is absent, all trace-ids in requests are ignored (no external traces are continued).

This section can be modified without restarting the node using the dynamic configuration mechanism.

Sampling

Example section

Description

For diagnosing system issues, looking at a sample request trace can be useful regardless of whether users trace their requests or not. For this
purpose, YDB has a request sampling mechanism. For a sampled request, a random trace-id is generated. This section controls request sampling
in a format similar to external_throttling . Each rule has two additional fields:

fraction  – the fraction of requests sampled by this rule. A floating-point number between 0 and 1 is expected.

level  — the detail level of the trace. An integer from 0 to 15 is expected. This parameter is described in more detail in the Detail levels
section.

Both fields are mandatory.

The sampling  section is not mandatory; no requests will be sampled if it is absent.

This section can be modified without restarting the node using the dynamic configuration mechanism.

Rule semantics

Selectors

Each rule includes an optional scope  field with a set of selectors that determine which requests the rule applies to. Currently, the supported
selectors are:

request_types

Accepts a list of request types. A request matches this selector if its type is in the list.

KeyValue.CreateVolume

KeyValue.DropVolume

KeyValue.AlterVolume

KeyValue.DescribeVolume

KeyValue.ListLocalPartitions

      max_traces_per_minute: 60
      max_traces_burst: 3

tracing_config:
  # ...
  sampling:
    - fraction: 0.01
      level: 10
      max_traces_per_minute: 5
      max_traces_burst: 2
    - scope:
        request_types:
          - KeyValue.ExecuteTransaction
          - KeyValue.Read
      fraction: 0.1
      level: 15
      max_traces_per_minute: 5
      max_traces_burst: 2

Possible values

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_setup_description2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_setup_sampling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_setup_example-section3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_setup_description3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_setup_semantics
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_setup_selectors
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_external-traces
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_setup_semantics
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_setup_external-throttling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_setup_tracing-levels
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config


KeyValue.AcquireLock

KeyValue.ExecuteTransaction

KeyValue.Read

KeyValue.ReadRange

KeyValue.ListRange

KeyValue.GetStorageChannelStatus

Table.CreateSession

Table.KeepAlive

Table.AlterTable
Table.CreateTable

Table.DropTable

Table.DescribeTable

Table.CopyTable

Table.CopyTables

Table.RenameTables

Table.ExplainDataQuery

Table.ExecuteSchemeQuery

Table.BeginTransaction

Table.DescribeTableOptions

Table.DeleteSession

Table.CommitTransaction

Table.RollbackTransaction

Table.PrepareDataQuery

Table.ExecuteDataQuery

Table.BulkUpsert
Table.StreamExecuteScanQuery

Table.StreamReadTable

Table.ReadRows

Query.ExecuteQuery

Query.ExecuteScript

Query.FetchScriptResults

Query.CreateSession

Query.DeleteSession

Query.AttachSession

Query.BeginTransaction

Query.CommitTransaction

Query.RollbackTransaction

Discovery.WhoAmI

Discovery.NodeRegistration

Discovery.ListEndpoints

Note

Tracing is supported not only for the request types listed above. This list includes request types that are supported by the
request_types  selector.

Warning

Note that the QueryService API is experimental and may change in the future.

database

Filters requests to the specified database.

A request matches a rule if it matches all selectors. scope  can be absent, which is equivalent to an empty set of selectors, and all requests will fall
under this rule.

Rate limiting

The max_traces_per_minute  and max_traces_burst  parameters limit the number of requests. In the case of sampling, they limit the number of
requests sampled by this rule. In the case of external throttling, they limit the number of external traces that enter the system.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_setup_rate-limiting
https://github.com/ydb-platform/ydb/blob/e3af273efaef7dfa21205278f17cd164e247820d/ydb/public/api/grpc/ydb_query_v1.proto#L9


A variation of the leaky bucket is used for rate limiting with a bucket size equal to max_traces_burst + 1 . For example, if
max_traces_per_minute = 60  and max_traces_burst = 0 , then with a flow of 10,000 requests per minute, one request will be traced every

second. If max_traces_burst = 20 , then with the same request flow, the first 21 requests will be traced, and then one request per second will be
traced.

Warning

The limits on the number of traced requests are local to the cluster node. For example, if each cluster node has a rule specifying
max_traces_per_minute = 1 , then no more than one request per minute will be traced from each cluster node by this rule.

Detail levels

As with logs, diagnosing most system issues does not require the most detailed trace. Therefore, in YDB, each span has its own level described by
an integer from 0 to 15 inclusive. Each rule in the sampling  section must include the detail level of the generated trace ( level ); spans with a
level less than or equal to level  will be included in it.

The YDB architecture section describes the system's division into 5 layers:

Each layer has seven detail levels:

The table below shows the distribution of system layer detail levels by trace detail levels:

Layer Components

1 gRPC Proxies

2 Query Processor

3 Distributes Transactions

4 Tablet, System tablet

5 Distributed Storage

Level Value

Off No tracing

TopLevel Lowest detail, no more than two spans per request to the component

Basic Spans of main component operations

Detailed Highest detail applicable for diagnosing problems in production

Diagnostic Detailed debugging information for developers

Trace Very detailed debugging information

Trace detail level gRPC Proxies Query Processor Distributed Transactions Tablets Distributed Storage

0 TopLevel Off Off Off Off

1 TopLevel TopLevel Off Off Off

2 TopLevel TopLevel TopLevel Off Off

3 TopLevel TopLevel TopLevel TopLevel Off

4 TopLevel TopLevel TopLevel TopLevel TopLevel

5 Basic TopLevel TopLevel TopLevel TopLevel

6 Basic Basic TopLevel TopLevel TopLevel

7 Basic Basic Basic TopLevel TopLevel

8 Basic Basic Basic Basic TopLevel

9 Basic Basic Basic Basic Basic

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_setup_tracing-levels
https://en.wikipedia.org/wiki/Leaky_bucket
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_logs
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_index_ydb-architecture


Rules

External throttling

The semantics of each rule are as follows: it allocates a quota for the number of requests in this category. For example, if the
external_throttling  section looks like this:

With a sufficient flow of requests with an external trace-id, at least 60 requests per minute and at least 20 KeyValue.ReadRange  type requests per
minute will be traced. A total of up to 80 requests per minute will be traced.

The algorithm is as follows: for a request with an external trace-id, the rules that apply to this request are determined. The request consumes the
quota of all rules that still have it. The request is not traced only if none of the rules have any quota left.

Sampling

The semantics of the rule for sampling are similar: with a sufficiently low flow of requests in this category, at least a fraction  of the requests with
at least level  detail will be sampled.

The algorithm is similar: the set of rules that apply to this request is determined for a request without an external trace-id (either due to its initial
absence or due to a previous decision not to trace this request). The request consumes the quota of all rules that still have it and that have
randomly "decided" to sample it. It is not sampled if no rule decides to sample the request (all rules that "decided" to sample the request have no
quota left). Otherwise, the detail level is determined as the maximum among the rules into whose quota the request fell.

For example, with the following sampling  configuration:

With a sufficiently low flow of requests to the /Root/db1  database, the following will be sampled:

1% of requests with a detail level of 15

49.5% of requests with a detail level of 5

With a sufficiently high flow of requests to the /Root/db1  database, the following will be sampled:

5 requests per minute with a detail level of 15

between 95 and 100 requests per minute with a detail level of 5

tracing_config:
  external_throttling:
    - max_traces_per_minute: 60
    - scope:
        request_types:
          - KeyValue.ReadRange
      max_traces_per_minute: 20

tracing_config:
  sampling:
    - scope:
        database: /Root/db1
      fraction: 0.5
      level: 5
      max_traces_per_minute: 100
    - scope:
        database: /Root/db1
      fraction: 0.01
      level: 15
      max_traces_per_minute: 5

10 Detailed Detailed Basic Basic Basic

11 Detailed Detailed Detailed Basic Basic

12 Detailed Detailed Detailed Detailed Basic

13 Detailed Detailed Detailed Detailed Detailed

14 Diagnostic Diagnostic Diagnostic Diagnostic Diagnostic

15 Trace Trace Trace Trace Trace

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_setup_rules
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_setup_external-throttling1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_setup_sampling1


Passing external trace-id in YDB

gRPC API

YDB supports the transmission of external trace-ids to construct a comprehensive operation trace. The transmission of trace-ids is carried out
according to the trace context specification. The traceparent  header of the gRPC request should contain a string of the form 00-
0af7651916cd43dd8448eb211c80319c-b7ad6b7169203331-01 . It consists of four parts, separated by the -  character:

1. Version – at the time of writing, the specification defines only version 00.

2. Trace id – the identifier of the trace that the request is part of.

3. Parent id – the identifier of the parent span.

4. Flags – a set of recommendations for working with the data transmitted in the header.

Only version 00 is supported, and flags are ignored. If the header does not comply with the specification, it is ignored. All traces obtained in this way
have a tracing level of 13 (all components are traced at the Detailed  level).

Warning

If the external_throttling  section is present and the request flow exceeds the established limits, not all requests may be traced. If
the external_throttling  section is absent, the traceparent  header is ignored and no external traces are continued.

SDK support

Some SDKs support the transmission of trace-ids. You can find their list and usage examples on the Enabling tracing in Jaeger page.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_external-traces
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_external-traces_grpc-api
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_external-traces_sdk-support
https://w3c.github.io/trace-context/#traceparent-header
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_setup_tracing-levels
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_setup_external-throttling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_setup_external-throttling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_debug-jaeger


Installing the YDB DSTool

Linux

To install the YDB DSTool, follow these steps:

1. Run the command:

The script will install the YDB DSTool. If the script is run from a bash  or zsh  shell, it will also add the ydb-dstool  executable to the PATH
environment variable. Otherwise, you can run it from the ~/ydb/bin  folder or add it to PATH  manually.

2. To update the environment variables, restart the command shell.

3. Test it by running the command that shows cluster information:

bs_endpoint : URI of the cluster's HTTP endpoint, the same endpoint that serves the Embedded UI. Example:
http://localhost:8765 .

Result:

curl -sSL 'https://install.ydb.tech/dstool' | bash

ydb-dstool -e <bs_endpoint> cluster list

┌───────┬───────┬───────┬────────┬────────┬───────┬────────┐
│ Hosts │ Nodes │ Pools │ Groups │ VDisks │ Boxes │ PDisks │
├───────┼───────┼───────┼────────┼────────┼───────┼────────┤
│ 8     │ 16    │ 1     │ 5      │ 40     │ 1     │ 32     │
└───────┴───────┴───────┴────────┴────────┴───────┴────────┘

macOS

To install the YDB DSTool, follow these steps:

1. Run the command:

The script will install the YDB DSTool. If the script is run from a bash  or zsh  shell, it will also add the ydb-dstool  executable to the PATH
environment variable. Otherwise, you can run it from the ~/ydb/bin  folder or add it to PATH  manually.

2. To update the environment variables, restart the command shell.

3. Test it by running the command that shows cluster information:

bs_endpoint : URI of the cluster's HTTP endpoint, the same endpoint that serves the Embedded UI. Example:
http://localhost:8765 .

Result:

curl -sSL 'https://install.ydb.tech/dstool' | bash

ydb-dstool -e <bs_endpoint> cluster list

┌───────┬───────┬───────┬────────┬────────┬───────┬────────┐
│ Hosts │ Nodes │ Pools │ Groups │ VDisks │ Boxes │ PDisks │
├───────┼───────┼───────┼────────┼────────┼───────┼────────┤
│ 8     │ 16    │ 1     │ 5      │ 40     │ 1     │ 32     │
└───────┴───────┴───────┴────────┴────────┴───────┴────────┘

Windows

To install the YDB DSTool, follow these steps:

1. Run the command:

in PowerShell:

in CMD:

iex (New-Object System.Net.WebClient).DownloadString('https://install.ydb.tech/dstool-windows')

@"%SystemRoot%\System32\WindowsPowerShell\v1.0\powershell.exe" -Command "iex ((New-Object 
System.Net.WebClient).DownloadString('https://install.ydb.tech/dstool-windows'))"

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-dstool_install
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_embedded-ui_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_embedded-ui_index


2. Specify whether to add ydb-dstool  to the PATH  environment variable:

3. To update the environment variables, restart the command shell.

Note

The YDB DSTool uses Unicode characters in the output of some commands. If these characters aren't displayed correctly in the
Windows console, switch the encoding to UTF-8:

4. Test it by running the command that shows cluster information:

bs_endpoint : URI of the cluster's HTTP endpoint, the same endpoint that serves the Embedded UI. Example:
http://localhost:8765 .

Result:

Add ydb-dstool installation dir to your PATH? [Y/n]

chcp 65001

ydb-dstool -e <bs_endpoint> cluster list

┌───────┬───────┬───────┬────────┬────────┬───────┬────────┐
│ Hosts │ Nodes │ Pools │ Groups │ VDisks │ Boxes │ PDisks │
├───────┼───────┼───────┼────────┼────────┼───────┼────────┤
│ 8     │ 16    │ 1     │ 5      │ 40     │ 1     │ 32     │
└───────┴───────┴───────┴────────┴────────┴───────┴────────┘

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_embedded-ui_index


Global options
All the YDB DSTool utility subcommands share the same global options.

Option Description

-? , -h , --help Print the built-in help.

-v , --verbose Print detailed output while executing the command.

-q , --quiet Suppress non-critical messages when executing the command.

-n , --dry-run Dry-run the command.

-e , --endpoint Endpoint to connect to the YDB cluster, in the format: [PROTOCOL://]HOST[:PORT] .
Default values: PROTOCOL — http , PORT — 8765 .

--grpc-port gRPC port used to invoke procedures.

--mon-port Port to view HTTP monitoring data in JSON format.

--mon-protocol If you fail to specify the cluster connection protocol explicitly in the endpoint, the protocol is taken from here.

--token-file Path to the file with Access Token.

--ca-file Path to a root certificate PEM file used for TLS connections.

--http Use HTTP instead of gRPC to connect to the Blob Storage.

--http-timeout Timeout for I/O operations on the socket when running HTTP(S) queries.

--insecure Allow insecure data delivery over HTTPS. Neither the SSL certificate nor host name are checked in this mode.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-dstool_global-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_iam


device list
Use the device list  subcommand to get a list of storage devices available on the YDB cluster.

General format of the command:

global options : Global options.

list options : Subcommand options.

View a description of the command to get a list of devices:

Subcommand options

Examples

The following command will output a list of devices available in the cluster:

Result:

ydb-dstool [global options ...] device list [list options ...]

ydb-dstool device list --help

ydb-dstool -e node-5.example.com device list

┌────────────────────┬────────────────────┬────────────────────────────────┬──────┬───────────────────────────┬────────────
│ SerialNumber       │ FQDN               │ Path                           │ Type │ StorageStatus             │ 
NodeId:PDiskId │
├────────────────────┼────────────────────┼────────────────────────────────┼──────┼───────────────────────────┼────────────
│ PHLN123301H41P2BGN │ node-1.example.com │ /dev/disk/by-partlabel/nvme_04 │ NVME │ FREE                      │ NULL       
│
│ PHLN123301A62P2BGN │ node-6.example.com │ /dev/disk/by-partlabel/nvme_03 │ NVME │ PDISK_ADDED_BY_DEFINE_BOX │ [6:1001]   
│
...

Option Description

-H , 
--human-readable

Output data in human-readable format.

--sort-by Sort column.
Use one of the values: SerialNumber , FQDN , Path , Type , StorageStatus , or NodeId:PDiskId .

--reverse Use a reverse sort order.

--format Output format.
Use one of the values: pretty , json , tsv , or csv .

--no-header Do not output the row with column names.

--columns List of columns to be output.
Use one or more of the values: SerialNumber , FQDN , Path , Type , StorageStatus , or  
NodeId:PDiskId .

-A , --all-columns Output all columns.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-dstool_device-list
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-dstool_device-list_options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-dstool_device-list_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-dstool_global-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-dstool_device-list_options


Installing ydbops

Note

The ydbops  utility is under active development. Although backward-incompatible changes are unlikely, they may still occur.

Download the binary from the releases page

You can download binary releases from Download YDB Ops.

Building from source

1. Clone the ydbops  repository from GitHub:

2. There are two ways to build ydbops :

2.1. Directly with Go

2.2. Inside a Docker container

The second approach requires a prepared Docker environment and uses the official Docker image for Golang v1.22, guaranteeing a successful
build. The Docker container operates using the Dockerfile  from the repository. The build process in Docker also performs additional tasks:
running linter checks and substituting the version for the ydbops  assembly to register it in the executable file.

Building directly with Go

Prerequsites

Install Go. The recommended version is 1.22.

Compiling

Invoke go build  in the repository root folder:

The ydbops  executable will be available in the repository root folder.

Installing

You can copy the executable file manually or use make :

Inside a Docker container

Prerequsites

make

Install docker engine

Compiling

Invoke this command in the repository root folder:

The ydbops  executables will be available in the bin  folder. Binary files are generated for Linux and macOS (arm64, amd64).

git clone https://github.com/ydb-platform/ydbops.git

go build

make install INSTALL_DIR=install_folder BUILD_DIR=.

make build-in-docker

Binary name Platform

ydbops Linux (amd64)

ydbops_darwin_amd64 macOS (amd64)

ydbops_darwin_arm64 macOS (arm64)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_install
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_install_download-the-binary-from-the-releases-page
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_install_building-from-source
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_install_go
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_install_prerequsites
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_install_compiling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_install_installing
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_install_docker
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_install_prerequsites1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_install_compiling1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_ydb-ops
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_install_go
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_install_docker
https://en.wikipedia.org/wiki/Docker_(software)
https://en.wikipedia.org/wiki/Go_(programming_language)
https://hub.docker.com/_/golang/tags?name=1.22
https://go.dev/doc/install
https://docs.docker.com/engine/install/


Installing

To install the binary file, execute the command make .

Optional parameters:

INSTALL_DIR : The folder where the executable file will be installed. Default value: ~/ydb/bin .

BUILD_DIR : The folder that contains the generated executable file. Use this parameter if you created the executable file manually. For
example, use BUILD_DIR=.  if the executable file is in the current working directory.

Sample command to install into install_folder  from the current folder:

make install [INSTALL_DIR=<path_to_install_folder>] [BUILD_DIR=<path_to_build_folder>]

make install INSTALL_DIR=install_folder BUILD_DIR=.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_install_installing1


Configuring ydbops

Note

The ydbops  utility is under active development. Although backward-incompatible changes are unlikely, they may still occur.

ydbops  can be run by specifying all the necessary command line arguments on the command invocation. However, it has two features that allow
to avoid repeating the commonly used arguments:

Config file

Environment variables

Config file

The configuration file for ydbops  is a YAML-formatted file containing multiple profiles. Profiles for ydbops  work in the same way as profiles in YDB
CLI do.

Default configuration file location follows the same convention as YDB CLI does, it is located in the same folder in ydbops  subdirectory. For
comparison:

default configuration file for YDB CLI: $HOME/ydb/config/config.yaml

default configuration file for ydbops  CLI is in same folder, ydbops  subdirectory: $HOME/ydb/ydbops/config/config.yaml

Certain command line options can be written in the configuration file instead of being specified directly in the ydbops  invocation.

Examples

Calling the ydbops restart  command without a profile:

Calling the same ydbops restart  command with profile options enabled makes the command much shorter:

For the invocation above, the following config.yaml  is assumed to be present:

Profile management commands

Currently, ydbops  does not support the creation, modification, and activation of profiles via the CLI commands the way that YDB CLI does.

The configuration file needs to be created and edited manually.

Configuration file reference

Here is an example of a configuration file with all possible options that can be specified and example values (most likely, they will not all be needed
at the same time):

ydbops restart \
 -e grpc://<hostname>:2135 \
 --kubeconfig ~/.kube/config \
 --k8s-namespace <k8s-namespace> \
 --user admin \
 --password-file ~/<password-file> \
 --tenant --tenant-list=my-tenant

ydbops restart \
 --config-file ./config.yaml \
 --tenant --tenant-list=<tenant-name>

current-profile: my-profile
profiles:
  my-profile:
    endpoint: grpcs://<hostname>:2135
    ca-file: ~/<ca-certificate-file>
    user: <username>
    password-file: ~/<password-file>
    k8s-namespace: <k8s-namespace>
    kubeconfig: ~/.kube/config

# a special key `current-profile` can be specified to
# be used as the default active profile in the CLI invocation
current-profile: my-profile

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_configuration
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_configuration_config-file
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_configuration_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_configuration_profile-management-commands
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_configuration_configuration-file-reference
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_configuration_config-file
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_configuration_environment-variables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_index_commands


Environment variables

Alternatively, there is an option to specify several environment variables instead of passing command-line arguments or using config files.

For an explanation of which options take precedence, please invoke ydbops --help .

YDB_TOKEN  can be passed instead of the --token-file  flag or token-file  profile option.

YDB_PASSWORD  can be passed instead of the --password-file  flag or password-file  profile option.

YDB_USER  can be passed instead of the --user  flag or user  profile option.

# profile definitions are added as subkeys to the `profiles` key
profiles:
  my-profile:
    endpoint: grpcs://your.ydb.cluster.fqdn:2135

    # CA file location if using grpcs to the endpoint
    ca-file: /path/to/custom/ca/file

    # a username and password file if static credentials are used:
    user: your-ydb-user-name
    password-file: /path/to/password-file

    # when using access token
    token-file: /path/to/ydb/token

    # if working with YDB clusters in Kubernetes, kubeconfig path can be specified:
    kubeconfig: /path/to/kube/config
    k8s-namespace: <k8s-namespace>

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_configuration_environment-variables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_configuration_config-file


Scenarios

Performing YDB cluster restart using ydbops

Note

The ydbops  utility is under active development. Although backward-incompatible changes are unlikely, they may still occur.

ydbops  can be used to perform the rolling restart operation: restarting all or some of YDB cluster nodes while maintaining cluster availability. Why
this is not trivial and requires a special utility is explained in the article about maintenance without downtime.

The subcommand responsible for this operation is ydbops restart .

General algorithm

There are multiple options for ydbops restart  that act as filters. Filters are implicitly connected with a logical "and", meaning that if you supply
multiple filters, only the nodes that satisfy all of them at once will be targeted. Therefore, specifying no filters targets all nodes for restart.

There are two special filters that are an exception to this rule, --storage  and --tenant :

Specifying only --storage  will filter storage nodes only.

Specifying only --tenant  will filter tenant nodes only.

However, specifying both selects all nodes and is equivalent to not specifying these two filters.

The algorithm will always work in two phases:

First, it will determine whether any storage nodes fit the restart filters and restart these nodes only.

After all storage nodes have been restarted or it has been determined that no storage nodes are selected, the process repeats for tenant
nodes.

Examples

The following examples assume you have specified all the required connection options (such as endpoint or credentials).

Restarting all nodes in the cluster

The command will restart all the nodes in the cluster: all storage nodes first, followed by all tenant nodes.

Restarting only storage or tenant nodes

It is possible to restart storage nodes only:

Or tenant nodes only:

Additionally, only specific tenants may be restarted by specifying --tenant-list :

Restarting only specific nodes

It is possible to restart nodes only on specific hosts by supplying FQDNs with the --hosts  option:

Or by supplying node ids directly:

Restarting based on node uptime

ydbops restart

ydbops restart --storage

ydbops restart --tenant

ydbops restart --tenant-list=</domain/database_name_1>,</domain/database_name_2>,...

ydbops restart --hosts=<node1.some.zone>,<node2.some.zone>

ydbops restart --hosts=1,2,3

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_scenarios
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_scenarios_performing-ydb-cluster-restart-using-ydbops
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_scenarios_general-algorithm
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_scenarios_examples
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_scenarios_restarting-all-nodes-in-the-cluster
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_scenarios_restarting-only-storage-or-tenant-nodes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_scenarios_restarting-only-specific-nodes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_scenarios_restarting-based-on-node-uptime
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_maintenance-without-downtime


It is possible to restart only the nodes that have specific uptime by using the --started  option:

The option argument needs to be enclosed in quotes, otherwise shell might interpret >  or <  signs as stream redirections. See the example:

It might be convenient to restart only the nodes that have been up for over a few minutes, as the others have just restarted recently.

Restarting based on YDB version

It is possible to restart only the nodes whose version is equal to ( == ), not equal to ( != ), greater than ( > ), or less than ( < ) the desired version.

The option argument needs to be enclosed in quotes; otherwise, the shell might interpret the >  or <  signs as stream redirections. See the
examples:

ydbops restart --started '>2024-03-13T17:00:00Z'

ydbops restart --version '>24.1.2'
ydbops restart --version '<24.1.2'
ydbops restart --version '!=24.1.2'
ydbops restart --version '==24.1.2'

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_scenarios_restarting-based-on-ydb-version


ydbops reference sheet

ydbops options

DB connection options

DB connection options are described in Connecting to and authenticating with a database.

Service options

--verbose : increases output verbosity.

--profile-file : use profiles from the specified file. By default, profiles from the $HOME/ydb/ydbops/config/config.yaml file are used .

--profile <string> : override currently set profile name from --profile-file .

--grpc-timeout-seconds <int> : wait this much time in seconds before timing out any GRPC requests (default 60).

--grpc-skip-verify : do not verify server hostname when using gRPCs.

--ca-file <filepath> : path to root ca file, appends to system pool.

ydbops restart options

--storage : only include storage nodes. If no --storage  or --tenant  is specified, both --storage  and --tenant  become active, as it is
assumed that the intention is to restart the whole cluster.

--tenant : only include tenant nodes. Additionally, you can specify:

--tenant-list=<tenant-name-1>,<tenant-name-2>

--availability-mode <strong|weak|force> : see the article about maintenance without downtime. Defaults to strong .

--restart-duration <int> : multiplied by --restart-retry-number , this gives the total duration in seconds for the maintenance
operation. In other words, it is a promise to CMS that a single node restart will finish within given duration. Defaults to 60 (which makes the
default CMS request duration 180 seconds in combination with the default value of --restart-retry-number )

--restart-retry-number <int> : if restarting a specific node failed, repeat the restart operation this much times. Defaults to 3.

--cms-query-interval <int> : how often to query for updates from CMS while waiting for new nodes. Defaults to 10 seconds.

--nodes-inflight <int> : the maximum number of nodes that are concurrently being restarted.

--delay-between-restarts <duration> : delay before initiating the next node restart.

Filtering options

Filtering options allow you to narrow down the list of nodes to restart.

--hosts <list> : restart the following hosts. Hosts can be specified in multiple ways:

Using node ids: --hosts=1,2,3

Using host fqdns: --hosts=<node1.some.zone>,<node2.some.zone>

--exclude-hosts <list> : do not restart the following hosts even if explicitly included. Syntax is the same as with the --hosts  option.

--started '<sign><timestamp>' : restart only the nodes that satisfy the particular uptime. Specify the sign ( <  or > ) and a timestamp in
ISO format to filter only the nodes that started before or after a particular timestamp. Be careful to enclose the timestamp with a sign in quotes,
otherwise shell might interpret the sign as stream redirection.

example: ydbops restart --started '>2024-03-13T17:00:00Z'

--version '<sign><major>.<minor>.<patch>' : restart only the nodes that satisfy the particular version filter. Specify the sign ( < , > , !=
or == ), then specify the version by supplying three numbers: major, minor, patch versions. Be careful to enclose the timestamp with a sign in
quotes, otherwise shell might interpret the sign as stream redirection.

example: ydbops restart --version '>24.3.1'

the command works with ydb processes that have their version in the following format: ydb-stable-<major>-<minor>-<patch>.* .
Hotfix versions (e.g. ydb-stable-24-1-14-hotfix-9 ) have the same major, minor, patch numbers as their non-hotfix 24.1.14 . For
example, ydb-stable-24-1-14-hotfix-9  is treated in the same way as ydb-stable-24-1-14 .

Kubernetes options

If --kubeconfig  is specified, it is assumed that the cluster to be restarted runs under Kubernetes, and node restart will be achieved by deleting
pods as opposed to other ways of restart (e.g. systemd units).

--kubeconfig : location to kubeconfig file which will be used for communicating with Kubernetes API (e.g. restarting nodes by deleting pods).
There is no default value, since specifying this option also indicates Kubernetes mode.

--k8s-namespace : namespace where pods with storage or tenant processes are located. The usecase with nodes located in multiple
namespaces is currently unsupported.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_reference
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_reference_ydbops-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_reference_db-connection-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_reference_service-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_reference_ydbops-restart-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_reference_filtering-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_reference_kubernetes-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_connect_command-line-pars
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_maintenance-without-downtime


Docker image ydbplatform/local-ydb  tags naming

For the ydbplatform/local-ydb Docker image, the following naming rules apply for tags:

Tag Name Description

latest Corresponds to the most recent stable version of YDB tested on production clusters. Rebuilt for each new YDB 
release.

edge A candidate for the next stable version, currently undergoing testing. Includes new features but may not be 
stable and thus unsuitable for production environments.

trunk , main , 
nightly

The latest version of YDB from the main development branch. Includes all recent changes and is rebuilt nightly. 
Similarly to edge , it is not suitable for production environments.

XX.Y Corresponds to the latest minor version of YDB in a major release XX.Y , including all patches.

XX.Y.ZZ Corresponds to the YDB release version XX.Y.ZZ .

XX.Y-slim , 
XX.Y.ZZ-slim

Compressed binaries of YDB ( ydbd  and ydb ) with smaller image size but a slower startup. Uses UPX.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_docker_tags
https://hub.docker.com/r/ydbplatform/local-ydb
https://github.com/upx/upx


Prerequisites for working with YDB in Docker
Before using the YDB in Docker, install and configure the Docker environment. Refer to the official documentation for your operating system:

Linux

macOS

Windows

Alternative installation methods, such as colima, are also supported.

The installation of YDB by downloading the container image happens during the first launch.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_docker_prerequisites
https://docs.docker.com/desktop/install/linux-install/
https://docs.docker.com/desktop/install/mac-install/
https://docs.docker.com/desktop/install/windows-install/
https://github.com/abiosoft/colima
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_docker_start


Running YDB in Docker

Before start

Create a folder for testing YDB and use it as the current working directory:

Launching a container with YDB in Docker

Example of the YDB startup command in Docker with detailed comments:

Note

If you are using a Mac with an Apple Silicon processor, emulate the x86_64 CPU instruction set with Rosetta:

colima with the colima start --arch aarch64 --vm-type=vz --vz-rosetta  options.

Docker Desktop with installed and enabled Rosetta 2.

For more information about environment variables available when running a Docker container with YDB, see Configuring the YDB Docker container.

With the parameters specified in the example above and running Docker locally, Embedded UI will be available at http://localhost:8765.

For more information about stopping and deleting a Docker container with YDB, see Docker stop.

mkdir ~/ydbd && cd ~/ydbd
mkdir ydb_data
mkdir ydb_certs

docker run \
    -d \ # run container in background and print container ID
    --rm \ # automatically remove the container
    --name ydb-local \ # assign a name to the container
    -h localhost \ # hostname
    -p 2135:2135 \ # publish a container grpcs port to the host 
    -p 2136:2136 \ # publish a container grpc port to the host 
    -p 8765:8765 \ # publish a container http port to the host 
    -p 5432:5432 \ # publish a container port to the host that provides PostgreSQL compatibility
    -p 9092:9092 \ # publish a container port to the host that provides Kafka compatibility
    -v $(pwd)/ydb_certs:/ydb_certs \ # mount directory with TLS certificates
    -v $(pwd)/ydb_data:/ydb_data \ # mount working directory
    -e GRPC_TLS_PORT=2135 \ # grpcs port, needs to match what's published above
    -e GRPC_PORT=2136 \ # grpc port, needs to match what's published above
    -e MON_PORT=8765 \ # http port, needs to match what's published above
    -e YDB_KAFKA_PROXY_PORT=9092 \ # port, needs to match what's published above
    ydbplatform/local-ydb:latest # docker image name and tag

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_docker_start
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_docker_start_before-start
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_docker_start_launching-a-container-with-ydb-in-docker
https://support.apple.com/en-us/102527
https://github.com/abiosoft/colima
https://docs.docker.com/desktop/setup/install/mac-install/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_docker_configuration
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_index
http://localhost:8765/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_docker_cleanup


Configuring the YDB Docker container
YDB is configured via environment variables when running in Docker. When starting the YDB Docker container with the docker run  command,
you can specify additional environment variables using the -e  option to change the container's behavior. For more than one environment variable,
specify this option multiple times. Below is the full list of supported environment variables.

Environment variables

Name Type Default Description

POSTGRES_USER string postgres User name for access via compatibility with PostgreSQL

POSTGRES_PASSWORD string User password for access via compatibility with PostgreSQL

YDB_GRPC_ENABLE_TLS 0  or 
1

1 Enable the grpcs://  protocol (gRPC over TLS)

YDB_GRPC_TLS_DATA_PATH string /ydb_data Data path with TLS certificates for the grpcs://  connection

MON_PORT int 8765 HTTP port of Embedded UI

GRPC_PORT int 2135 gRPC port

IC_PORT int 19001 Interconnect port

GRPC_TLS_PORT int 2137 gRPC over TLS port

YDB_KAFKA_PROXY_PORT int Port for connecting using the Kafka API. An empty value disables 
Kafka API compatibility.

YDB_ERASURE string none Erasure to use, see YDB Cluster Topology

FQ_CONNECTOR_ENDPOINT string None Connection string for the connector to external sources 
fq-connector-go , see Federated Queries

YDB_USE_IN_MEMORY_PDISKS 0  or 
1

0 Makes all data volatile and stored only in RAM. Currently, saving 
data by disabling this option is supported only on x86_64 processors 
or virtual machines emulating them.

YDB_DEFAULT_LOG_LEVEL string NOTICE Sets the logging level by default. Available values: CRIT , ERROR , 
WARN , NOTICE , INFO .

YDB_ADDITIONAL_LOG_CONFIGS string None Sets additional logging levels for specified ydb components in format: 
component : level . If you need to enter multiple levels, then enter 

them separated by commas.

YDB_FEATURE_FLAGS string None Comma-separated list of experimental features YDB

YDB_ENABLE_COLUMN_TABLES 0  or 
1

0 Enables column-oriented tables

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_docker_configuration
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_docker_configuration_environment-variables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_docker_start
https://github.com/ydb-platform/ydb/blob/c113fcffa7b1a20ad8dcb1b1760ae5bfa25370ca/ydb/public/tools/lib/cmds/__init__.py#L240
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_intro
https://github.com/ydb-platform/ydb/blob/c113fcffa7b1a20ad8dcb1b1760ae5bfa25370ca/ydb/public/tools/lib/cmds/__init__.py#L240
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_intro
https://github.com/ydb-platform/ydb/blob/c113fcffa7b1a20ad8dcb1b1760ae5bfa25370ca/ydb/public/tools/lib/cmds/__init__.py#L258
https://github.com/ydb-platform/ydb/blob/8fefc809c83829d8d8b886e82534d009de4c8826/ydb/public/tools/lib/cmds/__init__.py#L291
https://github.com/ydb-platform/ydb/blob/8dde59cd0af86737d07a1cd8ff19811a2bd2b663/ydb/tests/library/harness/kikimr_port_allocator.py#L170
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_index
https://github.com/ydb-platform/ydb/blob/8dde59cd0af86737d07a1cd8ff19811a2bd2b663/ydb/tests/library/harness/kikimr_port_allocator.py#L174
https://github.com/ydb-platform/ydb/blob/8dde59cd0af86737d07a1cd8ff19811a2bd2b663/ydb/tests/library/harness/kikimr_port_allocator.py#L179
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_interconnect
https://github.com/ydb-platform/ydb/blob/8dde59cd0af86737d07a1cd8ff19811a2bd2b663/ydb/tests/library/harness/kikimr_port_allocator.py#L183
https://github.com/ydb-platform/ydb/blob/be585b61d649a49fd32e91d9ceeee7e893068a60/ydb/public/tools/lib/cmds/__init__.py#L362
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_kafka-api_index
https://github.com/ydb-platform/ydb/blob/8fefc809c83829d8d8b886e82534d009de4c8826/ydb/public/tools/lib/cmds/__init__.py#L50
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topology
https://github.com/ydb-platform/ydb/blob/c113fcffa7b1a20ad8dcb1b1760ae5bfa25370ca/ydb/public/tools/lib/cmds/__init__.py#L261
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_index
https://github.com/ydb-platform/ydb/blob/c113fcffa7b1a20ad8dcb1b1760ae5bfa25370ca/ydb/public/tools/lib/cmds/__init__.py#L230
https://github.com/ydb-platform/ydb/blob/b1c590828b222c839dedecd8e6e79413ef5b7eec/ydb/tests/library/harness/kikimr_config.py#L73
https://github.com/ydb-platform/ydb/blob/b1c590828b222c839dedecd8e6e79413ef5b7eec/ydb/tests/library/harness/kikimr_config.py#L48
https://github.com/ydb-platform/ydb/blob/69a57074e4c259aea0bbb9a735c5ed821743629c/ydb/public/tools/lib/cmds/__init__.py#L395
https://github.com/ydb-platform/ydb/blob/69a57074e4c259aea0bbb9a735c5ed821743629c/ydb/core/protos/feature_flags.proto
https://github.com/ydb-platform/ydb/blob/69a57074e4c259aea0bbb9a735c5ed821743629c/ydb/tests/library/harness/kikimr_config.py#L86
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_column-oriented-tables


Docker stop
To stop YDB in Docker, run the following command:

If the --rm  flag was specified at startup, the container will be deleted after stopping.

Kill Docker container with YDB

To delete a Docker container with YDB, run the following command:

If you want to clean up the file system, delete your work directory using the rm -rf ~/ydbd  command. This will permanently remove all data
inside the local YDB cluster.

docker stop ydb-local

docker kill ydb-local

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_docker_cleanup
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_docker_cleanup_kill-docker-container-with-ydb


YDB CLI recipes
This section contains recipes for various tasks that can be solved with YDB CLI.

Table of contents:

Convert a table between row-oriented and column-oriented

Conducting load testing

Configuring Time to Live (TTL)

See also:

YDB CLI

YDB for Application Developers / Software Engineers

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-cli_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-cli_convert-table-type
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-cli_benchmarks
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-cli_ttl
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_index


For Analysts
This section provides examples and recommendations for handling analytical (OLAP) scenarios in YDB.

This section includes the following materials

Typical OLAP scenarios

Optimizing analytical queries

Dataset import

Related sections

Questions and answers about analytics in YDB

Column-Oriented Tables

Aggregate functions

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_index_this-section-includes-the-following-materials
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_index_related-sections
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_analytics
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_scenarios
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_optimizing
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_datasets_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#faq_analytics
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#yql_reference_builtins_aggregation


YDB SDK code recipes
This section contains code recipes in different programming languages for a variety of tasks that are common when working with the YDB SDK.

Table of contents:

Initializing the driver

Authentication

Using a token

Anonymous

Service account file

Metadata service

Using environment variables
Username and password based

Balancing

Random choice

Prefer the nearest data center

Prefer the availability zone

Running repeat queries

Setting the session pool size

Inserting data

Bulk upsert of data

Setting up the transaction execution mode

Configuring time to live (TTL)

Coordination

Distributed lock

Service discovery

Configuration publication

Leader election
Troubleshooting

Enable logging

Enable metrics in Prometheus

Enable tracing in Jaeger

See also:

YDB for Application Developers / Software Engineers

Example applications working with YDB

YDB SDK reference

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_init
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_auth
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_auth-access-token
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_auth-anonymous
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_auth-service-account
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_auth-metadata
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_auth-env
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_auth-static
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_balancing
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_balancing-random-choice
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_balancing-prefer-local
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_balancing-prefer-location
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_retry
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_session-pool-limit
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_upsert
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_bulk-upsert
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_tx-control
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_ttl
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_distributed-lock
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_service-discovery
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_config-publication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_leader-election
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_debug
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_debug-logs
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_debug-prometheus
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_debug-jaeger
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_example-app_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_index


Initialize the driver
To connect to YDB, you need to specify the required and additional parameters that define the driver's behavior (learn more in Connecting to the
YDB server).

Below are examples of the code for connecting to YDB (driver creation) in different YDB SDKs.

Go (native)

package main

import (
  "context"

  "github.com/ydb-platform/ydb-go-sdk/v3"
)

func main() {
  ctx, cancel := context.WithCancel(context.Background())
  defer cancel()

  db, err := ydb.Open(ctx, "grpc://localhost:2136/local")
  if err != nil {
      panic(err)
  }
  defer db.Close()

  // ...
}

Go (database/sql)

The database/sql  driver is registered when importing the package of a specific driver separated by an underscore:

Using a connector (recommended)

package main

import (
  "context"
  "database/sql"
  "os"

  "github.com/ydb-platform/ydb-go-sdk/v3"
)

func main() {
  ctx, cancel := context.WithCancel(context.Background())
  defer cancel()

  nativeDriver, err := ydb.Open(ctx,
    os.Getenv("YDB_CONNECTION_STRING"),
  )
  if err != nil {
    panic(err)
  }
  defer nativeDriver.Close(ctx)

  connector, err := ydb.Connector(nativeDriver)
  if err != nil {
    panic(err)
  }
  defer connector.Close()

  db := sql.OpenDB(connector)
  defer db.Close()

  // ...
}

Using a connection string

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_init
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_connect


package main

import (
  "database/sql"

  _ "github.com/ydb-platform/ydb-go-sdk/v3"
)

func main() {
  db, err := sql.Open("ydb", "grpc://localhost:2136/local")
  if err != nil {
    panic(err)
  }
  defer db.Close()

  // ...
}

Java

public void work() {
    GrpcTransport transport = GrpcTransport.forConnectionString("grpc://localhost:2136/local")
            .build());
    // Do work with the transport
    doWork(transport);
    transport.close();
}

JDBC Driver

public void work() {
    // JDBC Driver must be in the classpath for automatic detection
    Connection connection = DriverManager.getConnection("jdbc:ydb:grpc://localhost:2136/local");
    // Do work with the connection
    doWork(connection);
    connection.close();
}

C# (.NET)

using Ydb.Sdk;

var config = new DriverConfig(
    endpoint: "grpc://localhost:2136",
    database: "/local"
);

await using var driver = await Driver.CreateInitialized(config);

PHP

<?php

use YdbPlatform\Ydb\Ydb;

$config = [
    // Database path
    'database'    => '/ru-central1/b1glxxxxxxxxxxxxxxxx/etn0xxxxxxxxxxxxxxxx',

    // Database endpoint
    'endpoint'    => 'ydb.serverless.yandexcloud.net:2135',

    // Auto discovery (dedicated server only)
    'discovery'   => false,

    // IAM config
    'iam_config'  => [
        // 'root_cert_file' => './CA.pem', // Root CA file (uncomment for dedicated server)
    ],

    'credentials' => new 



\YdbPlatform\Ydb\Auth\Implement\AccessTokenAuthentication('AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA') // use from 
reference/ydb-sdk/auth
];

$ydb = new Ydb($config);

Rust

let client = ClientBuilder::new_from_connection_string("grpc://localhost:2136?database=local")?
      .with_credentials(AccessTokenCredentials::from("..."))
      .client()?



Retrying
YDB is a distributed database management system with automatic load scaling.
Routine maintenance can be carried out on the server side, with server racks or entire data centers temporarily shut down.
This may result in errors arising from YDB operation.
There are different response scenarios depending on the error type.
YDB
To ensure high database availability, SDKs provide built-in tools for retries,
accounting for error types and responses to them.

Below are code examples showing the YDB SDK built-in tools for retries:

Go (native)

In the YDB Go SDK, correct error handling is implemented by several programming interfaces:

The basic logic of error handling is implemented by the helper retry.Retry  function
The details of repeat query execution are mostly hidden.

The user can affect the logic of the retry.Retry  function in two ways:

Via the context (where you can set the deadline and cancel)

Via the operation's idempotency flag retry.WithIdempotent() . By default, the operation is considered non-idempotent.

The user passes a custom function to retry.Retry  that returns an error by its signature.
If the custom function returns nil , then repeat queries stop.
If the custom function returns an error, the YDB Go SDK tries to identify this error and executes retries depending on it.

Example of the code that uses the retry.Retry  function:

For repeat error handling at the level of a YDB table service session, you can use the db.Table().Do(ctx, op)  function, which provides a
prepared session for query execution.
db.Table().Do(ctx, op)  uses the retry  package and tracks the lifetime of the YDB sessions.

Based on its signature, the user's operation op  should return an error or nil  so that the driver can "decide" what to do based on the error

General-purpose repeat function

package main

import (
  "context"
  "time"

  "github.com/ydb-platform/ydb-go-sdk/v3"
  "github.com/ydb-platform/ydb-go-sdk/v3/retry"
)

func main() {
  db, err := ydb.Open(ctx,
    os.Getenv("YDB_CONNECTION_STRING"),
  )
  if err != nil {
    panic(err)
  }
  defer db.Close(ctx)
  var cancel context.CancelFunc
  // fix deadline for retries
  ctx, cancel := context.WithTimeout(ctx, time.Second)
  err = retry.Retry(
    ctx,
    func(ctx context.Context) error {
      whoAmI, err := db.Discovery().WhoAmI(ctx)
      if err != nil {
        return err
      }
      fmt.Println(whoAmI)
    },
    retry.WithIdempotent(true),
  )
  if err != nil {
    panic(err)
  }
}

Repeat attempts in case of failed YDB session objects

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_retry


type: repeat the operation or not, with delay or without, and in this session or a new one.
The user can affect the logic of repeat queries using the context and the idempotence flag, while the YDB Go SDK interprets errors returned by
op .

Example of the code that uses the db.Table().Do(ctx, op)  function:

For repeat error handling at the level of a YDB table service interactive transaction, you can use the db.Table().DoTx(ctx, txOp)  function,
which provides a YDB prepared session transaction for query execution.
db.Table().DoTx(ctx, txOp)  uses the retry  package and tracks the lifetime of the YDB sessions.

Based on its signature, the user's operation txOp  should return an error or nil  so that the driver can "decide" what to do based on the error
type: repeat the operation or not, with delay or without, and in this transaction or a new one.
The user can affect the logic of repeat queries using the context and the idempotence flag, while the YDB Go SDK interprets errors returned by
op .

Example of the code that uses the db.Table().DoTx(ctx, op)  function:

( db.Scripting() , db.Scheme() , db.Coordination() , db.Ratelimiter() , db.Discovery() ) also use the retry.Retry  function inside
to execute repeat queries and don't require external auxiliary functions for repeats.

err := db.Table().Do(ctx, func(ctx context.Context, s table.Session) (err error) {
  desc, err = s.DescribeTableOptions(ctx)
  return
}, table.WithIdempotent())
if err != nil {
  return err
}

Repeat attempts in case of failed YDB interactive transaction objects

err := db.Table().DoTx(ctx, func(ctx context.Context, tx table.TransactionActor) error {
  _, err := tx.Execute(ctx,
    "DECLARE $id AS Int64; INSERT INTO test (id, val) VALUES($id, 'asd')",
    table.NewQueryParameters(table.ValueParam("$id", types.Int64Value(100500))),
  )
  return err
}, table.WithIdempotent())
if err != nil {
  return err
}

Queries to other YDB services

Go (database/sql)

The standard database/sql  package uses the internal logic of repeats based on the errors a specific driver implementation returns.
For example, the database/sql  code frequently shows the three-attempt repeats policy:

Two attempts at a present connection or new one (if the database/sql  connection pool is empty).

One attempt at a new connection.

This repeat policy is mostly enough to survive temporary unavailability of YDB nodes or issues with a YDB session.

The YDB Go SDK provides special functions to ensure execution of a user's operation:

For repeat error handling at *sql.Conn  connection objects, you can use the auxiliary retry.Do(ctx, db, op)  function, which provides a
prepared *sql.Conn  session for query execution.
You need to pass the context, database object, and the user's operation for execution to the retry.Do  function.
The user's code can affect the logic of repeat queries using the context and the idempotence flag, while the YDB Go SDK, in turn, interprets
errors returned by op .

The user's op  operation must return an error or nil :

If the custom function returns nil , then repeat queries stop.

If the custom function returns an error, the YDB Go SDK tries to identify this error and performs retries depending on it.

Example of the code that uses the retry.Do  function:

Repeat attempts in case of failed *sql.Conn  connection objects:

import (
  "context"
  "database/sql"

https://github.com/golang/go/tree/master/src/database/sql


For repeat error handling at *sql.Tx  interactive transaction objects, you can use the auxiliary retry.DoTx(ctx, db, op)  function, which
provides a prepared *sql.Tx  transaction for query execution.
You need to pass the context, database object, and the user's operation for execution to the retry.DoTx  function.
The function is passed a prepared *sql.Tx  transaction, where queries to YDB should be executed.
The user's code can affect the logic of repeat queries using the context and the operation idempotence flag, while the YDB Go SDK, in turn,
interprets errors returned by op .

The user's op  operation must return an error or nil :

If the custom function returns nil , then repeat queries stop.

If the custom function returns an error, the YDB Go SDK tries to identify this error and performs retries depending on it.

By default, retry.DoTx  uses the read-write isolation mode of the sql.LevelDefault  transaction and you can change it using the
retry.WithTxOptions  parameter.

Example of the code that uses the retry.Do  function:

  "fmt"
  "log"

  "github.com/ydb-platform/ydb-go-sdk/v3/retry"
)

func main() {
  ...
  err = retry.Do(ctx, db, func(ctx context.Context, cc *sql.Conn) (err error) {
    row = cc.QueryRowContext(ctx, `
        PRAGMA TablePathPrefix("/local");
        DECLARE $seriesID AS Uint64;
        DECLARE $seasonID AS Uint64;
        DECLARE $episodeID AS Uint64;
        SELECT views FROM episodes WHERE series_id = $seriesID AND season_id = $seasonID AND episode_id = 
$episodeID;
      `,
      sql.Named("seriesID", uint64(1)),
      sql.Named("seasonID", uint64(1)),
      sql.Named("episodeID", uint64(1)),
    )
    var views sql.NullFloat64
    if err = row.Scan(&views); err != nil {
      return fmt.Errorf("cannot scan views: %w", err)
    }
    if views.Valid {
      return fmt.Errorf("unexpected valid views: %v", views.Float64)
    }
    log.Printf("views = %v", views)
    return row.Err()
  }, retry.WithDoRetryOptions(retry.WithIdempotent(true)))
  if err != nil {
    log.Printf("retry.Do failed: %v\n", err)
  }
}

Repeat attempts in case of failed *sql.Tx  interactive transaction objects:

import (
  "context"
  "database/sql"
  "fmt"
  "log"

  "github.com/ydb-platform/ydb-go-sdk/v3/retry"
)

func main() {
  ...
  err = retry.DoTx(ctx, db, func(ctx context.Context, tx *sql.Tx) error {
    row := tx.QueryRowContext(ctx,`
        PRAGMA TablePathPrefix("/local");
        DECLARE $seriesID AS Uint64;
        DECLARE $seasonID AS Uint64;
        DECLARE $episodeID AS Uint64;
        SELECT views FROM episodes WHERE series_id = $seriesID AND season_id = $seasonID AND episode_id = 
$episodeID;
      `,
      sql.Named("seriesID", uint64(1)),



      sql.Named("seasonID", uint64(1)),
      sql.Named("episodeID", uint64(1)),
    )
    var views sql.NullFloat64
    if err = row.Scan(&views); err != nil {
      return fmt.Errorf("cannot select current views: %w", err)
    }
    if !views.Valid {
      return fmt.Errorf("unexpected invalid views: %v", views)
    }
    t.Logf("views = %v", views)
    if views.Float64 != 1 {
      return fmt.Errorf("unexpected views value: %v", views)
    }
    return nil
  }, retry.WithDoTxRetryOptions(retry.WithIdempotent(true)), retry.WithTxOptions(&sql.TxOptions{
    Isolation: sql.LevelSnapshot,
    ReadOnly:  true,
  }))
  if err != nil {
    log.Printf("do tx failed: %v\n", err)
  }
}

Java

In the YDB Java SDK, repeat queries are implemented by the SessionRetryContext  helper class. This class is constructed with the
SessionRetryContext.create  method to which you pass the SessionSupplier  interface implementation (usually an instance of the
TableClient  class or the QueryClient  class).

Additionally, the user can specify some other options:

maxRetries(int maxRetries) : The maximum number of operation retries, not counting the first execution. Default value: 10

retryNotFound(boolean retryNotFound) : The option to retry operations that returned the NOT_FOUND  status. Enabled by default.

idempotent(boolean idempotent) : Indicates idempotence of operations. Idempotent operations will be retried for a broader range of errors.
Disabled by default.

The SessionRetryContext  class provides two methods to run operations with retries.

CompletableFuture<Status> supplyStatus : Executing the operation that returns the status. As an argument, it accepts the lambda
Function<Session, CompletableFuture<Status>> fn

CompletableFuture<Result<T>> supplyResult : Executing the operation that returns data. As an argument, it accepts the lambda
Function<Session, CompletableFuture<Result<T>>> fn

When using the SessionRetryContext  class, make sure that the operation will be retried in the following cases:

The lambda function returned a retryable error code

The lambda function invoked an UnexpectedResultException  with a retryable error code

Sample code using SessionRetryContext.supplyStatus:

private void createTable(TableClient tableClient, String database, String tableName) {
  SessionRetryContext retryCtx = SessionRetryContext.create(tableClient).build();
  TableDescription pets = TableDescription.newBuilder()
    .addNullableColumn("species", PrimitiveType.utf8())
    .addNullableColumn("name", PrimitiveType.utf8())
    .addNullableColumn("color", PrimitiveType.utf8())
    .addNullableColumn("price", PrimitiveType.float32())
    .setPrimaryKeys("species", "name")
    .build();

  String tablePath = database + "/" + tableName;
  retryCtx.supplyStatus(session -> session.createTable(tablePath, pets))
    .join().expect("ok");
}

Sample code using SessionRetryContext.supplyResult:

private void selectData(TableClient tableClient, String tableName) {
  SessionRetryContext retryCtx = SessionRetryContext.create(tableClient).build();
  String selectQuery
    = "DECLARE $species AS Utf8;"
    + "DECLARE $name AS Utf8;"

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_error_handling


    + "SELECT * FROM " + tableName + " "
    + "WHERE species = $species AND name = $name;";

  Params params = Params.of(
    "$species", PrimitiveValue.utf8("cat"),
    "$name", PrimitiveValue.utf8("Tom")
  );

  DataQueryResult data = retryCtx
    .supplyResult(session -> session.executeDataQuery(selectQuery, TxControl.onlineRo(), params))
    .join().expect("ok");

  ResultSetReader rsReader = data.getResultSet(0);
  logger.info("Result of select query:");
  while (rsReader.next()) {
    logger.info("  species: {}, name: {}, color: {}, price: {}",
      rsReader.getColumn("species").getUtf8(),
      rsReader.getColumn("name").getUtf8(),
      rsReader.getColumn("color").getUtf8(),
      rsReader.getColumn("price").getFloat32()
    );
  }
}



Setting the session pool size
YDB creates an actor for each session. Consequently, the session pool size of a client affects resource consumption (RAM, CPU) on the server
side of YDB.

For example, if 1000 clients of the same database have 1000 sessions each, then 1000000 actors are created on the server side, consuming a
significant amount of memory and CPU. If you do not limit the number of sessions on the client side, this may result in a slow cluster that is at risk of
failure.

By default, the YDB SDK sets a limit of 50 sessions when using native drivers. However, no session limit is enforced for third-party libraries, such as
Go database/sql .

It’s recommended to set the client session limit to the minimum required for the normal operation of the client application. Keep in mind that
sessions are single-threaded on both the server and client sides. For instance, if the application needs to handle 1000 simultaneous (in-flight)
requests to YDB based on its estimated load, the session limit should be set to 1000.

It is important to distinguish between estimated RPS (requests per second) and in-flight requests. RPS refers to the total number of requests
completed by YDB within one second. For example, if RPS = 10000 and the average latency is 100 ms, a session limit of 1000 is sufficient. This
configuration allows each session to perform an average of 10 consecutive requests within the estimated second.

Below are examples of the code for setting the session pool limit in different YDB SDKs.

Go (native)

package main

import (
  "context"

  "github.com/ydb-platform/ydb-go-sdk/v3"
)

func main() {
  db, err := ydb.Open(ctx,
    os.Getenv("YDB_CONNECTION_STRING"),
    ydb.WithSessionPoolSizeLimit(500),
  )
  if err != nil {
    panic(err)
  }
  defer db.Close(ctx)
  ...
}

Go (database/sql)

The database/sql  library has its own connection pool. Each database/sql connection corresponds to a specific YDB session. A database/sql
connection pool is managed by the sql.DB.SetMaxOpenConns  and sql.DB.SetMaxIdleConns  functions. Learn more in the database/sql
documentation.

Example of the code that uses the size of database/sql  connection pool:

package main

import (
  "context"
  "database/sql"

  _ "github.com/ydb-platform/ydb-go-sdk/v3"
)

func main() {
  db, err := sql.Open("ydb", os.Getenv("YDB_CONNECTION_STRING"))
  if err != nil {
    panic(err)
  }
  defer db.Close()
  db.SetMaxOpenConns(100)
  db.SetMaxIdleConns(100)
  db.SetConnMaxIdleTime(time.Second) // workaround for background keep-aliving of YDB sessions
  ...
}

Java

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_session-pool-limit
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_actor
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_actor
https://pkg.go.dev/database/sql#DB.SetMaxOpenConns


this.queryClient = QueryClient.newClient(transport)
        // 10 - minimum number of active sessions to keep in the pool during the cleanup
        // 500 - maximum number of sessions in the pool
        .sessionPoolMinSize(10)
        .sessionPoolMaxSize(500)
        .build();

JDBC Driver

Usually working with JDBC applications use the different connections pools, such as HikariCP or C3p0. By default the YDB JDBC driver detects
current count of opened connections and tunes the session pool size itself. So if the application has correct configured HikariCP  или C3p0 , it
may not configure the session pool.

Example of HikariCP configuration in String  application.properties:

  spring.datasource.url=jdbc:ydb:grpc://localhost:2136/local
  spring.datasource.driver-class-name=tech.ydb.jdbc.YdbDriver
  spring.datasource.hikari.maximum-pool-size=100 # maximum size of JDBC connections

https://github.com/brettwooldridge/HikariCP
https://github.com/swaldman/c3p0


Inserting data
Below are code examples showing the YDB SDK built-in tools for batch insert:

Go (native)

package main

import (
  "context"
  "os"

  "github.com/ydb-platform/ydb-go-sdk/v3"
  "github.com/ydb-platform/ydb-go-sdk/v3/table"
  "github.com/ydb-platform/ydb-go-sdk/v3/table/types"
)

func main() {
  ctx, cancel := context.WithCancel(context.Background())
  defer cancel()
  db, err := ydb.Open(ctx,
    os.Getenv("YDB_CONNECTION_STRING"),
    ydb.WithAccessTokenCredentials(os.Getenv("YDB_TOKEN")),
  )
  if err != nil {
    panic(err)
  }
  defer db.Close(ctx)
  // execute upsert with native ydb data
  err = db.Table().DoTx( // Do retry operation on errors with best effort
    ctx, // context manages exiting from Do
    func(ctx context.Context, tx table.TransactionActor) (err error) { // retry operation
      res, err := tx.Execute(ctx, `
          PRAGMA TablePathPrefix("/path/to/table");
          DECLARE $seriesID AS Uint64;
          DECLARE $seasonID AS Uint64;
          DECLARE $episodeID AS Uint64;
          DECLARE $views AS Uint64;
          UPSERT INTO episodes ( series_id, season_id, episode_id, views )
          VALUES ( $seriesID, $seasonID, $episodeID, $views );
        `,
        table.NewQueryParameters(
          table.ValueParam("$seriesID", types.Uint64Value(1)),
          table.ValueParam("$seasonID", types.Uint64Value(1)),
          table.ValueParam("$episodeID", types.Uint64Value(1)),
          table.ValueParam("$views", types.Uint64Value(1)), // increment views
        ),
      )
      if err != nil {
        return err
      }
      if err = res.Err(); err != nil {
        return err
      }
      return res.Close()
    }, table.WithIdempotent(),
  )
  if err != nil {
    fmt.Printf("unexpected error: %v", err)
  }
}

Go (database/sql)

package main

import (
  "context"
  "database/sql"
  "os"

  _ "github.com/ydb-platform/ydb-go-sdk/v3"
  "github.com/ydb-platform/ydb-go-sdk/v3/retry"
  "github.com/ydb-platform/ydb-go-sdk/v3/types"
)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_upsert


func main() {
  db, err := sql.Open("ydb", os.Getenv("YDB_CONNECTION_STRING"))
  if err != nil {
    panic(err)
  }
  defer db.Close(ctx)
  // execute upsert with native ydb data
  err = retry.DoTx(ctx, db, func(ctx context.Context, tx *sql.Tx) error {
    if _, err = tx.ExecContext(ctx,`
        PRAGMA TablePathPrefix("/local");
        REPLACE INTO series
        SELECT
          series_id,
          title,
          series_info,
          comment
        FROM AS_TABLE($seriesData);
      `,
      sql.Named("seriesData", types.ListValue(
        types.StructValue(
          types.StructFieldValue("series_id", types.Uint64Value(1)),
          types.StructFieldValue("title", types.TextValue("IT Crowd")),
          types.StructFieldValue("series_info", types.TextValue(
            "The IT Crowd is a British sitcom produced by Channel 4, written by Graham Linehan, produced by "+
            "Ash Atalla and starring Chris O'Dowd, Richard Ayoade, Katherine Parkinson, and Matt Berry.",
          )),
          types.StructFieldValue("comment", types.NullValue(types.TypeText)),
        ),
        types.StructValue(
          types.StructFieldValue("series_id", types.Uint64Value(2)),
          types.StructFieldValue("title", types.TextValue("Silicon Valley")),
          types.StructFieldValue("series_info", types.TextValue(
            "Silicon Valley is an American comedy television series created by Mike Judge, John Altschuler and "+
            "Dave Krinsky. The series focuses on five young men who founded a startup company in Silicon Valley.",
          )),
          types.StructFieldValue("comment", types.TextValue("lorem ipsum")),
        ),
      )),
    ); err != nil {
      return err
    }
    return nil
  }, retry.WithDoTxRetryOptions(retry.WithIdempotent(true)))
  if err != nil {
    fmt.Printf("unexpected error: %v", err)
  }
}



Bulk upsert of data
YDB supports bulk upsert of many records without atomicity guarantees. The upsert process is split into multiple independent parallel transactions,
each covering a single partition. For that reason, this approach is more effective than using YQL. If successful, the BulkUpsert  method
guarantees inserting all the data transmitted by the query.

Below are code examples showing the YDB SDK built-in tools for bulk upsert:

Go (native)

package main

import (
  "context"
  "os"

  "github.com/ydb-platform/ydb-go-sdk/v3"
  "github.com/ydb-platform/ydb-go-sdk/v3/table"
  "github.com/ydb-platform/ydb-go-sdk/v3/table/types"
)

func main() {
  ctx, cancel := context.WithCancel(context.Background())
  defer cancel()
  db, err := ydb.Open(ctx,
    os.Getenv("YDB_CONNECTION_STRING"),
    ydb.WithAccessTokenCredentials(os.Getenv("YDB_TOKEN")),
  )
  if err != nil {
    panic(err)
  }
  defer db.Close(ctx)
  type logMessage struct {
    App       string
    Host      string
    Timestamp time.Time
    HTTPCode  uint32
    Message   string
  }
  // prepare native go data
  const batchSize = 10000
  logs := make([]logMessage, 0, batchSize)
  for i := 0; i < batchSize; i++ {
    message := logMessage{
      App: fmt.Sprintf("App_%d", i/256),
      Host: fmt.Sprintf("192.168.0.%d", i%256),
      Timestamp: time.Now().Add(time.Millisecond * time.Duration(i%1000)),
      HTTPCode: 200,
    }
    if i%2 == 0 {
      message.Message = "GET / HTTP/1.1"
    } else {
      message.Message = "GET /images/logo.png HTTP/1.1"
    }
    logs = append(logs, message)
  }
  // execute bulk upsert with native ydb data
  err = db.Table().Do( // Do retry operation on errors with best effort
    ctx, // context manage exiting from Do
    func(ctx context.Context, s table.Session) (err error) { // retry operation
      rows := make([]types.Value, 0, len(logs))
      for _, msg := range logs {
        rows = append(rows, types.StructValue(
          types.StructFieldValue("App", types.UTF8Value(msg.App)),
          types.StructFieldValue("Host", types.UTF8Value(msg.Host)),
          types.StructFieldValue("Timestamp", types.TimestampValueFromTime(msg.Timestamp)),
          types.StructFieldValue("HTTPCode", types.Uint32Value(msg.HTTPCode)),
          types.StructFieldValue("Message", types.UTF8Value(msg.Message)),
        ))
      }
      return s.BulkUpsert(ctx, "/local/bulk_upsert_example", types.ListValue(rows...))
    },
  )
  if err != nil {
    fmt.Printf("unexpected error: %v", err)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_bulk-upsert


  }
}

Go (database/sql)

The implementation of YDB database/sql  doesn't support bulk nontransactional upsert of data.

For bulk upsert, use transactional upsert.

Java

  private static final String TABLE_NAME = "bulk_upsert";
  private static final int BATCH_SIZE = 1000;

  public static void main(String[] args) {
      String connectionString = args[0];

      try (GrpcTransport transport = GrpcTransport.forConnectionString(connectionString)
              .withAuthProvider(NopAuthProvider.INSTANCE) // use anonymous credentials
              .build()) {

          // For bulk upsert, the full table path needs to be specified
          String tablePath = transport.getDatabase() + "/" + TABLE_NAME;
          try (TableClient tableClient = TableClient.newClient(transport).build()) {
              SessionRetryContext retryCtx = SessionRetryContext.create(tableClient).build();
              execute(retryCtx, tablePath);
          }
      }
  }

  public static void execute(SessionRetryContext retryCtx, String tablePath) {
      // table description
      StructType structType = StructType.of(
          "app", PrimitiveType.Text,
          "timestamp", PrimitiveType.Timestamp,
          "host", PrimitiveType.Text,
          "http_code", PrimitiveType.Uint32,
          "message", PrimitiveType.Text
      );

      // generate batch of records
      List<Value<?>> list = new ArrayList<>(50);
      for (int i = 0; i < BATCH_SIZE; i += 1) {
          // add a new row as a struct value
          list.add(structType.newValue(
              "app", PrimitiveValue.newText("App_" + String.valueOf(i / 256)),
              "timestamp", PrimitiveValue.newTimestamp(Instant.now().plusSeconds(i)),
              "host", PrimitiveValue.newText("192.168.0." + i % 256),
              "http_code", PrimitiveValue.newUint32(i % 113 == 0 ? 404 : 200),
              "message", PrimitiveValue.newText(i % 3 == 0 ? "GET / HTTP/1.1" : "GET /images/logo.png HTTP/1.1")
          ));
      }

      // Create list of structs
      ListValue rows = ListType.of(structType).newValue(list);
      // Do retry operation on errors with best effort
      retryCtx.supplyStatus(
          session -> session.executeBulkUpsert(tablePath, rows, new BulkUpsertSettings())
      ).join().expectSuccess("bulk upsert problem");
  }

JDBC

  private static final int BATCH_SIZE = 1000;

  public static void main(String[] args) {
      String connectionUrl = args[0];

      try (Connection conn = DriverManager.getConnection(connectionUrl)) {
          try (PreparedStatement ps = conn.prepareStatement(
                  "BULK UPSERT INTO bulk_upsert (app, timestamp, host, http_code, message) VALUES (?, ?, ?, ?, ?);"
          )) {
              for (int i = 0; i < BATCH_SIZE; i += 1) {
                  ps.setString(1, "App_" + String.valueOf(i / 256));
                  ps.setTimestamp(2, Timestamp.from(Instant.now().plusSeconds(i)));
                  ps.setString(3, "192.168.0." + i % 256);
                  ps.setLong(4,i % 113 == 0 ? 404 : 200);

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_upsert


                  ps.setString(5, i % 3 == 0 ? "GET / HTTP/1.1" : "GET /images/logo.png HTTP/1.1");
                  ps.addBatch();
              }

              ps.executeBatch();
          }
      } catch (SQLException e) {
          e.printStackTrace();
      }
  }



Setting up the transaction execution mode
To run your queries, first you need to specify the transaction execution mode in the YDB SDK.

Below are code examples showing the YDB SDK built-in tools to create an object for the transaction execution mode.

Serializable

Go (native)

package main

import (
  "context"
  "os"

  "github.com/ydb-platform/ydb-go-sdk/v3"
  "github.com/ydb-platform/ydb-go-sdk/v3/table"
)

func main() {
  ctx, cancel := context.WithCancel(context.Background())
  defer cancel()
  db, err := ydb.Open(ctx,
    os.Getenv("YDB_CONNECTION_STRING"),
    ydb.WithAccessTokenCredentials(os.Getenv("YDB_TOKEN")),
  )
  if err != nil {
    panic(err)
  }
  defer db.Close(ctx)
  txControl := table.TxControl(
    table.BeginTx(table.WithSerializableReadWrite()),
    table.CommitTx(),
  )
  err := driver.Table().Do(scope.Ctx, func(ctx context.Context, s table.Session) error {
    _, _, err := s.Execute(ctx, txControl, "SELECT 1", nil)
    return err
  })
  if err != nil {
    fmt.Printf("unexpected error: %v", err)
  }
}

PHP

<?php

use YdbPlatform\Ydb\Ydb;

$config = [
    // Database path
    'database'    => '/ru-central1/b1glxxxxxxxxxxxxxxxx/etn0xxxxxxxxxxxxxxxx',

    // Database endpoint
    'endpoint'    => 'ydb.serverless.yandexcloud.net:2135',

    // Auto discovery (dedicated server only)
    'discovery'   => false,

    // IAM config
    'iam_config'  => [
        // 'root_cert_file' => './CA.pem',  Root CA file (uncomment for dedicated server only)
    ],

    'credentials' => new AccessTokenAuthentication('AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA') // use from reference/ydb-
sdk/auth
];

$ydb = new Ydb($config);
$ydb->table()->retryTransaction(function(Session $session){
  $session->query('SELECT 1;');
})

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_tx-control
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_tx-control_serializable
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_transactions_modes


Online Read-Only

Stale Read-Only

Go (native)

package main

import (
  "context"
  "os"

  "github.com/ydb-platform/ydb-go-sdk/v3"
  "github.com/ydb-platform/ydb-go-sdk/v3/table"
)

func main() {
  ctx, cancel := context.WithCancel(context.Background())
  defer cancel()
  db, err := ydb.Open(ctx,
    os.Getenv("YDB_CONNECTION_STRING"),
    ydb.WithAccessTokenCredentials(os.Getenv("YDB_TOKEN")),
  )
  if err != nil {
    panic(err)
  }
  defer db.Close(ctx)
  txControl := table.TxControl(
    table.BeginTx(table.WithOnlineReadOnly(table.WithInconsistentReads())),
    table.CommitTx(),
  )
  err := driver.Table().Do(scope.Ctx, func(ctx context.Context, s table.Session) error {
    _, _, err := s.Execute(ctx, txControl, "SELECT 1", nil)
    return err
  })
  if err != nil {
    fmt.Printf("unexpected error: %v", err)
  }
}

Go (native)

package main

import (
  "context"
  "os"

  "github.com/ydb-platform/ydb-go-sdk/v3"
  "github.com/ydb-platform/ydb-go-sdk/v3/table"
)

func main() {
  ctx, cancel := context.WithCancel(context.Background())
  defer cancel()
  db, err := ydb.Open(ctx,
    os.Getenv("YDB_CONNECTION_STRING"),
    ydb.WithAccessTokenCredentials(os.Getenv("YDB_TOKEN")),
  )
  if err != nil {
    panic(err)
  }
  defer db.Close(ctx)
  txControl := table.TxControl(
    table.BeginTx(table.WithStaleReadOnly()),
    table.CommitTx(),
  )
  err := driver.Table().Do(scope.Ctx, func(ctx context.Context, s table.Session) error {
    _, _, err := s.Execute(ctx, txControl, "SELECT 1", nil)
    return err
  })
  if err != nil {
    fmt.Printf("unexpected error: %v", err)
  }
}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_tx-control_online-read-only
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_tx-control_stale-read-only


Snapshot Read-Only

Go (native)

package main

import (
  "context"
  "os"

  "github.com/ydb-platform/ydb-go-sdk/v3"
  "github.com/ydb-platform/ydb-go-sdk/v3/table"
)

func main() {
  ctx, cancel := context.WithCancel(context.Background())
  defer cancel()
  db, err := ydb.Open(ctx,
    os.Getenv("YDB_CONNECTION_STRING"),
    ydb.WithAccessTokenCredentials(os.Getenv("YDB_TOKEN")),
  )
  if err != nil {
    panic(err)
  }
  defer db.Close(ctx)
  txControl := table.TxControl(
    table.BeginTx(table.WithSnapshotReadOnly()),
    table.CommitTx(),
  )
  err := driver.Table().Do(scope.Ctx, func(ctx context.Context, s table.Session) error {
    _, _, err := s.Execute(ctx, txControl, "SELECT 1", nil)
    return err
  })
  if err != nil {
    fmt.Printf("unexpected error: %v", err)
  }
}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_tx-control_snapshot-read-only


Configuring Time to Live (TTL)
This section contains recipes for configuration of table's TTL with YDB SDK.

Enabling TTL for an existing table

In the example below, the items of the mytable  table will be deleted an hour after the time set in the created_at  column:

The example below shows how to use the modified_at  column with a numeric type ( Uint32 ) as a TTL column. The column value is interpreted
as the number of seconds since the Unix epoch:

Enabling data eviction to S3-compatible external storage

Warning

Supported only for column-oriented tables. Support for row-oriented tables is currently under development.

To enable data eviction, an external data source object that describes a connection to the external storage is needed. Refer to YQL recipe for
examples of creating an external data source.

In the following example, rows of the table mytable  will be moved to the bucket described in the external data source /Root/s3_cold_data  one
hour after the time recorded in the column created_at  and will be deleted after 24 hours:

C++

session.AlterTable(
  "mytable",
  TAlterTableSettings()
    .BeginAlterTtlSettings()
      .Set("created_at", TDuration::Hours(1))
    .EndAlterTtlSettings()
);

Go

err := session.AlterTable(ctx, "mytable",
  options.WithSetTimeToLiveSettings(
    options.NewTTLSettings().ColumnDateType("created_at").ExpireAfter(time.Hour),
  ),
)

Python

session.alter_table('mytable', set_ttl_settings=ydb.TtlSettings().with_date_type_column('created_at', 3600))

C++

session.AlterTable(
  "mytable",
  TAlterTableSettings()
    .BeginAlterTtlSettings()
      .Set("modified_at", TTtlSettings::EUnit::Seconds, TDuration::Hours(1))
    .EndAlterTtlSettings()
);

Go

err := session.AlterTable(ctx, "mytable",
  options.WithSetTimeToLiveSettings(
    options.NewTTLSettings().ColumnSeconds("modified_at").ExpireAfter(time.Hour),
  ),
)

Python

session.alter_table('mytable', set_ttl_settings=ydb.TtlSettings().with_value_since_unix_epoch('modified_at', 
UNIT_SECONDS, 3600))

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_ttl
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_ttl_enable-on-existent-table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_ttl_enable-tiering-on-existing-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_concepts_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_external_data_source
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_recipes_ttl_enable-tiering-on-existing-tables


Enabling TTL for a newly created table

For a newly created table, you can pass TTL settings along with the table description:

Disabling TTL

C++

session.AlterTable(
    "mytable",
    TAlterTableSettings()
        .BeginAlterTtlSettings()
            .Set("created_at", {
                    TTtlTierSettings(TDuration::Hours(1), TTtlEvictToExternalStorageAction("/Root/s3_cold_data")),
                    TTtlTierSettings(TDuration::Hours(24), TTtlDeleteAction("/Root/s3_cold_data"))
                })
        .EndAlterTtlSettings()
);

C++

session.CreateTable(
  "mytable",
  TTableBuilder()
    .AddNullableColumn("id", EPrimitiveType::Uint64)
    .AddNullableColumn("expire_at", EPrimitiveType::Timestamp)
    .SetPrimaryKeyColumn("id")
    .SetTtlSettings("expire_at")
    .Build()
);

Go

err := session.CreateTable(ctx, "mytable",
  options.WithColumn("id", types.Optional(types.TypeUint64)),
  options.WithColumn("expire_at", types.Optional(types.TypeTimestamp)),
  options.WithTimeToLiveSettings(
    options.NewTTLSettings().ColumnDateType("expire_at"),
  ),
)

Python

session.create_table(
  'mytable',
  ydb.TableDescription()
    .with_column(ydb.Column('id', ydb.OptionalType(ydb.DataType.Uint64)))
    .with_column(ydb.Column('expire_at', ydb.OptionalType(ydb.DataType.Timestamp)))
    .with_primary_key('id')
    .with_ttl(ydb.TtlSettings().with_date_type_column('expire_at'))
)

C++

session.AlterTable(
  "mytable",
  TAlterTableSettings()
    .BeginAlterTtlSettings()
      .Drop()
    .EndAlterTtlSettings()
);

Go

err := session.AlterTable(ctx, "mytable",
  options.WithDropTimeToLive(),
)

Python

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_ttl_enable-for-new-table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_ttl_disable


Getting TTL settings

The current TTL settings can be obtained from the table description:

session.alter_table('mytable', drop_ttl_settings=True)

C++

auto desc = session.DescribeTable("mytable").GetValueSync().GetTableDescription();
auto ttl = desc.GetTtlSettings();

Go

desc, err := session.DescribeTable(ctx, "mytable")
if err != nil {
  // process error
}
ttl := desc.TimeToLiveSettings

Python

desc = session.describe_table('mytable')
ttl = desc.ttl_settings

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_ttl_describe


Authentication
YDB supports multiple authentication methods when connecting to the server side. Each of them is usually specific to a particular pair of
environments, that is, depends on where you run your client application (in the trusted YDB zone or outside it) and the YDB server part (in a Docker
container, Yandex.Cloud, data cloud, or an independent cluster).

This section contains code recipes with authentication settings in different YDB SDKs. For a general description of the SDK authentication
principles, see the Authentication in an SDK.

Table of contents:

Using a token

Anonymous

Service account file

Metadata service

Using environment variables

Username and password based

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_auth
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_auth
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_auth-access-token
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_auth-anonymous
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_auth-service-account
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_auth-metadata
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_auth-env
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_auth-static


Authentication using a token
Below are examples of the code for authentication using a token in different YDB SDKs.

Go (native)

  package main

  import (
    "context"
    "os"

    "github.com/ydb-platform/ydb-go-sdk/v3"
  )

func main() {
  ctx, cancel := context.WithCancel(context.Background())
  defer cancel()
  db, err := ydb.Open(ctx,
    os.Getenv("YDB_CONNECTION_STRING"),
    ydb.WithAccessTokenCredentials(os.Getenv("YDB_TOKEN")),
  )
  if err != nil {
    panic(err)
  }
  defer db.Close(ctx)
  ...
}

Go (database/sql)

If you use a connector to create a connection to YDB

package main

import (
  "context"
  "database/sql"
  "os"

  "github.com/ydb-platform/ydb-go-sdk/v3"
)

func main() {
  ctx, cancel := context.WithCancel(context.Background())
  defer cancel()
  nativeDriver, err := ydb.Open(ctx,
    os.Getenv("YDB_CONNECTION_STRING"),
    ydb.WithAccessTokenCredentials(os.Getenv("YDB_TOKEN")),
  )
  if err != nil {
    panic(err)
  }
  defer nativeDriver.Close(ctx)
  connector, err := ydb.Connector(nativeDriver)
  if err != nil {
    panic(err)
  }
  db := sql.OpenDB(connector)
  defer db.Close()
  ...
}

If you use a connection string

package main

import (
  "context"
  "database/sql"
  "os"

  _ "github.com/ydb-platform/ydb-go-sdk/v3"

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_auth-access-token


)

func main() {
  db, err := sql.Open("ydb", "grpcs://localohost:2135/local?token="+os.Getenv("YDB_TOKEN"))
  if err != nil {
    panic(err)
  }
  defer db.Close()
  ...
}

Java

public void work(String accessToken) {
    AuthProvider authProvider = new TokenAuthProvider(accessToken);

    GrpcTransport transport = GrpcTransport.forConnectionString("grpcs://localohost:2135/local")
            .withAuthProvider(authProvider)
            .build());

    QueryClient queryClient = QueryClient.newClient(transport).build();

    doWork(queryClient);

    queryClient.close();
    transport.close();
}

JDBC

public void work() {
    // Connect with the specified token value
    Properties props1 = new Properties();
    props1.setProperty("token", "AQAD-XXXXXXXXXXXXXXXXXXXX");
    try (Connection connection = DriverManager.getConnection("jdbc:ydb:grpc://localhost:2136/local", props1)) {
      doWork(connection);
    }

    // Connect with the token value read from the specified file path
    Properties props2 = new Properties();
    props2.setProperty("tokenFile", "~/.ydb_token");
    try (Connection connection = DriverManager.getConnection("jdbc:ydb:grpc://localhost:2136/local", props2)) {
      doWork(connection);
    }
}

Node.js

import { Driver, TokenAuthService } from 'ydb-sdk';

export async function connect(endpoint: string, database: string, accessToken: string) {
    const authService = new TokenAuthService(accessToken);
    const driver = new Driver({endpoint, database, authService});
    const timeout = 10000;
    if (!await driver.ready(timeout)) {
        console.log(`Driver has not become ready in ${timeout}ms!`);
        process.exit(1);
    }
    console.log('Driver connected')
    return driver
}

Python

import os
import ydb

with ydb.Driver(
    connection_string=os.environ["YDB_CONNECTION_STRING"],
    credentials=ydb.credentials.AccessTokenCredentials(os.environ["YDB_TOKEN"]),
) as driver:



    driver.wait(timeout=5)
    ...

Python (asyncio)

import os
import ydb
import asyncio

async def ydb_init():
    async with ydb.aio.Driver(
        endpoint=os.environ["YDB_ENDPOINT"],
        database=os.environ["YDB_DATABASE"],
        credentials=ydb.credentials.AccessTokenCredentials(os.environ["YDB_TOKEN"]),
    ) as driver:
        await driver.wait()
        ...

asyncio.run(ydb_init())

C# (.NET)

using Ydb.Sdk;
using Ydb.Sdk.Auth;

const string endpoint = "grpc://localhost:2136";
const string database = "/local";
const string token = "MY_VERY_SECURE_TOKEN";

var config = new DriverConfig(
    endpoint: endpoint,
    database: database,
    credentials: new TokenProvider(token)
);

await using var driver = await Driver.CreateInitialized(config);

PHP

<?php

use YdbPlatform\Ydb\Ydb;
use YdbPlatform\Ydb\Auth\Implement\AccessTokenAuthentication;

$config = [

    // Database path
    'database'    => '/local',

    // Database endpoint
    'endpoint'    => 'localhost:2136',

    // Auto discovery (dedicated server only)
    'discovery'   => false,

    // IAM config
    'iam_config'  => [
        'insecure' => true,
        // 'root_cert_file' => './CA.pem', // Root CA file (uncomment for dedicated server)
    ],

    'credentials' => new AccessTokenAuthentication('AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA')
];

$ydb = new Ydb($config);



Anonymous authentication
Below are examples of the code for anonymous authentication in different YDB SDKs.

Go (native)

By default, anonymous authentication is used.
You can explicitly enable anonymous authentication as follows:

package main

import (
  "context"

  "github.com/ydb-platform/ydb-go-sdk/v3"
)

func main() {
  ctx, cancel := context.WithCancel(context.Background())
  defer cancel()
  db, err := ydb.Open(ctx,
    os.Getenv("YDB_CONNECTION_STRING"),
    ydb.WithAnonymousCredentials(),
  )
  if err != nil {
    panic(err)
  }
  defer db.Close(ctx)
  ...
}

Go (database/sql)

By default, anonymous authentication is used.
You can explicitly enable anonymous authentication as follows:

package main

import (
  "context"
  "database/sql"
  "os"

  "github.com/ydb-platform/ydb-go-sdk/v3"
)

func main() {
  ctx, cancel := context.WithCancel(context.Background())
  defer cancel()
  nativeDriver, err := ydb.Open(ctx,
    os.Getenv("YDB_CONNECTION_STRING"),
    ydb.WithAnonymousCredentials(),
  )
  if err != nil {
    panic(err)
  }
  defer nativeDriver.Close(ctx)
  connector, err := ydb.Connector(nativeDriver)
  if err != nil {
    panic(err)
  }
  db := sql.OpenDB(connector)
  defer db.Close()
  ...
}

Java

public void work(String connectionString) {
    AuthProvider authProvider = NopAuthProvider.INSTANCE;

    GrpcTransport transport = GrpcTransport.forConnectionString(connectionString)
            .withAuthProvider(authProvider)
            .build());

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_auth-anonymous


    QueryClient queryClient = QueryClient.newClient(transport).build();

    doWork(queryClient);

    queryClient.close();
    transport.close();
}

JDBC

public void work() {
    // Without additional properties, the driver uses anonymous authentication
    try (Connection connection = DriverManager.getConnection("jdbc:ydb:grpc://localhost:2136/local")) {
      doWork(connection);
    }
}

Node.js

import { Driver, AnonymousAuthService } from 'ydb-sdk';

export async function connect(endpoint: string, database: string) {
    const authService = new AnonymousAuthService();
    const driver = new Driver({endpoint, database, authService});
    const timeout = 10000;
    if (!await driver.ready(timeout)) {
        console.log(`Driver has not become ready in ${timeout}ms!`);
        process.exit(1);
    }
    console.log('Driver connected')
    return driver
}

Python

import os
import ydb

with ydb.Driver(
    connection_string=os.environ["YDB_CONNECTION_STRING"],
    credentials=ydb.credentials.AnonymousCredentials(),
) as driver:
    driver.wait(timeout=5)
    ...

Python (asyncio)

import os
import ydb
import asyncio

async def ydb_init():
    async with ydb.aio.Driver(
        endpoint=os.environ["YDB_ENDPOINT"],
        database=os.environ["YDB_DATABASE"],
        credentials=ydb.credentials.AnonymousCredentials(),
    ) as driver:
        await driver.wait()
        ...

asyncio.run(ydb_init())

C# (.NET)

using Ydb.Sdk;
using Ydb.Sdk.Auth;

const string endpoint = "grpc://localhost:2136";
const string database = "/local";

var config = new DriverConfig(
    endpoint: endpoint,
    database: database,



    credentials: new AnonymousProvider()
);

await using var driver = await Driver.CreateInitialized(config);

PHP

<?php

use YdbPlatform\Ydb\Ydb;
use YdbPlatform\Ydb\Auth\Implement\AnonymousAuthentication;

$config = [

    // Database path
    'database'    => '/local',

    // Database endpoint
    'endpoint'    => 'localhost:2136',

    // Auto discovery (dedicated server only)
    'discovery'   => false,

    // IAM config
    'iam_config'  => [
        'insecure' => true,
        // 'root_cert_file' => './CA.pem', // Root CA file (uncomment for dedicated server)
    ],

    'credentials' => new AnonymousAuthentication()
];

$ydb = new Ydb($config);



Authentication using a service account file
Below are examples of the code for authentication using a service account file in different YDB SDKs.

Go (native)

package main

import (
  "context"
  "os"

  "github.com/ydb-platform/ydb-go-sdk/v3"
  yc "github.com/ydb-platform/ydb-go-yc"
)

func main() {
  ctx, cancel := context.WithCancel(context.Background())
  defer cancel()
  db, err := ydb.Open(ctx,
    os.Getenv("YDB_CONNECTION_STRING"),
    yc.WithServiceAccountKeyFileCredentials(
      os.Getenv("YDB_SERVICE_ACCOUNT_KEY_FILE_CREDENTIALS"),
    ),
    yc.WithInternalCA(), // append Yandex Cloud certificates
  )
  if err != nil {
    panic(err)
  }
  defer db.Close(ctx)
  ...
}

Go (database/sql)

package main

import (
  "context"
  "database/sql"
  "os"

  "github.com/ydb-platform/ydb-go-sdk/v3"
  yc "github.com/ydb-platform/ydb-go-yc"
)

func main() {
  ctx, cancel := context.WithCancel(context.Background())
  defer cancel()
  nativeDriver, err := ydb.Open(ctx,
    os.Getenv("YDB_CONNECTION_STRING"),
    yc.WithServiceAccountKeyFileCredentials(
      os.Getenv("YDB_SERVICE_ACCOUNT_KEY_FILE_CREDENTIALS"),
    ),
    yc.WithInternalCA(), // append Yandex Cloud certificates
  )
  if err != nil {
    panic(err)
  }
  defer nativeDriver.Close(ctx)
  connector, err := ydb.Connector(nativeDriver)
  if err != nil {
    panic(err)
  }
  db := sql.OpenDB(connector)
  defer db.Close()
  ...
}

Java

public void work(String connectionString, String saKeyPath) {
    AuthProvider authProvider = CloudAuthHelper.getServiceAccountFileAuthProvider(saKeyPath);

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_auth-service-account


    GrpcTransport transport = GrpcTransport.forConnectionString(connectionString)
            .withAuthProvider(authProvider)
            .build());

    QueryClient queryClient = QueryClient.newClient(transport).build();

    doWork(queryClient);

    queryClient.close();
    transport.close();
}

JDBC

public void work() {
    Properties props = new Properties();
    props.setProperty("saKeyFile", "~/keys/sa_key.json");
    try (Connection connection = DriverManager.getConnection("jdbc:ydb:grpc://localhost:2136/local", props)) {
      doWork(connection);
    }

    // Option saKeyFile can be added to a JDBC URL directly
    try (Connection connection = DriverManager.getConnection("jdbc:ydb:grpc://localhost:2136/local?
saKeyFile=~/keys/sa_key.json")) {
      doWork(connection);
    }
}

Node.js

Loading service account data from a file:

Loading service account data from a third-party source (for example, a secret storage):

import { Driver, getSACredentialsFromJson, IamAuthService } from 'ydb-sdk';

export async function connect(endpoint: string, database: string, serviceAccountFilename: string) {
    const saCredentials = getSACredentialsFromJson(serviceAccountFilename);
    const authService = new IamAuthService(saCredentials);
    const driver = new Driver({endpoint, database, authService});
    const timeout = 10000;
    if (!await driver.ready(timeout)) {
        console.log(`Driver has not become ready in ${timeout}ms!`);
        process.exit(1);
    }
    console.log('Driver connected')
    return driver
}

import { Driver, IamAuthService } from 'ydb-sdk';
import { IIamCredentials } from 'ydb-sdk/build/cjs/src/credentials';

export async function connect(endpoint: string, database: string) {
    const saCredentials: IIamCredentials = {
        serviceAccountId: 'serviceAccountId',
        accessKeyId: 'accessKeyId',
        privateKey: Buffer.from('-----BEGIN PRIVATE KEY-----\nyJ1yFwJq...'),
        iamEndpoint: 'iam.api.cloud.yandex.net:443',
    };
    const authService = new IamAuthService(saCredentials);
    const driver = new Driver({endpoint, database, authService});
    const timeout = 10000;
    if (!await driver.ready(timeout)) {
        console.log(`Driver has not become ready in ${timeout}ms!`);
        process.exit(1);
    }
    console.log('Driver connected')
    return driver
}

Python

import os
import ydb
import ydb.iam



with ydb.Driver(
    connection_string=os.environ["YDB_CONNECTION_STRING"],
    # service account key should be in the local file,
    # and SA_KEY_FILE environment variable should point to it
    credentials=ydb.iam.ServiceAccountCredentials.from_file(os.environ["SA_KEY_FILE"]),
) as driver:
    driver.wait(timeout=5)
    ...

Python (asyncio)

import os
import asyncio
import ydb
import ydb.iam

async def ydb_init():
    async with ydb.aio.Driver(
        endpoint=os.environ["YDB_ENDPOINT"],
        database=os.environ["YDB_DATABASE"],
        # service account key should be in the local file,
        # and SA_KEY_FILE environment variable should point to it
        credentials=ydb.iam.ServiceAccountCredentials.from_file(os.environ["SA_KEY_FILE"]),
    ) as driver:
        await driver.wait()
        ...

asyncio.run(ydb_init())

C# (.NET)

using Ydb.Sdk;
using Ydb.Sdk.Yc;

const string endpoint = "grpc://localhost:2136";
const string database = "/local";

var saProvider = new ServiceAccountProvider(
    saFilePath: "path/to/sa_file.json" // Path to file with service account JSON info);
);
await saProvider.Initialize();

var config = new DriverConfig(
    endpoint: endpoint,
    database: database,
    credentials: saProvider
);

await using var driver = await Driver.CreateInitialized(config);

PHP

or

<?php

use YdbPlatform\Ydb\Ydb;
use YdbPlatform\Ydb\Auth\JwtWithJsonAuthentication;

$config = [
    'database'    => '/ru-central1/b1glxxxxxxxxxxxxxxxx/etn0xxxxxxxxxxxxxxxx',
    'endpoint'    => 'ydb.serverless.yandexcloud.net:2135',
    'discovery'   => false,
    'iam_config'  => [
        'temp_dir'       => './tmp', // Temp directory
        // 'root_cert_file' => './CA.pem', // Root CA file (uncomment for dedicated server)ы
    ],

    'credentials' => new JwtWithJsonAuthentication('./jwtjson.json')
];

$ydb = new Ydb($config);



<?php

use YdbPlatform\Ydb\Ydb;
use YdbPlatform\Ydb\Auth\JwtWithPrivateKeyAuthentication;

$config = [
    'database'    => '/ru-central1/b1glxxxxxxxxxxxxxxxx/etn0xxxxxxxxxxxxxxxx',
    'endpoint'    => 'ydb.serverless.yandexcloud.net:2135',
    'discovery'   => false,
    'iam_config'  => [
        'temp_dir'           => './tmp', // Temp directory
        // 'root_cert_file' => './CA.pem', // Root CA file (uncomment for dedicated server)

    ],

    'credentials' => new JwtWithPrivateKeyAuthentication(
        "ajexxxxxxxxx","ajeyyyyyyyyy",'./private.key')

];

$ydb = new Ydb($config);



Authentication using the metadata service
Below are examples of the code for authentication using environment variables in different YDB SDKs.

Go (native)

package main

import (
  "context"
  "os"

  "github.com/ydb-platform/ydb-go-sdk/v3"
  yc "github.com/ydb-platform/ydb-go-yc-metadata"
)

func main() {
  ctx, cancel := context.WithCancel(context.Background())
  defer cancel()
  db, err := ydb.Open(ctx,
    os.Getenv("YDB_CONNECTION_STRING"),
    yc.WithCredentials(),
    yc.WithInternalCA(), // append Yandex Cloud certificates
  )
  if err != nil {
    panic(err)
  }
  defer db.Close(ctx)
  ...
}

Go (database/sql)

package main

import (
  "context"
  "database/sql"
  "os"

  "github.com/ydb-platform/ydb-go-sdk/v3"
  yc "github.com/ydb-platform/ydb-go-yc-metadata"
)

func main() {
  ctx, cancel := context.WithCancel(context.Background())
  defer cancel()
  nativeDriver, err := ydb.Open(ctx,
    os.Getenv("YDB_CONNECTION_STRING"),
    yc.WithCredentials(),
    yc.WithInternalCA(), // append Yandex Cloud certificates
  )
  if err != nil {
    panic(err)
  }
  defer nativeDriver.Close(ctx)
  connector, err := ydb.Connector(nativeDriver)
  if err != nil {
    panic(err)
  }
  db := sql.OpenDB(connector)
  defer db.Close()
  ...
}

Java

public void work(String connectionString) {
    AuthProvider authProvider = CloudAuthHelper.getMetadataAuthProvider();

    GrpcTransport transport = GrpcTransport.forConnectionString(connectionString)
            .withAuthProvider(authProvider)
            .build());

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_auth-metadata


    QueryClient queryClient = QueryClient.newClient(transport).build();

    doWork(queryClient);

    queryClient.close();
    transport.close();
}

JDBC

public void work() {
    Properties props = new Properties();
    props.setProperty("useMetadata", "true");
    try (Connection connection = DriverManager.getConnection("jdbc:ydb:grpc://localhost:2136/local", props)) {
      doWork(connection);
    }

    // Option useMetadata can be added to a JDBC URL directly
    try (Connection connection = DriverManager.getConnection("jdbc:ydb:grpc://localhost:2136/local?useMetadata=true")) {
      doWork(connection);
    }
}

Node.js

import { Driver, MetadataAuthService } from 'ydb-sdk';

export async function connect(endpoint: string, database: string) {
    const authService = new MetadataAuthService();
    const driver = new Driver({endpoint, database, authService});
    const timeout = 10000;
    if (!await driver.ready(timeout)) {
        console.log(`Driver has not become ready in ${timeout}ms!`);
        process.exit(1);
    }
    console.log('Driver connected')
    return driver
}

Python

import os
import ydb
import ydb.iam

with ydb.Driver(
    connection_string=os.environ["YDB_CONNECTION_STRING"],
    credentials=ydb.iam.MetadataUrlCredentials(),
) as driver:
    driver.wait(timeout=5)
    ...

Python (asyncio)

import os
import ydb
import ydb.iam
import asyncio

async def ydb_init():
    async with ydb.aio.Driver(
        endpoint=os.environ["YDB_ENDPOINT"],
        database=os.environ["YDB_DATABASE"],
        credentials=ydb.iam.MetadataUrlCredentials(),
    ) as driver:
        await driver.wait()
        ...

asyncio.run(ydb_init())

C# (.NET)



using Ydb.Sdk;
using Ydb.Sdk.Yc;

var metadataProvider = new MetadataProvider();

// Await initial IAM token.
await metadataProvider.Initialize();

var config = new DriverConfig(
    endpoint: endpoint, // Database endpoint, "grpcs://host:port"
    database: database, // Full database path
    credentials: metadataProvider
);

await using var driver = await Driver.CreateInitialized(config);

PHP

<?php

use YdbPlatform\Ydb\Ydb;
use YdbPlatform\Ydb\Auth\Implement\MetadataAuthentication;

$config = [

    // Database path
    'database'    => '/local',

    // Database endpoint
    'endpoint'    => 'localhost:2136',

    // Auto discovery (dedicated server only)
    'discovery'   => false,

    // IAM config
    'iam_config'  => [
        'insecure' => true,
        // 'root_cert_file' => './CA.pem', // Root CA file (uncomment for dedicated server)
    ],

    'credentials' => new MetadataAuthentication()
];

$ydb = new Ydb($config);



Authentication using environment variables
When using this method, the authentication mode and its parameters are defined by the environment that an application is run in, as described
here.

By setting one of the following environment variables, you can control the authentication method:

YDB_SERVICE_ACCOUNT_KEY_FILE_CREDENTIALS=<path/to/sa_key_file> : Use a service account file in Yandex Cloud.

YDB_ANONYMOUS_CREDENTIALS="1" : Use anonymous authentication. Relevant for testing against a Docker container with YDB.

YDB_METADATA_CREDENTIALS="1" : Use the metadata service inside Yandex Cloud (a Yandex function or a VM).

YDB_ACCESS_TOKEN_CREDENTIALS=<access_token> : Use token-based authentication.

Below are examples of the code for authentication using environment variables in different YDB SDKs.

Go (native)

package main

import (
  "context"
  "os"
  environ "github.com/ydb-platform/ydb-go-sdk-auth-environ"
  "github.com/ydb-platform/ydb-go-sdk/v3"
)

func main() {
  ctx, cancel := context.WithCancel(context.Background())
  defer cancel()
  db, err := ydb.Open(ctx,
    os.Getenv("YDB_CONNECTION_STRING"),
    environ.WithEnvironCredentials(ctx),
  )
  if err != nil {
    panic(err)
  }
  defer db.Close(ctx)
  ...
}

Go (database/sql)

package main

import (
  "context"
  "database/sql"
  "os"
  environ "github.com/ydb-platform/ydb-go-sdk-auth-environ"
  "github.com/ydb-platform/ydb-go-sdk/v3"
)

func main() {
  ctx, cancel := context.WithCancel(context.Background())
  defer cancel()
  nativeDriver, err := ydb.Open(ctx,
    os.Getenv("YDB_CONNECTION_STRING"),
    environ.WithEnvironCredentials(ctx),
  )
  if err != nil {
    panic(err)
  }
  defer nativeDriver.Close(ctx)
  connector, err := ydb.Connector(nativeDriver)
  if err != nil {
    panic(err)
  }
  db := sql.OpenDB(connector)
  defer db.Close()
  ...
}

Java

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_auth-env
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_auth_env


public void work(String connectionString) {
    AuthProvider authProvider = new EnvironAuthProvider();

    GrpcTransport transport = GrpcTransport.forConnectionString(connectionString)
            .withAuthProvider(authProvider)
            .build());

    QueryClient queryClient = QueryClient.newClient(transport).build();

    doWork(queryClient);

    queryClient.close();
    transport.close();
}

Node.js

  import { Driver, getCredentialsFromEnv } from 'ydb-sdk';

  export async function connect(endpoint: string, database: string) {
      const authService = getCredentialsFromEnv();
      const driver = new Driver({endpoint, database, authService});
      const timeout = 10000;
      if (!await driver.ready(timeout)) {
          console.log(`Driver has not become ready in ${timeout}ms!`);
          process.exit(1);
      }
      console.log('Driver connected')
      return driver
  }

Python

  import os
  import ydb

  with ydb.Driver(
      connection_string=os.environ["YDB_CONNECTION_STRING"],
      credentials=ydb.credentials_from_env_variables(),
  ) as driver:
      driver.wait(timeout=5)
      ...

Python (asyncio)

  import os
  import ydb
  import asyncio

  async def ydb_init():
      async with ydb.aio.Driver(
          endpoint=os.environ["YDB_ENDPOINT"],
          database=os.environ["YDB_DATABASE"],
          credentials=ydb.credentials_from_env_variables(),
      ) as driver:
          await driver.wait()
          ...

  asyncio.run(ydb_init())

PHP

<?php

use YdbPlatform\Ydb\Ydb;
use YdbPlatform\Ydb\Auth\EnvironCredentials;

$config = [

    // Database path
    'database'    => '/local',

    // Database endpoint



    'endpoint'    => 'localhost:2136',

    // Auto discovery (dedicated server only)
    'discovery'   => false,

    // IAM config
    'iam_config'  => [
        'insecure' => true,
        // 'root_cert_file' => './CA.pem', // Root CA file (uncomment for dedicated server)
    ],

    'credentials' => new EnvironCredentials()
];

$ydb = new Ydb($config);



Username and password based authentication
Below are examples of the code for authentication based on a username and token in different YDB SDKs.

C++

auto driverConfig = NYdb::TDriverConfig()
   .SetEndpoint(endpoint)
   .SetDatabase(database)
   .SetCredentialsProviderFactory(NYdb::CreateLoginCredentialsProviderFactory({
      .User = "user",
      .Password = "password",
   }));

NYdb::TDriver driver(driverConfig);

Go (native)

You can pass the username and password in the connection string. For example:

You can also explicitly pass them using the ydb.WithStaticCredentials  parameter:

"grpcs://login:password@localohost:2135/local"

package main

import (
  "context"
  "os"

  "github.com/ydb-platform/ydb-go-sdk/v3"
)

func main() {
  ctx, cancel := context.WithCancel(context.Background())
  defer cancel()
  db, err := ydb.Open(ctx,
      os.Getenv("YDB_CONNECTION_STRING"),
      ydb.WithStaticCredentials("user", "password"),
  )
  if err != nil {
      panic(err)
  }
  defer db.Close(ctx)
  ...
}

Go (database/sql)

You can pass the username and password in the connection string. For example:

You can also explicitly pass the username and password at driver initialization via a connector using the ydb.WithStaticCredentials  parameter:

package main

import (
  "context"

  _ "github.com/ydb-platform/ydb-go-sdk/v3"
)

func main() {
  db, err := sql.Open("ydb", "grpcs://login:password@localohost:2135/local")
  if err != nil {
      panic(err)
  }
  defer db.Close()
  ...
}

package main

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_auth-static


import (
  "context"
  "os"

  "github.com/ydb-platform/ydb-go-sdk/v3"
)

func main() {
  ctx, cancel := context.WithCancel(context.Background())
  defer cancel()
  nativeDriver, err := ydb.Open(ctx,
      os.Getenv("YDB_CONNECTION_STRING"),
      ydb.WithStaticCredentials("user", "password"),
  )
  if err != nil {
      panic(err)
  }
  defer nativeDriver.Close(ctx)
  connector, err := ydb.Connector(nativeDriver)
  if err != nil {
    panic(err)
  }
  db := sql.OpenDB(connector)
  defer db.Close()
  ...
}

Java

public void work(String connectionString, String username, String password) {
    AuthProvider authProvider = new StaticCredentials(username, password);

    GrpcTransport transport = GrpcTransport.forConnectionString(connectionString)
            .withAuthProvider(authProvider)
            .build());

    QueryClient queryClient = QueryClient.newClient(transport).build();

    doWork(queryClient);

    queryClient.close();
    transport.close();
}

JDBC

public void work(String username, String password) {
    Properties props = new Properties();
    props.setProperty("username", username);
    props.setProperty("password", password);
    try (Connection connection = DriverManager.getConnection("jdbc:ydb:grpc://localhost:2136/local", props)) {
      doWork(connection);
    }

    // Username and password can be passed via the special method of DriverManager
    try (Connection connection = DriverManager.getConnection("jdbc:ydb:grpc://localhost:2136/local", username, 
password)) {
      doWork(connection);
    }
}

Node.js

import { Driver, StaticCredentialsAuthService } from 'ydb-sdk';

export async function connect(endpoint: string, database: string, user: string, password: string) {
    const authService = new StaticCredentialsAuthService(user, password, endpoint, {
        tokenExpirationTimeout: 20000,
    })
    const driver = new Driver({endpoint, database, authService});
    const timeout = 10000;
    if (!await driver.ready(timeout)) {
        console.log(`Driver has not become ready in ${timeout}ms!`);
        process.exit(1);
    }



    console.log('Driver connected')
    return driver
}

Python

import os
import ydb

config = ydb.DriverConfig(
    endpoint=os.environ["YDB_ENDPOINT"],
    database=os.environ["YDB_DATABASE"],
)

credentials = ydb.StaticCredentials(
    driver_config=config,
    user=os.environ["YDB_USER"],
    password=os.environ["YDB_PASSWORD"]
)

with ydb.Driver(driver_config=config, credentials=credentials) as driver:
    driver.wait(timeout=5)
    ...

Python (asyncio)

import os
import ydb
import asyncio

config = ydb.DriverConfig(
    endpoint=os.environ["YDB_ENDPOINT"],
    database=os.environ["YDB_DATABASE"],
)

credentials = ydb.StaticCredentials(
    driver_config=config,
    user=os.environ["YDB_USER"],
    password=os.environ["YDB_PASSWORD"],
)

async def ydb_init():
    async with ydb.aio.Driver(driver_config=config, credentials=credentials) as driver:
        await driver.wait()
        ...

asyncio.run(ydb_init())

C# (.NET)

using Ydb.Sdk;
using Ydb.Sdk.Auth;

const string endpoint = "grpc://localhost:2136";
const string database = "/local";

var config = new DriverConfig(
    endpoint: endpoint, // Database endpoint, "grpcs://host:port"
    database: database, // Full database path
    credentials: new StaticCredentialsProvider(user, password)
);

await using var driver = await Driver.CreateInitialized(config);

PHP

<?php

use YdbPlatform\Ydb\Ydb;
use YdbPlatform\Ydb\Auth\Implement\StaticAuthentication;

$config = [

    // Database path



    'database'    => '/local',

    // Database endpoint
    'endpoint'    => 'localhost:2136',

    // Auto discovery (dedicated server only)
    'discovery'   => false,

    // IAM config
    'iam_config'  => [
        'insecure' => true,
        // 'root_cert_file' => './CA.pem', // Root CA file (uncomment for dedicated server)
    ],

    'credentials' => new StaticAuthentication($user, $password)
];

$ydb = new Ydb($config);



Balancing
YDB uses client load balancing because it is more efficient when a lot of traffic from multiple client applications comes to a database.
In most cases, it just works in the YDB SDK. However, sometimes specific settings for client load balancing are required, for example, to reduce
server hops and request time or to distribute the load across availability zones.

Note that custom balancing is limited when it comes to YDB sessions. Custom balancing in the YDB SDKs is performed only when creating a new
YDB session on a specific node. Once the session is created, all queries in this session are passed to the node where the session was created.
Queries in the same YDB session are not balanced between different YDB nodes.

This section contains code recipes with client load balancing settings in different YDB SDKs.

Table of contents:

Random choice

Prefer the nearest data center

Prefer the specific availability zone

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_balancing
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_balancing-random-choice
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_balancing-prefer-local
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_balancing-prefer-location


Random choice
The YDB SDK uses the random_choice  algorithm by default.

Below are examples of the code for forced setting of the "random choice" balancing algorithm in different YDB SDKs.

Go (native)

package main

import (
  "context"
  "os"

  "github.com/ydb-platform/ydb-go-sdk/v3"
  "github.com/ydb-platform/ydb-go-sdk/v3/balancers"
)

func main() {
  ctx, cancel := context.WithCancel(context.Background())
  defer cancel()
  db, err := ydb.Open(ctx,
    os.Getenv("YDB_CONNECTION_STRING"),
    ydb.WithBalancer(
      balancers.RandomChoice(),
    ),
  )
  if err != nil {
    panic(err)
  }
  defer db.Close(ctx)
  ...
}

Go (database/sql)

Client load balancing in the YDB database/sql  driver is performed only when establishing a new connection (in database/sql  terms), which is a
YDB session on a specific node. Once the session is created, all queries in this session are passed to the node where the session was created.
Queries in the same YDB session are not balanced between different YDB nodes.

Example of the code for setting the "random choice" balancing algorithm:

package main

import (
  "context"
  "database/sql"
  "os"

  "github.com/ydb-platform/ydb-go-sdk/v3"
  "github.com/ydb-platform/ydb-go-sdk/v3/balancers"
)

func main() {
  ctx, cancel := context.WithCancel(context.Background())
  defer cancel()
  nativeDriver, err := ydb.Open(ctx,
    os.Getenv("YDB_CONNECTION_STRING"),
    ydb.WithBalancer(
      balancers.RandomChoice(),
    ),
  )
  if err != nil {
    panic(err)
  }
  defer nativeDriver.Close(ctx)

  connector, err := ydb.Connector(nativeDriver)
  if err != nil {
    panic(err)
  }

  db := sql.OpenDB(connector)
  defer db.Close()

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_balancing-random-choice


  ...
}



Prefer the nearest data center
Below are examples of the code for setting the "prefer the nearest data center" balancing algorithm option in different YDB SDKs.

Go (native)

package main

import (
  "context"
  "os"

  "github.com/ydb-platform/ydb-go-sdk/v3"
  "github.com/ydb-platform/ydb-go-sdk/v3/balancers"
)

func main() {
  ctx, cancel := context.WithCancel(context.Background())
  defer cancel()
  db, err := ydb.Open(ctx,
    os.Getenv("YDB_CONNECTION_STRING"),
    ydb.WithBalancer(
      balancers.PreferLocalDC(
        balancers.RandomChoice(),
      ),
    ),
  )
  if err != nil {
    panic(err)
  }
  defer db.Close(ctx)
  ...
}

Go (database/sql)

Client load balancing in the YDB database/sql  driver is performed only when establishing a new connection (in database/sql  terms), which is a
YDB session on a specific node. Once the session is created, all queries in this session are passed to the node where the session was created.
Queries in the same YDB session are not balanced between different YDB nodes.

Example of the code for setting the "prefer the nearest data center" balancing algorithm option:

package main

import (
  "context"
  "database/sql"
  "os"

  "github.com/ydb-platform/ydb-go-sdk/v3"
  "github.com/ydb-platform/ydb-go-sdk/v3/balancers"
)

func main() {
  ctx, cancel := context.WithCancel(context.Background())
  defer cancel()
  nativeDriver, err := ydb.Open(ctx,
    os.Getenv("YDB_CONNECTION_STRING"),
    ydb.WithBalancer(
      balancers.PreferLocalDC(
        balancers.RandomChoice(),
      ),
    ),
  )
  if err != nil {
    panic(err)
  }
  defer nativeDriver.Close(ctx)

  connector, err := ydb.Connector(nativeDriver)
  if err != nil {
    panic(err)
  }

  db := sql.OpenDB(connector)
  defer db.Close()

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_balancing-prefer-local


  ...
}



Prefer the specific availability zone
Below are examples of the code for setting the "prefer the availability zone" balancing algorithm option in different YDB SDKs.

Go (native)

package main

import (
  "context"
  "os"

  "github.com/ydb-platform/ydb-go-sdk/v3"
  "github.com/ydb-platform/ydb-go-sdk/v3/balancers"
)

func main() {
  ctx, cancel := context.WithCancel(context.Background())
  defer cancel()
  db, err := ydb.Open(ctx,
    os.Getenv("YDB_CONNECTION_STRING"),
    ydb.WithBalancer(
      balancers.PreferLocations(
        balancers.RandomChoice(),
        "a",
        "b",
      ),
    ),
  )
  if err != nil {
    panic(err)
  }
  defer db.Close(ctx)
  ...
}

Go (database/sql)

Client load balancing in the YDB database/sql  driver is performed only when establishing a new connection (in database/sql  terms), which is a
YDB session on a specific node. Once the session is created, all queries in this session are passed to the node where the session was created.
Queries in the same YDB session are not balanced between different YDB nodes.

Example of the code for setting the "prefer the availability zone":

package main

import (
  "context"
  "database/sql"
  "os"

  "github.com/ydb-platform/ydb-go-sdk/v3"
  "github.com/ydb-platform/ydb-go-sdk/v3/balancers"
)

func main() {
  ctx, cancel := context.WithCancel(context.Background())
  defer cancel()
  nativeDriver, err := ydb.Open(ctx,
    os.Getenv("YDB_CONNECTION_STRING"),
    ydb.WithBalancer(
      balancers.PreferLocations(
        balancers.RandomChoice(),
        "a",
        "b",
      ),
    ),
  )
  if err != nil {
    panic(err)
  }
  defer nativeDriver.Close(ctx)

  connector, err := ydb.Connector(nativeDriver)
  if err != nil {
    panic(err)

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_balancing-prefer-location


  }

  db := sql.OpenDB(connector)
  defer db.Close()
  ...
}



Distributed lock
Consider a scenario where it is necessary to ensure that only one instance of a client application accesses a shared resource at any given time. To
achieve this, the semaphore mechanism in YDB coordination nodes can be utilized.

Semaphore lease mechanism

In contrast to local multithreaded programming, clients in distributed systems do not directly acquire locks or semaphores. Instead, they lease them
for a specified duration, which can be periodically renewed. Due to reliance on physical time which can vary between machines, clients and the
server might encounter situations where multiple clients believe they have acquired the same semaphore simultaneously, even if the server's
perspective differs. To reduce the likelihood of such occurrences, it is crucial to configure automatic time synchronization beforehand, both on
servers hosting client applications and on the YDB side, ideally using a unified time source.

Therefore, while distributed locking through such mechanisms cannot guarantee the complete absence of simultaneous resource access, it can
significantly lower the probability of such events. This approach serves as an optimization to prevent unnecessary competition among clients for a
shared resource. Absolute guarantees against concurrent resource requests сould be implemented on the resource side.

Code example

Go

for {
  if session, err := db.Coordination().CreateSession(ctx, path); err != nil {
    return fmt.Errorf("cannot create session: %v", err);
  }

  if lease, err := session.AcquireSemaphore(ctx,
    semaphore,
    coordination.Exclusive,
    options.WithEphemeral(true),
  ); err != nil {
    // the session is likely lost, try to create a new one and get the lock in it
    session.Close(ctx);
    continue;
  }

  // lock acquired, start processing
  select {
     case <-lease.Context().Done():
  }

  // lock released, end processing
}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_distributed-lock
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_distributed-lock_semaphore-lease-mechanism
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_distributed-lock_code-example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_coordination


Leader election
Consider a scenario where multiple application instances need to elect a leader among themselves and be aware of the current leader at any given
time.

This scenario can be implemented using semaphores in YDB coordination nodes as follows:

1. A semaphore is created (for example, named my-service-leader ) with Limit=1 .

2. All application instances call AcquireSemaphore  with Count=1 , specifying their endpoint in the Data  field.

3. Only one application instance's call will complete quickly, while others will be queued. The application instance whose call completes
successfully becomes the current leader.

4. All application instances call DescribeSemaphore  with WatchOwners=true  and IncludeOwners=true . The result's Owners  field will
contain at most one element, from which the current leader's endpoint can be determined via its Data  field.

5. When the leader changes, OnChanged  is called. In this case, application instances make a similar DescribeSemaphore  call to learn about
the new leader.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_leader-election
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_coordination


Service discovery
Consider a scenario where application instances are dynamically started and publish their endpoints, while other clients need to receive this list and
respond to its changes.

This scenario can be implemented using semaphores in YDB coordination nodes as follows:

1. Create a semaphore (for example, named my-service-endpoints ) with Limit=Max<ui64>() .

2. All application instances call AcquireSemaphore  with Count=1 , specifying their endpoint in the Data  field.

3. Since the semaphore limit is very high, all AcquireSemaphore  calls should complete quickly.

4. At this point, publication is complete, and application instances only need to respond to session stops by republishing themselves through a
new session.

5. Clients call DescribeSemaphore  with IncludeOwners=true  and optionally with WatchOwners=true . In the result, the Owners  field's Data
will contain the endpoints of registered application instances.

6. When the list of endpoints changes, OnChanged  is called. In this case, clients make a similar DescribeSemaphore  call and receive the
updated list.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_service-discovery
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_coordination


Configuration publication
Let's consider a scenario where we need to publish a small configuration for multiple application instances that should promptly react to its
changes.

This scenario can be implemented using semaphores in YDB coordination nodes as follows:

1. A semaphore is created (for example, named my-service-config ).

2. The updated configuration is published through UpdateSemaphore .

3. Application instances call DescribeSemaphore  with WatchData=true . In the result, the Data  field will contain the current version of the
configuration.

4. When the configuration changes, OnChanged  is called. In this case, application instances make a similar DescribeSemaphore  call and
receive the updated configuration.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_config-publication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_coordination


Troubleshooting
When troubleshooting issues with YDB, diagnostics tools such as logging, metrics, OpenTracing/Jaeger tracing are helpful. We strongly
recommend that you enable them in advance before any problems occur. This will help see changes in the overall picture before, during, and after
an issue when troubleshooting it. This greatly speeds up our investigation into incidents and lets us provide assistance much faster.

This section contains code recipes for enabling diagnostics tools in different YDB SDKs.

Table of contents:

Enable logging

Enable metrics in Prometheus

Enable tracing in Jaeger

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_debug
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_debug-logs
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_debug-prometheus
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_debug-jaeger


Enabling logging
Below are examples of code that enables logging in different YDB SDKs.

Go (native)

There are several ways to enable logs in an application that uses ydb-go-sdk :

This environment variable enables the built-in ydb-go-sdk  logger (synchronous, non-block) and prints to the standard output stream.
You can set the environment variable as follows:

(possible values: trace , debug , info , warn , error , fatal , and quiet , defaults to quiet ).

Using the YDB_LOG_SEVERITY_LEVEL  environment variable

export YDB_LOG_SEVERITY_LEVEL=info

Enable a third-party logger go.uber.org/zap

package main

import (
  "context"
  "os"

  "go.uber.org/zap"

  ydbZap "github.com/ydb-platform/ydb-go-sdk-zap"
  "github.com/ydb-platform/ydb-go-sdk/v3"
  "github.com/ydb-platform/ydb-go-sdk/v3/trace"
)

func main() {
  ctx, cancel := context.WithCancel(context.Background())
  defer cancel()
  var log *zap.Logger // zap-logger with init out of this scope
  db, err := ydb.Open(ctx,
    os.Getenv("YDB_CONNECTION_STRING"),
    ydbZap.WithTraces(
      log,
      trace.DetailsAll,
    ),
  )
  if err != nil {
    panic(err)
  }
  defer db.Close(ctx)
  ...
}

Enable a third-party logger github.com/rs/zerolog

package main

import (
  "context"
  "os"

  "github.com/rs/zerolog"

  ydbZerolog "github.com/ydb-platform/ydb-go-sdk-zerolog"
  "github.com/ydb-platform/ydb-go-sdk/v3"
  "github.com/ydb-platform/ydb-go-sdk/v3/trace"
)

func main() {
  ctx, cancel := context.WithCancel(context.Background())
  defer cancel()
  var log zerolog.Logger // zap-logger with init out of this scope
  db, err := ydb.Open(ctx,
    os.Getenv("YDB_CONNECTION_STRING"),

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_debug-logs


You can implement your own logging package based on the driver events in the github.com/ydb-platform/ydb-go-sdk/v3/trace  tracing
package. The github.com/ydb-platform/ydb-go-sdk/v3/trace  tracing package describes all logged driver events.

    ydbZerolog.WithTraces(
      &log,
      trace.DetailsAll,
    ),
  )
  if err != nil {
    panic(err)
  }
  defer db.Close(ctx)
  ...
}

Enable a custom logger implementation github.com/ydb-platform/ydb-go-sdk/v3/log.Logger

package main

import (
  "context"
  "os"

  "github.com/ydb-platform/ydb-go-sdk/v3"
  "github.com/ydb-platform/ydb-go-sdk/v3/log"
  "github.com/ydb-platform/ydb-go-sdk/v3/trace"
)

func main() {
  ctx, cancel := context.WithCancel(context.Background())
  defer cancel()
  var logger log.Logger // logger implementation with init out of this scope
  db, err := ydb.Open(ctx,
    os.Getenv("YDB_CONNECTION_STRING"),
    ydb.WithLogger(
      logger,
      trace.DetailsAll,
    ),
  )
  if err != nil {
    panic(err)
  }
  defer db.Close(ctx)
  ...
}

Implement your own logging package

Go (database/sql)

There are several ways to enable logs in an application that uses ydb-go-sdk :

This environment variable enables the built-in ydb-go-sdk  logger (synchronous, non-block) and prints to the standard output stream.
You can set the environment variable as follows:

(possible values: trace , debug , info , warn , error , fatal , and quiet , defaults to quiet ).

Using the YDB_LOG_SEVERITY_LEVEL  environment variable

export YDB_LOG_SEVERITY_LEVEL=info

Enable a third-party logger go.uber.org/zap

package main

import (
  "context"
  "database/sql"
  "os"

  "go.uber.org/zap"



  ydbZap "github.com/ydb-platform/ydb-go-sdk-zap"
  "github.com/ydb-platform/ydb-go-sdk/v3"
  "github.com/ydb-platform/ydb-go-sdk/v3/trace"
)

func main() {
  ctx, cancel := context.WithCancel(context.Background())
  defer cancel()
  var log *zap.Logger // zap-logger with init out of this scope
  nativeDriver, err := ydb.Open(ctx,
    os.Getenv("YDB_CONNECTION_STRING"),
    ydbZap.WithTraces(
      log,
      trace.DetailsAll,
    ),
  )
  if err != nil {
    panic(err)
  }
  defer nativeDriver.Close(ctx)

  connector, err := ydb.Connector(nativeDriver)
  if err != nil {
    panic(err)
  }
  defer connector.Close()

  db := sql.OpenDB(connector)
  defer db.Close()
  ...
}

Enable a third-party logger github.com/rs/zerolog

package main

import (
  "context"
  "database/sql"
  "os"

  "github.com/rs/zerolog"

  ydbZerolog "github.com/ydb-platform/ydb-go-sdk-zerolog"
  "github.com/ydb-platform/ydb-go-sdk/v3"
  "github.com/ydb-platform/ydb-go-sdk/v3/trace"
)

func main() {
  ctx, cancel := context.WithCancel(context.Background())
  defer cancel()
  var log zerolog.Logger // zap-logger with init out of this scope
  nativeDriver, err := ydb.Open(ctx,
    os.Getenv("YDB_CONNECTION_STRING"),
    ydbZerolog.WithTraces(
      &log,
      trace.DetailsAll,
    ),
  )
  if err != nil {
    panic(err)
  }
  defer nativeDriver.Close(ctx)

  connector, err := ydb.Connector(nativeDriver)
  if err != nil {
    panic(err)
  }
  defer connector.Close()

  db := sql.OpenDB(connector)
  defer db.Close()



You can implement your own logging package based on the driver events in the github.com/ydb-platform/ydb-go-sdk/v3/trace  tracing
package. The github.com/ydb-platform/ydb-go-sdk/v3/trace  tracing package describes all logged driver events.

  ...
}

Enable a custom logger implementation github.com/ydb-platform/ydb-go-sdk/v3/log.Logger

package main

import (
  "context"
  "database/sql"
  "os"

  "github.com/ydb-platform/ydb-go-sdk/v3"
  "github.com/ydb-platform/ydb-go-sdk/v3/log"
  "github.com/ydb-platform/ydb-go-sdk/v3/trace"
)

func main() {
  ctx, cancel := context.WithCancel(context.Background())
  defer cancel()
  var logger log.Logger // logger implementation with init out of this scope
  nativeDriver, err := ydb.Open(ctx,
    os.Getenv("YDB_CONNECTION_STRING"),
    ydb.WithLogger(
      logger,
      trace.DetailsAll,
    ),
  )
  if err != nil {
    panic(err)
  }
  defer nativeDriver.Close(ctx)

  connector, err := ydb.Connector(nativeDriver)
  if err != nil {
    panic(err)
  }
  defer connector.Close()

  db := sql.OpenDB(connector)
  defer db.Close()
  ...
}

Implement your own logging package

Java

For logging purposes, the YDB Java SDK uses the slf4j library, which supports multiple logging levels ( error , warn , info , debug , trace ) for
one or many loggers. The current implementation supports the following loggers:

The com.yandex.ydb.core.grpc  logger provides information about the internal implementation of the gRPC protocol

The debug  level logs all operations run over gRPC, so we recommend using it only for debugging purposes.

The info  level is recommended by default

On the debug  level, the com.yandex.ydb.table.impl  logger enables you to track the internal status of the YDB driver, including session
pool health.

On the debug  level, the com.yandex.ydb.table.SessionRetryContext  logger will inform you of the number of retries, results of executed
queries, execution time of specific retries, and the total operation execution time

On the debug  level, the com.yandex.ydb.table.Session  logger gives you details about the query text, response status, and execution time
of specific operations within the session

Enabling and configuration the Java SDK loggers depends on the slf4j-api  implementation used.
Here's an example of a log4j2  configuration for the log4j-slf4j-impl  library

<Configuration status="WARN">
  <Appenders>
    <Console name="Console" target="SYSTEM_OUT">
      <PatternLayout pattern="%d{HH:mm:ss.SSS} [%t] %-5level %logger{36} - %msg%n"/>



    </Console>
  </Appenders>

  <Loggers>
    <Logger name="io.netty" level="warn" additivity="false">
      <AppenderRef ref="Console"/>
    </Logger>
    <Logger name="io.grpc.netty" level="warn" additivity="false">
      <AppenderRef ref="Console"/>
    </Logger>
    <Logger name="com.yandex.ydb.core.grpc" level="info" additivity="false">
      <AppenderRef ref="Console"/>
    </Logger>
    <Logger name="com.yandex.ydb.table.impl" level="info" additivity="false">
      <AppenderRef ref="Console"/>
    </Logger>
    <Logger name="com.yandex.ydb.table.SessionRetryContext" level="debug" additivity="false">
      <AppenderRef ref="Console"/>
    </Logger>
    <Logger name="com.yandex.ydb.table.Session" level="debug" additivity="false">
      <AppenderRef ref="Console"/>
    </Logger>

    <Root level="debug" >
      <AppenderRef ref="Console"/>
    </Root>
  </Loggers>
</Configuration>

PHP

For logging purposes, you need to use a class, that implements \Psr\Log\LoggerInterface .
ydb-php-sdk  has build-in loggers in YdbPlatform\Ydb\Logger  namespace:

NullLogger  - default logger, which writes nothing

SimpleStdLogger($level)  - logger, which writes to logs in stderr.

Usage example:

$config = [
  'logger' => new \YdbPlatform\Ydb\Logger\SimpleStdLogger(\YdbPlatform\Ydb\Logger\SimpleStdLogger::INFO)
]
$ydb = new \YdbPlatform\Ydb\Ydb($config);



Enabling metrics in Prometheus
Below are examples of the code for enabling metrics in Prometheus in different YDB SDKs.

Go (native)

package main

import (
    "context"

    "github.com/prometheus/client_golang/prometheus"
    metrics "github.com/ydb-platform/ydb-go-sdk-prometheus/v2"
    "github.com/ydb-platform/ydb-go-sdk/v3"
    "github.com/ydb-platform/ydb-go-sdk/v3/trace"
)

func main() {
    ctx := context.Background()
    registry := prometheus.NewRegistry()
    db, err := ydb.Open(ctx,
        os.Getenv("YDB_CONNECTION_STRING"),
        metrics.WithTraces(
            registry,
            metrics.WithDetails(trace.DetailsAll),
            metrics.WithSeparator("_"),
        ),
    )
    if err != nil {
        panic(err)
    }
    defer db.Close(ctx)
    ...
}

Go (database/sql)

package main

import (
    "context"
    "database/sql"

    "github.com/prometheus/client_golang/prometheus"
    metrics "github.com/ydb-platform/ydb-go-sdk-prometheus/v2"
    "github.com/ydb-platform/ydb-go-sdk/v3"
    "github.com/ydb-platform/ydb-go-sdk/v3/trace"
)

func main() {
    ctx := context.Background()
    registry := prometheus.NewRegistry()
    nativeDriver, err := ydb.Open(ctx,
        os.Getenv("YDB_CONNECTION_STRING"),
        metrics.WithTraces(
            registry,
            metrics.WithDetails(trace.DetailsAll),
            metrics.WithSeparator("_"),
        ),
    )
    if err != nil {
        panic(err)
    }
    defer nativeDriver.Close(ctx)

    connector, err := ydb.Connector(nativeDriver)
    if err != nil {
        panic(err)
    }

    db := sql.OpnDB(connector)
    defer db.Close()
    ...
}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_debug-prometheus


Enabling tracing in Jaeger
Below are examples of the code enabling Jaeger tracing in different YDB SDKs.

Go (native)

package main

import (
    "context"
    "time"

    "github.com/opentracing/opentracing-go"
    jaegerConfig "github.com/uber/jaeger-client-go/config"

    "github.com/ydb-platform/ydb-go-sdk/v3"
    "github.com/ydb-platform/ydb-go-sdk/v3/trace"

    tracing "github.com/ydb-platform/ydb-go-sdk-opentracing"
)

const (
    tracerURL   = "localhost:5775"
    serviceName = "ydb-go-sdk"
)

func main() {
    tracer, closer, err := jaegerConfig.Configuration{
        ServiceName: serviceName,
        Sampler: &jaegerConfig.SamplerConfig{
            Type:  "const",
            Param: 1,
        },
        Reporter: &jaegerConfig.ReporterConfig{
            LogSpans:            true,
            BufferFlushInterval: 1 * time.Second,
            LocalAgentHostPort:  tracerURL,
        },
    }.NewTracer()
    if err != nil {
        panic(err)
    }

    defer closer.Close()

    // set global tracer of this application
    opentracing.SetGlobalTracer(tracer)

    span, ctx := opentracing.StartSpanFromContext(context.Background(), "client")
    defer span.Finish()

    db, err := ydb.Open(ctx,
        os.Getenv("YDB_CONNECTION_STRING"),
        tracing.WithTraces(tracing.WithDetails(trace.DetailsAll)),
    )
    if err != nil {
        panic(err)
    }
    defer db.Close(ctx)
    ...
}

Go (database/sql)

package main

import (
    "context"
    "database/sql"
    "time"

    "github.com/opentracing/opentracing-go"
    jaegerConfig "github.com/uber/jaeger-client-go/config"

    "github.com/ydb-platform/ydb-go-sdk/v3"

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-sdk_debug-jaeger


    "github.com/ydb-platform/ydb-go-sdk/v3/trace"

    tracing "github.com/ydb-platform/ydb-go-sdk-opentracing"
)

const (
    tracerURL   = "localhost:5775"
    serviceName = "ydb-go-sdk"
)

func main() {
    tracer, closer, err := jaegerConfig.Configuration{
        ServiceName: serviceName,
            Sampler: &jaegerConfig.SamplerConfig{
            Type:  "const",
            Param: 1,
        },
        Reporter: &jaegerConfig.ReporterConfig{
            LogSpans:            true,
            BufferFlushInterval: 1 * time.Second,
            LocalAgentHostPort:  tracerURL,
        },
    }.NewTracer()
    if err != nil {
        panic(err)
    }

    defer closer.Close()

    // set global tracer of this application
    opentracing.SetGlobalTracer(tracer)

    span, ctx := opentracing.StartSpanFromContext(context.Background(), "client")
    defer span.Finish()

    nativeDriver, err := ydb.Open(ctx,
        os.Getenv("YDB_CONNECTION_STRING"),
        tracing.WithTraces(tracing.WithDetails(trace.DetailsAll)),
    )
    if err != nil {
        panic(err)
    }
    defer nativeDriver.Close(ctx)

    connector, err := ydb.Connector(nativeDriver)
    if err != nil {
        panic(err)
    }

    db := sql.OpnDB(connector)
    defer db.Close()
    ...
}



Convert a table between row-oriented and column-oriented
YDB supports two main types of tables: row-oriented and column-oriented. The chosen table type determines the physical representation of data on
disks, so changing the type in place is impossible. However, you can create a new table of a different type and copy the data. This recipe consists
of the following steps:

1. Prepare a new table

2. Copy data

3. Switch the workload (optional)

These instructions assume that the source table is row-oriented, and the goal is to obtain a similar column-oriented destination table; however, the
table roles could be swapped.

Note

The examples use the quickstart  profile. To learn more, see Creating a profile to connect to a test database.

Prepare a new table

Take a copy of the original CREATE TABLE  statement used for the source table. Modify the following to create a file with the CREATE TABLE  query
for the destination table:

1. Change the table name to a desired new name.

2. Set the STORE  setting value to COLUMN  to make it a column-oriented table.

Run this query (assuming it is saved in a file named create_column_oriented_table.yql ):

Row-oriented source table:

Column-oriented destination table:

Note

Refer to the documentation for application developers to learn more about partitioning column-oriented tables and choosing a
partitioning key ( PARTITION BY  clause).

Fill the source row-oriented table with random data:

$ ydb -p quickstart yql -f create_column_oriented_table.yql

Example test data and table schemas

CREATE TABLE `row_oriented_table` (
    id Int64 NOT NULL,
    metric_a Double,
    metric_b Double,
    metric_c Double,
    PRIMARY KEY (id)
)

CREATE TABLE `column_oriented_table` (
    id Int64 NOT NULL,
    metric_a Double,
    metric_b Double,
    metric_c Double,
    PRIMARY KEY (id)
)
PARTITION BY HASH(id)
WITH (STORE = COLUMN)

INSERT INTO `row_oriented_table` (id, metric_a, metric_b, metric_c)
SELECT
    id,
    Random(id + 1),
    Random(id + 2),
    Random(id + 3)
FROM (

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-cli_convert-table-type
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-cli_convert-table-type_prepare
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-cli_convert-table-type_prepare
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-cli_convert-table-type_copy
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-cli_convert-table-type_switch
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_reference_ydb-cli_profile_create_quickstart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_primary-key_column-oriented


Copy data

Currently, the recommended way to copy data between YDB tables of different types is to export and import:

1. Export data to the local filesystem:

2. Import it back into another YDB table:

Make sure you have enough free space in the file system to store all the data.

Switch the workload

It is currently impossible to seamlessly replace the original table with a newly created column-oriented one. However, if necessary, you can
gradually switch your queries to work with the new table by replacing the original table path in the queries with the new one.

If the original table is no longer needed, it can be dropped with ydb -p quickstart table drop row_oriented_table  or yql -p quickstart 
yql -s "DROP TABLE row_oriented_table" .

See also

YDB CLI

YDB for Application Developers / Software Engineers

    SELECT ListFromRange(1, 1000) AS id
) FLATTEN LIST BY id

$ ydb -p quickstart dump -p row_oriented_table -o tmp_backup/

ydb -p quickstart import file csv -p column_oriented_table tmp_backup/row_oriented_table/*.csv

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-cli_convert-table-type_copy
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-cli_convert-table-type_switch
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-cli_convert-table-type_see-also
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_index


Conducting load testing
YDB CLI has a built-in toolkit for performing load testing using several standard benchmarks:

They all function similarly. For a detailed description of each, refer to the relevant reference via the links above. All commands for working with
benchmarks are organized into corresponding groups, and the database path is specified in the same way for all commands:

Load testing can be divided into 3 stages:

1. Data preparation

2. Testing

3. Cleanup

Data preparation

It consists of two steps: initializing tables and filling them with data.

Initialization

Initialization is performed by the init  command:

At this stage, you can configure the tables to be created:

Select the type of tables to be used: row, column, external, etc. (parameter --store );

Select the types of columns to be used: some data types from the original benchmarks can be represented by multiple YDB data types. In
such cases, it is possible to select a specific one with --string , --datetime , and --float-mode  parameters.

You can also specify that tables should be deleted before creation if they already exist using the --clear  parameter.

For more details, see the description of the commands for each benchmark:

clickbench init

tpch init

tpcds init

Data filling

Filling with data is performed using the import  command. This command is specific to each benchmark, and its behavior depends on the
subcommands. However, there are also parameters common to all benchmarks.

For a detailed description, see the relevant reference sections:

clickbench import

tpch import

tpcds import

Examples:

Testing

The performance testing is performed using the run  command. Its behavior is mostly the same across different benchmarks, though some
differences do exist.

ydb workload clickbench --path path/in/database ...
ydb workload tpch --path path/in/database ...
ydb workload tpcds --path path/in/database ...

ydb workload clickbench --path clickbench/hits init --store=column
ydb workload tpch --path tpch/s1 init --store=column
ydb workload tpcds --path tpcds/s1 init --store=column

ydb workload clickbench --path clickbench/hits import files --input hits.csv.gz
ydb workload tpch --path tpch/s1 import generator --scale 1
ydb workload tpcds --path tpcds/s1 import generator --scale 1

Benchmark Reference

TPC-H tpch

TPC-DS tpcds

ClickBench clickbench

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-cli_benchmarks
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-cli_benchmarks_data-preparation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-cli_benchmarks_initialization
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-cli_benchmarks_data-filling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-cli_benchmarks_testing
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-cli_benchmarks_data-preparation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-cli_benchmarks_testing
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-cli_benchmarks_cleanup
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-click-bench_init
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpch_init
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpcds_init
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-click-bench_load
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpch_load
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpcds_load
https://tpc.org/tpch/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpch
https://tpc.org/tpcds/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpcds
https://benchmark.clickhouse.com/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-click-bench


Examples:

The command allows you to select queries for execution, generate various types of reports, collect execution statistics, and more.

For a detailed description, see the relevant reference sections:

clickbench run

tpch run

tpcds run

Cleanup

After all necessary testing has been completed, the benchmark's data can be removed from the database using the clean  command:

For a detailed description, see the corresponding sections:

clickbench clean

tpch clean

tpcds clean

ydb workload clickbench --path clickbench/hits run --include 1-5,8
ydb workload tpch --path tpch/s1 run --exсlude 3,4 --iterations 3
ydb workload tpcds --path tpcds/s1 run --plan ~/query_plan --include 2 --iterations 5

ydb workload clickbench --path clickbench/hits clean
ydb workload tpch --path tpch/s1 clean
ydb workload tpcds --path tpcds/s1 clean

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-cli_benchmarks_cleanup
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-click-bench_run
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpch_run
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpcds_run
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-click-bench_cleanup
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpch_cleanup
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpcds_cleanup


Configuring Time to Live (TTL)
This section contains recipes for configuration of table's TTL with YDB CLI.

Enabling TTL for an existing table

In the example below, the items of the mytable  table will be deleted an hour after the time set in the created_at  column:

The example below shows how to use the modified_at  column with a numeric type ( Uint32 ) as a TTL column. The column value is interpreted
as the number of seconds since the Unix epoch:

Enabling data eviction to S3-compatible external storage

Warning

Supported only for column-oriented tables. Support for row-oriented tables is currently under development.

To enable data eviction, an external data source object that describes a connection to the external storage is needed. Refer to YQL recipe for
examples of creating an external data source.

The example below shows how to enable data eviction by executing a YQL-query from YDB CLI. Rows of the table mytable  will be moved to the
bucket described in the external data source /Root/s3_cold_data  one hour after the time recorded in the column created_at  and will be
deleted after 24 hours.

Disabling TTL

Getting TTL settings

The current TTL settings can be obtained from the table description:

$ ydb -e <endpoint> -d <database> table ttl set --column created_at --expire-after 3600 mytable

$ ydb -e <endpoint> -d <database> table ttl set --column modified_at --expire-after 3600 --unit seconds mytable

$ ydb -e <endpoint> -d <database> sql -s '
    ALTER TABLE `mytable` SET (
        TTL =
            Interval("PT1H") TO EXTERNAL DATA SOURCE `/Root/s3_cold_data`,
            Interval("PT24H") DELETE
        ON modified_at AS SECONDS
    );
'

$ ydb -e <endpoint> -d <database> table ttl reset mytable

$ ydb -e <endpoint> -d <database> scheme describe mytable

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-cli_ttl
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-cli_ttl_enable-on-existent-table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-cli_ttl_enabling-data-eviction-to-s3-compatible-external-storage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-cli_ttl_disable
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_ydb-cli_ttl_describe
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_concepts_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_recipes_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_external_data_source
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_recipes_ttl_enable-tiering-on-existing-tables


YQL recipes
This section contains query recipes for various tasks that can be solved with YQL, YDB's SQL dialect.

Table of contents:

Accessing values inside JSON with YQL

Modifying JSON with YQL

Configuring Time to Live (TTL)

See also:

YQL - Overview

YDB for Application Developers / Software Engineers

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_recipes_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_recipes_accessing-json
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_recipes_modifying-json
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_recipes_ttl
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_index


Accessing values inside JSON with YQL
YQL provides two main ways to retrieve values from JSON:

Using JSON functions from the SQL standard. This approach is recommended for simple cases and for teams that are familiar with them
from other DBMSs.

Using Yson UDF, list and dict builtins, and lambdas. This approach is more flexible and tightly integrated with YDB's data type system, thus
recommended for complex cases.

Below are the recipes that will use the same input JSON to demonstrate how to use each option to check whether a key exists, get a specific value,
and retrieve a subtree.

JSON functions

JSON_*  functions expect the Json  data type as an input to run. In this example, the string literal has the suffix j , marking it as Json . In tables,
data could be stored in either JSON format or as a string representation. To convert data from String  to JSON  data type, use the CAST  function,
such as CAST(my_string AS JSON) .

Yson UDF

This approach typically combines multiple functions and expressions, so a query might leverage different specific strategies.

Convert the whole JSON to YQL containers

It is not necessary to convert the whole JSON object to a structured combination of containers. Some fields can be omitted if not used, while some
subtrees could be left in an unstructured data type like Json .

Work with in-memory representation

$json = @@{
    "friends": [
        {
            "name": "James Holden",
            "age": 35
        },
        {
            "name": "Naomi Nagata",
            "age": 30
        }
    ]
}@@j;

SELECT
    JSON_EXISTS($json, "$.friends[*].name"), -- True
    CAST(JSON_VALUE($json, "$.friends[0].age") AS Int32), -- 35
    JSON_QUERY($json, "$.friends[0]"); -- {"name": "James Holden", "age": 35}

$json = @@{
    "friends": [
        {
            "name": "James Holden",
            "age": 35
        },
        {
            "name": "Naomi Nagata",
            "age": 30
        }
    ]
}@@j;

$containers = Yson::ConvertTo($json, Struct<friends:List<Struct<name:String?,age:Int32?>>>);
$has_name = ListAny(
    ListMap($containers.friends, ($friend) -> {
        return $friend.name IS NOT NULL;
    })
);
$get_age = $containers.friends[0].age;
$get_first_friend = Yson::SerializeJson(Yson::From($containers.friends[0]));

SELECT
    $has_name, -- True
    $get_age, -- 35
    $get_first_friend; -- {"name": "James Holden", "age": 35}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_recipes_accessing-json
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_recipes_accessing-json_json-functions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_recipes_accessing-json_yson-udf
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_recipes_accessing-json_convert-the-whole-json-to-yql-containers
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_recipes_accessing-json_work-with-in-memory-representation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_json
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_yson
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_expressions_lambda


See also

Modifying JSON with YQL

$json = @@{
    "friends": [
        {
            "name": "James Holden",
            "age": 35
        },
        {
            "name": "Naomi Nagata",
            "age": 30
        }
    ]
}@@j;

$has_name = ListAny(
    ListMap(Yson::ConvertToList($json.friends), ($friend) -> {
        return Yson::Contains($friend, "name");
    })
);
$get_age = Yson::ConvertToInt64($json.friends[0].age);
$get_first_friend = Yson::SerializeJson($json.friends[0]);

SELECT
    $has_name, -- True
    $get_age, -- 35
    $get_first_friend; -- {"name": "James Holden", "age": 35}

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_recipes_accessing-json_see-also
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_recipes_modifying-json


Modifying JSON with YQL
In memory, YQL operates on immutable values. Thus, when a query needs to change something inside a JSON value, the mindset should be about
constructing a new value from pieces of the old one.

This example query takes an input JSON named $fields , parses it, substitutes key a  with 0, drops key d , and adds a key c  with value 3:

See also

Yson

Functions for lists

Functions for dictionaries

Accessing values inside JSON with YQL

$fields = '{"a": 1, "b": 2, "d": 4}'j;
$pairs = DictItems(Yson::ConvertToInt64Dict($fields));
$result_pairs = ListExtend(ListNotNull(ListMap($pairs, ($item) -> {
    $item = if ($item.0 == "a", ("a", 0), $item);
    return if ($item.0 == "d", null, $item);
})), [("c", 3)]);
$result_dict = ToDict($result_pairs);
SELECT Yson::SerializeJson(Yson::From($result_dict));

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_recipes_modifying-json
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_recipes_modifying-json_see-also
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_yson
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_list
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_dict
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_recipes_accessing-json


Configuring Time to Live (TTL)
This section contains recipes for configuration of table's TTL with YQL.

Enabling TTL for an existing table

In the example below, the items of the mytable  table will be deleted an hour after the time set in the created_at  column:

Tip

An Interval  is created from a string literal in ISO 8601 format with some restrictions.

The example below shows how to use the modified_at  column with a numeric type ( Uint32 ) as a TTL column. The column value is interpreted
as the number of seconds since the Unix epoch:

Enabling data eviction to S3-compatible external storage

Warning

Supported only for column-oriented tables. Support for row-oriented tables is currently under development.

In the following example, rows of the table mytable  will be moved to the bucket described in the external data source /Root/s3_cold_data  one
hour after the time recorded in the column created_at  and will be deleted after 24 hours:

Warning

Supported only for column-oriented tables. Support for row-oriented tables is currently under development.

To enable data eviction, an external data source object that describes a connection to the external storage is needed.
In the example below, an external data source /Root/s3_cold_data  is created. It describes a connection to bucket test_cold_data  located in
Yandex Object Storage with authorization by static access keys provided via secrets access_key  and secret_key .

Follow examples below to enable data eviction using an external data source.

In the following example, rows of the table mytable  will be moved to the bucket described in the external data source /Root/s3_cold_data  one
hour after the time recorded in the column created_at  and will be deleted after 24 hours:

ALTER TABLE `mytable` SET (TTL = Interval("PT1H") ON created_at);

ALTER TABLE `mytable` SET (TTL = Interval("PT1H") ON modified_at AS SECONDS);

ALTER TABLE `mytable` SET (
  TTL =
      Interval("PT1H") TO EXTERNAL DATA SOURCE `/Root/s3_cold_data`,
      Interval("PT24H") DELETE
  ON modified_at AS SECONDS
);

CREATE OBJECT access_key (TYPE SECRET) WITH (value="...");
CREATE OBJECT secret_key (TYPE SECRET) WITH (value="...");

CREATE EXTERNAL DATA SOURCE `/Root/s3_cold_data` WITH (
    SOURCE_TYPE="ObjectStorage",
    AUTH_METHOD="AWS",
    LOCATION="http://storage.yandexcloud.net/test_cold_data",
    AWS_ACCESS_KEY_ID_SECRET_NAME="access_key",
    AWS_SECRET_ACCESS_KEY_SECRET_NAME="secret_key",
    AWS_REGION="ru-central1"
)

ALTER TABLE `mytable` SET (
    TTL =
        Interval("PT1H") TO EXTERNAL DATA SOURCE `/Root/s3_cold_data`,

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_recipes_ttl
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_recipes_ttl_enable-on-existent-table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_recipes_ttl_enable-tiering-on-existing-tables
https://en.wikipedia.org/wiki/ISO_8601
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_data-type-literals
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_concepts_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_concepts_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_external_data_source


In the following example, rows of the table mytable  will be moved to buckets /Root/s3_cold  and /Root/s3_frozen  one hour and 30 days
respectively after the time recorded in the column created_at :

Disabling TTL

        Interval("PT24H") DELETE
    ON modified_at AS SECONDS
);

ALTER TABLE `mytable` SET (
    TTL =
        Interval("PT1H") TO EXTERNAL DATA SOURCE `/Root/s3_cold`,
        Interval("PT30D") TO EXTERNAL DATA SOURCE `/Root/s3_frozen`
    ON modified_at AS SECONDS
);

## Enabling TTL for a newly created table {#enable-for-new-table}

For a newly created table, you can pass TTL settings along with the table description:

```yql
CREATE TABLE `mytable` (
 id Uint64,
 expire_at Timestamp,
 PRIMARY KEY (id)
) WITH (
 TTL = Interval("PT0S") ON expire_at
);

ALTER TABLE `mytable` RESET (TTL);

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_recipes_ttl_disable

Typical OLAP scenarios
1. Batch analytics

Aggregating large volumes of historical data

Generating reports over extended periods

Calculating statistics across entire datasets

2. Interactive analytics
Performing ad-hoc queries for data exploration

Building dynamic dashboards
Conducting drill-down analyses at various levels of detail

3. Data preprocessing
Cleaning and normalizing data

Enriching data from multiple sources

Preparing data for machine learning

Related sections

Questions and answers about analytics in YDB

Column-Oriented Tables

Aggregate functions

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_scenarios
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_scenarios_related-sections
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#faq_analytics
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#yql_reference_builtins_aggregation

Optimizing analytical queries
1. Selecting the right primary key

Use columns frequently involved in filtering

Consider column order to optimize range queries

2. Optimizing the data schema
Use column-based storage for analytical tables

Choose data types carefully to save space

Implement partitioning for large (larger than 2Gb) analytical tables

3. Query optimization
Retrieve only necessary columns

Use appropriate indexes

Formulate filter conditions effectively

Related sections

Questions and answers about analytics in YDB

Column-Oriented Tables

Aggregate functions

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_optimizing
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_optimizing_related-sections
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_olap-tables-partitioning
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_secondary_indexes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#faq_analytics
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#yql_reference_builtins_aggregation

Overview
These pages describe popular datasets that you can load into YDB to familiarize yourself with the database's functionality and test various use
cases.

Prerequisites

To load the datasets, you will need:

1. Installed YDB CLI

2. [Optional] Configured connection profile to YDB to avoid specifying connection parameters with every command

General Information on Data Loading

YDB supports importing data from CSV files using the command ydb import file csv . Example command:

Where:

--header indicates that the first row of the file contains the column names, and the actual data starts from the second row;

--null-value "" specifies that an empty string in the CSV will be interpreted as a null value during data import into the table.

A table must already exist in YDB for data import. The primary way to create a table is by executing the CREATE TABLE YQL query. Instead of
writing the query manually, you can try running the import command from a file, as shown in any example in this section, without creating the table
first. In this case, the CLI will suggest a CREATE TABLE query, which you can use as a base, edit if necessary, and execute.

To import data into YDB, a table must be pre-created. Typically, a table is created using the YQL CREATE TABLE query. However, instead of crafting
such a query manually, you can initiate the import command ydb import file csv as shown in the import examples in this section. If the table
doesn't exist, the CLI will automatically suggest a CREATE TABLE query that you can use to create the table.

Selecting a Primary Key

YDB requires a primary key for the table. It significantly speeds up data loading and processing, and it also allows for deduplication:
rows with identical values in the primary key columns replace each other.

If the imported dataset doesn't have suitable columns for a primary key, we add a new column with row numbers and use it as the
primary key, as each row number is unique within the file.

Features and Limitations

When woimporting data to YDB, consider the following points:

1. Column Names: Column names should not contain spaces or special characters.

2. Data Types:

Date/time strings with timezone (e.g., "2019-11-01 00:00:00 UTC") will be imported as Text type.

The Bool type is not supported as a column type; use Text or Int64 instead.

Available Datasets

Chess Position Evaluations - Stockfish engine chess position evaluations

Video Game Sales - video game sales data
E-Commerce Behavior Data - user behavior data from an online store

COVID-19 Open Research Dataset - open research dataset on COVID-19

Netflix Movies and TV Shows - data on Netflix movies and shows

Animal Crossing New Horizons Catalog - item catalog from the game

ydb import file csv --header --null-value "" --path <table_path> <file>.csv

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_datasets_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_datasets_index_prerequisites
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_datasets_index_general-info
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_datasets_index_features-and-limitations
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_datasets_index_available-datasets
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_create
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-file
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create_table_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_datasets_chess
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_datasets_video-games
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_datasets_ecommerce
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_datasets_covid
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_datasets_netflix
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_datasets_animal-crossing

Chess Position Evaluations

Note

This page is part of the Dataset Import section, which includes examples of loading popular datasets into YDB. Before starting, please
review the general information on requirements and the import process.

The dataset includes 513 million chess position evaluations performed by the Stockfish engine for analysis on the Lichess platform.

Source: Kaggle - Chess Position Evaluations

Size: 59.66 GB

Loading Example

1. Download the evals.csv file from Kaggle.

2. Create a table in YDB using one of the following methods:

3. Execute the import command:

Analytical Query Example

Identify positions with the highest number of moves analyzed by the Stockfish engine:

Embedded UI

For more information on Embedded UI.

CREATE TABLE `evals` (
 `fen` Text NOT NULL,
 `line` Text NOT NULL,
 `depth` Uint64,
 `knodes` Uint64,
 `cp` Double,
 `mate` Double,
 PRIMARY KEY (`fen`, `line`)
)
WITH (
 STORE = COLUMN,
 UNIFORM_PARTITIONS = 50
);

YDB CLI

ydb sql -s \
'CREATE TABLE `evals` (
 `fen` Text NOT NULL,
 `line` Text NOT NULL,
 `depth` Uint64,
 `knodes` Uint64,
 `cp` Double,
 `mate` Double,
 PRIMARY KEY (`fen`, `line`)
)
WITH (
 STORE = COLUMN,
 UNIFORM_PARTITIONS = 50
);'

ydb import file csv --header --null-value "" --path evals evals.csv

Embedded UI

SELECT
 fen,
 MAX(depth) AS max_depth,
 SUM(knodes) AS total_knodes
FROM evals
GROUP BY fen

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_datasets_chess
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_datasets_chess_loading-example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_datasets_chess_analytical-query-example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_index_general-info
https://www.kaggle.com/datasets/lichess/chess-evaluations
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring

This query performs the following actions:

Finds positions (represented in FEN format) with the maximum analysis depth.

Sums the number of analyzed nodes (knodes) for each position.

Sorts results by maximum analysis depth in descending order.

Outputs the top 10 positions with the highest analysis depth.

ORDER BY max_depth DESC
LIMIT 10;

YDB CLI

ydb sql -s \
'SELECT
 fen,
 MAX(depth) AS max_depth,
 SUM(knodes) AS total_knodes
FROM evals
GROUP BY fen
ORDER BY max_depth DESC
LIMIT 10;'

Video Game Sales

Note

This page is part of the Dataset Import section, which includes examples of loading popular datasets into YDB. Before starting, please
review the general information on requirements and the import process.

Data on video game sales.

Source: Kaggle - Video Game Sales

Size: 1.36 MB

Loading Example

1. Download and unzip the vgsales.csv file from Kaggle.

2. Create a table in YDB using one of the following methods:

3. Execute the import command:

Analytical Query Example

To identify the publisher with the highest average game sales in North America, execute the query:

Embedded UI

For more information on Embedded UI.

CREATE TABLE `vgsales` (
 `Rank` Uint64 NOT NULL,
 `Name` Text NOT NULL,
 `Platform` Text NOT NULL,
 `Year` Text NOT NULL,
 `Genre` Text NOT NULL,
 `Publisher` Text NOT NULL,
 `NA_Sales` Double NOT NULL,
 `EU_Sales` Double NOT NULL,
 `JP_Sales` Double NOT NULL,
 `Other_Sales` Double NOT NULL,
 `Global_Sales` Double NOT NULL,
 PRIMARY KEY (`Rank`)
)
WITH (
 STORE = COLUMN
);

YDB CLI

ydb sql -s \
'CREATE TABLE `vgsales` (
 `Rank` Uint64 NOT NULL,
 `Name` Text NOT NULL,
 `Platform` Text NOT NULL,
 `Year` Text NOT NULL,
 `Genre` Text NOT NULL,
 `Publisher` Text NOT NULL,
 `NA_Sales` Double NOT NULL,
 `EU_Sales` Double NOT NULL,
 `JP_Sales` Double NOT NULL,
 `Other_Sales` Double NOT NULL,
 `Global_Sales` Double NOT NULL,
 PRIMARY KEY (`Rank`)
)
WITH (
 STORE = COLUMN
);'

ydb import file csv --header --null-value "" --path vgsales vgsales.csv

Embedded UI

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_datasets_video-games
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_datasets_video-games_loading-example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_datasets_video-games_analytical-query-example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_index_general-info
https://www.kaggle.com/datasets/gregorut/videogamesales
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring

Result:

This query helps find the publisher with the greatest success in North America by average sales.

SELECT
 Publisher,
 AVG(NA_Sales) AS average_na_sales
FROM vgsales
GROUP BY Publisher
ORDER BY average_na_sales DESC
LIMIT 1;

YDB CLI

ydb sql -s \
'SELECT
 Publisher,
 AVG(NA_Sales) AS average_na_sales
FROM vgsales
GROUP BY Publisher
ORDER BY average_na_sales DESC
LIMIT 1;'

┌───────────┬──────────────────┐
│ Publisher │ average_na_sales │
├───────────┼──────────────────┤
│ "Palcom" │ 3.38 │
└───────────┴──────────────────┘

E-Commerce Behavior Data

Note

This page is part of the Dataset Import section, which includes examples of loading popular datasets into YDB. Before starting, please
review the general information on requirements and the import process.

User behavior data from a multi-category online store.

Source: Kaggle - E-commerce behavior data

Size: 9 GB

Loading Example

1. Download and unzip the 2019-Nov.csv file from Kaggle.

2. The dataset includes completely identical rows. Since YDB requires unique primary key values, add a new column named row_id to the file,
where the key value will be equal to the row number in the original file. This prevents the removal of duplicate data. This operation can be
carried out using the awk command:

3. Create a table in YDB using one of the following methods:

4. Execute the import command:

awk 'NR==1 {print "row_id," \$0; next} {print NR-1 "," \$0}' 2019-Nov.csv > temp.csv && mv temp.csv 2019-Nov.csv

Embedded UI

For more information on Embedded UI.

CREATE TABLE `ecommerce_table` (
 `row_id` Uint64 NOT NULL,
 `event_time` Text NOT NULL,
 `event_type` Text NOT NULL,
 `product_id` Uint64 NOT NULL,
 `category_id` Uint64,
 `category_code` Text,
 `brand` Text,
 `price` Double NOT NULL,
 `user_id` Uint64 NOT NULL,
 `user_session` Text NOT NULL,
 PRIMARY KEY (`row_id`)
)
WITH (
 STORE = COLUMN,
 UNIFORM_PARTITIONS = 50
);

YDB CLI

ydb sql -s \
'CREATE TABLE `ecommerce_table` (
 `row_id` Uint64 NOT NULL,
 `event_time` Text NOT NULL,
 `event_type` Text NOT NULL,
 `product_id` Uint64 NOT NULL,
 `category_id` Uint64,
 `category_code` Text,
 `brand` Text,
 `price` Double NOT NULL,
 `user_id` Uint64 NOT NULL,
 `user_session` Text NOT NULL,
 PRIMARY KEY (`row_id`)
)
WITH (
 STORE = COLUMN,
 UNIFORM_PARTITIONS = 50
);'

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_datasets_ecommerce
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_datasets_ecommerce_loading-example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_index_general-info
https://www.kaggle.com/datasets/mkechinov/ecommerce-behavior-data-from-multi-category-store/data
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring

Analytical Query Example

Identify the most popular product categories on November 1, 2019:

Result:

ydb import file csv --header --null-value "" --path ecommerce_table 2019-Nov.csv

Embedded UI

SELECT
 category_code,
 COUNT(*) AS view_count
FROM ecommerce_table
WHERE
 SUBSTRING(CAST(event_time AS String), 0, 10) = '2019-11-01'
 AND event_type = 'view'
GROUP BY category_code
ORDER BY view_count DESC
LIMIT 10;

YDB CLI

ydb sql -s \
'SELECT
 category_code,
 COUNT(*) AS view_count
FROM ecommerce_table
WHERE
 SUBSTRING(CAST(event_time AS String), 0, 10) = "2019-11-01"
 AND event_type = "view"
GROUP BY category_code
ORDER BY view_count DESC
LIMIT 10;'

┌────────────────────────────────────┬────────────┐
│ category_code │ view_count │
├────────────────────────────────────┼────────────┤
│ null │ 453024 │
├────────────────────────────────────┼────────────┤
│ "electronics.smartphone" │ 360650 │
├────────────────────────────────────┼────────────┤
│ "electronics.clocks" │ 43581 │
├────────────────────────────────────┼────────────┤
│ "computers.notebook" │ 40878 │
├────────────────────────────────────┼────────────┤
│ "electronics.video.tv" │ 40383 │
├────────────────────────────────────┼────────────┤
│ "electronics.audio.headphone" │ 37489 │
├────────────────────────────────────┼────────────┤
│ "apparel.shoes" │ 31013 │
├────────────────────────────────────┼────────────┤
│ "appliances.kitchen.washer" │ 28028 │
├────────────────────────────────────┼────────────┤
│ "appliances.kitchen.refrigerators" │ 27808 │
├────────────────────────────────────┼────────────┤
│ "appliances.environment.vacuum" │ 26477 │
└────────────────────────────────────┴────────────┘

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_datasets_ecommerce_analytical-query-example

COVID-19 Open Research Dataset

Note

This page is part of the Dataset Import section, which includes examples of loading popular datasets into YDB. Before starting, please
review the general information on requirements and the import process.

An open dataset of COVID-19 research.

Source: Kaggle - COVID-19 Open Research Dataset Challenge

Size: 1.65 GB (metadata.csv file)

Loading Example

1. Download and unzip the metadata.csv file from Kaggle.

2. The dataset includes completely identical rows. Since YDB requires unique primary key values, add a new column named row_id to the file,
where the key value will be equal to the row number in the original file. This prevents the removal of duplicate data. This operation can be
carried out using the awk command:

3. Create a table in YDB using one of the following methods:

awk 'NR==1 {print "row_id," \$0; next} {print NR-1 "," \$0}' metadata.csv > temp.csv && mv temp.csv metadata.csv

Embedded UI

For more information on Embedded UI.

CREATE TABLE `covid_research` (
 `row_id` Uint64 NOT NULL,
 `cord_uid` Text NOT NULL,
 `sha` Text NOT NULL,
 `source_x` Text NOT NULL,
 `title` Text NOT NULL,
 `doi` Text NOT NULL,
 `pmcid` Text NOT NULL,
 `pubmed_id` Text NOT NULL,
 `license` Text NOT NULL,
 `abstract` Text NOT NULL,
 `publish_time` Text NOT NULL,
 `authors` Text NOT NULL,
 `journal` Text NOT NULL,
 `mag_id` Text,
 `who_covidence_id` Text,
 `arxiv_id` Text,
 `pdf_json_files` Text NOT NULL,
 `pmc_json_files` Text NOT NULL,
 `url` Text NOT NULL,
 `s2_id` Uint64,
 PRIMARY KEY (`row_id`)
)
WITH (
 STORE = COLUMN
);

YDB CLI

ydb sql -s \
'CREATE TABLE `covid_research` (
 `row_id` Uint64 NOT NULL,
 `cord_uid` Text NOT NULL,
 `sha` Text NOT NULL,
 `source_x` Text NOT NULL,
 `title` Text NOT NULL,
 `doi` Text NOT NULL,
 `pmcid` Text NOT NULL,
 `pubmed_id` Text NOT NULL,
 `license` Text NOT NULL,
 `abstract` Text NOT NULL,
 `publish_time` Text NOT NULL,
 `authors` Text NOT NULL,
 `journal` Text NOT NULL,

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_datasets_covid
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_datasets_covid_loading-example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_index_general-info
https://www.kaggle.com/datasets/allen-institute-for-ai/CORD-19-research-challenge?select=metadata.csv
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring

4. Execute the import command:

Analytical Query Example

Run a query to determine the journals with the highest number of publications:

Result:

 `mag_id` Text,
 `who_covidence_id` Text,
 `arxiv_id` Text,
 `pdf_json_files` Text NOT NULL,
 `pmc_json_files` Text NOT NULL,
 `url` Text NOT NULL,
 `s2_id` Uint64,
 PRIMARY KEY (`row_id`)
)
WITH (
 STORE = COLUMN
);'

ydb import file csv --header --null-value "" --path covid_research metadata.csv

Embedded UI

SELECT
 journal,
 COUNT(*) AS publication_count
FROM covid_research
WHERE journal IS NOT NULL AND journal != ''
GROUP BY journal
ORDER BY publication_count DESC
LIMIT 10;

YDB CLI

ydb sql -s \
'SELECT
 journal,
 COUNT(*) AS publication_count
FROM covid_research
WHERE journal IS NOT NULL AND journal != ""
GROUP BY journal
ORDER BY publication_count DESC
LIMIT 10;'

┌───────────────────────────────────┬───────────────────┐
│ journal │ publication_count │
├───────────────────────────────────┼───────────────────┤
│ "PLoS One" │ 9953 │
├───────────────────────────────────┼───────────────────┤
│ "bioRxiv" │ 8961 │
├───────────────────────────────────┼───────────────────┤
│ "Int J Environ Res Public Health" │ 8201 │
├───────────────────────────────────┼───────────────────┤
│ "BMJ" │ 6928 │
├───────────────────────────────────┼───────────────────┤
│ "Sci Rep" │ 5935 │
├───────────────────────────────────┼───────────────────┤
│ "Cureus" │ 4212 │
├───────────────────────────────────┼───────────────────┤
│ "Reactions Weekly" │ 3891 │
├───────────────────────────────────┼───────────────────┤
│ "Front Psychol" │ 3541 │
├───────────────────────────────────┼───────────────────┤
│ "BMJ Open" │ 3515 │
├───────────────────────────────────┼───────────────────┤
│ "Front Immunol" │ 3442 │
└───────────────────────────────────┴───────────────────┘

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_datasets_covid_analytical-query-example

Netflix Movies and TV Shows

Note

This page is part of the Dataset Import section, which includes examples of loading popular datasets into YDB. Before starting, please
review the general information on requirements and the import process.

Data on movies and TV shows available on Netflix.

Source: Kaggle - Netflix Movies and TV Shows

Size: 3.4 MB

Loading Example

1. Download and unzip the netflix_titles.csv file from Kaggle.

2. Create a table in YDB using one of the following methods:

3. Execute the import command:

Analytical Query Example

Identify the top three countries with the most content added to Netflix in 2020:

Embedded UI

For more information on Embedded UI.

CREATE TABLE `netflix` (
 `show_id` Text NOT NULL,
 `type` Text NOT NULL,
 `title` Text NOT NULL,
 `director` Text NOT NULL,
 `cast` Text,
 `country` Text NOT NULL,
 `date_added` Text NOT NULL,
 `release_year` Uint64 NOT NULL,
 `rating` Text NOT NULL,
 `duration` Text NOT NULL,
 `listed_in` Text NOT NULL,
 `description` Text NOT NULL,
 PRIMARY KEY (`show_id`)
)
WITH (
 STORE = COLUMN
);

YDB CLI

ydb sql -s \
'CREATE TABLE `netflix` (
 `show_id` Text NOT NULL,
 `type` Text NOT NULL,
 `title` Text NOT NULL,
 `director` Text NOT NULL,
 `cast` Text,
 `country` Text NOT NULL,
 `date_added` Text NOT NULL,
 `release_year` Uint64 NOT NULL,
 `rating` Text NOT NULL,
 `duration` Text NOT NULL,
 `listed_in` Text NOT NULL,
 `description` Text NOT NULL,
 PRIMARY KEY (`show_id`)
)
WITH (
 STORE = COLUMN
);'

ydb import file csv --header --null-value "" --path netflix netflix_titles.csv

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_datasets_netflix
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_datasets_netflix_loading-example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_datasets_netflix_analytical-query-example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_index_general-info
https://www.kaggle.com/datasets/shivamb/netflix-shows
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring

Result:

Embedded UI

SELECT
 country,
 COUNT(*) AS count
FROM netflix
WHERE
 CAST(SUBSTRING(CAST(date_added AS String), 7, 4) AS Int32) = 2020
 AND date_added IS NOT NULL
GROUP BY country
ORDER BY count DESC
LIMIT 3;

YDB CLI

ydb sql -s \
'SELECT
 country,
 COUNT(*) AS count
FROM netflix
WHERE
 CAST(SUBSTRING(CAST(date_added AS String), 7, 4) AS Int32) = 2020
 AND date_added IS NOT NULL
GROUP BY country
ORDER BY count DESC
LIMIT 3;'

┌─────────────────┬───────┐
│ country │ count │
├─────────────────┼───────┤
│ "United States" │ 22 │
├─────────────────┼───────┤
│ "" │ 7 │
├─────────────────┼───────┤
│ "Canada" │ 3 │
└─────────────────┴───────┘

Animal Crossing New Horizons Catalog

Note

This page is part of the Dataset Import section, which includes examples of loading popular datasets into YDB. Before starting, please
review the general information on requirements and the import process.

A catalog of items from the popular game Animal Crossing: New Horizons.

Source: Kaggle - Animal Crossing New Horizons Catalog

Size: 51 KB

Loading Example

1. Download and unzip the accessories.csv file from Kaggle.

2. This file includes a BOM (Byte Order Mark). However, the import command does not support files with a BOM. To resolve this, remove the
BOM bytes from the beginning of the file by executing the following command:

3. The column names in the file contain spaces, which are incompatible with YDB since YDB does not support spaces in column names. Replace
spaces in the column names with underscores, for example, by executing the following command:

4. Create a table in YDB using one of the following methods:

sed -i '1s/^\xEF\xBB\xBF//' accessories.csv

sed -i '1s/ /_/g' accessories.csv

Embedded UI

For more information on Embedded UI.

CREATE TABLE `accessories` (
 `Name` Text NOT NULL,
 `Variation` Text NOT NULL,
 `DIY` Text NOT NULL,
 `Buy` Text NOT NULL,
 `Sell` Uint64 NOT NULL,
 `Color_1` Text NOT NULL,
 `Color_2` Text NOT NULL,
 `Size` Text NOT NULL,
 `Miles_Price` Text NOT NULL,
 `Source` Text NOT NULL,
 `Source_Notes` Text NOT NULL,
 `Seasonal_Availability` Text NOT NULL,
 `Mannequin_Piece` Text NOT NULL,
 `Version` Text NOT NULL,
 `Style` Text NOT NULL,
 `Label_Themes` Text NOT NULL,
 `Type` Text NOT NULL,
 `Villager_Equippable` Text NOT NULL,
 `Catalog` Text NOT NULL,
 `Filename` Text NOT NULL,
 `Internal_ID` Uint64 NOT NULL,
 `Unique_Entry_ID` Text NOT NULL,
 PRIMARY KEY (`Unique_Entry_ID`)
)
WITH (
 STORE = COLUMN
);

YDB CLI

ydb sql -s \
'CREATE TABLE `accessories` (
 `Name` Text NOT NULL,
 `Variation` Text NOT NULL,
 `DIY` Text NOT NULL,
 `Buy` Text NOT NULL,
 `Sell` Uint64 NOT NULL,
 `Color_1` Text NOT NULL,

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_datasets_animal-crossing
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_datasets_animal-crossing_loading-example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_index_general-info
https://www.kaggle.com/datasets/jessicali9530/animal-crossing-new-horizons-nookplaza-dataset/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_ydb-monitoring

5. Execute the import command:

Analytical Query Example

Identify the top five most popular primary colors of accessories:

Result:

 `Color_2` Text NOT NULL,
 `Size` Text NOT NULL,
 `Miles_Price` Text NOT NULL,
 `Source` Text NOT NULL,
 `Source_Notes` Text NOT NULL,
 `Seasonal_Availability` Text NOT NULL,
 `Mannequin_Piece` Text NOT NULL,
 `Version` Text NOT NULL,
 `Style` Text NOT NULL,
 `Label_Themes` Text NOT NULL,
 `Type` Text NOT NULL,
 `Villager_Equippable` Text NOT NULL,
 `Catalog` Text NOT NULL,
 `Filename` Text NOT NULL,
 `Internal_ID` Uint64 NOT NULL,
 `Unique_Entry_ID` Text NOT NULL,
 PRIMARY KEY (`Unique_Entry_ID`)
)
WITH (
 STORE = COLUMN
);'

ydb import file csv --header --path accessories accessories.csv

Embedded UI

SELECT
 Color_1,
 COUNT(*) AS color_count
FROM accessories
GROUP BY Color_1
ORDER BY color_count DESC
LIMIT 5;

YDB CLI

ydb sql -s \
'SELECT
 Color_1,
 COUNT(*) AS color_count
FROM accessories
GROUP BY Color_1
ORDER BY color_count DESC
LIMIT 5;'

┌──────────┬─────────────┐
│ Color_1 │ color_count │
├──────────┼─────────────┤
│ "Black" │ 31 │
├──────────┼─────────────┤
│ "Green" │ 27 │
├──────────┼─────────────┤
│ "Pink" │ 20 │
├──────────┼─────────────┤
│ "Red" │ 20 │
├──────────┼─────────────┤
│ "Yellow" │ 19 │
└──────────┴─────────────┘

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_olap_datasets_animal-crossing_analytical-query-example

Troubleshooting performance issues
Addressing database performance issues often requires a holistic approach, which includes optimizing queries, properly configuring hardware
resources, and ensuring that both the database and the application are well-designed. Regular monitoring and maintenance are essential for
proactively identifying and resolving these issues.

Tools to troubleshoot performance issues

Troubleshooting performance issues in YDB involves the following tools:

YDB metrics

Diagnistic steps for most performance issues involve analyzing Grafana dashboards that use YDB metrics collected by Prometheus For
information on installing Grafana and Prometheus, see Setting up monitoring for a YDB cluster.

YDB logs

Tracing

YDB CLI

Embedded UI

Query plans

Third-party observability tools

Classification of YDB performance issues

Database performance issues can be classified into several categories based on their nature. This documentation section provides a high-level
overview of these categories, starting with the lowest layers of the system and going all the way to the client. Below is a separate section for the
actual performance troubleshooting instructions.

Hardware infrastructure issues

Network issues. Network congestion in data centers and especially between data centers can significantly affect YDB performance.

Data center outages: Disruptions in data center operations that can cause service or data unavailability. To address this concern, YDB cluster
can be configured to span three data centers or availability zones, but the performance aspect needs to be taken into account too.

Data center maintenance and drills. Planned maintenance or drills, exercises conducted to prepare personnel for potential emergencies or
outages, can also affect query performance. Depending on the maintenance scope or drill scenario, some YDB servers might become
unavailable, which leads to the same impact as an outage.

Server hardware issues. Malfunctioning CPU, memory modules, and network cards, until replaced, significantly impact database
performance or lead to the unavailability of the affected server.

Insufficient resource issues

These issues refer to situations when the workload demands more physical resources — such as CPU, memory, disk space, and network
bandwidth — than allocated to a database. In some cases, suboptimal allocation of resources, for example misconfigured control groups (cgroups)
or actor system pools, may also result in insufficient resources for YDB and increase query latencies even though physical hardware resources are
still available on the database server.

CPU bottlenecks. High CPU usage can result in slow query processing and increased response times. When CPU resources are limited, the
database may struggle to handle complex queries or large transaction loads.

Insufficient disk space. A lack of available disk space can prevent the database from storing new data, resulting in the database becoming
read-only. This might also cause slowdowns as the system tries to reclaim disk space by compacting existing data more aggressively.
Insufficient memory (RAM). Queries require memory to temporarily store various intermediate data during execution. A lack of available
memory can negatively impact database performance in multiple ways.

Insufficient disk I/O bandwidth. A high rate of read/write operations can overwhelm the disk subsystem, causing increased data access
latencies. When the distributed storage cannot read or write data quickly enough, queries requiring disk access will take longer to execute.

Operating system issues

System clock drift. If the system clocks on the YDB servers start to drift apart, it will lead to increased distributed transaction latencies. In
severe cases, YDB might even refuse to process distributed transactions and return errors.

Other processes running on the same servers or virtual machines as YDB, such as antiviruses, observability agents, etc.

Kernel misconfiguration.

YDB-related issues

Updating YDB versions. There are two main related aspects: restarting all nodes within a relatively short timeframe, and the behavioral
differences between versions.

Actor system pools misconfiguration.

Schema design issues

Overloaded shards. Data shards serving row-oriented tables may become overloaded for several reasons. Such overload leads to increased
latencies for the transactions processed by the affected data shards.

Excessive tablet splits and merges. YDB supports automatic splitting and merging of data shards, which allows it to seamlessly adapt to
changes in workloads. However, these operations are not free and might have a short-term negative impact on query latencies.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_index_tools-to-troubleshoot-performance-issues
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_index_classification-of-ydb-performance-issues
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_index_hardware-infrastructure-issues
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_index_insufficient-resource-issues
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_index_operating-system-issues
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_index_ydb-related-issues
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_index_schema-design-issues
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_metrics_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_metrics_grafana-dashboards
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_monitoring
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_logging
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_setup
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_query-plans-optimization
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_index_instructions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_infrastructure_network
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_infrastructure_dc-outage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_infrastructure_dc-drills
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_infrastructure_hardware
https://en.wikipedia.org/wiki/Cgroups
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_actor-system-pool
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_hardware_cpu-bottleneck
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_hardware_disk-space
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_hardware_insufficient-memory
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_hardware_io-bandwidth
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_distributed-storage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_system_system-clock-drift
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_ydb_ydb-updates
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_schemas_overloaded-shards
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_schemas_splits-merges

Client application-related issues

Query design issues. Inefficiently designed database queries may execute slower than expected.

SDK usage issues. Issues related to improper or suboptimal use of the SDK.

Instructions

To troubleshoot YDB performance issues, treat each potential cause as a hypothesis. Systematically review the list of hypotheses and verify
whether they apply to your situation. The documentation for each cause provides a description, guidance on how to check diagnostics, and
recommendations on what to do if the hypothesis is confirmed.

If any known changes occurred in the system around the time the performance issues first appeared, investigate those first. Otherwise, follow this
recommended order for evaluating potential root causes. This order is loosely based on the descending frequency of their occurrence on large
production YDB clusters.

1. Overloaded shards and errors

2. Excessive tablet splits and merges

3. Frequent tablet moves between nodes

4. Insufficient hardware resources:

Disk I/O bandwidth

Disk space

Insufficient CPU

Insufficient memory
5. Hardware issues and data center outages

6. Network issues

7. Rolling restart

8. System clock drift

9. Transaction lock invalidation

10. Data center maintenance and drills

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_index_client-application-related-issues
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_index_instructions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_schemas_overloaded-shards
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_queries_overloaded-errors
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_schemas_splits-merges
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_ydb_tablets-moved
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_hardware_io-bandwidth
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_hardware_disk-space
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_hardware_cpu-bottleneck
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_hardware_insufficient-memory
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_infrastructure_hardware
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_infrastructure_dc-outage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_infrastructure_network
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_ydb_ydb-updates
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_system_system-clock-drift
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_queries_transaction-lock-invalidation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_infrastructure_dc-drills

Network issues
Network performance issues, such as limited bandwidth, packet loss, and connection instability, can severely impact database performance by
slowing query response times and leading to retriable errors like timeouts.

Diagnostics

To diagnose network issues, use the healthcheck in the Embedded UI:

1. Open the Embedded UI:

1.1. Navigate to the Databases tab and click on the desired database.

1.2. In the Navigation tab, confirm the required database is selected.

1.3. Switch to the Diagnostics tab.

1.4. Under the Network tab, apply the With problems filter.

2. Use available third-party tools to monitor network performance metrics such as latency, jitter, packet loss, throughput, and others.

Recommendations

Contact the responsible party for the network infrastructure the YDB cluster uses. If you are part of a larger organization, this could be an in-house
network operations team. Otherwise, contact the cloud service or hosting provider's support service.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_infrastructure_network
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_infrastructure_network_diagnostics
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_infrastructure_network_recommendations
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_embedded-ui_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_embedded-ui_index

Data center outages
Data center outages are disruptions in data center operations that could cause service or data unavailability, but YDB has means to avoid it. Various
factors, such as power failures, natural disasters, or cyberattacks, may cause these outages. A common fault-tolerant setup for YDB spans three
data centers or availability zones (AZs). In this case, YDB can maintain uninterrupted operation even if one data center and a server rack in another
are lost. However, it will initiate the relocation of tablets from the offline AZ to the remaining online nodes, temporarily leading to higher query
latencies.

Diagnostics

To determine if one of the data centers of the YDB cluster is not available, follow these steps:

1. Open Embedded UI.

2. On the Nodes tab, analyze the health indicators in the Host and DC columns.

If all of the nodes in one of the data centers (DC) are not available, this data center is most likely offline.

If not, review the Rack column to check if all YDB nodes are unavailable in one or more server racks. This could indicate that these racks are
offline, which could be treated as a partial data center outage.

Recommendations

Contact the responsible party for the affected data center to resolve the underlying issue. If you are part of a larger organization, this could be an in-
house team managing low-level infrastructure. Otherwise, contact the cloud service or hosting provider's support service. Meanwhile, check the
data center's status page if it has one.

Additionally, consider potential data center outages in the capacity planning process. YDB nodes in each data center should have sufficient spare
hardware resources to take over the full workload typically handled by any data center experiencing an outage.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_infrastructure_dc-outage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_infrastructure_dc-outage_diagnostics
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_infrastructure_dc-outage_recommendations
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_embedded-ui_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_embedded-ui_ydb-monitoring_colored_indicator

Data center maintenance and drills
Planned maintenance or drills, exercises conducted to prepare personnel for potential emergencies or outages, can also affect query performance.
Depending on the maintenance scope or drill scenario, some YDB nodes might become unavailable, which leads to the same impact as an outage.

Diagnostics

Check the planned maintenance and drills schedules to see if their timelines match with observed performance issues, otherwise, check the
datacenter outage recommendations.

Recommendations

Contact the person responsible for the current maintenance or drill to discuss whether the performance impact is severe enough for it to be
finished/canceled early, if possible.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_infrastructure_dc-drills
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_infrastructure_dc-drills_diagnostics
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_infrastructure_dc-drills_recommendations
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_infrastructure_dc-outage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_infrastructure_dc-outage

Hardware issues
Malfunctioning storage drives and network cards, until replaced, significantly impact database performance up to total unavailability of the affected
server. CPU issues might lead to server failure and higher load on the remaining YDB nodes.

Diagnostics

Use the hardware monitoring tools that your operating system and data center provide to diagnose hardware issues.

You can also use the Healthcheck in Embedded UI to diagnose some hardware issues:

Storage issues
1. On the Storage tab, select the Degraded filter to list storage groups or nodes that contain degraded or failed storage.

2. Check for any degradation in the storage system performance on the Distributed Storage Overview and PDisk Device single disk
dashboards in Grafana.

Network issues

Refer to Network issues.

Recommendations

Contact the responsible party for the affected hardware to resolve the underlying issue. If you are part of a larger organization, this could be an in-
house team managing low-level infrastructure. Otherwise, contact the cloud service or hosting provider's support service.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_infrastructure_hardware
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_infrastructure_hardware_diagnostics
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_infrastructure_hardware_recommendations
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_infrastructure_network

CPU bottleneck
High CPU usage can lead to slow query processing and increased response times. When CPU resources are constrained, the database may have
difficulty handling complex queries or large transaction volumes.

YDB nodes primarily consume CPU resources for running actors. On each node, actors are executed using multiple actor system pools. The
resource consumption of each pool is measured separately which allows to identify what kind of activity changed its behavior.

Diagnostics

1. Use Diagnostics in the Embedded UI to analyze CPU utilization in all pools:

1.1. In the Embedded UI, go to the Databases tab and click on the database.

1.2. On the Navigation tab, ensure the required database is selected.

1.3. Open the Diagnostics tab.

1.4. On the Info tab, click the CPU button and see if any pools show high CPU usage.

2. Use Grafana charts to analyze CPU utilization in all pools:

2.1. Open the CPU dashboard in Grafana.

2.2. See if the following charts show any spikes:

CPU by execution pool chart

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_hardware_cpu-bottleneck
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_hardware_cpu-bottleneck_diagnostics
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_actor
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_actor-system-pools
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_embedded-ui_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_embedded-ui_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_observability_metrics_grafana-dashboards_cpu

User pool - CPU by host chart

System pool - CPU by host chart

Batch pool - CPU by host chart

IC pool - CPU by host chart

IO pool - CPU by host chart

3. If the spike is in the user pool, analyze changes in the user load that might have caused the CPU bottleneck. See the following charts on the
DB overview dashboard in Grafana:

Requests chart

Request size chart

Response size chart

Also, see all of the charts in the Operations section of the DataShard dashboard.

4. If the spike is in the batch pool, check if there are any backups running.

Recommendation

Add additional database nodes to the cluster or allocate more CPU cores to the existing nodes. If that's not possible, consider distributing CPU
cores between pools differently.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_hardware_cpu-bottleneck_recommendation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_database-node

Insufficient memory (RAM)
If swap (paging of anonymous memory) is disabled on the server running YDB, insufficient memory activates another kernel feature called the OOM
killer, which terminates the most memory-intensive processes (often the database itself). This feature also interacts with cgroups if multiple cgroups
are configured.

If swap is enabled, insufficient memory may cause the database to rely heavily on disk I/O, which is significantly slower than accessing data directly
from memory.

Warning

If YDB nodes are running on servers with swap enabled, disable it. YDB is a distributed system, so if a node restarts due to lack of
memory, the client will simply connect to another node and continue accessing data as if nothing happened. Swap would allow the
query to continue on the same node but with degraded performance from increased disk I/O, which is generally less desirable.

Even though the reasons and mechanics of performance degradation due to insufficient memory might differ, the symptoms of increased latencies
during query execution and data retrieval are similar in all cases.

Additionally, which components within the YDB process consume memory may also be significant.

Diagnostics

1. Determine whether any YDB nodes recently restarted for unknown reasons. Exclude cases of YDB version upgrades and other planned
maintenance. This could reveal nodes terminated by OOM killer and restarted by systemd .

1.1. Open Embedded UI.

1.2. On the Nodes tab, look for nodes that have low uptime.

1.3. Chose a recently restarted node and log in to the server hosting it. Run the dmesg command to check if the kernel has recently activated
the OOM killer mechanism.

Look for the lines like this:

Additionally, review the ydbd logs for relevant details.

2. Determine whether memory usage reached 100% of capacity.

2.1. Open the DB overview dashboard in Grafana.

2.2. Analyze the charts in the Memory section.
3. Determine whether the user load on YDB has increased. Analyze the following charts on the DB overview dashboard in Grafana:

Requests chart

Request size chart

Response size chart

4. Determine whether new releases or data access changes occurred in your applications working with YDB.

Recommendation

Consider the following solutions for addressing insufficient memory:

If the load on YDB has increased due to new usage patterns or increased query rate, try optimizing the application to reduce the load on YDB
or add more YDB nodes.

If the load on YDB has not changed but nodes are still restarting, consider adding more YDB nodes or raising the hard memory limit for the
nodes. For more information about memory management in YDB, see Memory controller.

[2203.393223] oom-kill:constraint=CONSTRAINT_NONE,nodemask=
(null),cpuset=user.slice,mems_allowed=0,global_oom,task_memcg=/user.slice/user-1000.slice/session-
1.scope,task=ydb,pid=1332,uid=1000
[2203.393263] Out of memory: Killed process 1332 (ydb) total-vm:14219904kB, anon-rss:1771156kB, file-rss:0kB,
shmem-rss:0kB, UID:1000 pgtables:4736kB oom_score_adj:0

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_hardware_insufficient-memory
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_hardware_insufficient-memory_diagnostics
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_hardware_insufficient-memory_recommendation
https://en.wikipedia.org/wiki/Memory_paging#Unix_and_Unix-like_systems
https://en.wikipedia.org/wiki/Out_of_memory
https://en.wikipedia.org/wiki/Cgroups
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_metrics_grafana-dashboards_dboverview
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_metrics_grafana-dashboards_dboverview
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_memory-controller

I/O bandwidth
A high rate of read and write operations can overwhelm the disk subsystem, leading to increased data access latencies. When the system cannot
read or write data quickly enough, queries that rely on disk access will experience delays.

Diagnostics

1. Open the Distributed Storage Overview dashboard in Grafana.

2. On the DiskTimeAvailable and total Cost relation chart, see if the Total Cost spikes cross the DiskTimeAvailable level.

This chart shows the estimated total bandwidth capacity of the storage system in conventional units (green) and the total usage cost in
conventional units (blue). When the total usage cost exceeds the total bandwidth capacity, the YDB storage system becomes overloaded,
leading to increased latencies.

3. On the Total burst duration chart, check for any load spikes on the storage system. This chart displays microbursts of load on the storage
system, measured in microseconds.

Note

This chart might show microbursts of the load that are not detected by the average usage cost in the Cost and
DiskTimeAvailable relation chart.

Recommendations

Add more storage groups to the database.

In cases of high microburst rates, balancing the load across storage groups might help.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_hardware_io-bandwidth
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_hardware_io-bandwidth_diagnostics
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_hardware_io-bandwidth_recommendations
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_observability_metrics_grafana-dashboards
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_storage-group

Disk space
A lack of available disk space can prevent the database from storing new data, resulting in the database becoming read-only. This can also cause
slowdowns as the system tries to reclaim disk space by compacting existing data more aggressively.

Diagnostics

1. See if the DB overview > Storage charts in Grafana show any spikes.

2. In Embedded UI, on the Storage tab, analyze the list of available storage groups and nodes and their disk usage.

Tip

Use the Out of Space filter to list only the storage groups with full disks.

Note

It is also recommended to use the Healthcheck API to get this information.

Recommendations

Add more storage groups to the database.

If the cluster doesn't have spare storage groups, configure them first. Add additional storage nodes, if necessary.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_hardware_disk-space
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_hardware_disk-space_diagnostics
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_hardware_disk-space_recommendations
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_metrics_grafana-dashboards_dboverview
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_storage-group
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_storage-node

System clock drift
Synchronized clocks are critical for distributed databases. If system clocks on the YDB servers drift excessively, distributed transactions will
experience increased latencies.

Alert

It is important to keep system clocks on the YDB servers in sync, to avoid high latencies.

If the system clocks of the nodes running the coordinator tablets differ, transaction latencies increase by the time difference between the fastest and
slowest system clocks. This occurs because a transaction planned on a node with a faster system clock can only be executed once the coordinator
with the slowest clock reaches the same time.

Furthermore, if the system clock drift exceeds 30 seconds, YDB will refuse to process distributed transactions. Before coordinators start planning a
transaction, affected Data shards determine an acceptable range of timestamps for the transaction. The start of this range is the current time of the
mediator tablet's clock, while the 30-second planning timeout determines the end. If the coordinator's system clock exceeds this time range, it
cannot plan a distributed transaction, resulting in errors for such queries.

Diagnostics

To diagnose the system clock drift, use the following methods:

1. Use Healthcheck in the Embedded UI:

1.1. In the Embedded UI, go to the Databases tab and click on the database.

1.2. On the Navigation tab, ensure the required database is selected.

1.3. Open the Diagnostics tab.

1.4. On the Info tab, click the Healthcheck button.

If the Healthcheck button displays a MAINTENANCE REQUIRED status, the YDB cluster might be experiencing issues, such as system
clock drift. Any identified issues will be listed in the DATABASE section below the Healthcheck button.

1.5. To see the diagnosed problems, expand the DATABASE section.

The system clock drift problems will be listed under NODES_TIME_DIFFERENCE .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_system_system-clock-drift
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_system_system-clock-drift_diagnostics
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_coordinator
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_data-shard
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_index

Note

For more information, see Health Check API

2. Open the Interconnect overview page of the Embedded UI.

3. Use such tools as pssh or ansible to run the command (for example, date +%s%N) on all YDB nodes to display the system clock value.

Warning

Network delays between the host that runs pssh or ansible and YDB hosts will influence the results.

If you use time synchronization utilities, you can also request their status instead of requesting the current timestamps. For example,
timedatectl show-timesync --all .

Recommendations

1. Manually synchronize the system clocks of servers running YDB nodes. For instance, use pssh or ansible to run the clock sync command
across all nodes.

2. Ensure that system clocks on all YDB servers are regularly synchronized using timesyncd , ntpd , chrony , or a similar tool. It’s
recommended to use the same time source for all servers in the YDB cluster.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_system_system-clock-drift_recommendations
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_health-check-api
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_interconnect-overview
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_index

Rolling restart
YDB clusters can be updated without downtime, which is possible because YDB normally has redundant components and supports rolling restart
procedure. To ensure continuous data availability, YDB includes Cluster Management System (CMS) that tracks all outages and nodes taken offline
for maintenance, such as restarts. CMS halts new maintenance requests if they might risk data availability.

However, even if data is always available, the restart of all nodes in a relatively short period of time might have a noticeable impact on overall
performance. Each tablet running on a restarted node is relaunched on a different node. Moving a tablet between nodes takes time and may affect
latencies of queries involving it. See recommendations for rolling restart.

Furthermore, a new YDB version may handle queries differently. While performance generally improves with each update, certain corner cases may
occasionally end up with degraded performance. See recommendations for new version performance.

Diagnostics

Warning

Diagnostics of YDB rolling restarts and updates relies only on secondary symptoms. To be absolutely sure, contact your database
administrator.

To check if the YDB cluster is currently being updated:

1. Open Embedded UI.

2. On the Nodes tab, see if YDB versions of the nodes differ.

Also, see if the nodes with the higher YDB version have the lower uptime value.

Alert

Low uptime value of a YDB node might also indicate other problems. For example, see Insufficient memory (RAM).

Recommendations

For rolling restart

If the ongoing YDB cluster rolling restart significantly impacts applications to the point where they can no longer meet their latency requirements,
consider slowing down the restart process:

1. If nodes are restarted in batches, reduce the batch size, up to one node at a time.

2. Space out in time the restarts for each data center and/or server rack.

3. Inject artificial pauses between restarts.

For new version performance

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_ydb_ydb-updates
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_ydb_ydb-updates_diagnostics
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_ydb_ydb-updates_recommendations
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_ydb_ydb-updates_rolling-restart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_ydb_ydb-updates_version-performance
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_cms
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_ydb_ydb-updates_rolling-restart
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_ydb_ydb-updates_version-performance
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_hardware_insufficient-memory

The goal is to detect any negative performance impacts from the new YDB version on specific queries in your particular workload as early as
possible:

1. Review the YDB server changelog for any performance-related notes relevant to your workload.

2. Use a dedicated pre-production and/or testing YDB cluster to run a workload that closely mirrors your production workload. Always deploy the
new YDB version to these clusters first. Monitor both client-side latencies and server-side metrics to identify any potential performance issues.

3. Implement canary deployment by updating only one node initially to observe any changes in its behavior. If everything appears stable,
gradually expand the update to more nodes, such as an entire server rack or data center, and repeat checks for anomalies. If any issues arise,
immediately roll back to the previous version and attempt to reproduce the issue in a non-production environment.

Report any identified performance issues on YDB's GitHub. Provide context and all the details that could help reproduce it.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server
https://github.com/ydb-platform/ydb/issues/new

Frequent tablet moves between nodes
YDB automatically balances the load by moving tablets from overloaded nodes to other nodes. This process is managed by Hive. When Hive
moves tablets, queries affecting those tablets might experience increased latencies while they wait for the tablet to get initialized on the new node.

YDB considers usage of the following hardware resources for balancing nodes:

CPU

Memory

Network

Count

Autobalancing occurs in the following cases:

Disbalance in hardware resource usage

YDB uses the scatter metric to evaluate the balance in hardware resource usage. This metric is calculated for each resource using the
following formula:

where:

is the maximum hardware resource usage among all of the nodes.

is the minimum hardware resource usage among all of the nodes.

To distribute the load, YDB considers the hardware resources available to each node. Under low loads, the scatter value may vary significantly
across nodes; however, the minimum value for this formula is set to never fall below 30%.

Overloaded nodes (CPU and memory usage)

Hive starts the autobalancing procesure when the highest load on a node exceeds 90%, while the lowest load on a node is below 70%.

Uneven distribution of database objects

YDB uses the ObjectImbalance metric to monitor the distribution of tablets utilizing the *count resource across YDB nodes. When
YDB nodes restart, these tablets may not distribute evenly, prompting Hive to initiate the autobalancing procedure.

Diagnostics

1. See if the Tablets moved by Hive chart in the DB status Grafana dashboard shows any spikes.

 This chart displays the time-series data for the number of tablets moved per second.

2. See the Hive balancer stats.

2.1. Open Embedded UI.

2.2. Click Developer UI in the upper right corner of the Embedded UI.

2.3. In the Developer UI, navigate to Tablets > Hive > App.

See the balancer stats in the upper right corner.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_ydb_tablets-moved
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_ydb_tablets-moved_diagnostics
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_hive
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_observability_metrics_grafana-dashboards_dbstatus
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_embedded-ui_index

2.4. Additionally, to see the recently moved tablets, click the Balancer button.

The Balancer window will appear. The list of recently moved tablets is displayed in the Latest tablet moves section.

Recommendations

Adjust Hive balancer settings:

1. Open Embedded UI.

2. Click Developer UI in the upper right corner of the Embedded UI.

3. In the Developer UI, navigate to Tablets > Hive > App.

4. Click Settings.

5. To reduce the likelihood of overly frequent balancing, increase the following Hive balancer thresholds:

Parameter Description Default
value

MinCounterScatterToBalance The threshold for the counter scatter value. When this value is reached, Hive
starts balancing the load.

0.02

MinCPUScatterToBalance The threshold for the CPU scatter value. When this value is reached, Hive starts
balancing the load.

0.5

MinMemoryScatterToBalance The threshold for the memory scatter value. When this value is reached, Hive
starts balancing the load.

0.5

MinNetworkScatterToBalance The threshold for the network scatter value. When this value is reached, Hive
starts balancing the load.

0.5

MaxNodeUsageToKick The threshold for the node resource usage. When this value is reached, Hive
starts emergency balancing.

0.9

ObjectImbalanceToBalance The threshold for the database object imbalance metric. 0.02

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_ydb_tablets-moved_recommendations
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_index

Note

These parameters use relative values, where 1.0 represents 100% and effectively disables balancing. If the total hardware
resource value can exceed 100%, adjust the ratio accordingly.

Overloaded shards
Data shards serving row-oriented tables may become overloaded for the following reasons:

A table is created without the AUTO_PARTITIONING_BY_LOAD clause.

In this case, YDB does not split overloaded shards.

Data shards are single-threaded and process queries sequentially. Each data shard can accept up to 10,000 operations. Accepted queries wait
for their turn to be executed. So the longer the queue, the higher the latency.

If a data shard already has 10000 operations in its queue, new queries will return an "overloaded" error. Retry such queries using a
randomized exponential back-off strategy. For more information, see Overloaded errors.

A table was created with the AUTO_PARTITIONING_MAX_PARTITIONS_COUNT setting and has already reached its partition limit.

An inefficient primary key that causes an imbalance in the distribution of queries across shards. A typical example is ingestion with a
monotonically increasing primary key, which may lead to the overloaded "last" partition. For example, this could occur with an
autoincrementing primary key using the serial data type.

Diagnostics

1. Use the Embedded UI or Grafana to see if the YDB nodes are overloaded:

In the DB overview Grafana dashboard, analyze the Overloaded shard count chart.

The chart indicates whether the YDB cluster has overloaded shards, but it does not specify which table's shards are overloaded.

Tip

Use Grafana to set up alert notifications when YDB data shards get overloaded.

In the Embedded UI:

1. Go to the Databases tab and click on the database.
2. On the Navigation tab, ensure the required database is selected.

3. Open the Diagnostics tab.

4. Open the Top shards tab.

5. In the Immediate and Historical tabs, sort the shards by the CPUCores column and analyze the information.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_schemas_overloaded-shards
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_schemas_overloaded-shards_diagnostics
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_data-shard
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_AUTO_PARTITIONING_BY_LOAD
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_queries_overloaded-errors
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_AUTO_PARTITIONING_MAX_PARTITIONS_COUNT
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_primary-key
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_observability_metrics_grafana-dashboards_dboverview
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_embedded-ui_index

Additionally, the information about overloaded shards is provided as a system table. For more information, see History of overloaded
partitions.

2. To pinpoint the schema issue, use the Embedded UI or YDB CLI:

In the Embedded UI:

1. On the Databases tab, click on the database.

2. On the Navigation tab, select the required table.
3. Open the Diagnostics tab.

4. On the Describe tab, navigate to root > PathDescription > Table > PartitionConfig > PartitioningPolicy .

5. Analyze the PartitioningPolicy values:

SizeToSplit

SplitByLoadSettings

MaxPartitionsCount

If the table does not have these options, see Recommendations for table configuration.

Note

You can also find this information on the Diagnostics > Info tab.

In the YDB CLI:

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#dev_system-views_top-overload-partitions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_embedded-ui_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_ydb-cli_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_embedded-ui_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_overloaded-shards_table-config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_ydb-cli_index

1. To retrieve information about the problematic table, run the following command:

2. In the command output, analyze the Auto partitioning settings:

Partitioning by size

Partitioning by load

Max partitions count

If the table does not have these options, see Recommendations for table configuration.

3. Analyze whether primary key values increment monotonically:

Check the data type of the primary key column. Serial data types are used for autoincrementing values.

Check the application logic.

Calculate the difference between the minimum and maximum values of the primary key column. Then compare this value to the number
of rows in a given table. If these values match, the primary key might be incrementing monotonically.

If primary key values do increase monotonically, see Recommendations for the imbalanced primary key.

Recommendations

For table configuration

Consider the following solutions to address shard overload:

If the problematic table is not partitioned by load, enable partitioning by load.

Tip

A table is not partitioned by load, if you see the Partitioning by load: false line on the Diagnostics > Info tab in the
Embedded UI or the ydb scheme describe command output.

If the table has reached the maximum number of partitions, increase the partition limit.

Tip

To determine the number of partitions in the table, see the PartCount value on the Diagnostics > Info tab in the Embedded UI.

Both operations can be performed by executing an ALTER TABLE ... SET query.

For the imbalanced primary key

Consider modifying the primary key to distribute the load evenly across table partitions. You cannot change the primary key of an existing table. To
do that, you will have to create a new table with the modified primary key and then migrate the data to the new table.

Note

Also, consider changing your application logic for generating primary key values for new rows. For example, use hashes of values
instead of values themselves.

Example

For a practical demonstration of how to follow these instructions, see Overloaded shard example.

ydb scheme describe <table_name>

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_schemas_overloaded-shards_recommendations
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_schemas_overloaded-shards_table-config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_schemas_overloaded-shards_pk-recommendations
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_schemas_overloaded-shards_example
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_overloaded-shards_table-config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_overloaded-shards_pk-recommendations
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_set
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_examples_schemas_overloaded-shard-simple-case

Excessive tablet splits and merges

Warning

Supported only for row-oriented tables. Support for column-oriented tables is currently under development.

Each row-oriented table partition in YDB is processed by a data shard tablet. YDB supports automatic splitting and merging of data shards which
allows it to seamlessly adapt to changes in workloads. However, these operations are not free and might have a short-term negative impact on
query latencies.

When YDB splits a partition, it replaces the original partition with two new partitions covering the same range of primary keys. Now, two data shards
process the range of primary keys that was previously handled by a single data shard, thereby adding more computing resources for the table.

By default, YDB splits a table partition when it reaches 2 GB in size. However, it's recommended to also enable partitioning by load, allowing YDB to
split overloaded partitions even if they are smaller than 2 GB.

A scheme shard takes approximately 15 seconds to assess whether a data shard requires splitting. By default, the CPU usage threshold for splitting
a data shard is set at 50%.

When YDB merges adjacent partitions in a row-oriented table, they are replaced with a single partition that covers their range of primary keys. TThe
corresponding data shards are also consolidated into a single data shard to manage the new partition.

For merging to occur, data shards must have existed for at least 10 minutes, and their CPU usage over the last hour must not exceed 35%.

When configuring table partitioning, you can also set limits for the minimum and maximum number of partitions. If the difference between the
minimum and maximum limits exceeds 20% and the table load varies significantly over time, Hive may start splitting overloaded tables and then
merging them back during periods of low load.

Diagnostics

1. See if the Split / Merge partitions chart in the DB status Grafana dashboard shows any spikes.

 This chart displays the time-series data for the following values:

 - Number of split table partitions per second (blue)
 - Number of merged table partitions per second (green)

2. Check whether the user load increased when the tablet splits and merges spiked.
Review the diagrams on the DataShard dashboard in Grafana for any changes in the volume of data read or written by queries.

Examine the Requests chart on the Query engine dashboard in Grafana for any spikes in the number of requests.

3. To identify recently split or merged tablets, follow these steps:

3.1. In the Embedded UI, click the Developer UI link in the upper right corner.

3.2. Navigate to Node Table Monitor > All tablets of the cluster.
3.3. To show only data shard tablets, in the TabletType filter, specify DataShard .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_schemas_splits-merges
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_schemas_splits-merges_diagnostics
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_concepts_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_data-shard
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_partitioning
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_scheme-shard
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_partitioning
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_auto_partitioning_min_partitions_count
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_auto_partitioning_max_partitions_count
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_hive
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_observability_metrics_grafana-dashboards_dbstatus
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_embedded-ui_index

3.4. Sort the tablets by the ChangeTime column and review tablets, which change time values coincide with the spikes on the Split / Merge
partitions chart.

3.5. To identify the table associated with the data shard, in the data shard row, click the link in the TabletID column.

3.6. On the Tablets page, click the App link.

The information about the table is displayed in the User table <table-name> section.

4. To pinpoint the schema issue, follow these steps:

4.1. Retrieve information about the problematic table using the YDB CLI. Run the following command:

4.2. In the command output, analyze the Auto partitioning settings:

Partitioning by load

Max partitions count

Min partitions count

Recommendations

If the user load on YDB has not changed, consider adjusting the gap between the min and max limits for the number of table partitions to the
recommended 20% difference. Use the ALTER TABLE table_name SET (key = value) YQL statement to update the
AUTO_PARTITIONING_MIN_PARTITIONS_COUNT and AUTO_PARTITIONING_MAX_PARTITIONS_COUNT parameters.

If you want to avoid splitting and merging data shards, you can set the min limit to the max limit value or disable partitioning by load.

ydb scheme describe <table_name>

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_schemas_splits-merges_recommendations
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_ydb-cli_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_set
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_auto_partitioning_min_partitions_count
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_auto_partitioning_max_partitions_count

Transaction lock invalidation
YDB uses optimistic locking to find conflicts with other transactions being executed. If the locks check during the commit phase reveals conflicting
modifications, the committing transaction rolls back and must be restarted. In this case, YDB returns a transaction locks invalidated error.
Restarting a significant share of transactions can degrade your application's performance.

Note

The YDB SDK provides a built-in mechanism for handling temporary failures. For more information, see Handling errors.

Diagnostics

1. Open the DB overview Grafana dashboard.

2. See if the Transaction Locks Invalidation chart shows any spikes.

This chart shows the number of queries that returned the transaction locks invalidation error per second.

Recommendations

Consider the following recommendations:

The longer a transaction lasts, the higher the likelihood of encountering a transaction locks invalidated error.

If possible, avoid interactive transactions. A better approach is to use a single YQL query with begin; and commit; to select data, update
data, and commit the transaction.

If you do need interactive transactions, perform commit in the last query in the transaction.

Analyze the range of primary keys where conflicting modifications occur, and try to change the application logic to reduce the number of
conflicts.

For example, if a single row with a total balance value is frequently updated, split this row into a hundred rows and calculate the total balance
as a sum of these rows. This will drastically reduce the number of transaction locks invalidated errors.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_queries_transaction-lock-invalidation
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_queries_transaction-lock-invalidation_diagnostics
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_queries_transaction-lock-invalidation_recommendations
https://en.wikipedia.org/wiki/Optimistic_concurrency_control
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_error_handling
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_observability_metrics_grafana-dashboards_dboverview
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_interactive-transaction

Overloaded errors
YDB returns OVERLOADED errors in the following cases:

Overloaded table partitions with over 15000 queries in their queue.

The outbound CDC queue exceeds the limit of 10000 elements or 125 MB.

Table partitions in states other than normal, for example partitions in the process of splitting or merging.

The number of sessions with a YDB node has reached the limit of 1000.

Diagnostics

1. Open the DB overview Grafana dashboard.

2. In the API details section, see if the Soft errors (retriable) chart shows any spikes in the rate of queries with the OVERLOADED status.

3. To check if the spikes in overloaded errors were caused by exceeding the limit of 15000 queries in table partition queues:

3.1. In the Embedded UI, go to the Databases tab and click on the database.

3.2. On the Navigation tab, ensure the required database is selected.

3.3. Open the Diagnostics tab.

3.4. Open the Top shards tab.

3.5. In the Immediate and Historical tabs, sort the shards by the InFlightTxCount column and see if the top values reach the 15000 limit.

4. To check if the spikes in overloaded errors were caused by tablet splits and merges, see Excessive tablet splits and merges.

5. To check if the spikes in overloaded errors were caused by exceeding the 1000 limit of open sessions, in the Grafana DB status dashboard,
see the Session count by host chart.

6. See the overloaded shards issue.

Recommendations

If a YQL query returns an OVERLOADED error, retry the query using a randomized exponential back-off strategy. The YDB SDK provides a built-in
mechanism for handling temporary failures. For more information, see Handling errors.

Exceeding the limit of open sessions per node may indicate a problem in the application logic.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_queries_overloaded-errors
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_queries_overloaded-errors_diagnostics
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_queries_overloaded-errors_recommendations
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_cdc
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_observability_metrics_grafana-dashboards_dboverview
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_embedded-ui_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_schemas_splits-merges
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#reference_observability_metrics_grafana-dashboards_dbstatus
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_schemas_overloaded-shards
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_error_handling

Overloaded shard example
This article describes an example of how to diagnose overloaded shards and resolve the issue.

For more information about overloaded shards and their causes, see Overloaded shards.

The article begins by stating the problem. Then, we'll examine diagrams in Grafana and information on the Diagnostics tab in the Embedded UI to
solve the problem and observe the solution in action.

At the end of the article, you can find the steps to reproduce the situation.

Initial issue

You were notified that your system has started taking too long to process user requests.

Note

These requests access a row-oriented table, which is managed by data shards.

Let's examine the Latency diagrams in the DB overview Grafana dashboard to determine whether the problem is related to the YDB cluster:

The diagram shows transaction latency percentiles. At approximately 10:19:30, these values increased by two to three times.

The diagram shows a heatmap of transaction latencies. Transactions are grouped into buckets based on their latency, with each bucket
represented by a different color. This diagram displays both the number of transactions processed by YDB per second (on the vertical axis) and
the latency distribution among them (with color).

By 10:20:30, the share of transactions with the lowest latencies (Bucket 1 , dark green) had dropped by four to five times. Bucket 4 grew
by approximately five times, and a new group of slower transactions, Bucket 8 , appeared.

Indeed, the latencies have increased. Now, we need to localize the problem.

Diagnostics

Let's determine why the latencies increased. Could the cause be an increased workload? Here is the Requests diagram from the API details
section of the DB overview Grafana dashboard:

See the diagram description

See the diagram description

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_examples_schemas_overloaded-shard-simple-case
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_examples_schemas_overloaded-shard-simple-case_initial-issue
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_examples_schemas_overloaded-shard-simple-case_diagnostics
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_schemas_overloaded-shards
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_examples_schemas_overloaded-shard-simple-case_initial-issue
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_examples_schemas_overloaded-shard-simple-case_solution
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_examples_schemas_overloaded-shard-simple-case_aftermath
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_examples_schemas_overloaded-shard-simple-case_testbed
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_data-shard
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_metrics_grafana-dashboards_dboverview
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_metrics_grafana-dashboards_dboverview

The number of user requests increased from approximately 27,000 to 35,000 at around 10:20:00. But can YDB handle the increased load without
additional hardware resources?

The CPU load has increased, as shown in the CPU by execution pool diagram.

Examining the CPU Grafana dashboard reveals that CPU usage increased in the user pool and the interconnect pool:

See the details on the CPU Grafana dashboard

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_actor-system-pool

We can also observe overall CPU usage on the Diagnostics tab of the Embedded UI:

The YDB cluster appears not to utilize all of its CPU capacity.

By inspecting the DataShard and DataShard details sections of the DB overview Grafana dashboard, we can see that after the cluster load
increased, one of its data shards became overloaded.

This diagram shows that the number of rows read per second in the YDB database increased from approximately 26,000 to 33,500 rows per
second.

See the diagram description

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_embedded-ui_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_metrics_grafana-dashboards_dboverview

This diagram shows a heatmap of data shard distribution by workload. Data shards are grouped into ten buckets based on the ratio of their
current workload to full computing capacity. This allows you to see how many data shards your YDB cluster currently runs and how loaded they
are.

The diagram shows only one data shard whose workload changed at approximately 10:19:30—the data shard moved to Bucket 70 , which
contains shards loaded to between 60% and 70% of their capacity.

Similar to the previous diagram, the Overloaded shard count is a heatmap of data shard distribution by load. However, it displays only data
shards with a workload exceeding 60%.

This diagram shows that the workload on one data shard increased to 70% at approximately 10:19:30.

To determine which table the overloaded data shard is processing, let's open the Diagnostics > Top shards tab in the Embedded UI:

We can see that one of the data shards processing queries for the kv_test table is loaded at 67%.

Next, let's examine the kv_test table on the Info tab:

See the diagram description

See the diagram description

Warning

The kv_test table was created with partitioning by load disabled and has only one partition.

This means that a single data shard processes all requests to this table. Since data shards are single-threaded and thus can handle
only one request at a time, this is a poor practice.

Solution

We should enable partitioning by load for the kv_test table:

1. In the Embedded UI, select the database.

2. Open the Query tab.

3. Run the following query:

Aftermath

When we enable automatic partitioning for the kv_test table, the overloaded data shard splits into two.

ALTER TABLE kv_test SET (
 AUTO_PARTITIONING_BY_LOAD = ENABLED
);

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_examples_schemas_overloaded-shard-simple-case_solution
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_examples_schemas_overloaded-shard-simple-case_aftermath

The diagram shows that the number of data shards increased at about 10:28:00. Based on the bucket color, their workload does not exceed
40%.

The overloaded shard disappeared from the diagram at approximately 10:28:00.

Now, two data shards are processing queries to the kv_test table, and neither is overloaded:

Let's confirm that latencies have returned to normal:

At approximately 10:28:00, the p50, p75, and p95 latency percentiles dropped almost to their original levels. The decrease in p99 latency is
less pronounced but still shows a twofold reduction.

See the diagram description

See the diagram description

See the diagram description

The diagram shows that transactions are now grouped into six buckets. Approximately half of the transactions have returned to Bucket 1 ,
meaning their latency is less than one millisecond. More than a third of the transactions are in Bucket 2 , with latencies between one and two
milliseconds. One-sixth of the transactions are in Bucket 4 . The sizes of the other buckets are insignificant.

The latencies are almost as low as they were before the workload increased. We did not increase the system costs by introducing additional
hardware resources. We've only enabled automatic partitioning by the load, which allowed us to use the existing resources more efficiently.

Testbed

Topology

For this example, we used a YDB cluster consisting of three servers running Ubuntu 22.04 LTS. Each server runs one storage node and three
database nodes belonging to the same database.

Hardware configuration

The servers are virtual machines with the following computing resources:

Platform: Intel Broadwell

Guaranteed vCPU performance: 100%
vCPU: 28

RAM: 32 GB

Storage:

3 x 93 GB SSD per storage node

20 GB HDD for the operating system

See the diagram description

Bucket name Latencies, ms Single overloaded data shard,

transactions per second

Multiple data shards,

transactions per second

1 0-1 2110 ▲ 16961

2 1-2 5472 ▲ 13147

4 2-4 16437 ▼ 6041

8 4-8 9430 ▼ 432

16 8-16 98.8 ▼ 52.4

32 16-32 — ▲ 0.578

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_examples_schemas_overloaded-shard-simple-case_testbed
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_examples_schemas_overloaded-shard-simple-case_topology
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_examples_schemas_overloaded-shard-simple-case_hardware-configuration
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_storage-node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_database-node

Test

The load on the YDB cluster was generated using the ydb workload CLI command. For more information, see Load testing.

To reproduce the load, follow these steps:

1. Initialize the tables for the workload test:

We deliberately disable automatic partitioning for the created tables by using the --min-partitions 1 --auto-partition 0 options.

2. Emulate the standard workload on the YDB cluster:

We ran a simple load type using a YDB database as a key-value storage. Specifically, we used the select load to create SELECT queries
and retrieve rows based on an exact match of the primary key.

The -t 100 parameter is used to run the test in 100 threads.

3. Overload the YDB cluster:

As soon as the first test ended, we ran the same load test in 250 threads to simulate the overload.

See also

Troubleshooting performance issues

Overloaded shards

Row-oriented tables

ydb workload kv init --min-partitions 1 --auto-partition 0

ydb workload kv run select -s 600 -t 100

ydb workload kv run select -s 1200 -t 250

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_examples_schemas_overloaded-shard-simple-case_test
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_examples_schemas_overloaded-shard-simple-case_see-also
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_troubleshooting_performance_schemas_overloaded-shards
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_row-oriented-tables

General questions about YDB

What is YDB?

YDB is a distributed fault-tolerant SQL DBMS. YDB offers high availability and scalability, while ensuring strong consistency and support for ACID
transactions. Queries are made using an SQL dialect (YQL).

YDB is a fully managed database. DB instances are created through the YDB database management service.

What features does YDB provide?

YDB provides high availability and data security through synchronous replication in three availability zones. YDB also ensures even load distribution
across available hardware resources. This means you don't need to order resources, YDB automatically provisions and releases resources based
on the user load.

What consistency model does YDB use?

To read data, YDB uses a model of strict data consistency.

How do I design a primary key?

To design a primary key properly, follow the rules below.

Avoid situations where most of the load falls on a single partition of a table. With even load distribution, it's easier to achieve high overall
performance.This rule implies that you shouldn't use a monotonically increasing sequence, such as timestamp, as a table's primary key.

The fewer table partitions a query uses, the faster it runs. For greater performance, follow the one query — one partition rule.

Avoid situations where a small part of the DB is under much heavier load than the rest of the DB.

For more information, see choosing a primary key.

How do I evenly distribute load across table partitions?

You can use the following techniques to distribute the load evenly across table partitions and increase overall DB performance.

To avoid using uniformly increasing primary key values, you can:

Change the order of its components.

use a hash of the key column values as the primary key.

Reduce the number of partitions used in a single query.

For more information, see choosing a primary key.

Can I use NULL in a key column?

In YDB, all columns, including key ones, may contain a NULL value, but we don't recommend using NULL as values in key columns.

Per the SQL standard (ISO/IEC 9075), you can't compare NULL with other values. Therefore, the use of concise SQL statements with simple
comparison operators may result in rows containing NULL being skipped during filtering, for example.

Is there an optimal size of a database row?

To achieve high performance, we don't recommend writing rows larger than 8 MB and key columns larger than 2 KB to the DB.

For more information about limits, see Database limits.

How are secondary indexes used in YDB?

Secondary indexes in YDB are global and can be non-unique.

For more information, see Secondary indexes.

How are paginated results printed?

To print paginated results, we recommend selecting data sorted by primary key sequentially, limiting the number of rows with the LIMIT keyword.
We do not recommend using the OFFSET keyword to solve this problem.

For more information, see Paginated results.

How do I delete expired data?

To efficiently delete outdated data, we recommend using TTL.

Syncing two data centers in geographically distributed clusters

The lead tablet writes data to a distributed network storage that saves copies to several data centers. YDB does not commit a user query until after
the required number of copies are saved to the required number of data centers.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_common
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_common_what-is-ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_common_ydb-features
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_common_ydb-consistency
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_common_create-pk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_common_balance-shard-load
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_common_null
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_common_string-size
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_common_secondary_indexes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_common_paging
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_common_ttl
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_common_sinc-between-dc
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_datamodel_table_partitioning
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#dev_primary-key_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#dev_primary-key_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_limits-ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_secondary_indexes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#dev_paging
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_ttl
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_glossary_tablet
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_glossary_distributed-storage

SDK

What should I do if the SDK crashes when shutting down an application?

Make sure not to wrap SDK components in a singleton, since their lifetime shouldn't exceed the execution time of the main() function. When a
client is destroyed, session pools are emptied, so network navigation is required. But gRPC contains global static variables that might already be
destroyed by this time. This disables gRPC. If you need to declare a driver as a global object, invoke the Stop(true) function on the driver before
exiting the main() function.

What should I do if, when using a fork() system call, a program does not work properly in a child process?

Using fork() in multithreaded applications is an antipattern. Since both the SDK and the gRPC library are multithreaded applications, their
stability is not guaranteed.

What do I do if I get the "Active sessions limit exceeded" error even though the current number of active
sessions is within limits?

The limit applies to the number of active sessions. An active session is a session passed to the client to be used in its code. A session is returned to
the pool in a destructor. In this case, the session itself is a replicated object. You may have saved a copy of the session in the code.

Is it possible to make queries to different databases from the same application?

Yes, the C++ SDK lets you override the DB parameters and token when creating a client. There is no need to create separate drivers.

What should I do if a VM has failed and it's impossible to make a query?

To detect that a VM is unavailable, set a client timeout. All queries contain the client timeout parameters. The timeout value should be an order of
magnitude greater than the expected query execution time.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_sdk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_sdk_what-to-do-if-the-sdk-crashes-urgently-when-the-app-is-shut-down
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_sdk_program-does-not-work-correctly-when-calling-fork
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_sdk_active-sessions-does-not-exceed-the-limit
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_sdk_make-requests-to-different-databases-from-the-same-application
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_sdk_vms-failed-and-you-cant-make-a-request

Errors

Possible causes for "Status: OVERLOADED Error: Pending previous query completion" in the C++ SDK

Q: When running two queries, I try to get a response from the future method of the second one. It returns: Status: OVERLOADED Why: <main>:
Error: Pending previous query completion .

A: Sessions in the SDK are single-threaded. To run multiple queries at once, you need to create multiple sessions.

What do I do if I frequently get the "Transaction locks invalidated" error?

Typically, if you get this error, repeat a transaction, as YDB uses optimistic locking. If this error occurs frequently, this is the result of a transaction
reading a large number of rows or of many transactions competing for the same "hot" rows. It makes sense to view the queries running in the
transaction and check if they're reading unnecessary rows.

What causes the "Exceeded maximum allowed number of active transactions" error?

The logic on the client side should try to keep transactions as short as possible.

No more than 10 active transactions are allowed per session. When starting a transaction, use either the commit flag for autocommit or an explicit
commit/rollback.

What do I do if I get the Datashard: Reply size limit exceeded error in response to a query?

This error means that, as a query was running, one of the participating data shards attempted to return over 50 MB of data, which exceeds the
allowed limit.

Recommendations:

A general recommendation is to reduce the amount of data processed in a transaction.

If a query involves a Join , it's a good idea to make sure that the method used is Index lookup Join.

If a simple selection is performed, make sure that it is done by keys, or add LIMIT in the query.

What do I do is I get the "Datashard program size limit exceeded" in response to a query?

This error means that the size of a program (including parameter values) exceeded the 50-MB limit for one of the data shards. In most cases, this
indicates an attempt to write over 50 MB of data to database tables in a single transaction. All modifying operations in a transaction such as
UPSERT , REPLACE , INSERT , or UPDATE count as records.

You need to reduce the total size of records in one transaction. Normally, we don't recommend combining queries that logically don't require
transactionality in a single transaction. When adding/updating data in batches, we recommend reducing the size of one batch to values not
exceeding a few megabytes.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_errors
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_errors_possible-causes-for-status-overloaded-error-pending-previous-query-completion-in-the-c-sdk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_errors_locks-invalidated
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_errors_exceed-number-transactions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_errors_reply-size-exceeded
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_errors_program-size-exceeded
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_index-lookup-join

YQL

General questions

How do I select table rows by a list of keys?

You can select table rows based on a specified list of table primary key (or key prefix) values using the IN operator:

If a selection is made using a composite key, the query parameter must have the type of a list of tuples:

To select rows effectively, make sure that the value types in the parameters match the key column types in the table.

Is search by index performed for conditions containing the LIKE operator?

You can only use the LIKE operator to search a table index if it specifies a row prefix:

Why does a query return only 1000 rows?

1000 rows is the response size limit per YQL query. If a response is shortened, it is flagged as Truncated . To output more table rows, you can use
paginated output or the ReadTable operation.

How to escape quotes of JSON strings when adding them to a table?

Consider an example with two possible options for adding a JSON string to a table:

To insert a value in the first line, use raw string and the escape method using \" . To insert the second line, escaping through \\\" is used.

We recommend using raw string and the escape method using \" , as it is more visual.

How do I update only those values whose keys are not in the table?

You can use the LEFT JOIN operator to identify the keys a table is missing and update their values:

Join operations

Are there any specific features of Join operations?

A Join in YDB is performed using one of the two methods below:

Common Join.

Index Lookup Join.

DECLARE $keys AS List<UInt64>;

SELECT * FROM some_table
WHERE Key1 IN $keys;

DECLARE $keys AS List<Tuple<UInt64, String>>;

SELECT * FROM some_table
WHERE (Key1, Key2) IN $keys;

SELECT * FROM string_key_table
WHERE Key LIKE "some_prefix%";

UPSERT INTO test_json(id, json_string)
VALUES
 (1, Json(@@[{"name":"Peter \"strong cat\" Kourbatov"}]@@)),
 (2, Json('[{"name":"Peter \\\"strong cat\\\" Kourbatov"}]'))
;

DECLARE $values AS List<Struct<Key: UInt64, Value: String>>;

UPSERT INTO kv_table
SELECT v.Key AS Key, v.Value AS Value
FROM AS_TABLE($values) AS v
LEFT JOIN kv_table AS t
ON v.Key = t.Key
WHERE t.Key IS NULL;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_yql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_yql_common
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_yql_explicit-keys
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_yql_like-index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_yql_result-rows-limit
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_yql_escaping-quotes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_yql_update-non-existent
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_yql_joins
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_yql_join-operations
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#dev_paging

Common Join

The contents of both tables (to the left and to the right of Join) are sent to the requesting node which applies the operation to the totality of the
data. This is the most generic way of performing a Join that is used whenever other optimizations are unavailable. For large tables, this method is
either slow or doesn't work in general due to exceeding the data transfer limits.

Index Lookup Join

For rows on the left of Join , relevant values are looked up to the right. You use this method whenever the right part is a table and the Join key is
its primary or secondary index key prefix. In this method, limited selections are made from the right table instead of full reads. This lets you use it
when working with large tables.

Note

For most OLTP queries, we recommend using Index Lookup Join with a small size of the left part. These operations read little data and
can be performed efficiently.

How do I Join data from query parameters?

You can use query parameter data as a constant table. To do this, use the AS_TABLE modifier with a parameter whose type is a list of structures:

There is no explicit limit on the number of entries in the constant table, but mind the standard limit on the total size of query parameters (50 MB).

What's the best way to implement a query like (key1, key2) IN ((v1, v2), (v3, v4), ...)?

It's better to write it using a JOIN with a constant table:

Transactions

How efficient is it to run multiple queries in a transaction?

When multiple queries are run sequentially, the total transaction latency may be greater than when the same operations are executed within a
single query. This is primarily due to additional network latency for each query. Therefore, if a transaction doesn't need to be interactive, we
recommend formulating all operations in a single YQL query.

Is a separate query atomic?

In general, YQL queries can be executed in multiple consecutive phases. For example, a Join query can be executed in two phases: reading data
from the left and right table, respectively. This aspect is important when you run a query in a transaction with a low isolation level
(online_read_only), as in this case, data between execution phases can be updated by other transactions.

DECLARE $data AS List<Struct<Key1: UInt64, Key2: String>>;

SELECT * FROM AS_TABLE($data) AS d
INNER JOIN some_table AS t
ON t.Key1 = d.Key1 AND t.Key2 = d.Key2;

$keys = AsList(
 AsStruct(1 AS Key1, "One" AS Key2),
 AsStruct(2 AS Key1, "Three" AS Key2),
 AsStruct(4 AS Key1, "One" AS Key2)
);

SELECT t.* FROM AS_TABLE($keys) AS k
INNER JOIN table1 AS t
ON t.Key1 = k.Key1 AND t.Key2 = k.Key2;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_yql_common-join
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_yql_index-lookup-join
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_yql_constant-table-join
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_yql_key-pairs-in
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_yql_transactions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_yql_transaction-queries
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_yql_atomic-query

Questions and answers about analytics in YDB

Can YDB be used for analytical workloads (OLAP)?

Yes, it can. If this is the primary type of workload for a given table, make sure it is column-oriented.

How to choose between row-oriented and column-oriented tables?

Similarly to choosing between transactional (OLTP) and analytical (OLAP) database management systems, this question comes to a number of
trade-offs that need to be considered:

What's the main use case for the table? For mostly transactional (OLTP) workloads, use row-oriented tables. For analytical workloads
(OLAP), use column-oriented tables. Transactional workloads are characterized by a high rate of queries affecting a small number of rows
each. Analytical workloads are characterized by processing large volumes of data to produce relatively small query results.

How is the table modified? As a rule of thumb, row-oriented tables work better when data is frequently modified in place, while column-
oriented tables work better when data is mostly appended by adding new rows. Thus, row-oriented tables usually reflect the current state of a
dataset, while column-oriented tables often store a history of some sort of immutable events.

Which features are needed? Even though YDB strives for feature parity between row-oriented and column-oriented tables, there might be
current limitations to consider. Check the documentation for details on specific features intended to be used with a given table.

Unlike most other database management systems, YDB supports both row-oriented and column-oriented tables in the same database. However,
keep in mind that transactional and analytical workloads have different resource consumption patterns and might affect each other when the cluster
is overloaded.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_analytics
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_analytics_can-ydb-be-used-for-analytical-workloads-olap
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_analytics_how-to-choose-between-row-oriented-and-column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_database

All questions on one page

General questions

What is YDB?

YDB is a distributed fault-tolerant SQL DBMS. YDB offers high availability and scalability, while ensuring strong consistency and support for ACID
transactions. Queries are made using an SQL dialect (YQL).

YDB is a fully managed database. DB instances are created through the YDB database management service.

What features does YDB provide?

YDB provides high availability and data security through synchronous replication in three availability zones. YDB also ensures even load distribution
across available hardware resources. This means you don't need to order resources, YDB automatically provisions and releases resources based
on the user load.

What consistency model does YDB use?

To read data, YDB uses a model of strict data consistency.

How do I design a primary key?

To design a primary key properly, follow the rules below.

Avoid situations where most of the load falls on a single partition of a table. With even load distribution, it's easier to achieve high overall
performance.This rule implies that you shouldn't use a monotonically increasing sequence, such as timestamp, as a table's primary key.

The fewer table partitions a query uses, the faster it runs. For greater performance, follow the one query — one partition rule.

Avoid situations where a small part of the DB is under much heavier load than the rest of the DB.

For more information, see choosing a primary key.

How do I evenly distribute load across table partitions?

You can use the following techniques to distribute the load evenly across table partitions and increase overall DB performance.

To avoid using uniformly increasing primary key values, you can:

Change the order of its components.

use a hash of the key column values as the primary key.

Reduce the number of partitions used in a single query.

For more information, see choosing a primary key.

Can I use NULL in a key column?

In YDB, all columns, including key ones, may contain a NULL value, but we don't recommend using NULL as values in key columns.

Per the SQL standard (ISO/IEC 9075), you can't compare NULL with other values. Therefore, the use of concise SQL statements with simple
comparison operators may result in rows containing NULL being skipped during filtering, for example.

Is there an optimal size of a database row?

To achieve high performance, we don't recommend writing rows larger than 8 MB and key columns larger than 2 KB to the DB.

For more information about limits, see Database limits.

How are secondary indexes used in YDB?

Secondary indexes in YDB are global and can be non-unique.

For more information, see Secondary indexes.

How are paginated results printed?

To print paginated results, we recommend selecting data sorted by primary key sequentially, limiting the number of rows with the LIMIT keyword.
We do not recommend using the OFFSET keyword to solve this problem.

For more information, see Paginated results.

How do I delete expired data?

To efficiently delete outdated data, we recommend using TTL.

Syncing two data centers in geographically distributed clusters

The lead tablet writes data to a distributed network storage that saves copies to several data centers. YDB does not commit a user query until after
the required number of copies are saved to the required number of data centers.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_common
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_what-is-ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_ydb-features
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_ydb-consistency
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_create-pk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_balance-shard-load
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_null
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_string-size
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_secondary_indexes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_paging
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_ttl
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_sinc-between-dc
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_datamodel_table_partitioning
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#dev_primary-key_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#dev_primary-key_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_limits-ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_secondary_indexes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#dev_paging
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_ttl
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_glossary_tablet
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#concepts_glossary_distributed-storage

SDK

What should I do if the SDK crashes when shutting down an application?

Make sure not to wrap SDK components in a singleton, since their lifetime shouldn't exceed the execution time of the main() function. When a
client is destroyed, session pools are emptied, so network navigation is required. But gRPC contains global static variables that might already be
destroyed by this time. This disables gRPC. If you need to declare a driver as a global object, invoke the Stop(true) function on the driver before
exiting the main() function.

What should I do if, when using a fork() system call, a program does not work properly in a child process?

Using fork() in multithreaded applications is an antipattern. Since both the SDK and the gRPC library are multithreaded applications, their
stability is not guaranteed.

What do I do if I get the "Active sessions limit exceeded" error even though the current number of active
sessions is within limits?

The limit applies to the number of active sessions. An active session is a session passed to the client to be used in its code. A session is returned to
the pool in a destructor. In this case, the session itself is a replicated object. You may have saved a copy of the session in the code.

Is it possible to make queries to different databases from the same application?

Yes, the C++ SDK lets you override the DB parameters and token when creating a client. There is no need to create separate drivers.

What should I do if a VM has failed and it's impossible to make a query?

To detect that a VM is unavailable, set a client timeout. All queries contain the client timeout parameters. The timeout value should be an order of
magnitude greater than the expected query execution time.

Errors

Possible causes for "Status: OVERLOADED Error: Pending previous query completion" in the C++ SDK

Q: When running two queries, I try to get a response from the future method of the second one. It returns: Status: OVERLOADED Why: <main>:
Error: Pending previous query completion .

A: Sessions in the SDK are single-threaded. To run multiple queries at once, you need to create multiple sessions.

What do I do if I frequently get the "Transaction locks invalidated" error?

Typically, if you get this error, repeat a transaction, as YDB uses optimistic locking. If this error occurs frequently, this is the result of a transaction
reading a large number of rows or of many transactions competing for the same "hot" rows. It makes sense to view the queries running in the
transaction and check if they're reading unnecessary rows.

What causes the "Exceeded maximum allowed number of active transactions" error?

The logic on the client side should try to keep transactions as short as possible.

No more than 10 active transactions are allowed per session. When starting a transaction, use either the commit flag for autocommit or an explicit
commit/rollback.

What do I do if I get the Datashard: Reply size limit exceeded error in response to a query?

This error means that, as a query was running, one of the participating data shards attempted to return over 50 MB of data, which exceeds the
allowed limit.

Recommendations:

A general recommendation is to reduce the amount of data processed in a transaction.

If a query involves a Join , it's a good idea to make sure that the method used is Index lookup Join.

If a simple selection is performed, make sure that it is done by keys, or add LIMIT in the query.

What do I do is I get the "Datashard program size limit exceeded" in response to a query?

This error means that the size of a program (including parameter values) exceeded the 50-MB limit for one of the data shards. In most cases, this
indicates an attempt to write over 50 MB of data to database tables in a single transaction. All modifying operations in a transaction such as
UPSERT , REPLACE , INSERT , or UPDATE count as records.

You need to reduce the total size of records in one transaction. Normally, we don't recommend combining queries that logically don't require
transactionality in a single transaction. When adding/updating data in batches, we recommend reducing the size of one batch to values not
exceeding a few megabytes.

YQL

General questions

How do I select table rows by a list of keys?

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_SDK
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_what-to-do-if-the-sdk-crashes-urgently-when-the-app-is-shut-down
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_program-does-not-work-correctly-when-calling-fork
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_active-sessions-does-not-exceed-the-limit
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_make-requests-to-different-databases-from-the-same-application
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_vms-failed-and-you-cant-make-a-request
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_errors
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_possible-causes-for-status-overloaded-error-pending-previous-query-completion-in-the-c-sdk
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_locks-invalidated
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_exceed-number-transactions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_reply-size-exceeded
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_program-size-exceeded
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_yql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_common
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_explicit-keys
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_index-lookup-join

You can select table rows based on a specified list of table primary key (or key prefix) values using the IN operator:

If a selection is made using a composite key, the query parameter must have the type of a list of tuples:

To select rows effectively, make sure that the value types in the parameters match the key column types in the table.

Is search by index performed for conditions containing the LIKE operator?

You can only use the LIKE operator to search a table index if it specifies a row prefix:

Why does a query return only 1000 rows?

1000 rows is the response size limit per YQL query. If a response is shortened, it is flagged as Truncated . To output more table rows, you can use
paginated output or the ReadTable operation.

How to escape quotes of JSON strings when adding them to a table?

Consider an example with two possible options for adding a JSON string to a table:

To insert a value in the first line, use raw string and the escape method using \" . To insert the second line, escaping through \\\" is used.

We recommend using raw string and the escape method using \" , as it is more visual.

How do I update only those values whose keys are not in the table?

You can use the LEFT JOIN operator to identify the keys a table is missing and update their values:

Join operations

Are there any specific features of Join operations?

A Join in YDB is performed using one of the two methods below:

Common Join.

Index Lookup Join.

Common Join

The contents of both tables (to the left and to the right of Join) are sent to the requesting node which applies the operation to the totality of the
data. This is the most generic way of performing a Join that is used whenever other optimizations are unavailable. For large tables, this method is
either slow or doesn't work in general due to exceeding the data transfer limits.

DECLARE $keys AS List<UInt64>;

SELECT * FROM some_table
WHERE Key1 IN $keys;

DECLARE $keys AS List<Tuple<UInt64, String>>;

SELECT * FROM some_table
WHERE (Key1, Key2) IN $keys;

SELECT * FROM string_key_table
WHERE Key LIKE "some_prefix%";

UPSERT INTO test_json(id, json_string)
VALUES
 (1, Json(@@[{"name":"Peter \"strong cat\" Kourbatov"}]@@)),
 (2, Json('[{"name":"Peter \\\"strong cat\\\" Kourbatov"}]'))
;

DECLARE $values AS List<Struct<Key: UInt64, Value: String>>;

UPSERT INTO kv_table
SELECT v.Key AS Key, v.Value AS Value
FROM AS_TABLE($values) AS v
LEFT JOIN kv_table AS t
ON v.Key = t.Key
WHERE t.Key IS NULL;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_like-index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_result-rows-limit
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_escaping-quotes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_update-non-existent
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_joins
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_join-operations
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_common-join
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#dev_paging

Index Lookup Join

For rows on the left of Join , relevant values are looked up to the right. You use this method whenever the right part is a table and the Join key is
its primary or secondary index key prefix. In this method, limited selections are made from the right table instead of full reads. This lets you use it
when working with large tables.

Note

For most OLTP queries, we recommend using Index Lookup Join with a small size of the left part. These operations read little data and
can be performed efficiently.

How do I Join data from query parameters?

You can use query parameter data as a constant table. To do this, use the AS_TABLE modifier with a parameter whose type is a list of structures:

There is no explicit limit on the number of entries in the constant table, but mind the standard limit on the total size of query parameters (50 MB).

What's the best way to implement a query like (key1, key2) IN ((v1, v2), (v3, v4), ...)?

It's better to write it using a JOIN with a constant table:

Transactions

How efficient is it to run multiple queries in a transaction?

When multiple queries are run sequentially, the total transaction latency may be greater than when the same operations are executed within a
single query. This is primarily due to additional network latency for each query. Therefore, if a transaction doesn't need to be interactive, we
recommend formulating all operations in a single YQL query.

Is a separate query atomic?

In general, YQL queries can be executed in multiple consecutive phases. For example, a Join query can be executed in two phases: reading data
from the left and right table, respectively. This aspect is important when you run a query in a transaction with a low isolation level
(online_read_only), as in this case, data between execution phases can be updated by other transactions.

Analytics

Can YDB be used for analytical workloads (OLAP)?

Yes, it can. If this is the primary type of workload for a given table, make sure it is column-oriented.

How to choose between row-oriented and column-oriented tables?

Similarly to choosing between transactional (OLTP) and analytical (OLAP) database management systems, this question comes to a number of
trade-offs that need to be considered:

What's the main use case for the table? For mostly transactional (OLTP) workloads, use row-oriented tables. For analytical workloads
(OLAP), use column-oriented tables. Transactional workloads are characterized by a high rate of queries affecting a small number of rows
each. Analytical workloads are characterized by processing large volumes of data to produce relatively small query results.

How is the table modified? As a rule of thumb, row-oriented tables work better when data is frequently modified in place, while column-
oriented tables work better when data is mostly appended by adding new rows. Thus, row-oriented tables usually reflect the current state of a
dataset, while column-oriented tables often store a history of some sort of immutable events.

Which features are needed? Even though YDB strives for feature parity between row-oriented and column-oriented tables, there might be
current limitations to consider. Check the documentation for details on specific features intended to be used with a given table.

DECLARE $data AS List<Struct<Key1: UInt64, Key2: String>>;

SELECT * FROM AS_TABLE($data) AS d
INNER JOIN some_table AS t
ON t.Key1 = d.Key1 AND t.Key2 = d.Key2;

$keys = AsList(
 AsStruct(1 AS Key1, "One" AS Key2),
 AsStruct(2 AS Key1, "Three" AS Key2),
 AsStruct(4 AS Key1, "One" AS Key2)
);

SELECT t.* FROM AS_TABLE($keys) AS k
INNER JOIN table1 AS t
ON t.Key1 = k.Key1 AND t.Key2 = k.Key2;

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_index-lookup-join
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_constant-table-join
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_key-pairs-in
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_transactions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_transaction-queries
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_atomic-query
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_analytics
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_can-ydb-be-used-for-analytical-workloads-olap
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_faq_all_how-to-choose-between-row-oriented-and-column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_column-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_row-oriented-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_column-oriented-tables

Unlike most other database management systems, YDB supports both row-oriented and column-oriented tables in the same database. However,
keep in mind that transactional and analytical workloads have different resource consumption patterns and might affect each other when the cluster
is overloaded.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_database

Videos
Video recordings from conferences and webinars. The materials are divided by categories and tagged:

Overview

– overview materials that introduce YDB and the technologies used in it.

Use cases

– use cases of YDB.

Practice

– best practices for using YDB.

Database internals

– a detailed analysis of the internal implementation of YDB or its individual parts and mechanisms.

Releases

– an overview of new features and released versions of YDB.

Testing

– performance testing cases of YDB and comparisons with other similar-class DBMSs.

General

– generic materials.

2025

Designing YDB: Constructing a Distributed cloud-native DBMS for OLTP and OLAP from the Ground Up

Database internals

Distributed systems are great in multiple aspects: they are built to be fault-tolerant and reliable, can scale almost infinitely, provide low latency in
geo-distributed scenarios, and, finally, they are geeky and fun to explore. YDB is a distributed SQL database that has been running in production for
years. There are installations with thousands of servers storing petabytes of data. To provide these capabilities, any distributed DBMS must achieve
consistency and consensus while tolerating unreliable networks, faulty hardware, and the absence of a global clock.

In this session, we will briefly introduce the problems, challenges, and fallacies of distributed computing, explaining why sharded systems like Citus
are not always ACID and differ from truly distributed systems. Then, we will dive deep into the design decisions made by YDB to address these
difficulties and outline YDB's architecture layer by layer, from the bare metal disks and distributed storage up to OLTP and OLAP functionalities.
Ultimately, we will briefly compare our approach with Calvin's, which initially inspired YDB, and Spanner.

Evgenii Ivanov (Senior developer) discussed the architecture of YDB, focusing on building a unified platform for fault-tolerant and reliable OLTP and
OLAP processing.

The presentation will be of interest to developers of high-load systems and platform developers for various purposes.

Slides

YDB: How to implement streaming RAG in a distributed database

Database internals

Extracting real-time insights from multi-modal data streams across diverse domains presents an ongoing challenge. A promising solution lies in the
implementation of Streaming Retrieval-Augmented Generation (RAG) techniques. YDB enhances this approach by offering robust services for both
streaming and vector search, facilitating more efficient and effective data processing and retrieval.
YDB is a versatile open-source Distributed SQL Database that combines high availability and scalability with strong consistency and ACID
transactions.

Alexander Zevaykin (Team leader) and Elena Kalinina (Technical Project Manager) discussed an approach to implementing streaming RAG in YDB.

The presentation will be of interest to developers of high-load systems and platform developers for various purposes.

Slides

Sharded and Distributed Are Not the Same: What You Must Know When PostgreSQL Is Not Enough

Testing

It's no secret that PostgreSQL is extremely efficient and scales vertically well. At the same time, it isn't a secret that PostgreSQL scales only
vertically, meaning its performance is limited by the capabilities of a single server. Most Citus-like solutions allow the database to be sharded, but a
sharded database is not distributed and does not provide ACID guarantees for distributed transactions. The common opinion about distributed
DBMSs is diametrically opposed: they are believed to scale well horizontally and have ACID distributed transactions but have lower efficiency in
smaller installations.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_public-materials_videos
https://www.linkedin.com/in/eivanov89/
https://presentations.ydb.tech/2025/en/fossasia/designing_ydb/presentation.pdf
https://www.linkedin.com/in/alexander-zevaykin-6bb8162bb/
https://www.linkedin.com/in/elena-kalinina-2907b398/
https://presentations.ydb.tech/2025/en/fossasia/streaming_rag/presentation.pdf

When comparing monolithic and distributed DBMSs, discussions often focus on architecture but rarely provide specific performance metrics. This
presentation, on the other hand, is entirely based on an empirical study of this issue. Our approach is simple: Evgenii Ivanov (Senior developer)
installed PostgreSQL and distributed DBMSs on identical clusters of three physical servers and compared them using the popular TPC-C
benchmark.

The presentation will be of interest to developers of high-load systems and platform developers for various purposes.

Slides

Designing YDB: Constructing a Distributed cloud-native DBMS for OLTP and OLAP from the Ground Up

Database internals

Distributed systems offer multiple advantages: they are built to be fault-tolerant and reliable, can scale almost infinitely, provide low latency in geo-
distributed scenarios, and, finally, are geeky and fun to explore. YDB is an open-source distributed SQL database that has been running in
production for years. Some installations include thousands of servers storing petabytes of data. To provide these capabilities, any distributed DBMS
must achieve consistency and consensus while tolerating unreliable networks, faulty hardware, and the absence of a global clock.

In this session, we will provide a gentle introduction to the problems, challenges, and fallacies of distributed computing, explaining why sharded
systems like Citus are not always ACID-compliant and how they differ from truly distributed systems. Then, we will dive deep into the design
decisions made by YDB to address these difficulties and outline YDB's architecture layer by layer—from bare metal disks and distributed storage to
OLTP and OLAP functionalities. Finally, we will briefly compare our approach with that of Calvin, which originally inspired YDB, and Spanner.

Evgenii Ivanov (Senior developer) discussed the architecture of YDB, focusing on building a unified platform for fault-tolerant and reliable OLTP and
OLAP processing.

The presentation will be of interest to developers of high-load systems and platform developers for various purposes.

Slides

2024

Introducing YDB, a Distributed SQL DBMS for mission-critical workloads

Overview

YDB is a versatile open-source Distributed SQL Database that combines high availability and scalability with strong consistency and ACID
transactions. It accommodates transactional (OLTP), analytical (OLAP), and streaming workloads simultaneously. It is publicly available under
Apache 2.0, one of the most permissive open-source licenses. In this talk at IndiaFOSS 2024, Ivan Blinkov (VP, Product and Open Source)
introduces the system and explains how it can be used to build reliable data-driven applications that implement business-critical processes.

Slides

Working with Raw Disk Drives in Kubernetes — YDB's Experience | 在Kubernetes中使用原始磁盘驱动器——
YDB的经验

Database internals

YDB is an open-source distributed database management system that, for performance reasons, uses raw disk drives (block devices) to store all
data without any filesystem. It was relatively straightforward to manage such a setup in the bare-metal world of the past, but the dynamic nature of
cloud-native environments introduced new challenges to keep this performance benefit. In this talk at KubeCon + CloudNativeCon + Open Source
Summit Hong Kong, Ivan Blinkov (VP, Product and Open Source) explores how to leverage Kubernetes and the Operator design pattern to
modernize how stateful distributed database clusters are managed without changing the primary approach to how the data is physically stored.

YDB是一个开源的分布式数据库管理系统，为了性能考虑，使用原始磁盘驱动器（块设备）存储所有数据，而不使用任何文件系统。在过去的裸金属
世界中管理这样的设置相对比较简单，但云原生环境的动态特性引入了新的挑战，以保持这种性能优势。在这次演讲中，我们将探讨如何利用

Kubernetes和运算符设计模式来现代化管理有状态的分布式数据库集群，而不改变数据物理存储的主要方法。

Slides

YDB: extending a Distributed SQL DBMS with PostgreSQL compatibility

Database internals

PostgreSQL is an implementation of SQL standard with one of the most vibrant ecosystems around it. To leverage all the tools and libraries that
already know how to work with PostgreSQL, emerging database management systems that bring something new to the market need to learn how
to mimic PostgreSQL. In this talk at COSCUP 2024 Ivan Blinkov (VP, Product and Open Source) explores possible approaches to this and related
trade-offs, as well as reasoning why YDB chose a unique approach to bring serializable consistency and seamless scalability to the PostgreSQL
ecosystem.

Note

The video will be available later.

The presentation is suitable for people interested in trade-offs during implementation of PostgreSQL-compatible DBMS.

Slides

YDB: dealing with Big Data and moving towards AI

https://www.linkedin.com/in/eivanov89/
https://presentations.ydb.tech/2025/en/pgconfin2025/sharded_and_distributed_are_not_the_same/presentation.pdf
https://www.linkedin.com/in/eivanov89/
https://presentations.ydb.tech/2025/en/fosdem/designing_ydb/presentation.pdf
https://fossunited.org/events/indiafoss24/cfp/d2739ibjol
https://www.linkedin.com/in/ivanblinkov/
https://presentations.ydb.tech/2024/en/indiafoss/presentation.pdf
https://kccncossaidevchn2024.sched.com/event/1eYZz
https://www.linkedin.com/in/ivanblinkov/
https://presentations.ydb.tech/2024/en/kubecon_hongkong/presentation.pdf
https://coscup.org/2024/en/session/XZ98GN
https://www.linkedin.com/in/ivanblinkov/
https://presentations.ydb.tech/2024/en/coscup/presentation.pdf

General

YDB is a versatile, open-source Distributed SQL database management system that combines high availability and scalability with strong
consistency and ACID transactions. It provides services for machine learning products and goes beyond traditional vector search capabilities.

Note

The video will be available later.

This database is used for industrial operations within Yandex. Among its clients are Yandex Market, Yandex Alice, and Yandex Taxi, which are some
of the largest and most demanding AI-based applications.

The database offers true elastic scalability, capable of scaling up or down by several orders of magnitude.

Simultaneously, the database is fault-tolerant. It is designed to operate across three availability zones, ensuring continuous operation even if one of
the zones becomes unavailable. The database automatically recovers from disk failures, server failures, or data center failures, with minimal latency
disruptions to applications.

Currently, work is underway to implement accurate and approximate nearest neighbor searches for machine learning purposes.

Takeaways:

Architecture of a distributed, fault-tolerant database.

Approaches to implementing vector search on large datasets.

Slides

An approach to unite tables and persistent queues in one system

General

Database internals

People need databases to store their data and persistent queues to transfer their data from one system to another. We’ve united tables and
persisted queues within one data platform. Now you have a possibility to take your data from a queue, then process it and keep the result in a
database within a single transaction. So your application developers don’t need to think about data inconsistency in cases of connection failures or
other errors.

Elena Kalinina (Technical Project Manager) tell you about an open-source platform called YDB which allows you to work with tables and queues
within a single transaction. Elena walk you through architecture decisions, possible scenarios, and performance aspects of this approach.

Slides

YDB vs. TPC-C: the Good, the Bad, and the Ugly behind High-Performance Benchmarking

Database internals

Modern distributed databases scale horizontally with great efficiency, making them almost limitless in capacity. This implies that benchmarks should
be able to run on multiple machines and be very efficient to minimize the number of machines required. This talk will focus on benchmarking high-
performance databases, particularly emphasizing YDB and our implementation of the TPC-C benchmark, the de facto gold standard in the
database field.

First, we will speak about benchmarking strategies from a user's perspective. We will dive into key details related to benchmark implementations,
which could be useful when you create a custom benchmark to mirror your production scenarios. Throughout our performance journey, we have
identified numerous anti-patterns: there are things you should unequivocally avoid in your benchmark implementations. We'll highlight these "bad"
and "ugly" practices with illustrative examples.

Next, we'll briefly discuss the popular key-value benchmark YCSB, which is a prerequisite for robust performance in distributed transactions. We'll
then explore the TPC-C benchmark in greater detail, sharing valuable insights derived from our own implementation.

We'll conclude our talk by presenting performance results from the TPC-C benchmark, comparing YDB and CockroachDB with PostgreSQL to
illustrate situations where PostgreSQL might not be enough and when you might want to consider a distributed DBMS instead.

Evgenii Ivanov (Senior developer) discussed best high-performance benchmarking practices and some pitfalls found during TPC-C implementation,
then demonstrated TPC-C results of PostgreSQL, CockroachDB, and YDB.

The presentation will be of interest to developers of high-load systems and developers of platforms for various purposes.

Slides

Enhancing a Distributed SQL Database Engine: A Case Study on Performance Optimization

Database internals

Learn how we optimized a distributed SQL database engine, focusing on benchmark-driven improvements, and pivotal testing strategies. Alexey
Ozeritskiy (Lead Software Engineer) will talk about performance optimization of distributed SQL engine. He will discuss background information
about YDB engine itself and where it is used. The final part of his talk will be about containerization and performance.

The presentation is suitable for DBA.

Slides

https://presentations.ydb.tech/2024/en/qcon/ydb_vector_search/presentation.pdf
https://www.linkedin.com/in/elena-kalinina-2907b398/
https://presentations.ydb.tech/2024/en/stackconf/tables-and-queues/presentation.pdf
https://www.linkedin.com/in/eivanov89/
https://presentations.ydb.tech/2024/en/techinternals_cyprus/ydb_vs_tpcc/presentation.pdf
https://www.linkedin.com/in/alexey-ozeritskiy/
https://presentations.ydb.tech/2024/en/conf42_devops/presentation.pdf

Breaking out of the cage: move complex development to GitHub

General

Alexander Smirnov (Technology Expert at Nebius) shows how the YDB team moved its primary development branch from an in-house repository to
GitHub, set up independent commodity on-demand cloud infrastructure, CI processes with GitHub Actions, test management with open source and
cloud tools. Special attention will be paid to the complexities of decoupling from the corporate monorepository and build system.

The presentation is suitable for DevOps engineers (CI/CD).

Slides

2023

Scale it easy: YDB's high performance in a nutshell

Database internals

Implementing a distributed database with strong consistency isn’t difficult; ensuring speed and scalability is the challenge. YDB excels in these
aspects. In this talk, we’ll discuss YDB’s architecture and high performance, present benchmark results, and compare YDB to top competitors.

Evgenii Ivanov (Senior developer) discussed the architecture of YDB, demonstrated its high performance through benchmark results, and
compared YDB with its competitors.

The presentation will be of interest to developers of high-load systems and developers of platforms for various purposes.

Slides

YDB — an open-source distributed SQL database

Overview

YDB is used as a mission-critical database for many Internet-scale services. YDB has been designed as a platform for various data storage and
processing systems and is aimed at solving a wide range of problems. Oleg Bondar (CPO YDB) spoke about the structure of YDB, its main
features, and benefits.

The presentation is suitable for everyone who is not yet familiar with YDB.

Slides

YDB — a Distributed SQL Database

Overview

This is a recording of a guest lecture in Belgrade University at the faculty of Mathematics. In this video, we describe the reasons why distributed
SQL databases were created. Illustrate a brief history of Distributed SQL DBMS development, which products have appeared first.

Slides

2022

Parallel asynchronous replication between YDB database instances

Database internals

In this talk, we present an approach to asynchronous replication in YDB that provides the following characteristics: changefeed from the source
database is sharded among multiple persistent queues, sharded changefeed is applied to the target database in a manner that guarantees the
target database consistency.

Slides

Scalability and Fault Tolerance in YDB

In this talk, we will cover two layers of YDB: Tablet and BlobStorage, which together provide fault tolerance, scalability, and user isolation.

https://www.linkedin.com/in/alexander-smirnov-bb990434/
https://presentations.ydb.tech/2024/en/devworld/presentation.pdf
https://www.linkedin.com/in/eivanov89/
https://presentations.ydb.tech/2023/en/highload_serbia/ydb_performance/presentation.pdf
https://www.linkedin.com/in/olegbondar2000/
https://presentations.ydb.tech/2023/en/fossasia_summit/presentation.pdf
https://presentations.ydb.tech/2023/en/belgrade_lecture/presentation.pdf
https://presentations.ydb.tech/2022/en/hydra/presentation.pdf

Articles
The materials are divided by categories and tagged:

Overview

– overview materials that introduce YDB and the technologies used in it.

Use cases

– use cases of YDB.

Practice

– best practices for using YDB.

Database internals

– a detailed analysis of the internal implementation of YDB or its individual parts and mechanisms.

Releases

– an overview of new features and released versions of YDB.

Testing

– performance testing cases of YDB and comparisons with other similar-class DBMSs.

General

– generic materials.

2024

When Postgres is not enough: performance evaluation of PostgreSQL vs. Distributed DBMSs

Database internals

The research presented is the result of our joint effort and close collaboration with Evgeny Efimkin, an expert in PostgreSQL who doesn’t work on
YDB.

How we switched to Java 21 virtual threads and got a deadlock in TPC-C for PostgreSQL

Database internals

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_public-materials_articles
https://blog.ydb.tech/when-postgres-is-not-enough-performance-evaluation-of-postgresql-vs-distributed-dbmss-23bf39db2d31
https://www.linkedin.com/in/evgeny-efimkin-4061a893/

In this post, we present a case study on how we encountered a deadlock with virtual threads in TPC-C for PostgreSQL, even without the dining
philosophers problem. This post might be helpful for Java developers who are considering switching to virtual threads.

2023

Migrations in YDB using “goose”

Database internals

Any production process that works with a database will require a schema migration sooner or later. The migration updates the database’s table
structure from one version to the next. Schema migrations can be done manually by executing an ALTER TABLE query or by using specialized
tools. One such tool is called goose. In this article we see how goose provides schema management in a project and has supported YDB (a
distributed open-source database) since v3.16.0.

About prepared statements, server-side compiled query cache, or how to efficiently cache queries in YDB

Database internals

There are various ways to reduce the cost of SQL query execution in modern DBMS. The most common approaches are using prepared
statements and query caching. Both methods are available in YDB. Their functionality and benefits are discussed in this article.

https://blog.ydb.tech/how-we-switched-to-java-21-virtual-threads-and-got-deadlock-in-tpc-c-for-postgresql-cca2fe08d70b
https://blog.ydb.tech/migrations-in-ydb-using-goose-58137bc5c303
https://blog.ydb.tech/about-prepared-statements-server-side-compiled-query-cache-or-how-to-efficiently-cache-queries-in-df3af73eb001

YDB meets TPC-C: distributed transactions performance now revealed

Database internals

We are excited to present our first results of TPC-C*, which is industry-standard On-Line Transaction Processing (OLTP) benchmark. According to
these results, there are scenarios in which YDB slightly outperforms CockroachDB, another trusted and well-known distributed SQL database.

database/sql bindings for YDB in Go

Database internals

YQL is a SQL dialect with YDB specific strict types. This is great for performance and correctness, but sometimes can be a bit daunting to express
in a query, especially when they need to be parametrized externally from the application side. For instance, when a YDB query needs to be
parametrized, each parameter has name and type provided via DECLARE statement. To explore more about this and see practical examples, read
the detailed explanation in this article.

YCSB performance series: YDB, CockroachDB, and YugabyteDB

Database internals

https://blog.ydb.tech/ydb-meets-tpc-c-distributed-transactions-performance-now-revealed-42f1ed44bd73
https://www.tpc.org/tpcc/
https://blog.ydb.tech/database-sql-bindings-for-ydb-in-go-a8a2671a8696

It’s a challenge to implement a distributed database with strong consistency, ensuring high speed and scalability. YDB excels in these aspects, and
our customers can attest to this through their own experiences. Unfortunately, we have never presented any performance numbers to a broader
audience. We recognize the value of this information, and we are preparing more benchmark results to share.

https://blog.ydb.tech/ycsb-performance-series-ydb-cockroachdb-and-yugabytedb-f25c077a382b

Download YDB Open-Source Database
YDB Open-Source Database (ydbd) is an executable file for running a node in the YDB cluster. It is distributed under the Apache 2.0 license.

See also Download Yandex Enterprise Database.

Linux

Version Release date Download Changelog

v24.4

v.24.4.4.2 15.04.25 Binary file See list

v24.3

v.24.3.15.5 06.02.25 Binary file See list

v.24.3.11.14 09.01.25 Binary file See list

v.24.3.11.13 24.12.24 Binary file See list

v24.2

v.24.2.7 20.08.24 Binary file See list

v24.1

v.24.1.18 31.07.24 Binary file See list

v23.4

v.23.4.11 14.05.24 Binary file See list

v23.3

v.23.3.17 14.12.23 Binary file

v.23.3.13 12.10.23 Binary file See list

v23.2

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_ydb-open-source-database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_ydb-open-source-database_linux
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_cluster
https://github.com/ydb-platform/ydb/blob/main/LICENSE
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_yandex-enterprise-database
https://binaries.ydb.tech/release/24.4.4.2/ydbd-24.4.4.2-linux-amd64.tar.gz
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_24-4-4-2
https://binaries.ydb.tech/release/24.3.15.5/ydbd-24.3.15.5-linux-amd64.tar.gz
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_24-3-15-5
https://binaries.ydb.tech/release/24.3.11.14/ydbd-24.3.11.14-linux-amd64.tar.gz
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_24-3-11-14
https://binaries.ydb.tech/release/24.3.11.13/ydbd-24.3.11.13-linux-amd64.tar.gz
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_24-3-11-13
https://binaries.ydb.tech/release/24.2.7/ydbd-24.2.7-linux-amd64.tar.gz
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_24-2
https://binaries.ydb.tech/release/24.1.18/ydbd-24.1.18-linux-amd64.tar.gz
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_24-1
https://binaries.ydb.tech/release/23.4.11/ydbd-23.4.11-linux-amd64.tar.gz
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_23-4
https://binaries.ydb.tech/release/23.3.17/ydbd-23.3.17-linux-amd64.tar.gz
https://binaries.ydb.tech/release/23.3.13/ydbd-23.3.13-linux-amd64.tar.gz
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_23-3

Docker

v.23.2.12 14.08.23 Binary file See list

Version Release date Download Changelog

v24.4

v.24.4.4.2 15.04.25 cr.yandex/crptqonuodf51kdj7a7d/ydb:24.4.4.2 See list

v24.3

v.24.3.15.5 06.02.25 cr.yandex/crptqonuodf51kdj7a7d/ydb:24.3.15.5 See list

v.24.3.11.14 09.01.25 cr.yandex/crptqonuodf51kdj7a7d/ydb:24.3.11.14 See list

v.24.3.11.13 24.12.24 cr.yandex/crptqonuodf51kdj7a7d/ydb:24.3.11.13 See list

v24.2

v.24.2.7 20.08.24 cr.yandex/crptqonuodf51kdj7a7d/ydb:24.2.7 See list

v24.1

v.24.1.18 31.07.24 cr.yandex/crptqonuodf51kdj7a7d/ydb:24.1.18 See list

v23.4

v.23.4.11 14.05.24 cr.yandex/crptqonuodf51kdj7a7d/ydb:23.4.11 See list

v23.3

v.23.3.17 14.12.23 cr.yandex/crptqonuodf51kdj7a7d/ydb:23.3.17

v.23.3.13 12.10.23 cr.yandex/crptqonuodf51kdj7a7d/ydb:23.3.13 See list

v23.2

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_ydb-open-source-database_docker
https://binaries.ydb.tech/release/23.2.12/ydbd-23.2.12-linux-amd64.tar.gz
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_23-2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_24-4-4-2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_24-3-15-5
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_24-3-11-14
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_24-3-11-13
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_24-2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_24-1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_23-4
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_23-3

Source Code

v.23.2.12 14.08.23 cr.yandex/crptqonuodf51kdj7a7d/ydb:23.2.12 See list

Version Release date Link Changelog

v24.4

v.24.4.4.2 15.04.25 https://github.com/ydb-platform/ydb/tree/24.4.4.2 See list

v24.3

v.24.3.15.5 06.02.25 https://github.com/ydb-platform/ydb/tree/24.3.15.5 See list

v.24.3.11.14 09.01.25 https://github.com/ydb-platform/ydb/tree/24.3.11.14 See list

v.24.3.11.13 24.12.24 https://github.com/ydb-platform/ydb/tree/24.3.11.13 See list

v24.2

v.24.2.7 20.08.24 https://github.com/ydb-platform/ydb/tree/24.2.7 See list

v24.1

v.24.1.18 31.07.24 https://github.com/ydb-platform/ydb/tree/24.1.18 See list

v23.4

v.23.4.11 14.05.24 https://github.com/ydb-platform/ydb/tree/23.4.11 See list

v23.3

v.23.3.17 14.12.23 https://github.com/ydb-platform/ydb/tree/23.3.17

v.23.3.13 12.10.23 https://github.com/ydb-platform/ydb/tree/23.3.13 See list

v23.2

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_ydb-open-source-database_source-code
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_23-2
https://github.com/ydb-platform/ydb/tree/24.4.4.2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_24-4-4-2
https://github.com/ydb-platform/ydb/tree/24.3.15.5
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_24-3-15-5
https://github.com/ydb-platform/ydb/tree/24.3.11.14
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_24-3-11-14
https://github.com/ydb-platform/ydb/tree/24.3.11.13
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_24-3-11-13
https://github.com/ydb-platform/ydb/tree/24.2.7
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_24-2
https://github.com/ydb-platform/ydb/tree/24.1.18
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_24-1
https://github.com/ydb-platform/ydb/tree/23.4.11
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_23-4
https://github.com/ydb-platform/ydb/tree/23.3.17
https://github.com/ydb-platform/ydb/tree/23.3.13
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_23-3

v.23.2.12 14.08.23 https://github.com/ydb-platform/ydb/tree/23.2.12 See list

https://github.com/ydb-platform/ydb/tree/23.2.12
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_23-2

Download Yandex Enterprise Database
Yandex Enterprise Database is a commercial database management system based on the YDB core.

Yandex Enterprise Database Usage Terms

Yandex Enterprise Database is distributed under the terms of the license agreement.

Free Usage

Yandex Enterprise Database (Product) can be used free of charge under the terms of the license agreement for the following purposes:

To evaluate and study the Product's features
As part of software development and testing processes that use or embed Product functions

For training in Product administration

For learning the specifics of developing software that interacts with the Product

Commercial Usage

For commercial use of Yandex Enterprise Database, a license purchase is required, license agreement text. License prices are available upon
request.

Downloading Distributions

Yandex Enterprise Database distributions are available for download via the links below.

Linux

YDB Enterprise Server (ydbd) is an executable file for running a Yandex Enterprise Database node.

Version Release date Download Checksums Changelog

v24.3

v.24.3.13.11 06.03.2024
Distribution

Debug symbols

For distribution

For debug symbols

-

v.24.3.13.10 24.12.2024

Distribution

Debug symbols

For distribution

For debug symbols

See list

v24.2

v.24.2.7.1 20.08.2024

Distribution

Debug symbols

For distribution

For debug symbols

See list

v24.1

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_yandex-enterprise-database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_yandex-enterprise-database_yandex-enterprise-database-usage-terms
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_yandex-enterprise-database_free-usage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_yandex-enterprise-database_commercial-usage
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_yandex-enterprise-database_downloading-distributions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_yandex-enterprise-database_linux
https://ydb.yandex.ru/
https://xn--90ag1bi2d.xn--p1ai/cond/
https://xn--90ag1bi2d.xn--p1ai/cond-commercial/
https://forms.yandex.ru/surveys/13735628.a5bd9c7417fe06c03f7130d8863bed569e373119/
https://binaries.xn--90ag1bi2d.xn--p1ai/release/24.3.13.11/yasubd-24.3.13.11-linux-amd64.tar.xz
https://binaries.xn--90ag1bi2d.xn--p1ai/release/24.3.13.11/yasubd-24.3.13.11-linux-amd64-debug.tar.xz
https://binaries.xn--90ag1bi2d.xn--p1ai/release/24.3.13.11/checksums.txt
https://binaries.xn--90ag1bi2d.xn--p1ai/release/24.3.13.11/checksums.debug.txt
https://binaries.xn--90ag1bi2d.xn--p1ai/release/24.3.13.10/yasubd-24.3.13.10-linux-amd64.tar.xz
https://binaries.xn--90ag1bi2d.xn--p1ai/release/24.3.13.10/yasubd-24.3.13.10-linux-amd64-debug.tar.xz
https://binaries.xn--90ag1bi2d.xn--p1ai/release/24.3.13.10/checksums.txt
https://binaries.xn--90ag1bi2d.xn--p1ai/release/24.3.13.10/checksums.debug.txt
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_24-3
https://binaries.xn--90ag1bi2d.xn--p1ai/release/24.2.7.1/yasubd-24.2.7.1-linux-amd64.tar.xz
https://binaries.xn--90ag1bi2d.xn--p1ai/release/24.2.7.1/yasubd-24.2.7.1-linux-amd64-debug.tar.xz
https://binaries.xn--90ag1bi2d.xn--p1ai/release/24.2.7.1/checksums.txt
https://binaries.xn--90ag1bi2d.xn--p1ai/release/24.2.7.1/checksums.debug.txt
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_24-2

Docker

v.24.1.18.1 28.06.2024
Distribution

Debug symbols

For distribution

For debug symbols

See list

v23.4

v.23.4.11.1 15.05.2024 Distribution Checksums See list

v23.3

v.23.3.25.2 17.03.2024 Distribution Checksums See list

Version Release date Download Changelog

v24.3

v.24.3.13 05.12.2024 cr.yandex/crptqonuodf51kdj7a7d/ydb:24.3.11.13 See list

v24.2

v.24.2.7 20.08.2024 cr.yandex/crptqonuodf51kdj7a7d/ydb:24.2.7 See list

v24.1

v.24.1.18 31.07.2024 cr.yandex/crptqonuodf51kdj7a7d/ydb:24.1.18 See list

v23.4

v.23.4.11 14.05.24 cr.yandex/crptqonuodf51kdj7a7d/ydb:23.4.11 See list

v23.3

v.23.3.17 14.12.23 cr.yandex/crptqonuodf51kdj7a7d/ydb:23.3.17 See list

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_yandex-enterprise-database_docker
https://binaries.xn--90ag1bi2d.xn--p1ai/release/24.1.18.1/yasubd-24.1.18.1-linux-amd64.tar.xz
https://binaries.xn--90ag1bi2d.xn--p1ai/release/24.1.18.1/yasubd-24.1.18.1-linux-amd64-debug.tar.xz
https://binaries.xn--90ag1bi2d.xn--p1ai/release/24.1.18.1/checksums.txt
https://binaries.xn--90ag1bi2d.xn--p1ai/release/24.1.18.1/checksums.debug.txt
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_24-1
https://binaries.xn--90ag1bi2d.xn--p1ai/release/23.4.11.1/yasubd-23.4.11.1-linux-amd64.tar.gz
https://binaries.xn--90ag1bi2d.xn--p1ai/release/23.4.11.1/checksums.txt
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_23-4
https://binaries.xn--90ag1bi2d.xn--p1ai/release/23.3.25.2/yasubd-23.3.25.2-linux-amd64.tar.gz
https://binaries.xn--90ag1bi2d.xn--p1ai/release/23.3.25.2/checksums.txt
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_23-3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_24-3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_24-2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_24-1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_23-4
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_23-3-17

Download YDB CLI
YDB CLI (ydb) is a command-line utility for working with YDB databases.

Linux (amd64)

Linux (arm64)

v.23.3.13 12.10.23 cr.yandex/crptqonuodf51kdj7a7d/ydb:23.3.13 See list

Version Release date Download Changelog

v.2.20.0 05.03.2025 Binary file See list

v.2.19.0 05.02.2025 Binary file See list

v.2.18.0 24.12.24 Binary file See list

v.2.17.0 04.12.24 Binary file See list

v.2.16.0 26.11.24 Binary file See list

v.2.15.0 17.10.24 Binary file

v.2.14.0 03.10.24 Binary file

v.2.13.0 23.09.24 Binary file

v.2.12.0 19.09.24 Binary file

v.2.11.0 15.07.24 Binary file

v.2.10.0 24.06.24 Binary file See list

Version Release date Download Changelog

v.2.20.0 05.03.2025 Binary file See list

v.2.19.0 05.02.2025 Binary file See list

v.2.18.0 24.12.24 Binary file See list

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_ydb-cli
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_ydb-cli_linux-amd64
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_ydb-cli_linux-arm64
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_23-3
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.20.0/linux/amd64/ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-20-0
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.19.0/linux/amd64/ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-19-0
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.18.0/linux/amd64/ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-18-0
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.17.0/linux/amd64/ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-17-0
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.16.0/linux/amd64/ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-16-0
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.15.0/linux/amd64/ydb
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.14.0/linux/amd64/ydb
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.13.0/linux/amd64/ydb
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.12.0/linux/amd64/ydb
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.11.0/linux/amd64/ydb
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.10.0/linux/amd64/ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-10-0
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.20.0/linux/arm64/ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-20-0
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.19.0/linux/arm64/ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-19-0
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.18.0/linux/arm64/ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-18-0

macOS (Intel)

Use the amd64 binary file if your Mac is based on an Intel processor.

macOS (Apple Silicon)

Use the arm64 binary file if your Mac is based on an Apple Silicon processor (M1, M2, or later).

v.2.17.0 04.12.24 Binary file See list

v.2.16.0 26.11.24 Binary file See list

v.2.15.0 17.10.24 Binary file

v.2.14.0 03.10.24 Binary file

Version Release date Download Changelog

v.2.20.0 05.03.2025 Binary file See list

v.2.19.0 05.02.2025 Binary file See list

v.2.18.0 24.12.24 Binary file See list

v.2.17.0 04.12.24 Binary file See list

v.2.16.0 26.11.24 Binary file See list

v.2.15.0 17.10.24 Binary file

v.2.14.0 03.10.24 Binary file

v.2.13.0 23.09.24 Binary file

v.2.12.0 19.09.24 Binary file

v.2.11.0 15.07.24 Binary file

v.2.10.0 24.06.24 Binary file See list

Version Release date Download Changelog

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_ydb-cli_macos-intel
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_ydb-cli_macos-apple-silicon
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.17.0/linux/arm64/ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-17-0
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.16.0/linux/arm64/ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-16-0
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.15.0/linux/arm64/ydb
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.14.0/linux/arm64/ydb
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.20.0/darwin/amd64/ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-20-0
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.19.0/darwin/amd64/ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-19-0
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.18.0/darwin/amd64/ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-18-0
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.17.0/darwin/amd64/ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-17-0
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.16.0/darwin/amd64/ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-16-0
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.15.0/darwin/amd64/ydb
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.14.0/darwin/amd64/ydb
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.13.0/darwin/amd64/ydb
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.12.0/darwin/amd64/ydb
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.11.0/darwin/amd64/ydb
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.10.0/darwin/amd64/ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-10-0

Windows

v.2.20.0 05.03.2025 Binary file See list

v.2.19.0 05.02.2025 Binary file See list

v.2.18.0 24.12.24 Binary file See list

v.2.17.0 04.12.24 Binary file See list

v.2.16.0 26.11.24 Binary file See list

v.2.15.0 17.10.24 Binary file

v.2.14.0 03.10.24 Binary file

v.2.13.0 23.09.24 Binary file

v.2.12.0 19.09.24 Binary file

v.2.11.0 15.07.24 Binary file

v.2.10.0 24.06.24 Binary file See list

Version Release date Download Changelog

v.2.20.0 05.03.2025 Binary file See list

v.2.19.0 05.02.2025 Binary file See list

v.2.18.0 24.12.24 Binary file See list

v.2.17.0 04.12.24 Binary file See list

v.2.16.0 26.11.24 Binary file See list

v.2.15.0 17.10.24 Binary file

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_ydb-cli_windows
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.20.0/darwin/arm64/ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-20-0
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.19.0/darwin/arm64/ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-19-0
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.18.0/darwin/arm64/ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-18-0
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.17.0/darwin/arm64/ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-17-0
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.16.0/darwin/arm64/ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-16-0
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.15.0/darwin/arm64/ydb
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.14.0/darwin/arm64/ydb
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.13.0/darwin/arm64/ydb
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.12.0/darwin/arm64/ydb
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.11.0/darwin/arm64/ydb
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.10.0/darwin/arm64/ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-10-0
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.20.0/windows/amd64/ydb.exe
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-20-0
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.19.0/windows/amd64/ydb.exe
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-19-0
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.18.0/windows/amd64/ydb.exe
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-18-0
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.17.0/windows/amd64/ydb.exe
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-17-0
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.16.0/windows/amd64/ydb.exe
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-16-0
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.15.0/windows/amd64/ydb.exe

v.2.14.0 03.10.24 Binary file

v.2.13.0 23.09.24 Binary file

v.2.12.0 19.09.24 Binary file

v.2.11.0 15.07.24 Binary file

v.2.10.0 24.06.24 Binary file See list

https://storage.yandexcloud.net/yandexcloud-ydb/release/2.14.0/windows/amd64/ydb.exe
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.13.0/windows/amd64/ydb.exe
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.12.0/windows/amd64/ydb.exe
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.11.0/windows/amd64/ydb.exe
https://storage.yandexcloud.net/yandexcloud-ydb/release/2.10.0/windows/amd64/ydb.exe
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-10-0

Download YDB DSTool
YDB DSTool (ydb-dstool) is a command-line utility for managing the disk subsystem of a YDB cluster.

To use the utility, install ydb-dstool.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_ydb-dstool
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-dstool_install

Download YDB Ops
YDB Ops (ydbops) is a command-line utility for managing YDB clusters.

Linux

macOS (Intel)

macOS (Apple Silicon)

Version Release date Download Changelog

v0.0.14 09/12/2024 Binary file

Version Release date Download Changelog

v0.0.14 09/12/2024 Binary file

Version Release date Download Changelog

v0.0.14 09/12/2024 Binary file

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_ydb-ops
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_ydb-ops_linux
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_ydb-ops_macos-intel
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_ydb-ops_macos-apple-silicon
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydbops_index
https://github.com/ydb-platform/ydbops/releases/download/v0.0.14/ydbops
https://github.com/ydb-platform/ydbops/releases/download/v0.0.14/ydbops_darwin_amd64
https://github.com/ydb-platform/ydbops/releases/download/v0.0.14/ydbops_darwin_arm64

Download Ansible Playbooks for YDB
A set of automated playbooks for installing and maintaining the server side of open-source YDB or Yandex Enterprise Database using Ansible is
available for download via the links below. Their source code is published on GitHub under Apache 2.0 license.

Version Release date Download Checksums

v0.14 30.11.2024 ydb-ansible-0.14.zip ydb-ansible-0.14.txt

v0.10 01.08.2024 ydb-ansible-0.10.zip ydb-ansible-0.10.txt

v0.9 20.07.2024 ydb-ansible-0.9.zip ydb-ansible-0.9.txt

v0.8 10.07.2024 ydb-ansible-0.8.zip ydb-ansible-0.7.txt

v0.7 03.05.2024 ydb-ansible-0.7.zip ydb-ansible-0.7.txt

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_ydb-ansible
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_ydb-open-source-database
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_yandex-enterprise-database
https://docs.ansible.com/
https://github.com/ydb-platform/ydb-ansible
https://binaries.xn--90ag1bi2d.xn--p1ai/ansible/ydb-ansible-0.14.zip
https://binaries.xn--90ag1bi2d.xn--p1ai/ansible/ydb-ansible-0.14.txt
https://binaries.xn--90ag1bi2d.xn--p1ai/ansible/ydb-ansible-0.10.zip
https://binaries.xn--90ag1bi2d.xn--p1ai/ansible/ydb-ansible-0.10.txt
https://binaries.xn--90ag1bi2d.xn--p1ai/ansible/ydb-ansible-0.9.zip
https://binaries.xn--90ag1bi2d.xn--p1ai/ansible/ydb-ansible-0.9.txt
https://binaries.xn--90ag1bi2d.xn--p1ai/ansible/ydb-ansible-0.8.zip
https://binaries.xn--90ag1bi2d.xn--p1ai/ansible/ydb-ansible-0.8.txt
https://binaries.xn--90ag1bi2d.xn--p1ai/ansible/ydb-ansible-0.7.zip
https://binaries.xn--90ag1bi2d.xn--p1ai/ansible/ydb-ansible-0.7.txt

YDB Server changelog

Version 24.4

Version 24.4.4.2

Release date: April 15, 2025

Functionality

Enabled by default:

support for views

auto-partitioning mode for topics

transactions involving topics and row-oriented tables simultaneously

volatile distributed transactions

Added the ability to read and write to a topic using the Kafka API without authentication.

Performance

Enabled by default automatic secondary index selection for queries.

Bug Fixes

Fixed an error that led to a significant decrease in reading speed from tablet followers.

Fixed an error that caused volatile distributed transactions to sometimes wait for confirmations until the next reboot.

Fixed a rare assertion failure (server process crash) when followers attached to leaders with an inconsistent snapshot.

Fixed a rare datashard crash when a dropped table shard is restarted with uncommitted persistent changes.

Fixed an error that could disrupt the order of message processing in a topic.

Fixed a rare error that could stop reading from a topic partition.

Fixed an issue where a transaction could hang if a user performed a control plane operation on a topic (for example, adding partitions or a
consumer) while the PQ tablet is moving to another node.

Fixed a memory leak issue with the UserInfo counter value. Because of the memory leak, a reading session would eventually return a "too big
in flight" error.

Fixed a proxy crash due to duplicate topics in a request.

Fixed a rare bug where a user could write to a topic without any account quota being applied or consumed.

Fixed an issue where topic deletion returned "OK" while the topic tablets persisted in a functional state. To remove such tablets, follow the
instructions from the pull request.

Fixed a rare issue that prevented the restoration of a backup for a large secondary indexed table.

Fixed an issue that caused errors when inserting data using UPSERT into row-oriented tables with default values.

Resolved a bug that caused failures when executing queries to tables with secondary indexes that returned result lists using the RETURNING
* expression.

Version 24.3

Version 24.3.15.5

Release date: February 6, 2025

Functionality

Added the ability to register a database node using a certificate. In the Node Broker the flag AuthorizeByCertificate has been added to
enable certificate-based registration.

Added priorities for authentication ticket through a third-party IAM provider, with the highest priority given to requests from new users. Tickets
in the cache update their information with a lower priority.

Performance

Improved tablet startup time on large clusters: 210 ms → 125 ms (SSD), 260 ms → 165 ms (HDD).

Bug Fixes

Removed the restriction on writing values greater than 127 to the Uint8 type.

Fixed an issue where reading small messages from a topic in small chunks significantly increased CPU load, which could lead to delays in
reading and writing to the topic.

Fixed an issue with restoring from a backup stored in S3 with path-style addressing.

Fixed an issue with restoring from a backup that was created during an automatic table split.

Fixed an issue with Uuid serialization for CDC.

Fixed an issue with "frozen" locks, which could be caused by bulk operations (e.g., TTL-based deletions).

Fixed an issue where reading from a follower of tablets sometimes caused crashes during automatic table splits.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_24-4
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_24-4-4-2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_functionality
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_performance
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_bug-fixes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_24-3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_24-3-15-5
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_functionality1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_performance1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_bug-fixes1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_view
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_autopartitioning
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_transactions_topic-table-transactions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_datashard-distributed-txs_volatile-transactions
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_kafka-api_examples_kafka-api-usage-examples
https://github.com/ydb-platform/ydb/pull/14811
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet-follower
https://github.com/ydb-platform/ydb/pull/14516
https://github.com/ydb-platform/ydb/pull/15077
https://github.com/ydb-platform/ydb/pull/15074
https://github.com/ydb-platform/ydb/pull/15194
https://github.com/ydb-platform/ydb/pull/15308
https://github.com/ydb-platform/ydb/pull/15160
https://github.com/ydb-platform/ydb/pull/15233
https://github.com/ydb-platform/ydb/pull/15467
https://github.com/ydb-platform/ydb/pull/15933
https://github.com/ydb-platform/ydb/pull/16288
https://github.com/ydb-platform/ydb/pull/16288
https://github.com/ydb-platform/ydb/pull/16418
https://github.com/ydb-platform/ydb/pull/15862
https://github.com/ydb-platform/ydb/pull/15334
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_database-node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_node-broker
https://github.com/ydb-platform/ydb/pull/11775
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication_iam
https://github.com/ydb-platform/ydb/pull/12747
https://github.com/ydb-platform/ydb/pull/11901
https://github.com/ydb-platform/ydb/pull/12221
https://github.com/ydb-platform/ydb/pull/12915
https://github.com/ydb-platform/ydb/pull/13222
https://github.com/ydb-platform/ydb/pull/12601
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc
https://github.com/ydb-platform/ydb/pull/12018
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_contributor_datashard-locks-and-change-visibility_interaction-with-distributed-transactions
https://github.com/ydb-platform/ydb/pull/12804

Fixed an issue where the coordination node successfully registered proxy servers despite a connection loss.

Fixed an issue that occurred when opening the Embedded UI tab with information about distributed storage groups.

Fixed an issue where the Health Check did not report time synchronization issues.

Fixed a rare issue that caused errors during read queries.

Fixed an uncommitted changes leak and cleaned them up on startup.

Fixed consistency issues related to caching deleted ranges.

Version 24.3.11.14

Release date: January 9, 2025.

Functionality

Added support for restart without downtime in a minimal fault-tolerant configuration of a cluster that uses the three-node variant of mirror-3-
dc .

Added new UDF Roaring Bitmap functions: AndNotWithBinary, FromUint32List, RunOptimize.

Version 24.3.11.13

Release date: December 24, 2024.

Functionality

Introduced query tracing, a tool that allows you to view the detailed path of a request through a distributed system.

Added support for asynchronous replication, that allows synchronizing data between YDB databases in near real time. It can also be used for
data migration between databases with minimal downtime for applications interacting with these databases.

Added support for views, which can be enabled by the cluster administrator using the enable_views setting in dynamic configuration.

Extended federated query capabilities to support new external data sources: MySQL, Microsoft SQL Server, and Greenplum.

Published documentation on deploying YDB with federated query functionality (manual setup).

Added a new launch parameter FQ_CONNECTOR_ENDPOINT for YDB Docker containers that specifies an external data source connector
address. Added support for TLS encryption for connections to the connector and the ability to expose the connector service port locally on the
same host as the dynamic YDB node.

Added an auto-partitioning mode for topics, where partitions can dynamically split based on load while preserving message read-order and
exactly-once guarantees. The mode can be enabled by the cluster administrator using the settings enable_topic_split_merge and
enable_pqconfig_transactions_at_scheme_shard in dynamic configuration.

Added support for transactions involving topics and row-based tables, enabling transactional data transfer between tables and topics, or
between topics, ensuring no data loss or duplication. Transactions can be enabled by the cluster administrator using the settings
enable_topic_service_tx and enable_pqconfig_transactions_at_scheme_shard in dynamic configuration.

Implemented Change Data Capture (CDC) for synchronous secondary indexes.

Added support for changing record retention periods in CDC topics.

Added support for auto-increment columns as part of a table's primary key.

Added audit logging for user login events in YDB, session termination events in the user interface, and backup/restore operations.

Added a system view with information about sessions installed from the database using a query.

Added support literal default values for row-oriented tables. When inserting a new row in YDB Query default values will be assigned to the
column if specified.

Added the version() built-in function.

Added support for RETURNING clause in queries.

Added start/end times and authors in the metadata for backup/restore operations from S3-compatible storage.

Added support for backup/restore of ACL for tables from/to S3-compatible storage.

Included paths and decompression methods in query plans for reading from S3.

Added new parsing options for timestamp/datetime fields when reading data from S3.

Added support for the Decimal type in partitioning keys.

Improved diagnostics for storage issues in HealthCheck.

(Experimental) Added a cost-based optimizer for complex queries, involving column-oriented tables. The cost-based optimizer considers a
large number of alternative execution plans for each query and selects the best one based on the cost estimate for each option. Currently, this
optimizer only works with plans that contain JOIN operations.

(Experimental) Initial version of the workload manager was implemented. It allows to create resource pools with CPU, memory and active
queries count limits. Resource classifiers were implemented to assign queries to specific resource pool.
(Experimental) Implemented automatic index selection for queries, which can be enabled via the index_auto_choose_mode setting in
table_service_config in dynamic configuration.

YDB UI

Added support for creating and viewing information on asynchronous replication instances.

Added an indicator for auto-increment columns.

Added a tab with information about tablets.

Added a tab with details about distributed storage groups.

Added a setting to trace all queries and display tracing results.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_24-3-11-14
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_functionality2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_24-3-11-13
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_functionality3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_ydb-ui
https://github.com/ydb-platform/ydb/pull/12807
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_coordination-node
https://github.com/ydb-platform/ydb/pull/11593
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_storage-group
https://github.com/ydb-platform/ydb/pull/12448
https://github.com/ydb-platform/ydb/pull/11658
https://github.com/ydb-platform/ydb/pull/13501
https://github.com/ydb-platform/ydb/pull/13948
https://github.com/ydb-platform/ydb/pull/13251
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topology_reduced
https://github.com/ydb-platform/ydb/pull/13220
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_observability_tracing_setup
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_async-replication
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_view
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config_updating-dynamic-configuration
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_federated-queries_connector-deployment
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_autopartitioning
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config_updating-dynamic-configuration
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config_updating-dynamic-configuration
https://github.com/ydb-platform/ydb/pull/7150
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_builtins_basic_version
https://github.com/ydb-platform/ydb/pull/8708
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_primary-key_column-oriented_klyuch-particionirovaniya
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_optimizer_cost-based-query-optimizer
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_column-oriented-table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_join
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_secondary-indexes_avtomaticheskoe-ispolzovanie-indeksov-pri-vyborke
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_maintenance_manual_dynamic-config_updating-dynamic-configuration
https://github.com/ydb-platform/ydb-embedded-ui/issues/782
https://github.com/ydb-platform/ydb-embedded-ui/issues/929
https://github.com/ydb-platform/ydb-embedded-ui/pull/1438
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_tablet
https://github.com/ydb-platform/ydb-embedded-ui/pull/1289
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_storage-group
https://github.com/ydb-platform/ydb-embedded-ui/pull/1218

Enhanced the PDisk page with attributes, disk space consumption details, and a button to initiate disk decommissioning.

Added information about currently running queries.

Added a row limit setting for query editor output and a notification when results exceed the limit.

Added a tab to display top CPU-consuming queries over the last hour.

Added a control to search the history and saved queries pages.

Added the ability to cancel query execution.

Added a shortcut to save queries in the editor.

Separated donor disks from other disks in the UI.

Added support for InterruptInheritance ACL and improved visualization of active ACLs.
Added a display of the current UI version.

Added a tab with information about the status of settings for enabling experimental functionality.

Performance

Accelerated recovery of tables with secondary indexes from backups up to 20% according to our tests.

Optimized Interconnect throughput.

Improved the performance of CDC topics with thousands of partitions.

Enhanced the Hive tablet balancing algorithm.

Bug fixes

Fixed an issue that caused databases with a large number of tables or partitions to become non-functional during restoration from a backup.
Now, if database size limits are exceeded, the restoration operation will fail, but the database will remain operational.

Implemented a mechanism to forcibly trigger background compaction when discrepancies between the data schema and stored data are
detected in DataShard. This resolves a rare issue with delays in schema changes.

Resolved duplication of authentication tickets, which led to an increased number of requests to authentication providers.

Fixed an invariant violation issue during the initial scan of CDC, leading to an abnormal termination of the ydbd server process.

Prohibited schema changes for backup tables.

Fixed an issue with an initial scan freezing during CDC when the table is frequently updated.

Excluded deleted indexes from the count against the maximum index limit.

Fixed a bug in the display of the scheduled execution time for a set of transactions (planned step).

Fixed a problem with interruptions in blue–green deployment in large clusters caused by frequent updates to the node list.

Resolved a rare issue that caused transaction order violations.

Fixed an issue in the EvWrite API that resulted in incorrect memory deallocation.

Resolved a problem with volatile transactions hanging after a restart.

Fixed a bug in the CDC, which in some cases leads to increased CPU consumption, up to a core per CDC partition.
Eliminated read delays occurring during and after the splitting of certain partitions.

Fixed issues when reading data from S3.

Corrected the calculation of the AWS signature for S3 requests.

Resolved false positives in the HealthCheck system during database backups involving a large number of shards.

Version 24.2

Release date: August 20, 2024.

Functionality

Added the ability to set maintenance task priorities in the cluster management system.

Added a setting to enable stable names for cluster nodes within a tenant.

Enabled retrieval of nested groups from the LDAP server, improved host parsing in the LDAP-configuration, and added an option to disable
built-in authentication via login and password.

Added support for authenticating dynamic nodes using SSL-certificates.

Implemented the removal of inactive nodes from Hive without a restart.

Improved management of inflight pings during Hive restarts in large clusters.

Changed the order of establishing connections with nodes during Hive restarts.

YDB UI

Added the option to set a TTL for user sessions in the configuration file.

Added an option to sort the list of queries by CPUTime .

Fixed precision loss when working with double , float data types.

Added support for creating directories in the UI.

Added an auto-refresh control on all pages.

Improved ACL display.

Enabled autocomplete in the queries editor by default.

Added support for views.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_performance2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_bug-fixes2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_24-2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_functionality4
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_ydb-ui1
https://github.com/ydb-platform/ydb-embedded-ui/pull/1069
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_decommissioning
https://github.com/ydb-platform/ydb-embedded-ui/pull/1313
https://github.com/ydb-platform/ydb-embedded-ui/pull/1291
https://github.com/ydb-platform/ydb-embedded-ui/pull/1049
https://github.com/ydb-platform/ydb-embedded-ui/pull/1127
https://github.com/ydb-platform/ydb-embedded-ui/pull/1117
https://github.com/ydb-platform/ydb-embedded-ui/issues/944
https://github.com/ydb-platform/ydb-embedded-ui/pull/1422
https://github.com/ydb-platform/ydb-embedded-ui/pull/1154
https://github.com/ydb-platform/ydb-embedded-ui/pull/889
https://github.com/ydb-platform/ydb-embedded-ui/pull/1229
https://github.com/ydb-platform/ydb/pull/7589
https://github.com/ydb-platform/ydb/pull/9721
https://github.com/ydb-platform/ydb/pull/6850
https://github.com/ydb-platform/ydb/pull/11532
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_compaction
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_data-shard
https://github.com/ydb-platform/ydb/pull/10447
https://github.com/ydb-platform/ydb/pull/9377
https://github.com/ydb-platform/ydb/pull/9446
https://github.com/ydb-platform/ydb/pull/9509
https://github.com/ydb-platform/ydb/pull/9934
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_limits-ydb_schema-object
https://github.com/ydb-platform/ydb/issues/6985
https://github.com/ydb-platform/ydb/pull/9161
https://github.com/ydb-platform/ydb/issues/8942
https://github.com/ydb-platform/ydb/pull/8925
https://github.com/ydb-platform/ydb/pull/9841
https://github.com/ydb-platform/ydb/issues/9797
https://github.com/ydb-platform/ydb/pull/10698
https://github.com/ydb-platform/ydb/issues/10674
https://github.com/ydb-platform/ydb/pull/11061
https://github.com/ydb-platform/ydb/pull/4793
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_devops_manual_maintenance-without-downtime_priority
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_cms
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration__node-broker-config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_auth_ldap-auth-provider
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration__ldap-auth-config
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_dynamic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_hive
https://github.com/ydb-platform/ydb/pull/7485
https://github.com/ydb-platform/ydb-embedded-ui/issues/996
https://github.com/ydb-platform/ydb/pull/7779
https://github.com/ydb-platform/ydb-embedded-ui/pull/958
https://github.com/ydb-platform/ydb-embedded-ui/pull/976
https://github.com/ydb-platform/ydb-embedded-ui/pull/955

Bug fixes

Added a check on the size of the local transaction prior to its commit to fix errors in scheme shard operations when exporting/backing up large
databases.

Fixed an issue with duplicate results in SELECT queries when reducing quotas in DataShard.

Fixed errors occurring during coordinator state changes.

Fixed issues during the initial CDC scan.

Resolved race conditions in asynchronous change delivery (asynchronous indexes, CDC).

Fixed a crash that sometimes occurred during TTL-based deletions.

Fixed an issue with PDisk status display in the CMS.

Fixed an issue that might cause soft tablet transfers (drain) from a node to hang.

Resolved an issue with the interconnect proxy stopping on a node that is running without restarts. The issue occurred when adding another
node to the cluster.
Corrected string escaping in error messages.

Fixed an issue with managing free memory in the interconnect.

Corrected UnreplicatedPhantoms and UnreplicatedNonPhantoms counters in VDisk.

Fixed an issue with handling empty garbage collection requests on VDisk.

Resolved issues with managing TVDiskControls settings through CMS.

Fixed an issue with failing to load the data created by newer versions of VDisk.

Fixed an issue with executing the REPLACE INTO queries with default values.

Fixed errors in queries with multiple LEFT JOINs to a single string table.

Fixed precision loss for float , double types when using CDC.

Version 24.1

Release date: July 31, 2024.

Functionality

The Knn UDF function for precise nearest vector search has been implemented.
The gRPC Query service has been developed, enabling the execution of all types of queries (DML, DDL) and retrieval of unlimited amounts of
data.

Integration with the LDAP protocol has been implemented, allowing the retrieval of a list of groups from external LDAP directories.

Embedded UI

The database information tab now includes a resource consumption diagnostic dashboard, which allows users to assess the current
consumption of key resources: processor cores, RAM, and distributed storage space.

Charts for monitoring the key performance indicators of the YDB cluster have been added.

Performance

Session timeouts for the coordination service between server and client have been optimized. Previously, the timeout was 5 seconds, which
could result in a 10-second delay in identifying an unresponsive client and releasing its resources. In the new version, the check interval
depends on the session's wait time, allowing for faster responses during leader changes or when acquiring distributed locks.

CPU consumption by SchemeShard replicas has been optimized, particularly when handling rapid updates for tables with a large number of
partitions.

Bug fixes

A possible queue overflow error has been fixed. Change Data Capture now reserves the change queue capacity during the initial scan.

A potential deadlock between receiving and sending CDC records has been fixed.

An issue causing the loss of the mediator task queue during mediator reconnection has been fixed. This fix allows processing of the mediator
task queue during resynchronization.

A rarely occurring error has been fixed, where with volatile transactions enabled, a successful transaction confirmation result could be returned
before the transaction was fully committed. Volatile transactions remain disabled by default and are still under development.

A rare error that led to the loss of established locks and the successful confirmation of transactions that should have failed with a "Transaction
Locks Invalidated" error has been fixed.

A rare error that could result in a violation of data integrity guarantees during concurrent read and write operations on a specific key has been
fixed.

An issue causing read replicas to stop processing requests has been fixed.

A rare error that could cause abnormal termination of database processes if there were uncommitted transactions on a table during its
renaming has been fixed.

An error in determining the status of a static group, where it was not marked as non-working when it should have been, has been fixed.

An error involving partial commits of a distributed transaction with uncommitted changes, caused by certain race conditions with restarts, has
been fixed.

Anomalies related to reading outdated data, detected using Jepsen, have been fixed.

Version 23.4

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_bug-fixes3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_24-1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_functionality5
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_embedded-ui
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_performance3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_bug-fixes4
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_23-4
https://github.com/db-platform/ydb/issues/6677
https://github.com/ydb-platform/ydb/pull/7709
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_data-shard
https://github.com/ydb-platform/ydb/pull/6461
https://github.com/ydb-platform/ydb/issues/6220
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_coordinator
https://github.com/ydb-platform/ydb/pull/5992
https://github.com/ydb-platform/ydb/pull/6615
https://github.com/ydb-platform/ydb/pull/5993
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_ttl
https://github.com/ydb-platform/ydb/pull/5760
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_cms
https://github.com/ydb-platform/ydb/pull/6008
https://github.com/ydb-platform/ydb/pull/6445
https://github.com/ydb-platform/ydb/pull/7023
https://github.com/ydb-platform/ydb/pull/6695
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_actor-system-interconnect
https://github.com/ydb-platform/ydb/issues/6405
https://github.com/ydb-platform/ydb/issues/6398
https://github.com/ydb-platform/ydb/pull/5894
https://github.com/ydb-platform/ydb/pull/5883
https://github.com/ydb-platform/ydb/pull/5862
https://github.com/ydb-platform/ydb/pull/7714
https://github.com/ydb-platform/ydb/pull/7740
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_udf_list_knn
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_authentication
https://github.com/ydb-platform/ydb/pull/1837
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_glossary_scheme-shard
https://github.com/ydb-platform/ydb/pull/2391
https://github.com/ydb-platform/ydb/pull/3917
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_cdc
https://github.com/ydb-platform/ydb/pull/4597
https://github.com/ydb-platform/ydb/pull/2056
https://github.com/ydb-platform/ydb/pull/2624
https://github.com/ydb-platform/ydb/pull/2839
https://github.com/ydb-platform/ydb/pull/3074
https://github.com/ydb-platform/ydb/pull/4343
https://github.com/ydb-platform/ydb/pull/4979
https://github.com/ydb-platform/ydb/pull/3632
https://github.com/ydb-platform/ydb/pull/2169
https://blog.ydb.tech/hardening-ydb-with-jepsen-lessons-learned-e3238a7ef4f2
https://github.com/ydb-platform/ydb/pull/2374

Release date: May 14, 2024.

Performance

Fixed an issue of increased CPU consumption by a topic actor PERSQUEUE_PARTITION_ACTOR .

Optimized resource usage by SchemeBoard replicas. The greatest effect is noticeable when modifying the metadata of tables with a large
number of partitions.

Bug fixes

Fixed a bug of possible partial commit of accumulated changes when using persistent distributed transactions. This error occurs in an
extremely rare combination of events, including restarting tablets that service the table partitions involved in the transaction.

Fixed a bug involving a race condition between the table merge and garbage collection processes, which could result in garbage collection
ending with an invariant violation error, leading to an abnormal termination of the ydbd server process.

Fixed a bug in Blob Storage, where information about changes to the composition of a storage group might not be received in a timely manner
by individual cluster nodes. As a result, reads and writes of data stored in the affected group could become blocked in rare cases, requiring
manual intervention.

Fixed a bug in Blob Storage, where data storage nodes might not start despite the correct configuration. The error occurred on systems with
the experimental "blob depot" feature explicitly enabled (this feature is disabled by default).

Fixed a bug that sometimes occurred when writing to a topic with an empty producer_id with turned off deduplication. It could lead to
abnormal termination of the ydbd server process.

Fixed a bug that caused the ydbd process to crash due to an incorrect session state when writing to a topic.

Fixed a bug in displaying the metric of number of partitions in a topic, where it previously displayed an incorrect value.

Fixed a bug causing memory leaks that appeared when copying topic data between clusters. These could cause ydbd server processes to
terminate due to out-of-memory issues.

Version 23.3

Release date: October 12, 2023.

Functionality

Implemented visibility of own changes. With this feature enabled you can read changed values from the current transaction, which has not
been committed yet. This functionality also allows multiple modifying operations in one transaction on a table with secondary indexes.

Added support for column tables. It is now possible to create analytical reports based on stored data in YDB with performance comparable to
specialized analytical DBMS.

Added support for Kafka API for topics. YDB topics can now be accessed via a Kafka-compatible API designed for migrating existing
applications. Support for Kafka protocol version 3.4.0 is provided.

Added the ability to write to a topic without deduplication. This is important in cases where message processing order is not critical.

YQL has added the capabilities to create, modify, and delete topics.

Added support of assigning and revoking access rights using the YQL GRANT and REVOKE commands.

Added support of DML-operations logging in the audit log.

(Experimental) When writing messages to a topic, it is now possible to pass metadata. To enable this functionality, add
enable_topic_message_meta: true to the configuration file.

(Experimental) Added support for reading from topics in a transaction. It is now possible to read from topics and write to tables within a
transaction, simplifying the data transfer scenario from a topic to a table. To enable this functionality, add enable_topic_service_tx: true
to the configuration file.

(Experimental) Added support for PostgreSQL compatibility. This involves executing SQL queries in PostgreSQL dialect on the YDB
infrastructure using the PostgreSQL network protocol. With this capability, familiar PostgreSQL tools such as psql and drivers (e.g., pq for
Golang and psycopg2 for Python) can be used. Queries can be developed using the familiar PostgreSQL syntax and take advantage of YDB's
benefits such as horizontal scalability and fault tolerance.

(Experimental) Added support for federated queries. This enables retrieving information from various data sources without the need to move
the data into YDB. Federated queries support interaction with ClickHouse and PostgreSQL databases, as well as S3 class data stores (Object
Storage). YQL queries can be used to access these databases without duplicating data between systems.

Embedded UI

A new option PostgreSQL has been added to the query type selector settings, which is available when the Enable additional query
modes parameter is enabled. Also, the query history now takes into account the syntax used when executing the query.

The YQL query template for creating a table has been updated. Added a description of the available parameters.

Now sorting and filtering for Storage and Nodes tables takes place on the server. To use this functionality, you need to enable the parameter
Offload tables filters and sorting to backend in the experiments section.

Buttons for creating, changing and deleting topics have been added to the context menu.

Added sorting by criticality for all issues in the tree in Healthcheck .

Performance

Implemented read iterators. This feature allows to separate reads and computations. Read iterators allow datashards to increase read queries
throughput.

The performance of writing to YDB topics has been optimized.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_performance4
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_bug-fixes5
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_23-3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_functionality6
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_embedded-ui1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_performance5
https://github.com/ydb-platform/ydb/pull/3638
https://github.com/ydb-platform/ydb/pull/2083
https://github.com/ydb-platform/ydb/pull/2169
https://github.com/ydb-platform/ydb/pull/3165
https://github.com/ydb-platform/ydb/pull/2696
https://github.com/ydb-platform/ydb/pull/3002
https://github.com/ydb-platform/ydb/pull/2475
https://github.com/ydb-platform/ydb/pull/2651
https://github.com/ydb-platform/ydb/pull/3587
https://github.com/ydb-platform/ydb/pull/2126
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_column-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic_no-dedup
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_create-topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter-topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_delete
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic_read-tx
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic

Improved tablet balancing during node overload.

Bug fixes

Fixed an error regarding potential blocking of reading iterators of snapshots, of which the coordinators were unaware.

Memory leak when closing the connection in Kafka proxy has been fixed.

Fixed an issue where snapshots taken through reading iterators may fail to recover on restarts.

Fixed an issue with an incorrect residual predicate for the IS NULL condition on a column.

Fixed an occurring verification error: VERIFY failed: SendResult(): requirement ChunksLimiter.Take(sendBytes) failed .

Fixed ALTER TABLE for TTL on column-based tables.

Implemented a FeatureFlag that allows enabling/disabling work with CS and DS .

Fixed a 50ms time difference between coordinator time in 23-2 and 23-3.

Fixed an error where the storage endpoint was returning extra groups when the viewer backend had the node_id parameter in the request.

Added a usage filter to the /storage endpoint in the viewer backend .

Fixed an issue in Storage v2 where an incorrect number was returned in the Degraded field .

Fixed an issue with cancelling subscriptions from sessions during tablet restarts.

Fixed an error where healthcheck alerts for storage were flickering during rolling restarts when going through a load balancer.

Updated CPU usage metrics in YDB.

Fixed an issue where NULL was being ignored when specifying NOT NULL in the table schema.

Implemented logging of DDL operations in the common log.

Implemented restriction for the YDB table attribute add/drop command to only work with tables and not with any other objects.

Disabled CloseOnIdle for interconnect.

Fixed the doubling of read speed in the UI.

Fixed an issue where data could be lost on block-4-2.

Added a check for topic name validity.

Fixed a possible deadlock in the actor system.

Fixed the KqpScanArrowInChanels::AllTypesColumns test.

Fixed the KqpScan::SqlInParameter test.

Fixed parallelism issues for OLAP queries.

Fixed the insertion of ClickBench parquet files.

Added a missing call to CheckChangesQueueOverflow in the general CheckDataTxReject .

Fixed an error that returned an empty status in ReadRows API calls.

Fixed incorrect retry behavior in the final stage of export.

Fixed an issue with infinite quota for the number of records in a CDC topic .

Fixed the import error of string and parquet columns into an OLAP string column .

Fixed a crash in KqpOlapTypes.Timestamp under tsan .

Fixed a viewer backend crash when attempting to execute a query against the database due to version incompatibility.

Fixed an error where the viewer did not return a response from the healthcheck due to a timeout.

Fixed an error where incorrect ExpectedSerial values could be saved in Pdisks .

Fixed an error where database nodes were crashing due to segfault in the S3 actor.

Fixed a race condition in ThreadSanitizer: data race KqpService::ToDictCache-UseCache .

Fixed a race condition in GetNextReadId .

Fixed an issue with an inflated result in SELECT COUNT(*) immediately after import.

Fixed an error where TEvScan could return an empty dataset in the case of shard splitting.

Added a separate issue/error code in case of available space exhaustion.

Fixed a GRPC_LIBRARY Assertion failed error.

Fixed an error where scanning queries on secondary indexes returned an empty result.

Fixed validation of CommitOffset in TopicAPI .

Reduced shared cache consumption when approaching OOM.

Merged scheduler logic from data executer and scan executer into one class.

Added discovery and proxy handlers to the query execution process in the viewer backend .

Fixed an error where the /cluster endpoint returned the root domain name, such as /ru , in the viewer backend .

Implemented a seamless table update scheme for QueryService .

Fixed an issue where DELETE returned data and did not delete it.

Fixed an error in DELETE ON operation in query service.

Fixed an unexpected batching disablement in default schema settings.

Fixed a triggering check VERIFY failed: MoveUserTable(): requirement move.ReMapIndexesSize() == newTableInfo-
>Indexes.size() .

Increased the default timeout for grpc-streaming .

Excluded unused messages and methods from QueryService .

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_bug-fixes6

Added sorting by Rack in /nodes in the viewer backend .

Fixed an error where sorting queries returned an error in descending order.

Improved interaction between KQP and NodeWhiteboard .

Removed support for old parameter formats.

Fixed an error where DefineBox was not being applied to disks with a static group.

Fixed a SIGSEGV error in the dinnode during CSV import via YDB CLI .

Fixed an error that caused a crash when processing NGRpcService::TRefreshTokenImpl .

Implemented a gossip protocol for exchanging cluster resource information.

Fixed an error in DeserializeValuePickleV1(): requirement data.GetTransportVersion() == (ui32)
NDqProto::DATA_TRANSPORT_UV_PICKLE_1_0 failed .

Implemented auto-increment columns.

Use UNAVAILABLE status instead of GENERIC_ERROR when shard identification fails.

Added support for rope payload in TEvVGet .

Added ignoring of deprecated events.

Fixed a crash of write sessions on an invalid topic name.

Fixed an error in CheckExpected(): requirement newConstr failed, message: Rewrite error, missing Distinct((id)) constraint
in node FlatMap .

Enabled self-heal by default.

Version 23.2

Release date: August 14, 2023.

Functionality

(Experimental) Implemented visibility of own changes. With this feature enabled you can read changed values from the current transaction,
which has not been committed yet. This functionality also allows multiple modifying operations in one transaction on a table with secondary
indexes. To enable this feature add enable_kqp_immediate_effects: true under table_service_config section into configuration file.

(Experimental) Implemented read iterators. This feature allows to separate reads and computations. Read iterators allow datashards to
increase read queries throughput. To enable this feature add enable_kqp_data_query_source_read: true under table_service_config
section into configuration file.

Embedded UI

Navigation improvements:

Diagnostics and Development mode switches are moved to the left panel.

Every page has breadcrumbs.

Storage groups and nodes info are moved from left buttons to tabs on the database page.

Query history and saved queries are moved to tabs over the text editor area in query editor.

Info tab for scheme objects displays parameters using terms from CREATE or ALTER statements.

Added column tables support.

Performance

For scan queries, you can now effectively search for individual rows using a primary key or secondary indexes. This can bring you a
substantial performance gain in many cases. Similarly to regular queries, you need to explicitly specify its name in the query text using the
VIEW keyword to use a secondary index.

(Experimental) Added an option to give control of the system tablets of the database (SchemeShard, Coordinators, Mediators,
SysViewProcessor) to its own Hive instead of the root Hive, and do so immediately upon creating a new database. Without this flag, the
system tablets of the new database are created in the root Hive, which can negatively impact its load. Enabling this flag makes databases
completely isolated in terms of load, that may be particularly relevant for installations, consisting from a roughly hundred or more databases. To
enable this feature add alter_database_create_hive_first: true under feature_flags section into configuration file.

Bug fixes

Fixed a bug in the autoconfiguration of the actor system, resulting in all the load being placed on the system pool.

Fixed a bug that caused full scanning when searching by prefix of the primary key using LIKE .

Fixed bugs when interacting with datashard followers.

Fixed bugs when working with memory in column tables.

Fixed a bug in processing conditions for immediate transactions.

Fixed a bug in the operation of iterator-based reads on datasharrd followers.

Fixed a bug that caused cascading reinstallation of data delivery sessions to asynchronous indexes.

Fixed bugs in the optimizer for scanning queries.

Fixed a bug in the incorrect calculation of storage consumption by Hive after expanding the database.
Fixed a bug that caused operations to hang on non-existent iterators.

Fixed bugs when reading a range on a NOT NULL column.

Fixed a bug in the replication of VDisks.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_23-2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_functionality7
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_embedded-ui2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_performance6
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_bug-fixes7
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_column-tables
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index

Fixed a bug in the work of the run_interval option in TTL.

Version 23.1

Release date: May 5, 2023. To update to version 23.1, select the Downloads section.

Functionality

Added initial table scan when creating a CDC changefeed. Now, you can export all the data existing at the time of changefeed creation.

Added atomic index replacement. Now, you can atomically replace one pre-defined index with another. This operation is absolutely transparent
for your application. Indexes are replaced seamlessly, with no downtime.
Added the audit log: Event stream including data about all the operations on YDB objects.

Performance

Improved formats of data exchanged between query stages. As a result, we accelerated SELECTs by 10% on parameterized queries and by
up to 30% on write operations.

Added autoconfiguring for the actor system pools based on the workload against them. This improves performance through more effective
CPU sharing.

Optimized the predicate logic: Processing of parameterized OR or IN constraints is automatically delegated to DataShard.

(Experimental) For scan queries, you can now effectively search for individual rows using a primary key or secondary indexes. This can bring
you a substantial gain in performance in many cases. Similarly to regular queries, to use a secondary index, you need to explicitly specify its
name in the query text using the VIEW keyword.

The query's computational graph is now cached at query runtime, reducing the CPU resources needed to build the graph.

Bug fixes

Fixed bugs in the distributed data warehouse implementation. We strongly recommend all our users to upgrade to the latest version.

Fixed the error that occurred on building an index on NOT NULL columns.

Fixed statistics calculation with MVCC enabled.

Fixed errors with backups.

Fixed the race condition that occurred at splitting and deleting a table with SDC.

Version 22.5

Release date: March 7, 2023. To update to version 22.5, select the Downloads section.

What's new

Added changefeed configuration parameters to transfer additional information about changes to a topic.

You can now rename tables that have TTL enabled.

You can now manage the record retention period.

Bug fixes and improvements

Fixed an error inserting 0 rows with a BulkUpsert.

Fixed an error importing Date/DateTime columns from CSV.

Fixed an error importing CSV data with line breaks.

Fixed an error importing CSV data with NULL values.

Improved Query Processing performance (by replacing WorkerActor with SessionActor).

DataShard compaction now starts immediately after a split or merge.

Version 22.4

Release date: October 12, 2022. To update to version 22.4, select the Downloads section.

What's new

YDB Topics and Change Data Capture (CDC):

Introduced the new Topic API. YDB Topic is an entity for storing unstructured messages and delivering them to various subscribers.
Added support for the Topic API to the YDB CLI and SDK. The Topic API provides methods for message streaming writes and reads as
well as topic management.

Added the ability to capture table updates and send change messages to a topic.

SDK:

Added the ability to handle topics in the YDB SDK.

Added official support for the database/sql driver for working with YDB in Golang.

Embedded UI:

The CDC changefeed and the secondary indexes are now displayed in the database schema hierarchy as separate objects.

Improved the visualization of query explain plan graphics.

Problem storage groups have more visibility now.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_23-1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_functionality8
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_performance7
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_bug-fixes8
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_22-5
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_whats-new
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_bug-fixes-and-improvements
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_22-4
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-server_whats-new1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_index_ydb-server
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc_initial-scan
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_secondary-indexes_atomic-index-replacement
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security_audit-log
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_configuration_index_autoconfig
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_index_ydb-server
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_yql_reference_syntax_alter_table_changefeed
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_rename
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc_retention-period
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_index_ydb-server
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-overview
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-sdk_topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc

Various improvements based on UX research.

Query Processing:

Added Query Processor 2.0, a new subsystem to execute OLTP queries with significant improvements compared to the previous version.

Improved write performance by up to 60%, and by up to 10% for reads.

Added the ability to include a NOT NULL restriction for YDB primary keys when creating tables.

Added support for renaming a secondary index online without shutting the service down.

Improved the query explain view that now also includes fields for the physical operators.

Core:

For read only transactions, added consistent snapshot support that does not conflict with write transactions.
Added BulkUpsert support for tables with asynchronous secondary indexes.

Added TTL support for tables with asynchronous secondary indexes.

Added compression support for data export to S3.

Added an audit log for DDL statements.

Added support for authentication with static credentials.

Added system tables for query performance troubleshooting.

YDB CLI changelog

Version 2.20.0

Released on March 5, 2025. To update to version 2.20.0, select the Downloads section.

Features

Added topics support in the ydb tools dump and ydb tools restore commands. In this release, only topic settings are retained;
messages are not included in the backup.
Added coordination nodes support in the ydb tools dump and ydb tools restore commands.

Added the new ydb workload log import generator command.

Added new global options for client certificates in SSL/TLS connections:

--client-cert-file : File containing a client certificate for SSL/TLS connections (PKCS#12 or PEM-encoded).

--client-cert-key-file : File containing a PEM-encoded private key for the client certificate.

--client-cert-key-password-file : File containing a password for the private key (if the key is encrypted).

Queries in the ydb workload run command are now executed in random order.

(Requires server v25.1+) Added support for external data sources and external tables in the ydb tools dump and ydb tools restore
commands.

(Experimental) Added the ydb admin node config init command to initialize a directory with node configuration files.

(Requires server v25.1+) (Experimental) Added the ydb admin cluster config generate command to generate a dynamic configuration
file from a cluster static configuration file.

(Requires server v25.1+) (Experimental) Added the command ydb admin cluster dump and the command ydb admin cluster
restore for dumping all cluster-level data. These dumps contain a list of databases with metadata, users, and groups but do not include
schema objects.

(Requires server v25.1+) (Experimental) Added the ydb admin database dump and ydb admin database restore commands for
dumping all database-level data. These dumps contain database metadata, schema objects, their data, users, and groups.

(Requires server v25.1+) (Experimental) Added the --dedicated-storage-section and --dedicated-cluster-section options to the
ydb admin cluster config fetch command, allowing cluster and storage config sections to be fetched separately.

Bug fixes

Fixed a bug where the ydb auth get-token command attempted to authenticate twice: once while listing endpoints and again while
executing the actual token request.

Fixed a bug where the ydb import file csv command was saving progress even if a batch upload had failed.

Fixed a bug where some errors could be ignored when restoring from a local backup with the ydb tools restore command.

Fixed a memory leak in the data generator for the ydb workload tpcds benchmark.

Version 2.19.0

Released on February 5, 2025. To update to version 2.19.0, select the Downloads section.

Features

Added changefeeds support in the ydb tools dump and ydb tools restore commands.

Added CREATE TABLE text suggestion on schema error during the ydb import file csv command.

Added statistics output on the current progress of the query in the ydb workload command.

Added query text to the error message if a query fails in the ydb workload run command.

Added a message if the global timeout expired in the ydb workload run command.

(Requires server v25.1+) Added views support in the ydb export s3 and ydb import s3 . Views are exported as CREATE VIEW YQL
statements, which are executed on import.

(Requires server v25.1+) Added the --skip-checksum-validation option to the ydb import s3 command to skip server-side checksum
validation.

(Requires server v25.1+) (Experimental) Added new options for the ydb debug ping command: --chain-length , --chain-work-
duration , --no-tail-chain .

(Requires server v25.1+) (Experimental) Added new options for the ydb admin storage fetch command: --dedicated-storage-
section and --dedicated-cluster-section .

(Requires server v25.1+) (Experimental) Added new options for the ydb admin storage replace command: --filename , --dedicated-
cluster-yaml , --dedicated-storage-yaml , --enable-dedicated-storage-section and --disable-dedicated-storage-section .

Bug fixes

Fixed a bug where the arm64 YDB CLI binary was downloading the amd64 binary to replace itself during the ydb update command. To
update already installed binaries to the latest arm64 version, YDB CLI should be reinstalled.

Fixed the return code of the ydb workload run command.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-20-0
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_features
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_bug-fixes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-19-0
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_features1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_bug-fixes1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_index_ydb-cli
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-dump
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_coordination-node
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-dump
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_external_data_source
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_external_table
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-dump
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#_reference_ydb-cli_configs
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-dump_cluster
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-restore_cluster
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_index_ydb-cli
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_cdc
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-dump
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-file
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_view
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-s3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_service
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_index

Fixed a bug where the ydb workload tpch import generator and ydb workload tpcds import generator commands were failing
because not all tables had been created.

Fixed a bug with backslashes in the ydb workload commands paths on Windows.

Version 2.18.0

Released on December 24, 2024. To update to version 2.18.0, select the Downloads section.

Features

Added support for views in local backups: ydb tools dump and ydb tools restore . Views are backed up as CREATE VIEW queries saved
in the create_view.sql files, which can be executed to recreate the original views.

Added new options to the ydb workload topic run command: --tx-commit-interval and --tx-commit-messages , allowing you to
specify the interval between transaction commits in milliseconds or in the number of messages written, respectively.

Made the --consumer flag in the ydb topic read command optional. In the non-subscriber reading mode, the partition IDs must be
specified with the --partition-ids option. In this case, the read is performed without saving the offset commit.

The ydb import file csv command now saves the import progress. Relaunching the import command will resume the process from the
row where it was interrupted.

In the ydb workload kv and ydb workload stock commands, the default value of the --executer option has been changed to
generic , which makes them no longer rely on the legacy query execution infrastructure.

Replaced the CSV format with Parquet for filling tables in the ydb workload benchmarks.

(Requires server v25.1+) (Experimental) Added new ydb admin storage command with fetch and replace subcommands to manage
server storage configuration.

Backward incompatible changes

Replaced the --query-settings option with --query-prefix in the ydb workload * run command.

Bug fixes

Fixed a bug where the ydb workload * run command could crash in --dry-run mode.

Fixed a bug in the ydb import file csv where multiple columns with escaped quotes in the same row were parsed incorrectly.

Version 2.17.0

Released on December 4, 2024. To update to version 2.17.0, select the Downloads section.

Features

(Requires server v25.1+) (Experimental) Added the ydb debug ping command for performance and connectivity debugging.

Performance

Improved performance of parallel importing data from the file system using the ydb tools restore command.

Bug fixes

Fixed a bug in the table schema created by the ydb workload tpch command where the partsupp table contained an incorrect list of key
columns.

Resolved an issue where the ydb tools restore command failed with the error "Too much data" if the maximum value of the --upload-
batchbytes option was set to 16 MB.

Version 2.16.0

Released on November 26, 2024. To update to version 2.16.0, select the Downloads section.

Features

Improved throughput of the ydb import file csv command by up to 3 times.

Added support for running the stock benchmark with column-oriented tables.

Added support for ISO 8601–formatted timestamps in the ydb topic commands.

Added the --explain-ast option to the ydb sql command, which prints the query AST.

Added ANSI SQL syntax highlighting in interactive mode.

Added support for PostgreSQL syntax in the ydb workload tpch and ydb workload tpcds benchmarks.

Introduced the -c option for the ydb workload tpcds run command to compare results with expected values and display differences.

Added log events for the ydb tools dump and ydb tools restore commands.

Enhanced the ydb tools restore command to display error locations.

Backward incompatible changes

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-18-0
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_features2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_backward-incompatible-changes
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_bug-fixes2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-17-0
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_features3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_performance
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_bug-fixes3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-16-0
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_features4
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_backward-incompatible-changes1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpch
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_index_ydb-cli
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_view
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-topic_run-write
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-read
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-file
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_index_ydb-cli
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-restore
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_index_ydb-cli
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_stock
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_datamodel_table_column-oriented-tables
https://en.wikipedia.org/wiki/ISO_8601
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_intro

Changed the default value of the ydb topic write command's --codec option to RAW .

Bug fixes

Fixed the progress bar in the ydb workload import command.

Resolved an issue where restoring from a backup using the --import-data option could fail if the table's partitioning had changed.

Version 2.10.0

Released on June 24, 2024. To update to version 2.10.0, select the Downloads section.

Features

Added the ydb sql command that runs over QueryService and can execute any DML/DDL command.

Added notx support for the --tx-mode option in the ydb table query execute command.

Added start and end times for long-running operation descriptions (export, import).

Added replication description support in the ydb scheme describe and ydb scheme ls commands.

Added big datetime types support: Date32 , Datetime64 , Timestamp64 , Interval64 .

ydb workload commands rework:

Added the --clear option to the init subcommand, allowing tables from previous runs to be removed before workload initialization.

Added the ydb workload * import command to prepopulate tables with initial content before executing benchmarks.

Backward incompatible changes

ydb workload commands rework:

The --path option was moved to a specific workload level. For example: ydb workload tpch --path some/tables/path init

The --store=s3 option was changed to --store=external-s3 in the init subcommand.

Bug fixes

Fixed colors in the PrettyTable format

Version 2.9.0

Released on April 25, 2024. To update to version 2.9.0, select the Downloads section.

Features

Improved query logical plan tables: added colors, more information, fixed some bugs.

The verbose option -v is supported for the ydb workload commands to provide debug information.

Added an option to run the ydb workload tpch command with an S3 source to measure federated queries performance.

Added the --rate option for ydb workload commands to control the transactions (or requests) per second limit.

Added the --use-virtual-addressing option for S3 import/export, allowing the switch to virtual hosting of buckets for the S3 path layout.

Improved the ydb scheme ls command performance due to listing directories in parallel.

Bug fixes

Resolved an issue where extra characters were truncated during line transfers in CLI tables.

Fixed invalid memory access in tools restore .

Fixed the issue of the --timeout option being ignored in generic and scan queries, as well as in the import command.

Added a 60-second timeout to version checks and CLI binary downloads to prevent infinite waiting.

Minor bug fixes.

Version 2.8.0

Released on January 12, 2024. To update to version 2.8.0, select the Downloads section.

Features

Added new ydb admin config and ydb admin volatile-config commands for cluster configuration management.

Added support for loading PostgreSQL-compatible data types by ydb import file csv|tsv|json command. Only for row-oriented tables.

Added support for directory load from an S3-compatible storage in the ydb import s3 command. Currently only available on Linux and Mac OS.

Added support for outputting the results of ydb table query execute, ydb yql and ydb scripting yql commands in the Apache Parquet format.

In the ydb workload commands, the --executer option has been added, which allows to specify which type of queries to use.

Added a column with median benchmark execution time in the statistics table of the ydb workload clickbench command.

(Experimental) Added the generic request type to the ydb table query execute command, allowing to perform DDL and DML operations,
return with arbitrarily-sized results and support for MVCC. The command uses an experimental API, compatibility is not guaranteed.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_bug-fixes4
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-10-0
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_features5
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_backward-incompatible-changes2
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_bug-fixes5
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-9-0
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_features6
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_bug-fixes6
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-8-0
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_features7
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_index_ydb-cli
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_index_ydb-cli
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_federated_query_index
https://docs.aws.amazon.com/AmazonS3/latest/userguide/VirtualHosting.html
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_index_ydb-cli
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-file
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-s3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_table-query-execute
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_yql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_scripting-yql
https://parquet.apache.org/docs/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_workload_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-click-bench
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_table-query-execute
https://en.wikipedia.org/wiki/Data_Definition_Language
https://en.wikipedia.org/wiki/Data_Manipulation_Language
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_concepts_mvcc

(Experimental) In the ydb table query explain command, the --collect-diagnostics option has been added to collect query
diagnostics and save it to a file. The command uses an experimental API, compatibility is not guaranteed.

Bug fixes

Fixed an error displaying tables in pretty format with Unicode characters.

Fixed an error substituting the wrong primary key in the command ydb tools pg-convert.

Version 2.7.0

Released on October 23, 2023. To update to version 2.7.0, select the Downloads section.

Features

Added the ydb tools pg-convert command, which prepares a dump obtained by the pg_dump utility for loading into the YDB postgres-
compatible layer.

Added the ydb workload query load testing command, which loads the database with script execution queries in multiple threads.

Added new ydb scheme permissions list command to list permissions.

In the commands ydb table query execute, ydb table query explain, ydb yql, and ydb scripting yql, the --flame-graph option has been
added, specifying the path to the file in which you need to save the visualization of query execution statistics.

Special commands in the interactive query execution mode are now case-insensitive.

Added validation for special commands and their parameters.

Added table reading in the scenario with transactions in the command ydb workload transfer topic-to-table run.

Added the --commit-messages option to the command ydb workload transfer topic-to-table run, specifying the number of messages in a
single transaction.

Added the options --only-table-in-tx and --only-topic-in-tx in the command ydb workload transfer topic-to-table run, specifying
restrictions on the types of queries in a single transaction.

Added new columns Select time and Upsert time in the statistics table in the command ydb workload transfer topic-to-table run.

Bug fixes

Fixed an error when loading an empty JSON list by commands: ydb table query execute, ydb scripting yql and ydb yql.

Version 2.6.0

Released on September 7, 2023. To update to version 2.6.0, select the Downloads section.

Features

Added --path option to ydb workload tpch run, which contains the path to the directory with tables created by the ydb workload tpch init
command.

Added ydb workload transfer topic-to-table run command, which loads the database with read requests from topics and write requests to the
table.

Added the option --consumer-prefix in the commands ydb workload topic init, ydb workload topic run read|full, specifying prefixes of
consumer names.

Added the --partition-ids option in the ydb topic read command, which specifies a comma-separated list of topic partition identifiers to
read from.

Added support for CSV and TSV parameter formats in YQL query execution commands.

The interactive mode of query execution has been redesigned. Added new interactive mode specific commands: SET , EXPLAIN , EXPLAIN
AST . Added saving history between CLI launches and auto-completion of YQL queries.

Added the command ydb config info, which outputs the current connection parameters without connecting to the database.

Added the command ydb workload kv run mixed, which loads the database with write and read requests.

The --percentile option in the ydb workload topic run write|read|full commands can now take floating point values.

The default values for the --seconds and --warmup options in the ydb workload topic run write|read|full commands have been increased to
60 seconds and 5 seconds, respectively.

Changed the default value for the --supported-codecs option to RAW in the ydb topic create and ydb topic consumer add commands.

Bug fixes

Fixed string loss when loading with the ydb import file json command.

Fixed ignored statistics during the warm-up of commands ydb workload topic run write|read|full.

Fixed incomplete statistics output in the ydb scripting yql and ydb yql commands.

Fixed incorrect output of progress bar in ydb tools dump and ydb tools restore commands.

Fixed loading large files with the header in the ydb import file csv|tsv command.
Fixed hanging of the ydb tools restore --import-data command.

Fixed error Unknown value Rejected when executing the ydb operation list build index command.

Version 2.5.0

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_bug-fixes7
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-7-0
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_features8
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_bug-fixes8
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-6-0
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_features9
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_bug-fixes9
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-5-0
https://en.wikipedia.org/wiki/Unicode
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_import_pg-convert
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_index_ydb-cli
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_postgresql_import_pg-convert
https://www.postgresql.org/docs/current/app-pgdump.html
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_yql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_table-query-execute
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_explain-plan
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_yql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_scripting-yql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_interactive-cli_spec-commands
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_interactive-cli_spec-commands
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_interactive-cli_internal-vars
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-transfer_run
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-transfer_run
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-transfer_run
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-transfer_run
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_table-query-execute
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_scripting-yql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_yql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_index_ydb-cli
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpch_run
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpch_init
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-transfer
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-topic_init
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-topic_run-read
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-read
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-queries-cli
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_interactive-cli
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_interactive-cli_spec-commands
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_config-info
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_mixed-kv
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-topic_run-write
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-topic_run-write
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-create
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-consumer-add
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-file
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-topic_run-write
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_scripting-yql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_yql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-dump
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-restore
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-file
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-restore_optional
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_operation-list

Released on June 20, 2023. To update to version 2.5.0, select the Downloads section.

Features

For the ydb import file command, a parameter --timeout has been added that specifies the time within which the operation should be
performed on the server.

Added a progress bar in commands ydb scheme rmdir --recursive and ydb import file.
Added the command ydb workload kv run read-rows, which loads the database with requests to read rows using a new experimental API call
ReadRows (implemented only in the main branch), which performs faster key reading than select.

New parameters --warmup-time , --percentile , --topic have been added to the ydb workload topic, setting the test warm-up time, the
percentile in the statistics output and the topic name, respectively.

Added the ydb workload tpch command to run the TPC-H benchmark.

Added the --ordered flag in the command ydb tools dump, which preserves the order by primary key in tables.

Performance

The data loading speed in the ydb import file command has been increased by adding parallel loading. The number of threads is set by
the new parameter --threads.

A performance of the ydb import file json command has been increased by reducing the number of data copies.

Version 2.4.0

Released on May 24, 2023. To update to version 2.4.0, select the Downloads section.

Features

Added the ability to upload multiple files in parallel with the command ydb import file.

Added support for deleting column tables for the command ydb scheme rmdir --recursive.

Improved stability of the command ydb workload topic.

Version 2.3.0

Release date: May 1, 2023. To update to version 2.3.0, select the Downloads section.

Features

Added the interactive mode of query execution. To switch to the interactive mode, run ydb yql without arguments. This mode is experimental:
backward compatibility is not guaranteed yet.

Added the ydb index rename command for atomic replacement or renaming of a secondary index.

Added the ydb workload topic command for generating the load that reads messages from topics and writes messages to topics.

Added the --recursive option for the ydb scheme rmdir command. Use it to delete a directory recursively, with all its content.

Added support for the topic and coordination node types in the ydb scheme describe command.

Added the --commit option for the ydb topic consumer command. Use it to commit messages you have read.

Added the --columns option for the ydb import file csv|tsv command. Use it as an alternative to the file header when specifying a
column list.

Added the --newline-delimited option for the ydb import file csv|tsv command. Use it to make sure that your data is newline-free. This
option streamlines import by reading data from several file sections in parallel.

Bug fixes

Fixed the bug that resulted in excessive memory and CPU utilization when executing the ydb import file command.

Version 2.2.0

Release date: March 3, 2023. To update to version 2.2.0, select the Downloads section.

Features

Fixed the error that didn't allow specifying supported compression algorithms when adding a topic consumer.

Added support for streaming YQL scripts and queries based on options transferred via stdin .

You can now use a file to provide YQL query options

Password input requests are now output to stderr instead of stdout .

You can now save the root CA certificate path in a profile.

Added a global option named --profile-file to use the specified file as storage for profile settings.

Added a new type of load testing: ydb workload clickbench.

Version 2.1.1

Release date: December 30, 2022. To update to version 2.1.1, select the Downloads section.

Improvements

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_features10
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_performance1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-4-0
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_features11
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-3-0
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_features12
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_bug-fixes10
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-2-0
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_features13
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-1-1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_improvements
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_index_ydb-cli
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-file_optional
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_dir_rmdir
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-file
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_read-rows-kv
https://github.com/ydb-platform/ydb
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-kv_select-kv
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-tpch
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_tools-dump
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-file_optional
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-file
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_index_ydb-cli
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-file_multiple-files
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_dir_rmdir
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-topic
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_index_ydb-cli
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_yql
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_secondary_index_rename
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_dev_secondary-indexes_atomic-index-replacement
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_dir_rmdir-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_scheme-describe
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_topic-read_osnovnye-opcionalnye-parametry
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-file_optional
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-file_optional
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_index_ydb-cli
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-queries-cli
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_parameterized-queries-cli
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_index
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_global-options_service-options
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_workload-click-bench
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_index_ydb-cli

Added support for the --stats option of the ydb scheme describe command for column-oriented tables.

Added support for Parquet files to enable their import with the ydb import command.

Added support for additional logging and retries for the ydb import command.

Version 2.1.0

Release date: November 18, 2022. To update to version 2.1.0, select the Downloads section.

Features

You can now create a profile non-interactively.

Added the ydb config profile update and ydb config profile replace commands to update and replace profiles, respectively.

Added the -1 option for the ydb scheme ls command to enable output of a single object per row.

You can now save the IAM service URL in a profile.

Added support for username and password-based authentication without specifying the password.

Added support for AWS profiles in the ydb export s3 command.

You can now create profiles using stdin . For example, you can pass the YC CLI yc ydb database get information command output to
the ydb config profile create command input.

Bug fixes

Fixed the error when request results were output in JSON-array format incorrectly if they included multiple server responses.

Fixed the error that disabled profile updates so that an incorrect profile was used.

Version 2.0.0

Release date: September 20, 2022. To update to version 2.0.0, select the Downloads section.

Features

Added the ability to work with topics:

ydb topic create : Create a topic.

ydb topic alter : Update a topic.

ydb topic write : Write data to a topic.

ydb topic read : Read data from a topic.

ydb topic drop : Delete a topic.

Added a new type of load testing:

ydb workload kv init : Create a table for kv load testing.

ydb workload kv run : Apply one of three types of load: run multiple UPSERT sessions, run multiple INSERT sessions, or run multiple
sessions of GET requests by primary key.

ydb workload kv clean : Delete a test table.

Added the ability to disable current active profile (see the ydb config profile deactivate command).

Added the ability to delete a profile non-interactively with no commit (see the --force option under the ydb config profile remove
command).

Added CDC support for the ydb scheme describe command.

Added the ability to view the current DB status (see the ydb monitoring healthcheck command).

Added the ability to view authentication information (token) to be sent with DB queries under the current authentication settings (see the ydb
auth get-token command).

Added the ability for the ydb import command to read data from stdin.

Added the ability to import data in JSON format from a file or stdin (see the ydb import file json command).

Improvements

Improved command processing. Improved the accuracy of user input parsing and validation.

Version 1.9.1

Release date: June 25, 2022. To update to version 1.9.1, select the Downloads section.

Features

Added the ability to compress data when exporting it to S3-compatible storage (see the --compression option of the ydb export s3
command).

Added the ability to manage new YDB CLI version availability auto checks (see the --disable-checks and --enable-checks options of the
ydb version command).

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-1-0
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_features14
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_bug-fixes11
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_2-0-0
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_features15
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_improvements1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_1-9-1
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_changelog-cli_features16
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_scheme-describe
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-file
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_import-file
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_index_ydb-cli
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_create_cmdline
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_create_update
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_profile_create_replace
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_commands_scheme-ls
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_auth-s3_auth
https://yandex.cloud/docs/cli/
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_index_ydb-cli
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_downloads_index_ydb-cli
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_export-import_export-s3
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_reference_ydb-cli_version

Security changelog

Fixed in YDB 22.4.44, 2022-11-28

CVE-2022-28228

Out-of-bounds read was discovered in YDB server. An attacker could construct a query with an insert statement that would allow them to access
confidential information or cause a crash.

Link to CVE: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-28228.

Credits: Maxim Arnold.

Fixed in YDB Go SDK v3.53.3, 2023-10-17

CVE-2023-45825

Token in custom credentials object can leak through logs.

Link to CVE: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-45825.

Credits: Sergey Foster.

file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security-changelog
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security-changelog_28-11-2022
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security-changelog_cve-2022-28228
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security-changelog_17-10-2023
file:///home/runner/work/ydb/ydb/_docs-lint/en/single-page.html#en_security-changelog_cve-2023-45825
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-28228
https://nvd.nist.gov/vuln/detail/CVE-2023-45825

